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Grundy Functions and Linear Games
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Masahiko SATO*

As is well known, the idea of Grundy functions and Grundy's theorem

are very important and useful when we consider the Cartesian product of

games. Of course, there are several proofs for Grundy's theorem.1) Yet,

we think, these proofs do not answer well the question why the binary

sum operation (bitwise addition without carry) must appear in the theorem.

An answer for it will be given in this paper.

Mathematically, a game is nothing but a binary relation on a set.

Accordingly, its mathematical structure can not be so rich. In §3, we

shall introduce the notion of linear games with richer structures. And we

shall prove that any game G is embeddable into a linear game i(C), and

that the Grundy function on L(G) is a linear map from L(G) to ]V.2) This

will easily lead us to a proof of Grundy's theorem.

In §1, as a preparation for the following §§, we shall view basic

properties of games. In §2, we shall introduce the notion of compatibility,

and extend it to the notion of semicompatibility. Using the notion of

semicompatibility, we shall give a characterization of Grundy functions.

This, we think, will clarify the meaning of Grundy functions. In §4, we

shall extend the results in §3, and show that the Grundy function on any

linear game is a linear map.
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§ 1. Preliminaries

We begin with the definition of games.

Definition 1.1. A game G is a pair (S, ju), where S is a nonempty

set, and jU is a mapping from S to 2s.

Thus defined game is a two-person game played alternately by two

players, say, A and B. An element s of S is called a state of the game.

A state 5 with ju(s) = 0 is called terminal. The game is played as follows:

If the state is now s and if it is A's turn, A chooses a state t in

M(S\ then it's B's turn and B chooses a state u in /*(0> and so on. And

if it's A (or B)'s turn to change s and if s is terminal, then B (or A)

wins the game. That is, whoever terminates the game wins.

Example: A game called one-pile nim is defined as follows:

(1) S=N. (2) ju(s) = {teN\t<s}.

We denote this game by NI.

In what follows, we further assume the following three conditions for

any game.

(1) G is progressively finite, that is, for any s G S there exists some

neN such that #w(s) = 0.4)

(2) G is /^-finite, that is, for any s G S, /i(s) is a finite set.

(3) 5 is at most countable.

Later we shall construct various games from given games. It is easy

to verify the above three conditions for all such constructed games, so

we omit the proofs.

The following lemma is not difficult to show.

Lemma 1.2. For any G, there is a one to one mapping d\ S—»IV,

4) Note that ^(s) = {s} and
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such that for any s E S and t G /*(s)3 d(t)<id(s).

We shall fix a mapping d in Lemma 1.2, then 5 can be well-ordered

by using this d. We denote the least element of S by s°, and the second

least element by s1, and so on.

Definition 1.3. Let s be a state of a game G. We define the

length Z(s) of s to be the greatest integer i such that jul(s)=r:0.

Definition 1.4. A state s is safe if the previous player can force

to win, and is unsafe if the next player can force to win.

We denote the whole set of safe states by P(G) (or P if G is

understood), and that of unsafe states by N(G) (or N}. Then it is easy

to see that

P= \J P^ and

N=\jNh
1=0

where P, and TV,- are defined inductively as follows:

The following lemma is also straightforward.

Lemma 1.5. seP iff /JL(S) C N.

iff v

Definition 1.6. Let G = (S, ju) and Gf = (Sf, jur) be two games. A

mapping f: S-*S' is a homomorphism from G to G if, for any s E 5,
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=/(*(«))•
The following theorem shows an essential property of homomorphism.

Theorem 1.7. Let f: S->S' be a homomorphism from G to G'.

Then f(P(G)}CP(Gr\ and f(N(G)} ^ N(G'\ If f is surjective, then

) = P(C'), and

Proof. We show, by the induction, the following statements for

every i&N.

