Absolute Continuity of Hamiltonian Operators with Repulsive Potentials

By

Masaharu Arai*

1. Introduction

The purpose of the present note is to improve the results of R.B. Lavine [3] on the absolute continuity of a Hamiltonian operator $H = -\Delta + V$ in $L_2(\mathbb{R}^n)$ with repulsive potential V (where Δ is the Laplacian and V is the operation of multiplication by a real function V(x)). If the potential V(x) satisfies

(1)
$$\partial V/\partial r \leq 0$$

where r = |x|, then it is said to be repulsive.

Lavine [3] shows that if the potential V satisfies not only the assumption (1) but also

(2)
$$\partial V / \partial r \leq -ar^{-3+\varepsilon}$$
 for large r

for some positive constants a and ε , then $H = -\varDelta + V$ is absolutely continuous for n=1, 3. Our aim is to extend his results in two directions: One is to remove the restriction on the dimension n of the space, and the other is to remove the assumption (2). This will be accomplished except for the cases n=1 and 2, where we must impose an assumption somewhat weaker than (2).

Our method is that of Lavine [3] which is based on an abstract theory of Putnam [4] on commutators of pairs of selfadjoint operators.

Received July 15, 1971.

Communicated by S. Matsuura.

^{*} Faculty of Economics, Ritsumeikan University, Tōjiin, Kyoto, 603, Japan.

2. Notations and Results

Let T be a selfadjoint operator in a Hilbert space \mathfrak{H} and $E(\lambda)$ be the spectral family associated with T. Denote by $\mathfrak{H}_{ac}(T)$ the set of all vectors ϕ such that $||E(\lambda)\phi||^2$ is absolutely continuous with respect to the Lebesgue measure. Then $\mathfrak{H}_{ac}(T)$ is a closed subspace which reduces T; cf. [2], Chapter X, Theorem 1.5. Denote by T_{ac} the restriction of T in $\mathfrak{H}_{ac}(T)$. The spectrum of T_{ac} is called the absolutely continuous spectrum of T. If $T=T_{ac}$, that is, $\mathfrak{H}_{ac}(T)=\mathfrak{H}$, then we say that T is absolutely continuous.

Let $\alpha = (\alpha_1, \alpha_2, ..., \alpha_n)$ be a vector with nonnegative integral coordinates and $|\alpha| = \alpha_1 + \alpha_2 + \cdots + \alpha_n$. We denote by $D^{\alpha}\phi$ the partial derivative

$$D^{lpha}\phi=rac{\partial^{|lpha|}\phi}{\partial^{lpha_1}x_1\partial^{lpha_2}x_2\cdots\partial^{lpha_n}x_n}$$

in the distribution sense.

Let X be a set of functions defined in a domain $\mathcal{Q} \subset \mathbb{R}^n$. We denote by $\mathcal{E}_X^p(\mathcal{Q})$ the set of all functions ϕ such that all the derivatives $D^{\alpha}\phi$ in the distribution sence for $0 \leq |\alpha| \leq p$ belong to the set X.¹⁾ In case $\mathcal{Q} = \mathbb{R}^n$, we sometimes write \mathcal{E}_X^p instead of $\mathcal{E}_X^p(\mathbb{R}^n)$.

Let $\mathfrak{D} = L_2(\mathbb{R}^n)$ be the Hilbert space with the ordinary inner product

$$(\phi, \psi) = \int \phi(x) \psi(x)^* dx,$$

where the asterisk means the complex conjugate. Let H_0 be the selfadjoint operator $H_0 = -\Delta$ with domain $D(H_0) = \mathcal{E}_{L_2}^2$.

Let $Q_{\alpha}(\alpha > 0)$ be the set of real functions V(x) satisfying the assumption

$$\int_{|x-y| \le 1} |V(y)|^2 dy \le M \qquad (n=1, 2, 3)$$
$$\int_{|x-y| \le 1} |V(y)|^2 |x-y|^{4-n-\alpha} dy \le M \qquad (n \ge 4)$$

1) In the sequel, we shall use this notation in the case $X=L_2$, L_∞ and Q_α .

for some positive constant M dependent on V. Let $V \in Q_{\alpha}$. Then it is known (cf. [6], Satz 4.2) that for any given $\varepsilon > 0$, there exists a constant C_{ε} such that

(3)
$$||V\phi|| \leq \varepsilon ||H_0\phi|| + C_{\varepsilon} ||\phi||$$
 for any $\phi \in C_0^{\infty}$,

where the notation $\phi \in C_0^{\infty}$ means that ϕ is infinitely differentiable and has a compact support. By virtue of this inequality, the operator $-\mathcal{A}+V$ defined on C_0^{∞} is essentially selfadjoint, that is, its closure, which will be denoted by H, is selfadjoint. Moreover its domain D(H) coincides with $D(H_0)$, (3) holds for $\phi \in D(H)$, and the graph norms of H_0 and H are equivalent; cf. [2], Chap. V, Theorem 4.5.

