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Supplement to “On the Inverse of
Monoidal Transformation”

By

Akira Fupikr* and Shigeo NAKANO

In this note we shall fill a gap in the original proof of the Main
Theorem in the previous paper [ 4], and sharpen the Theorem by showing
that the condition («) alone is sufficient to derive the conclusion of the
theorem. This sharpened theorem enables us to solve a problem posed by
K. Kodaira in [2].

The authors are grateful to Professor Mudumbai S. Narasimhan for
calling our attention to the gap, to him, to Takahiro Kawai and to other

friends for discussion about this.

§1. Vanishing of Cohomology

In the proof of theorem 1 in [4], we made too easy use of Serre’s
duality theorem. Let V be a connected paracompact complex analytic
manifold of dimension n and E a holomorphic vector bundle over V. Let
us denote by C??=C?V, E) the space of E-valued differential forms of
type (p, g) and of class C=, with the topology as given in [5]. (C*?
stands for 4?7 in [5].) The space K% #" ¢ of E*-valued currents of
type (n—p, n—q) with compact supports is isomorphic to the topological
dual of C?% and the transpose of the sequence

CHa-1_31  cta_B2  Cria+!

is given by
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K:{l{—p, n—q+l, u Ki—p, n—q, v Ki—p. n—g—1

where u, v are equal to 0 on currents up to signs. To conclude the
duality between the cohomology groups Ker 0y/Im 0; and Ker u/Im v, it
is enough to know either Im 9, and Im 0, are closed or Imu and Imv
are closed, as subspaces of C’s or K,’s respectively. (One can refer, for
example, to Komatsu [ 3] for this point.)

Now under the condition of theorem 1 in [4 ], we proved H% «V, 2"
(#°))=0 for ¢q=1,2, ..., n—1, and H%(V, 2"(#°¢))=0 is trivial provided
V is not compact. Hence for p=0, ¢=1,2, ..., n—1, Imv is closed
because Im v =Ker u. For ¢g=2, Imu is nothing but Im v taken for
g—1, and is closed. Hence we can conclude HY(V, 0(# ¢))=0 for ¢=
2, ..., n—1. But this method breaks down for g=1. What Andreotti and
Vesentini proved in [17] shows that the image in 0: 2"" X(#°)—>2""(%#°)
is closed. (2?9(#°) denotes the space of %°-valued C~-forms of type
(p, g) with compact supports.) But it seems that known results on duality
between pairs of locally convex topological vector spaces cannot be applied
directly to secure the Serre duality for pairs of £ and its dual.

Here we shall replace our theorem 1 by the following

Theorem 1'. Let V be a connected paracompact complex analytic
manifold and suppose theve exist a plurisubharmonic function ¥ (of class
C=) and a complex line bundlc B on V with the properties

(a) T =0 and for any ¢ with 0<c<sup¥(x). V.={x€V|¥(x)
<c} is not empty and is relatively compact i:aEVV.

(b) & is positive.

Then the restriction map HY(V, Q"(B))—~H' (V. 2"(#)) is the 0-map for
g=1,2, ..., n.

Proof. We may assume that sup ¥(x)=co. (Otherwise we replace ¥
by (1—%/sup ) *—1.) Take an open covering {V i} of V such that
# is trivial on each V4 and FV{ is contained in a domain of local coord-
inates (x]). Then # can be determined by a system of transition func-
tions {e,.}. Because # is positive, there exists a system {a,} of positive

C~-functions a, on V3, such that
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a)»/au: ' e)upl 2)

(11) (az log a >>0
0xi0xk )
We introduce in ¥ a Kahler metric dsi=),g%(dx’, dz*) by
g<_01____az_l(_)g_‘_h_'
’ 0x70 %"

For #-valued differential forms ¢@={p.\}, ¢=1{¢.} of type (p, q),
we define a function a¢(e, ¢) on V by

(1.2) —i— oL Ay =ao(@, ¢) dv,,
A

where dvg is the volume element with respect to the metric ds? and *
is defined by ds2 too.
Given ¢>0 we set 0=(1—%/c)"'. @(x) tends to oo when x tends

to 0V, from inside. We also set

(1.3) by=e"-q, on Vinv..