(i),- 5 e P; =»/(*) 6 P;.
(ii),. *€tf,=*/(s)ejv;.
First, we prove (I)0 : s€.P0 =» ju(s) = 0 =»/0«(s)) = 0

We prove (II), supposing (I),: «€./¥,• =» fi(s) r\Pi

We derive (I),V1 from (II),-: seP,-^ =» /i(s)CN,

=» /£'(/(«)) =/(/««) c AT; =» /(5) 6 p;+1.
The first half of the theorem is thus proved. The latter half is now

trivial.

§2. Characterization of Grundy Functions

Definition 2.1. An equivalence relation ~~ on S is compatible with /*,

if s^sf implies that for any t G /*(s) there is some t' G #(s') such that

t^tf. We call this relation a compatible relation on G.

Given an equivalence relation ~~ compatible with #, we can define a

quotient game G/^ = (Sf, //) as follows:

(1) Sf = S/^. (2) Let [V] denote the equivalence class of 5. We set

Then it is clear that the canonical mapping [_ ]: S->S' is an onto

homomorphism from G to G/^. Next theorem also shows a close con-

nection between homomorphism and compatible relation on G. The proof

is immediate,
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Theorem 2.2. If f\ G-*Gr is an onto homomorphism then there

exists a compatible relation^ on G such that G is isomorphic to G/~~.

Definition 2.3. An equivalence relation = on S is called semi-

compatible with #5 if s = t implies that for any s € #(s) there is either

some t' 6 fi(t) such that s=t' or some s" €E#(s') such that s"=s. We

call this relation a semicompatible relation on G.

It is well-known that the Grundy function gG (or g when G is

understood) on G can be defined recursively by the equation:

Lemma 2.4. Let = be a semicompatible relation on G. Then s = t

implies g(s) = g(t).

Proof. Suppose the lemma holds for Z(s), l(t)<m. Suppose now

l(s) = m or l(t) = m. We may assume that m = l(s}^l(t) and that if l(u)

<l(t) then u^t. Then, by the induction hypothesis, #(XO)C g"(#(5))'

Hence g(s)^>g(t). But, if g(s)> g(t) then there is some s' G ju(s) such

that g(s')= g(t). Then, by the induction hypothesis, there are no t' € ju(t)

such that s=t'. Hence there is some s"G /*($') such that s"=s = t. By

the assumption on t we know l(t)<>l(s")<.l(s) = m. So, by the induction

hypothesis, g(s") = g(t) = g(s'). This is a contradiction. Thus we have

Since s is safe iff g(s) = Q, we have

Corollary 2.5. Let = be a semicompatible relation on G. If s = t

then s is safe iff t is safe.

Definition 2.6. For a semicompatible relation = on G, we define

fi=\ S-+2S as follows:

ju=(s) = {s'e/jt(s)\yt=s, 3*'eXO such that t' = s'}.

Lemma 2.7. y=(s)={s' e/i(s)\ yt^s, 3^6^=(0 such that t'=s'}.
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Proof. Since #=(OCXO> it is clear that the left side of the equa-

tion includes the right side. Suppose s € A=(s). Suppose further t = s.

Then there is some t' € ju(t) such that t' = s. We have only to show

that t' 6 /i=(t). Take any u = t, then u=s. Since 5' 6 ju=(s) there is some

u' £ ju(u) such that a '==$'. Since t' = s\ this means that for any w = £

there is some u' ^ /JL(U) such that u' = tr. Hence, by the definition of

Lemma 2.8. If n(s)r\P^0, then /*=

Proof. Let t be the least element in S such that s = £. Clearly,

/*=(0 = XO- Therefore, by Lemma 2.4, fJL=(t)r\P=f=0. If we take £' e

#=(z)nP, then, by Lemma 2.7, there is some s' G #=(s) such that sf = tr.

Since $' is in P, this 5' is also in P.

Corollary 2,9. L*f G^ be (S, #=). Then P(G) = P(GS) «wrf 7V(G) =

If ^ is an equivalence relation on 5 semicompatible with jU, then,

by Lemma 2.7, = is compatible with /^=. Therefore we can define a game

G/= by G/^=GS/^.