We shall prove the following

Theorem 1. Let V be a real function of class $\mathcal{E}_{L_{\infty}}^{1}$ and repulsive. In case n=1 and 2, we assume in addition that there exist constants a, b and m such that 0 < a < b,

(4)
$$m > a^{-1}(b-a)^{-2}$$
,

and

(5)
$$\begin{cases} \frac{\partial V}{\partial r} \leq -m & \text{in } a \leq r \leq b \\ \frac{\partial V}{\partial r} < 0 & \text{in } b \leq r \end{cases}$$
 $(n=1)$

(6)
$$\begin{cases} \frac{\partial V}{\partial r} + \frac{1}{2}r^{-3} \leq -\frac{1}{2}m & \text{in } a \leq r \leq b \\ 0 V/\partial r + \frac{1}{2}r^{-3} < 0 & \text{in } b \leq r. \end{cases}$$

Then H is absolutely continuous.

Corollary 1. Let V satisfy the assumptions of Theorem 1 and

(7)
$$\lim_{|x|\to\infty} \int_{|x-y|\leq 1} |V(y)|^2 dy = 0.$$

Then the spectrum of the absolutely continuous operator H is the interval

[0, ∞).

Corollary 2. Assume that $V = V_1 + V_2$ satisfies the following conditions;

i) Each V_i is of class $\mathcal{E}_{Q_{\alpha}}^{2(k-1)}$, where k is an integer strictly larger than n/4.

ii) For large r, say for $r \ge R$, V_1 is of class $\mathcal{E}_{L_{\infty}}^1$ and $\partial V_1 / \partial r \le 0$ $(n \ne 2), \ \partial V_1 / \partial r + \frac{1}{2}r^{-3} \le 0$ (n = 2).

- iii) V_1 satisfies (7) with V replaced by V_1 .
- iv) $V_2 \in L_1$.

Then the absolutely continuous spectrum of $H = -\Delta + V$ is $[0, \infty)$.

3. Preliminaries

In this section we assume that $V \in \mathcal{E}_{L_{\infty}}^1$ so that $V \in Q_{\alpha}$. Let P_j 's (j=1, 2, ..., n) be the differential operators given by

 $P_j \phi = -i \partial \phi / \partial x_j$

with domain $D(P_j) = \mathcal{E}_{L_2}^1$. Then P_j maps its domain into L_2 and $H_0 = \sum_{i=1}^n P_j^2$.

Let [A, B] be the commutator AB-BA in the strict operator theoretical sense. If $f \in \mathcal{E}^1_{L_m}$, then we have

(8)
$$i [P_j, f] \phi = (\partial f / \partial x_j) \phi$$
 for $\phi \in \mathcal{E}^1_{L_2}$.

Let g_j 's (j = 1, 2, ..., n) be real valued functions of class $\mathcal{E}^1_{L_{\infty}}(R^n)$ and put

(9)
$$A = (H-i)^{-1} \left(\sum_{j=1}^{n} (g_j P_j + P_j g_j) \right) (H+i)^{-1}.$$

Since $(g_j P_j + P_j g_j) (H+i)^{-1}$ is bounded by the closed graph theorem, A and HA are bounded so that $AH \subset (HA)^*$ is also bounded on D(H). Thus the operator i[H, A] is defined on D(H) and bounded. Put $C = i(HA - (HA)^*)$. Then it is bounded and selfadjoint and the closure of

i[H, A]. Since [H, A] = -iC on D(H) and A is bounded, the following lemma is a special case of a theorem of Putnam [4, Theorem 2.13.2].

Lemma 1. If there exists an operator A such that the operator C is nonnegative and 0 is not an eigenvalue of C, then H is absolutely continuous.

In the next section we shall construct such g_j 's that the operator A defined by (9) satisfies the assumptions of Lemma 1.

Lemma 2. Let g(r) be a real function defined on the half line $r \ge 0$ of class $\mathcal{E}^3_{L_{\infty}}(0, \infty)$ such that $g(r) = \operatorname{const} r$ for small r. Put

(10)
$$g_j(x) = g(|x|)x_j/|x|.$$

Then we have for $\phi \in L_2$,

(11)
$$C\phi = 4 \sum_{j,k=1}^{n} (H-i)^{-1} P_{j} x_{j} x_{k} g' r^{-2} P_{k} (H+i)^{-1} \phi + 4 \sum_{j,k=1}^{n} (H-i)^{-1} P_{j} (\delta_{jk} - x_{j} x_{k} r^{-2}) g r^{-1} P_{k} (H+i)^{-1} \phi - (H-i)^{-1} G(x) (H+i)^{-1} \phi,$$

where r = |x|,

(12)
$$G(x) = g''' + 2(n-1)r^{-1}g'' + (n-1)(n-3)r^{-3}(rg'-g) + 2g\partial V/\partial r,$$
$$g = g(|x|) \text{ and } '= d/dr.$$