Then, as was proved in [4], 1.2, gj,;za—zl—.mg—_bki gives a complete
0xi 0%5

Kihler metric ds®= ] giz(dx, d%%) on V.. On the other hand, it is
easily seen that (g;z)=(g'%)+ (hj), where (h;p) is a positive semi-definite
matrix and h;;(x) remains of order at most @' with an integer I, when
x approaches 0V, from inside. we take ds? as the metric on the base
manifold 77, and take {b,} to define the metric on the fibres of &%, then
if peC?4(V, #) we have

—1—%/\4?0:=e’"’2f~dvo,
A

where f is of order @' with some integer I. (Note that * is taken with
respect to ds®, while dv, is the volume element of ds2.) This shows that
p e (V. B).

The argument in [ 4], 1.4 applied to &, gives
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(1.4) LA—AL=[]—%"1Jx.

(Formula (1.16). Note that x is the Kihler form of the metric ds® on
V..) Hence # is W™%elliptic with the constant 1/g, that is to say, we

have
%{@, 09)+ (B¢, 9)}=(¢, §)

for ¢ 2™V, &).

Suppose now ¢ is of type (n, q) with g=1 and 0¢ =0, then by virtue
of [47], proposition 5 ([1], Theorem 2), we see that ¢ can be expressed
as 0y on V., where 7€ C™""Y(V,, #). This proves the theorem.

§2. On Condition (B3)
We shall supplement [47], theorem 2 by the following

Theorem 2. If X, S, M satisfy the condition () of the Main
Theovem, then for any a € M, we can find a neighbourhood V of L, in
X and a plurisubharmonic function ¥ on V such that

(a) 0Z¥<1lonV, =0 on L, and for any c with 0<c<1, V,=
{x e V|¥(x)<c} is relatively compact,

(b)) [SIv and the canonical bundle A of V are negative,

(c) each fibre L, of S—>M is either contained in V or does not

meet V.

Proof. We go back to the argument of [4], §2 and use the same
notations as there. By the adjunction formula for canonical bundles, we

have
A \vins=A"QLSTs =Le] ",

where #” denotes the canonical bundle of V'NS=DxP’"!, and V'=
\JV{ as considered in [4], §2. Therefore we may assume that & is
A

determined by a system {k,,} of transition functions with the property

k)‘.p I S=8{,§’_1).
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Take a monomial M of degree r—1 in the homogeneous coordinates {7“}
on P’7%, then w={w,} defined by w\=M/(, w1 is an element of
I'(DxP ' 0(e]'). We try to extend » approximately to a cross
section of #~!. We take holomorphic functions wi in V4 such that

wi| S=w,, then
win= i —kxiwi)(y) ™

define an element w' ={w{,}€Z" (B, (4 *QCST™). {wi.|S} can be
represented as the coboundary of an element 6={6,}€C°(U, 0(e])):

wiu| S=0\—¢§,0,.

We extend 6, to a holomorphic function s, on V5 and set wf=wi— y,s:.
Then w{|S=w, and

- 2
W —kxiwe=( y2) Wl

where {w{,} € ZYB, 0(4*QLS]1 ). Restrict {wf,} to S and write it
as a coboundary,....... In this way, we see that for all monomials
{M*} in 7 of degree r—1 and for any integer 1>0, we find holomorphic
functions w{ in V5 such that

wl| S=wl=M"?/(4™)",
Wt — kit =)'k,
hf, are holomorphic in ViNV,.
Then we take C~-functions 7{ in V' such that
hu=m— ki yu/ Y s

and set We=wl—(y)'nl, B,=2,|W.|% We have W{=k}W: and

By=ky,| ?B,. Since B, reduces to )],|wf|* on S, we see

( 02 log B)“
0x50%¢

>>O on V,

if V={xeV'|¢p(x)<0} and 0 is small enough. Then {e ™B;l} gives
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a Hermitian metric on the fibres of & whose curvature form is negative.