Definition 2.10. Given two games G and £', we say a mapping f:

S-+Sf is a semihomomorphism if f is a homomorphism from G= to G

for some semicompatible relation = on G.

Since any relation on S is a subset of 5x5, the set of all semicom-

patible relations on G can be ordered by the set inclusion C • Let us

define an equivalence relation =g on 5 by the condition that s = ^£ iff

#(s)=#(0- It is easy to see that =g is a semicompatible relation on

G. By Lemma 2.4, we have the following theorem which characterizes

Grundy functions.

Theorem 2.11. (1) Any game G has the maximum semicompatible

relation =g.

(2) Let \i~^\be the canonical mapping from G to G/=g. Then g(s) =
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i (H).

Remark. G/ = g is embeddable into one-pile nim NI.

In [^3], Grundy and Smith defined E function on any game. By

using this function, we can easily show the following two lemmas analogous

to Lemma 2.4 and Theorem 2.11.

Lemma 2.12. Let -^ he a compatible relation on G. Then s^t

implies E(s ) =

Lemma 2.13. (1) Any game G has the maximum compatible rela-

tion ~~ E>

(2) Let Q ] be the canonical mapping from G to G/^E- Then

Thus we obtain, for any game G, the following commutative diagram,

where we write E for the game of E values defined in

horn.

scmihom. „

§3. Grundy 9s Theorem

Definition 3.1. Let H be a subset of Map (S, 5).5) For any s € 5,

we write H(s) for {h€.H\h(s)=jf=s}. We define {J.H'> S-*2S by

Definition 3.2. A game G = (S, fi) is called a linear game, if it

satisfies the following conditions.

(I) S is a vector space over Z2
6) whose addition is denoted by 0.

(II) IJL — II.H for some H such that

5) Map (5, 5) means the set of all the mappings from S to 5.
6) Z2 is the field consisting of two elements 0 and 1.
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0) Jff(500 = #(*)©#(07) f°r any s,teS, and

Q>) h(s@t) = h(s)@h(t) for any h€H and s, t€S.

For any game G = (S, JJL) we shall define a linear game L(G). First

we define a game G = (3, /Z) as follows:

(1) S is a subset of II N such that (?is)seis E S iff ns = Q for all
ses

but finite sZz S.

(2) (ms)s(=s£/l((ns)s(=s) iff there are some 5 and £ 6 X5) such that

ms = ns — 1, /re/ = r&/ + l, and mu = nu (if u=^s, £).

Lemma 3.3. (1) // Us)seSGP(G) fl»d (ni.).css 6 P (G)

(2) // (7^s)se5

Proof. Suppose the lemma holds for Z((^s + ^s)se5)<^- Suppose

(1) Take any (Zs)se5 6 fi((ns + ms)Ss=s)> Then, for some 5, ls =

s — 1. We may assume tfis>0. Then it is easy to see that

(^)*es = (is + "ii)ses, for some (^s)se5 ̂  fi((ms)s€=s) C ̂ (6). By the in-

duction hypothesis, (ls)SGS€N(G). Hence (^s + 7ns)seiS 6P(G).

(2) Since (ms)s^s €7V((5), there is some (tfiOses ^ X(77ls)ses) such

that (m's)s(=s£P(G). Clearly, (ns + m's)SE,s € /i((ns + ms)). By the induc-

tion hypothesis, (ns + ms)s^seP(G). Hence (

Let us define an equivalence relation = on S by that (^s)ses^

(tfOses iff ns = ms (mod 2), for all sGS. Then it is not difficult to see

that = is a semicompatible relation on G. We define L(G) = G/=. We

denote the equivalence class of (ns)ses by Kras)Se=s]. Then we can define

an operation 0 on L(S)=S/= by [(ns)se5]©[(77is)seS] = [(^s + 77is)se5].

Clearly, L(S) is a vector space over Z?, by this operation. By Lemma

3.3, we have the following theorem.

Theorem 3.4. P(L(G)) is a subspace of L(S).