Proof. We note that $g_j \in \mathcal{E}_{L_{\infty}}^3$. Let $\phi \in C_0^{\infty}$. Then $(g_j P_j + P_j g_j)\phi$ are of class $\mathcal{E}_{L_{\infty}}^2$ and have compact supports so that they belong to $D(H_0)$, and we have

$$i \begin{bmatrix} H_0, \sum_{j=1}^n (g_j P_j + P_j g_j) \end{bmatrix} \phi = \sum_{j,k=1}^n i \begin{bmatrix} P_k^2, g_j P_j + P_j g_j \end{bmatrix} \phi$$
$$= \sum i \{ P_k \begin{bmatrix} P_k, g_j P_j + P_j g_j \end{bmatrix} + \begin{bmatrix} P_k, g_j P_j + P_j g_j \end{bmatrix} P_k \} \phi$$
$$= \sum i \{ P_k (\begin{bmatrix} P_k, g_j \end{bmatrix} P_j + g_j \begin{bmatrix} P_k, P_j \end{bmatrix} + \begin{bmatrix} P_k, P_j \end{bmatrix} g_j + P_j \begin{bmatrix} P_k, g_j \end{bmatrix}) + \sum i \{ P_k (\begin{bmatrix} P_k, g_j \end{bmatrix} P_j + g_j \begin{bmatrix} P_k, P_j \end{bmatrix} + \begin{bmatrix} P_k, P_j \end{bmatrix} g_j + P_j \begin{bmatrix} P_k, g_j \end{bmatrix}) + \sum i \{ P_k (\begin{bmatrix} P_k, g_j \end{bmatrix} P_j + g_j \begin{bmatrix} P_k, P_j \end{bmatrix} + \begin{bmatrix} P_k, P_j \end{bmatrix} g_j + P_j \begin{bmatrix} P_k, g_j \end{bmatrix}) + \sum i \{ P_k (\begin{bmatrix} P_k, g_j \end{bmatrix} P_j + g_j \begin{bmatrix} P_k, P_j \end{bmatrix} + \begin{bmatrix} P_k, P_j \end{bmatrix} g_j + P_j \begin{bmatrix} P_k, g_j \end{bmatrix}) + \sum i \{ P_k (\begin{bmatrix} P_k, g_j \end{bmatrix} P_j + g_j \begin{bmatrix} P_k, P_j \end{bmatrix} + \begin{bmatrix} P_k, P_j \end{bmatrix} g_j + P_j \begin{bmatrix} P_k, g_j \end{bmatrix} + E_j \begin{bmatrix} P_k, P_j \end{bmatrix} g_j + P_j \begin{bmatrix} P_k, P_j \end{bmatrix} g_j + P_j \begin{bmatrix} P_k, g_j \end{bmatrix} + E_j \begin{bmatrix} P_k, P_k \end{bmatrix} g_j + P_j \begin{bmatrix} P_k, P_k \end{bmatrix} g_j + P_j \begin{bmatrix} P_k, P_k \end{bmatrix} g_j + E_j \begin{bmatrix} P_k, P_$$

$$+([P_k, g_j]P_j + g_j[P_k, P_j] + [P_k, P_j]g_j + P_j[P_k, g_j])P_k\}\phi$$
$$= \sum i \{P_k[P_k, g_j]P_j + P_kP_j[P_k, g_j] + [P_k, g_j]P_jP_k + P_j[P_k, g_j]P_k\}\phi,$$

where we used the identities $[P_j, P_k] = 0$. Using (8) with f replaced by g_j , we have

$$i [H_0, \sum (g_j P_j + P_j g_j)] \phi$$

$$= \sum \{P_k \partial g_j / \partial x_k P_j + P_j \partial g_j / \partial x_k P_k + P_j P_k \partial g_j / \partial x_k + \partial g_j / \partial x_k P_k P_j\} \phi$$

$$= \sum \{2(P_k \partial g_j / \partial x_k P_j + P_j \partial g_j / \partial x_k P_k) + P_j [P_k, \partial g_j / \partial x_k] - [P_k, \partial g_j / \partial x_k] P_j\} \phi$$

$$= \sum \{2(P_k \partial g_j / \partial x_k P_j + P_j \partial g_j / \partial x_k P_k) + [P_j, [P_k, \partial g_j / \partial x_k]]\} \phi$$

$$= 2\sum \{P_k \partial g_j / \partial x_k P_j + P_j \partial g_j / \partial x_k P_k\} \phi - \{A(\sum_j \partial g_j / \partial x_j)\} \phi.$$