This, combined with the proof of [4 ], theorem 2, gives theorem 2’.

To achieve our Main Theorem, we replace [ 4], proposition 9 by the

following

Propesition 9'. Let V be an n-dimensional complex analytic manifold
and S a submanifold of V of codimension 1. Suppose that S is analy-
tically homeomorphic to D xP™", where D is a domain in C" and m+
r=n, and that [ S)s=[e |}, [e] being the complex line bundle on S
defined by D x (hyperplane). If there exist an open subset V. of V such
that V.N\S=D' xP""' and the restriction map H*(V, 0[S )H—>H(V,,
O([ST79) is the 0-map for e=1, 2, then for any point a € D', there exist
a neighbourhood W of L,(=the submanifold of S corresponding to a X P)
in V, and a holomorphic map © from W to 4={(z, y)€C"xC"||z7| <
0, | y*| <0} such that (W, m) is the monoidal transform of 4 with centre
I' (=the linear variety defined by y'---=y"=0). We can identify I" with
a neighbourhood of a in D', and the restriction of @ to S corresponds to

the canomical projection D' XP—>D’' by these identifications.

We have only to make a slight change in the proof of Proposition 9.
We note that the obstructions to extending &’s and #’s to V appear in
H'(V, 0((ST%) (6=1, 2), and hence they disappear in V..

The rest of the proof in [4], §3 now works to show the Main

Theorem.

Remark. We can dispense with the discussion of negativity of . In
fact what we want is to extend holomorphic cross sections of [e]¢ on
VNS to those of [S] ¢ on V. Approximate extension (in the sense of
ascending power in y,) is always possible and the obstruction appears in
0V, o0(STH)Y=H (V, 2"(*Q[S]™)). Since [S] is positive on ¥V
and V, is relatively compact in ¥, we can find [/ such that # Q[ S]™
is positive on ¥V, with ¢">c¢. This remark would be of use when we

consider other kind of extension problems.
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§3. Deformation of a Moncidal Transform

Suppose we have paracompact connected complex analytic manifolds
# and B and a holomorphic mapping p from #  onto B, such that the
rank of the jacobian matrix of p is equal to the dimension of B at every
point of #°. Then we say that # is a complex fibre manifold over B.
In this case Wuzp"l(u) is an analytic submanifold of #  for each point
u € B. We shall assume that W, is connected. If, moreover, p is proper
so that each W, is a compact complex analytic manifold, then (#~, B, p)
is an analytic family of compact complex analytic manifolds.

In his paper [2], K. Kodaira has shown the following: suppose
(#°, B, p) is a complex fibre manifold and suppose, for a given point O
of B, W, contains a compact submanifold S, of codimension 1, with the
following properties:

(1) S, has a structure of analytic fibre bundle 7: S;—>M,, with a
projective space P as the standard fibre.

(2) The line bundle [ Sy on W, gives, when restricted to each
fibre L of Sy—>M,, the line bundle [e ]!, where e is a hyperplane on
L(=P).

Then there exists a neighbourhood /N of O on B, an analytic
submanifold & of p‘l(N) of codimension 1, and an analytic manifold .#
with a holomorphic mapping g onto N, such that

(@ (& N, p), (#, N, q) are analytic families of compact complex
manifolds and

pH0)=S,, ¢ 1(0)=M,.

(b) There exists a holomorphic mapping 7, from & onto .#, such
that p=gqof, 7#|s,=n and 7: S—>.# is an analytic fibre bundle with the
standard fibre P.

We can apply our Main Theorem to p '(N)=#"'>%—>.# and con-
clude that there exists an analytic manifold & containing M as a submani-
fold so that W' is the monoidal transform of & with centre M. As is easily

seen, p: W —N determines a holomorphic map pi: —>N and makes Z a
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complex fibre manifold over N. For any t €N, W, is the monoidal trans-
Sform of X;=pi'(t) with centre M,.
In short we can say “A small deformation of a monoidal transform

is a monoidal transform.”

Note added in proof. After this paper was finished, we have proved
that H4(V,, "(#8)) itself vanishes under the condition of Theorem 1.
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