Now, we define a mapping /: S->5 as follows: for any t£S,f(t) =

7) Here, H(s)QH(t) = (H(s)-H(t))\J(H(t)-H(s)), i.e., the symmetric difference.
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(^OseSj where nt = l and ns = Q if s=^t.
Clearly, si-*G/(s)]] is an isomorphism into G into L(G). So, by

identifying 5 and G/(5)IL we maY consider that G(^L(G). It is clear that
S is a basis of L(S). So, any element u^L(S) can be written in the

form u= 2 ®<%s(u)s (as(u}^Z2\ Now, for any sGS and t £ y(s\ we
ses

define a linear map AM on L(S) by /^X^) — W©as(w)(5ffi0- We set

H={hSit s €5, £ 6E /*($)}. Then it is easy to see that this H satisfies the

condition (II) of Definition 3.2. Therefore, L(G) is a linear game.

Recall that 5 is well-ordered by Lemma 1.2, i.e., S= {s°, s1 s 2 , - - -} ,

where 5°<51<52<53< • • - . Using this order L(S) can be also well-ordered

as follows: Let s— Z!©^5' and £=Z!©&-s* be two elements in

where <*,-, /9,-eZ2. Then we define s<^ iff S^/2f'^S /9.-21'.

It can be easily seen that this order has the following property :

For any sE£(S) and h£.H(s\ h(s)<s.

Lemma 3.5. For any nonzero s£L(S\ let K(s) be the greatest in-

teger k such that ask(s) = l. Let F=S— {sk\ k = K(s) for some

Let Q be the subspace of L(S) spanned by F. Then L(S)

the direct sum of two vector subspaces.

The proof is immediate from the definition of F.

Since L(S) = P(L(G))©(), a linear map q: L(S)->Q can be defined

as the projection from L(S) to Q. Then the following lemma is also
immediate.

Lemma 3.6. Let [ ]; L(S)-+L(S)/P(L(G)) be the canonical map-

ping. Then for any s€L(S\ q(s)= min[V].

Lemma 3.7. For any s^L(S) and t^Q such that t<q(s\ there is

some h£.H(s) such that q(h(s)) = t.

Proof. (1) First we show s®t & P(L(G)). Suppose that 5©^ e P(L(G)\

then Q = q (s®t} = q(s)®q(t) = q(s)@t. Hence t = q(s). A contradiction.

(2) Since s©£ is unsafe, there is some h € H(s © t) such that h(s © z) €

P(Z(G)). Hence 0 = j(A(s))®gr(A(0). That is, q(h(s» = q(h(t)\ where
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either heH(s)-H(t) or h€:H(i)-H(s). Suppose h€H(t)-H(s). Then

h(s) = s. Hence q(h(t^ = q(s)>t>h(t)^q(h(t)). This is a contradiction.

So, heH(s)-H(t). Thus we know heH(s) and q(h(s^ = t.

Lemma 3.8. For #^3; s^L(S) and h£H(s\ q

Proof. Since 5 = 9(5)® (g(s)©s), either (1) h e H(q(s^ - H(q(s)

or (2) heH(q(S)®s)-H(q(S».

(Case 1) &GO = A(gr(*))0(?(*)0*). Hence ?(A(*)) = ?(A(?GO)). By

Lemma 3.6, we have q(h(q(s)^<q(s). Hence q(s)^q(h(s)).

(Case 2) In this case heH(s) — H(q(s)). Hence

*) © *)) = ?(&(?(*)) © A(s)) - q(q(s) © A(s)) - q(s) © g(A(5)). But, since

5) 05 is safe, g(A(?G00 5)))=£0. Thus q

Now, let D={n € IV | TZ-<^}©, where Q denotes the cardinality of the

set Q. If we denote the binary sum of integers by ©, then D is a vec-

tor space over Z2 with respect to this ©. We denote the i th least ele-

ment of F8) by /''-1, then any 5E@ is of the form s=^@aif
i(aieZ2).

We define a mapping (p\Q—*D by ^ (Zle^'/')— 2©^f2z. Then we

can easily verify that <p is an onto isomorphism with respect to © and

<J. Hence, by Lemmas 3.7 and 3.8, we see that (p°q is the Grundy

function on L(G). Thus we obtain the following theorem.