On the other hand

$$i [V, \sum (g_j P_j + P_j g_j)] \phi = -2(\sum g_j \partial V / \partial x_j) \phi.$$

Thus we have

(13)
$$i \left[H, \sum_{j} (g_{j}P_{j} + P_{j}g_{j})\phi \right] =$$
$$= 2 \sum_{j,k} \left\{ P_{k}\partial g_{j}/\partial x_{k}P_{j} + P_{j}\partial g_{j}/\partial x_{k}P_{k} \right\} \phi -$$
$$- \left\{ \Delta \left(\sum_{j} (\partial g_{j}/\partial x_{j}) + 2 \sum_{j} g_{j}\partial V/\partial x_{j} \right\} \phi \right\}$$

for $\phi \in C_0^{\infty}$.

Let ϕ and ψ be such that $(H+i)^{-1}\phi$, $(H+i)^{-1}\psi \in C_0^{\infty}$. Then ϕ and ψ run over a dense set since H restricted on C_0^{∞} is essentially selfadjoint. Noting that $\sum (g_j P_j + P_j g_j) (H+i)^{-1}\phi \in D(H)$ and using formula (13), we have

$$\begin{aligned} (C\phi, \,\psi) &= i \, (((HA) - (HA)^*)\phi, \,\psi) \\ &= i \, ((H-i)^{-1} \, H(\, \sum \, (g_j P_j + P_j g_j)) \, (H+i)^{-1}\phi, \,\psi) \end{aligned}$$

Absolute Continuity of Hamiltonian Operators

$$\begin{split} &-i \left(\phi, (H-i)^{-1} H(\sum (g_j P_j + P_j g_j)) (H+i)^{-1} \psi \right) \\ &= i \left(\left[H, \sum (g_j P_j + P_j g_j) \right] (H+i)^{-1} \phi, \quad (H+i)^{-1} \psi \right) \\ &= \left((H-i)^{-1} 2 \sum (P_k \partial g_j / \partial x_k P_j + P_j \partial g_j / \partial x_k P_k) (H+i)^{-1} \phi, \psi \right) \\ &- \left((H-i)^{-1} \left\{ \Delta (\sum \partial g_j / \partial x_j) + 2 \sum g_j \partial V / \partial x_j \right\} (H+i)^{-1} \phi, \psi \right). \end{split}$$

The operator *C* is bounded as was noted above. Since $\partial g_j / \partial x_k \in \mathcal{E}^2_{L_{\infty}}$ and $\mathcal{L}(\sum \partial g_j / \partial x_j) + 2 \sum g_j \partial V / \partial x_j \in L_{\infty}$, the two operators in the last member of this formula:

$$C_1 = 2(H-i)^{-1} \{ \sum (P_k \partial g_j / \partial x + P_j \partial g_j / \partial x_k P_k) \} (H+i)^{-1}$$

$$C_2 = (H-i)^{-1} \{ \Delta (\sum \partial g_j / \partial x_j) + 2 \sum g_j \partial V / \partial x_j \} (H+i)^{-1}$$

are also bounded. Thus since ϕ and ψ run over a dense set, we have

(14)
$$C\phi = C_1\phi - C_2\phi \qquad \text{for} \quad \phi \in L_2.$$

Now since $g_j(x) = g(r)x_j/r$, we have

$$\partial g_j / \partial x_k = x_j x_k g' r^{-2} + (\delta_{jk} - x_j x_k r^{-2}) g r^{-1}$$

and

$$\begin{aligned} \mathcal{\Delta} \left(\sum \partial g_j / \partial x_j \right) &= \left(\frac{d^2}{dr^2} + (n-1)r^{-1} \frac{d}{dr} \right) \left(g' + (n-1)r^{-1}g \right) = \\ &= g''' + 2(n-1)r^{-1}g'' + (n-1)(n-3)(r^{-2}g' - r^{-3}g). \end{aligned}$$

Thus we have

$$C_{1} = 4 \sum (H-i)^{-1} \{P_{j}x_{j}x_{k}g'r^{-2}P_{k} + P_{j}(\delta_{jk} - x_{j}x_{k}r^{-2})gr^{-1}P_{k}\} (H+i)^{-1},$$
(15)

$$C_{2} = (H-i)^{-1} \{g''' + 2(n-1)r^{-1}g'' + (n-1)(n-3)r^{-3}(rg'-g) + 2g\partial V/\partial r\}(H+i)^{-1}$$

$$= (H-i)^{-1}G(x) (H+i)^{-1},$$

which with (14) proves the lemma.

Lemma 3. Let g(r) satisfy the assumptions of Lemma 2. Assume also that

(16)
$$g \geq 0, g' \geq 0, G \leq 0 \quad (r \neq 0),$$

(17) $g' > 0 \quad (r \leq b), \quad G < 0 \quad (r \geq a),$

for some constants a and b (0 < a < b). Then the operator C is nonnegative and zero is not an eigenvalue of C.

Proof. First we show that $C \ge 0$. We note the formula (15). We have $C_2 \le 0$ since $G \le 0$ and $C_1 \ge 0$ since $g, g' \ge 0$ and the matrices $(x_j x_k)$ and $(\delta_{jk} - x_j x_k r^{-2})$ are nonnegative. Thus we have $C = C_1 - C_2 \ge 0$.

Next we show that zero is not an eigenvalue of C. If $C\phi=0$, then since the second term of (11) is nonnegative as was shown above, we have

$$0 = (C\phi, \phi) \ge 4 \sum ((H-i)^{-1} P_j x_j x_k g' r^{-2} P_k (H+i)^{-1} \phi, \phi)$$
$$-((H-i)^{-1} G (H+i)^{-1} \phi, \phi)$$
$$= 4 \int |\sum x_j P_j (H+i)^{-1} \phi|^2 g' r^{-2} dx + \int G |(H+i)^{-1} \phi|^2 dx \ge 0,$$

so that by virtue of (17), $u(x) \equiv ((H+i)^{-1}\phi)(x)$ satisfies

$$\partial u/\partial r(x) = i(\sum x_j r^{-1} P_j (H+i)^{-1} \phi) (x) = 0$$
 for almost all $|x| \leq b$,

and

$$u(x)=0$$
 for almost all $|x|\geq a$.

Thus u(x)=0 for almost all x since $u(x)=-\int_{1}^{a/|x|}\frac{du(tx)}{dt}dt=0$ for $0<|x|\leq a$. Thus we have $\phi=0$, which shows that zero is not an eigenvalue of the operator C.

4. Proof of Theorem 1

Now let us construct the function g satisfying the assumptions of

Lemma 3. Then by virtue of Lemma 1, the proof of Theorem 1 will be completed.

First we treat the case $n \ge 3$. Let a and b be some constants such that 0 < a < b. Let k be a number such that 2 < k < 2(n-1). Put

$$g''(r) = \begin{cases} 0 & (0 \le r \le a) \\ -\frac{b^{-k}}{b-a}(r-a) & (a \le r \le b) \\ -r^{-k} & (b \le r), \end{cases}$$
$$g'(r) = -\int_{r}^{\infty} g''(r) dr$$

and

$$g(r) = \int_0^r g'(r) \, dr.$$

Then

$$g'''(r) = \begin{cases} 0 & (0 \le r \le a) \\ -\frac{b^{-k}}{b-a} & (a \le r \le b) \\ k r^{-k-1} & (b \le r) \end{cases}$$

is bounded. g'' is bounded and nonpositive. g'(r) is bounded and positive since $g'' \in L_1(0, \infty)$ and $g'' \leq 0$. g(r) is positive since g' > 0, and bounded since

$$g(r) = \int_0^b g' dr - (k-1)^{-1} (k-2)^{-1} (r^{-k+2} - b^{-k+2}) \quad \text{in } b \leq r,$$

and k > 2.

Thus $g \in \mathcal{E}_{L_{\infty}}^3$ and g satisfies (16) and (17) except the assertions on G. Now let us show that G satisfies the assertions (16) and (17). We note that the third term $(n-1)(n-3)r^{-3}(rg'-g)$ of G in (12) is nonpositive since $(rg'-g)'=rg''\leq 0$ and (rg'-g)(0)=0. In $0\leq r\leq a$, the first three terms in (12) are zero so that $G=2g\partial V/\partial r\leq 0$ by the assumption (1). In $a\leq r\leq b$, the first term g''' is negative and the other terms are nonpositive so that G<0. In $b\leq r$,

$$G \leq g''' + 2(n-1)r^{-1}g'' = kr^{-k-1} - 2(n-1)r^{-k-1}$$
$$= (k-2(n-1))r^{-k-1} < 0$$

since k < 2(n-1). Thus we have shown that this function g is desired one in case $n \ge 3$.

Next we treat the case n=1, 2. Let a and b be the numbers in the assumption of Theorem 1 and c be such that a < c < b. Put

$$\left(\frac{1}{2}(c-a)(b-c)r\right) \tag{0} \leq r \leq a$$

$$f(r) = \begin{cases} \frac{1}{2}(c-a)(b-c)r - \frac{b-c}{6(b-a)}(r-a)^3 & (a \le r \le c) \end{cases}$$

$$g(r) = \begin{cases} \frac{1}{6}(a+b+c)(c-a)(b-c) + \frac{c-a}{6(b-a)}(r-b)^3 & (c \leq r \leq b) \\ \frac{1}{6}(a+b+c)(c-a)(b-c) & (b \leq r). \end{cases}$$

Then $g \in \mathcal{E}^3_{L_{\infty}}(0, \infty)$ and $g, g', -g'' \ge 0$ for $r \ge 0$ and g' > 0 for r < b. Let us show that $G \le 0$ $(r \ge 0)$ and G < 0 $(r \ge a)$ for c sufficiently near to a.