Theorem 3.9. The Grudy function on L(G) is a linear map from

L(G) to N.

Definition 3.IO. A game G = (S, /*) is called the direct sum of n

games Gi = (Si, ^ i ) , - - - 3 Gn = (Sn, /nn} if

(1) S=5i + 52H ----- h Sn (direct sum of sets) and

(2) X5) = tti(s\ where s^Si.

We denote this game by GH ----- \-Gn.

Definition 3.11. A game G = (S, ju) is called the Cartesian product

of n games Gi = (5i, A i ) , - - - 5 Gn = (Sn, jun) if

(1) 5 = 5iX ---xSn and

8) See Lemma 3,5.
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(2) X*)= 0 {si} X • • • X {Sf-i} X jUi(st) X {si+1} X • • • X {sn},
» = l

where s = (51,-- -, sw).

We denote this game by G\ x • • • X Gw.

Now, let G,- = (S,-5 &i)(i = ] , - • • , ^) be any games. We define a mapping

0: Si x-"XSn-Kt(Si + • • • + £„) by 0(5i,..., 5 f f) = 5i©---05n . (Recall that

we consider that S;CSH f-SwC-£(SH h Sw).) Then it is clear that

this 0 is an isomorphism from GiX---xGn to Z(GH hGw). Thus, as

a corollary of Theorem 3.9, we obtain Grundy's theorem.

Theorem 3.12. (Grundy) Let G = dx---xGn be the Cartesian

product of n games. Then for any s = (si , . -- , 5«) E Si X ••• X Sw,

§4. Linear Games

Throughout this § we fix a linear game G = (S3 /*)• And we suppose

H is a subset of Map (5, 5) which satisfies the condition (II) of Definition

3.2.

By the condition (II) (a) of Definition 3.2, the set T of all terminals

of G forms a subspace of 5. And the equivalence relation induced by T

(i.e. sTt iff s © £ € E T) is a compatible relation on G. Then it is clear

that the quotient game G/T is also a linear game and has only one

terminal 0. Remark that this also means that if H(s) = H(t) then s — £.

Our aim in this § is to show that go is a linear map. (See Theorem

4.5.) To this end we have only to show that gGjT is linear since if we

denote the canonical mapping from 5 to S/T by it then gc = gGiT°n-

So, in this §, we assume G has only one terminal 0.

Definition 4.1. An element s £ 5 is called simple if for any t€=.S

either H(s)CH(t) or H(s)r\H(i) = 0.

An element sE S is called complicated if for any simple £,

It can be easily verified that the set G of all the complicated ele-
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ments is a subspace of S. Let M be the subspace of S spanned by all

simple elements.

Lemma 4.2. S=M@C.

Proof. (1) Suppose SeMr\C. Then H(s)r\H(s') = 0. Hence s = 0,

that is, Afr\C={0}.

(2) Take any s€S. Let F={v e S\H(s)^H(v\ v is simple}.

Then V is finite since #(s) is finite and H(v} = H(vf} implies v = v'. Let

*= S 0v- Then H(t)= \J H(v) (disjoint union). Let zz = s0£. Then,
v<=V v^V

since H(s)^)H(t\ H(u) = H(s} — H(t}. If we suppose u is not complicated,

then there is a simple w such that H(u)r\H(w)=^0. It follows that

H(s)r\H(w)^0. Since w; is simple, this means H(s)^)H(w). Hence w^V.

Since H(t}=\J H(v\H(t}^H(w\ Then H(u)r\H(t}^H(u}r\H(w}^0.
v^V

This contradicts the fact that H(u) = H(s) — H(f). Therefore u <E C. Thus

5 = £ © u for some £ 6 M and w G C.

Lemma 4.3. C={0}.