First let n=1. Then $G=g^{\prime\prime\prime}+2g\partial V/\partial r$ and

$$g''' = \begin{cases} 0 & (0 \le r \le a) \\ -(b-c)/(b-a) < 0 & (a \le r \le c) \\ (c-a)/(b-a) > 0 & (c \le r \le b) \\ 0 & (b \le r) \end{cases}$$

so that $G \leq 0$ in $0 \leq r \leq a$ and G < 0 in $a \leq r \leq c$ and $b \leq r$ by the second assertion (5). In $c \leq r \leq b$, using the estimate $g(r) \geq g(a) = \frac{1}{2}(c-a)(b-c)a$ and the assumption (5), we have

$$\begin{split} G = & (c-a)/(b-a) + 2g\partial V/\partial r \leq (c-a)/(b-a) - (c-a)(b-c)am \\ = & -(c-a)(b-c)a\{m-a^{-1}(b-c)^{-1}(b-a)^{-1}\}, \end{split}$$

which is negative for c sufficiently near to a by the assumption (4). Thus (16) and (17) are verified for n=1.

Next let n = 2. Since

$$G = g''' + 2r^{-1}g'' - r^{-2}g' + r^{-3}g + 2g\partial V/\partial r,$$

using the assumptions of Theorem 1, we have

$$G \begin{cases} = 2g\partial V/\partial r \leq 0 \quad (0 \leq r \leq a), \\ \leq g(r^{-3} + 2\partial V/\partial r) \leq -mg < 0 \quad (a \leq r \leq c), \\ \leq g''' + g(r^{-3} + 2\partial V/\partial r) \leq -(c-a) (b-c)a\{m-a^{-1}(b-c)^{-1}(b-a)^{-1}\} \\ < 0 \quad (c \leq r \leq b), \\ = r^{-3}g + 2\partial V/\partial r < 0 \quad (b \leq r), \end{cases}$$

for c sufficiently near to a. Thus (16) and (17) are now verified for n=2.

Thus we have constructed the function g which have the desired properties, which yields Theorem 1.

5. Proof of Corollaries

Proof of Corollary 1. Since the potential V belongs to Q_{α} and satisfies the assumption (7), the essential spectrum of $H=H_0+V$ is $[0, \infty)$ (cf. [5]). On the other hand, by virtue of Theorem 1, H is absolutely continuous. Thus the spectrum of H is $[0, \infty)$.

For the proof of Corollary 2, we use the following theorem due to Birman [1]:

Let H_i (i=1, 2) be selfadjoint operators in a Hilbert space § with the same domain. If the operator $(H_2+i)^{-k}(H_2-H_1)(H_1+i)^{-k}$ is of trace class for some positive number k, then the complete wave operators $W_{\pm}(H_2, H_1)$ exist so that the absolutely continuous spectrum of H_1 and H_2 coincide with each other. (For the definition and natures of the wave operators, see e.g. [2], Chapter X.)

Proof of Corollary 2. Let $V = V_1 + V_2$ satisfy the assumptions of this corollary. First we note that we may assume without loss of generality that the function V_1 satisfies the assumptions of Corollary 1 with V replaced by V_1 . Indeed, let $h_1(r)$ and $h_2(r)$ be sufficiently smooth real functions of $r \ge 0$ such that $h_1(r)=0$ $(r \le R)$; =1 $(r \ge 2R)$, and $h_2(r)=1$ $(r \le \frac{1}{2}R)$, $h'_2(r) < 0$ $(\frac{1}{2}R < r \le 3R)$ and $h_2(r)=e^{-r}$ $(r \ge 3R)$, where R is taken sufficiently large $(R > \frac{1}{3})$ so that the assmption (ii) of this corollary is satisfied. Put

$$\bar{V}_1 = h_1 V_1 + c h_2, \quad \bar{V}_2 = V_2 + (1 - h_1) V_1 - c h_2.$$

Then the assmptions of Corollary 2 with V_1 and V_2 replaced by \overline{V}_1 and \overline{V}_2 , respectively, are satisfied and those of Theorem 1 with V replaced by \overline{V}_1 are also satisfied for sufficiently large c.

Put $H_1 = H_0 + V_1$ and $H_2 = H_0 + V$. Then by virtue of the theorem of Birman stated above, it is sufficient to show that the operator $(H_2 + i)^{-k} V_2 (H_1 + i)^{-k}$ is of trace class for some k since H_1 is absolutely continuous with spectrum $[0, \infty)$ by Corollary 1.

We denote by \hat{u} the Fourier transform of u. Since

$$((H_0+i)^{-k}u)(\xi) = (|\xi|^2+i)^{-k}\hat{u}(\xi),$$

we have

$$((H_0+i)^{-k} u)(x) = (2\pi)^{-n/2} \int \exp(i\xi x) \hat{u}(\xi) (|\xi|^2+i)^{-k} d\xi.$$

Let k be the integer in the assumption (i), that is, k > n/4. Then $\exp(i\xi x)(|\xi|^2+i)^{-k} \in L_2$ so that we can apply the Parseval formula with the result that

$$((H_0+i)^{-k}u)(x) = \int K(x-y) u(y) dy,$$

where $K(x) = (2\pi)^{-n/2} \int \exp(i\xi x) (|\xi|^2 + i)^{-k} d\xi \in L_2$. Thus the operator $V_2^{-\frac{1}{2}}(H_0+i)^{-k}$ is of the Hilbert-Schmidt class with the Hilbert-Schmidt norm $||V_2||_{L_1} ||K||_{L_2}$ since $V_2 \in L_1$ by the assumption (iv).

As will be shown later (in Lemma 4), the operators $(H_0+i)^k(H_1+i)^{-k}$ and $(H_0+i)^k(H_2-i)^{-k}$ are bounded. Thus the operators

$$V_{2}^{\frac{1}{2}}(H_{1}+i)^{-k} = V_{2}^{-\frac{1}{2}}(H_{0}+i)^{-k}(H_{0}+i)^{k}(H_{1}+i)^{-k}$$

and

$$(H_2+i)^{-k}V_2^{\frac{1}{2}} \subset (V_2^{\frac{1}{2}}(H_2-i)^{-k})^* = (V_2^{\frac{1}{2}}(H_0+i)^{-k}(H_0+i)^k(H_2-i)^{-k})^*$$

are of the Hilbert-Schmidt class so that $(H_2+i)^{-k} V_2(H_1+i)^{-k}$ is of trace class. Thus we can complete the proof of Corollary 2 if we prove the following

Lemma 4. Let $V \in \mathcal{E}_{Q_{\alpha}}^{2(k-1)}$ and $H = H_0 + V$. Then the operators $(H_0+i)^k(H\pm i)^{-k}$ are bounded.

Before proving this lemma, we prepare the following

Lemma 5. Let $V_i \in \mathcal{E}_{Q_{\alpha}}^{2(i-1)}$ and $\phi \in D(H_0^k) = \mathcal{E}_{L_2}^{2k}$. Then for any $\varepsilon > 0$ there exists a constant C_{ε} such that the inequality

(18)
$$||(\prod_{i=1}^{k} V_i)\phi|| \leq \varepsilon ||H_0^k\phi|| + C_{\varepsilon} ||\phi||$$

holds.

Proof. In case k=1, the inequality (18) is obvious by the inequality (3) and the assertion just after it. Let $\phi \in D(H_0^k)$. Since

$$(-\varDelta)^{k-1}V_{k}\phi = \sum_{\substack{|\alpha|+|\beta|\leq 2(k-1)\\|\beta|+2(k-1)}} C_{\alpha,\beta}(D^{\alpha}V_{k}) (D^{\beta}\phi) + V_{k}H_{0}^{k-1}\phi$$
$$||(D^{\alpha}V_{k})(D^{\beta}\phi)|| \leq \text{const} (||H_{0}D^{\beta}\phi|! + ||\phi||)$$
$$(|\alpha| \leq 2(k-1), |\beta| < 2(k-1))$$

and

$$||V_{k}H_{0}^{k-1}\phi|| \leq \varepsilon ||H_{0}^{k}\phi|| + C_{\varepsilon}||H_{0}^{k-1}\phi||,$$

by virtue of (18) with k=1, we have that $V_k \phi \in D(H_0^{k-1})$

and

(19)
$$||H_0^{k-1}V_k\phi|| \leq \varepsilon ||H_0^k\phi|| + \sum_{|\beta| \leq 2k-1} C_{\varepsilon} ||D^{\beta}\phi||.$$

Now we assume that the lemma holds with k=1, 2, ..., k-1 by the assumption of induction. Since $V_k \phi \in D(H_0^{k-1})$, we have

(20)
$$||(\prod_{i=1}^{k} V_{i})\phi|| = ||(\prod_{i=1}^{k-1} V_{i})V_{k}\phi|| \leq \varepsilon ||H_{0}^{k-1}V_{k}\phi|| + C_{\varepsilon} ||V_{k}\phi||$$
$$\leq \varepsilon ||H_{0}^{k-1}V_{k}\phi|| + C_{\varepsilon} (||H_{0}\phi|| + ||\phi||),$$

by (18) with k=k-1 and k=1. The well known inequality

(21)
$$\|D^{\beta}\phi\| \leq \varepsilon \|H_0^k \phi\| + C_{\varepsilon} \|\phi\| \quad (|\beta| \leq 2k-1)$$

and the inequalities (19) and (20) show that (18) holds with k=k, which yields the result by the induction method.