Proof. Suppose C=^{Q}. Then S—M^0. Since G is progressively

finite, there is some si € S—M such that X5i)C^- Let si = 7Hi0ci, where

TTiiGM and c iGC. Then H(s^ = H(m^\jH(c^) (disjoint). Let A be any

element in H(CI). ThenheH^J. Hence, A(ci)=A(5i©/rei)=A(5i)077ii 6 M.

Thus we have #(ci)C-M. By Lemma 4.2, G! is not simple. So, there

exists £ES such that H(ci}<tH(t") and H(ci)r\H(t)=£0. Let t = m2@c2,

where m2eM and c2€C. Then H(ci)<tH(c2') and

Take heH(c^r\H(c2\ and let s=h(ci) (6M). Then

since h£H(dQ)c2}. Next, take h' € H(ci) — H(c2\ and let s' = h'(ci)

Then A /(ci0c2)= :5 /©C2. Hence, we obtain the following loop.

^5/ 0 d 0 C2-^C2

This contradicts that G is progressively finite.

Lemma 4.4. The set B of all the nonzero simple elements is a basis
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of S.

Proof. By Lemmas 4.2 and 4.3, E spans 5. We now show that B

is linearly independent. Let {si,--- , sk} C^5 and suppose 2 ©sf- = 0. Then
& fe »= i

H(^@Si) = \jH(si) = 0. Hence H(si} = 0 for any j, that is, s/ = 0 for
i=l i = l

any i.

For any 5, t €E S, we say 5 appears in t if 5 is simple and H(s) C H(t).

Then, as we have seen in Lemma 4.2, t is the sum of simple elements

appearing in t.

The following theorem is an extension of Theorem 3.9.

Theorem 4.5, The Grundy function on any linear game is a linear

map.

Proof. In §3, we defined an isomorphism from G to L(G). (See the

discussion which follows Theorem 3.4). We denote this isomorphism by (p.

We define a linear map 0: Z,(S)—>S as follows: Any s€E.L(5) is of the

form s = 0>(si)©"-©0>(sfc), where s i , - - - , sk are in $. We define 0(s) —

si©-••©£&• Then 0 is well-defined since (p(s) is a basis of Z(5).

Let us define an equivalence relation s= on L(5) by the condition

that s = £ iff 0(s) = 0(z). We now show that = is a semicompatible rela-

tion on L(G). Suppose s = 0>(si)0---©0?(sm) and * = ^(fi)®---©^(f») are

in L(5), and 0(s) = 0(0- Take any h€H(s). Then heH(cp(Si}} for a

unique s/. Since <^ is an isomorphism, there is a unique h 6 H(si) such

that h((p(si)) = (p(h(si)). For this X there is a unique simple ^ G 5 such

that h£H(u). Clearly, u appears in 5,-. Hence h(s) = s@<p(si)@h(<p(si)) =

s®v(sd®v(Ksi» = s®v(sd®9(s&^
Here we have two cases.

(Case 1) The case where u appears in some tj(j = l9--9 n}: In this

case, we can show, similarly as above, that 0(A(f)) = 0(«)©u©A(u).

Since 0(s) = 0(05 we have 0(A(s)) = 0(A(t)).

(Case 2) Otherwise u does not appear in any fy(y" = l,..., 71). Since

</)(s) = (/)(t\ this means that w appears even number of times in S/s

(y = l,..., 7?i). Hence w must appear in some s^ other than 5Z-. Then there
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exists hf €zH((p(sk)) such that hf((p(sk)) = (p(h(sk)\ It is easy to see that

V is also in ff(A(s)). So, AW*)) = *©P(*0©P(*ffiB©A(u))©K**) 0?

(**0z*0£(zO). Hence 0(A'(AGO)) = 0(*).
The results of both cases mean that = is a semicompatible relation

on G. Now, we can show that go is linear. Let 5 and t be any elements

in 5. Then, since cp is an isomorphism, gc(s@t) = gz(G)(<K5©0)- Obvi-

ously, ^(sQO^^C5)®^^)- Hence, by Lemma 2.4 and Theorem 3.9,

This completes our proof.

Corollary 4.6. P(G) zs <2 subspace of S.
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