Proof of Lemma 4. Let $\phi \in C_0^{\infty}$. Then we have

$$(-\varDelta+V)^{k}\phi = \sum_{\substack{j \leq k \\ \sum |\alpha_{i}|+|\beta|=2(k-j)}} C_{\alpha,\beta} \left(\prod_{i=1}^{j} D^{\alpha_{i}}V\right) D^{\beta}\phi = W\phi + H_{0}^{k}\phi,$$

where

$$\mathscr{W} \phi = \sum_{\substack{0 < j \leq k \\ \sum \mid \alpha_i \mid + \mid \beta \mid = 2 (k-j) \\ \sum \mid \alpha_i \mid \neq 0}} C_{\alpha,\beta} (\prod_{i=1}^j D^{\alpha_i} V) D^{\beta} \phi + \sum_{j=1}^k V^j H_0^{k-j} \phi,$$

and α_j and β are multi-indices. Since

$$D^{\alpha_{i}}V \in \mathcal{E}_{Q_{\alpha}}^{2(k-1)-|\alpha_{i}|} \subset \mathcal{E}_{Q_{\alpha}}^{2(k-1)-\sum|\alpha_{i}|} = \mathcal{E}_{Q_{\alpha}}^{2(j-1)+|\beta|} \subset \mathcal{E}_{Q_{\alpha}}^{2(j-1)},$$

using (18) with k=j, we have

$$\|(\prod_{i=1}^{j} D^{\alpha_{i}} V) (D^{\beta} \phi)\| \leq \varepsilon \|H_{0}^{j} D^{\beta} \phi\| + C_{\alpha} \|D^{\beta} \phi\| \quad (2j+|\beta| \leq 2k-1),$$

and

$$\|V^{j}H_{0}^{k-j}\phi\| \leq \varepsilon \|H_{0}^{j}H_{0}^{k-j}\phi\| + C_{\varepsilon}\|H_{0}^{k-j}\phi\| \quad (1 \leq j \leq k).$$

By virtue of the inequality (21), we have

Absolute Continuity of Hamiltonian Operators

(22)
$$||W\phi|| \leq \varepsilon ||H_0^k \phi|| + C_\varepsilon ||\phi|| \quad \text{for } \phi \in C_0^{\infty}.$$

Since $H^k \phi = H_0^k \phi + W \phi$ for $\phi \in C_0^{\infty}$ and (22) holds, it holds that $D(H^k) = D(H_0^k)$ and

(23)
$$||H_0^k \phi|| + ||\phi|| \leq \text{const} (||H^k \phi|| + ||\phi||), \quad \phi \in D(H_0^k),$$

by virtue of the assertion just after the inequality (3).

The well known inequalities

$$||(H_0+i)^k \phi|| \leq \text{const} (||H_0^k \phi|| + ||\phi||)$$

and

$$||H^k \phi|| + ||\phi|| \leq \text{const } ||(H \pm i)^k \phi||$$

and the inequality (23) show that

$$||(H_0+i)^k \phi|| \leq \text{const} ||(H\pm i)^k \phi||,$$

which shows that the operators $(H_0+i)^k(H\pm i)^{-k}$ are bounded.

In conclusion, the author wishes to express his sincere gratitude to Professor T. Ikebe for his enduring encouragements and valuable discussions.

References

- Birman, M.S., A local criterion for the existence of wave operators, *Dokl. Akad. Nauk. SSSR*, **159** (1964), 485-488 (Russian); *Soviet Math. Dokl.* **5** (1964), 1505-1509 (English translation).
- [2] Kato, T., Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, 1966.
- [3] Lavine, R.B., Absolute continuity of Hamiltonian operators with repulsive potentials, *Proc. Amer. Math. Soc.* 22 (1969), 55-60.
- [4] Putnam, C.R., Commutation Properties of Hilbert Space Operators and Related Topics, Springer-Verlag, Berlin, 1967.
- [5] Rejto, P., On the essential spectrum of the hydrogen energy and related operators, *Pacific J. Math.* 19 (1966), 109–140.
- [6] Stummel, F., Singuläre elliptische Differentialoperatoren in Hilbertschen Räumen, Math. Ann. 132 (1956), 150-176.