A Geometric Method for the Numerical Solution of Nonlinear Equations and Its Application to Nonlinear Oscillations

By

Yoshitane Shinohara*

1. Introduction

In his previous paper [1, 2], the author proposed a new method for the numerical solution of a system of nonlinear equations

(E)
$$F(x) = \{f_k(x_1, x_2, ..., x_m)\} = 0$$
 $(k=1, 2, ..., m)$

in a bounded region. But in these papers he did not describe the techniques of programming for the method proposed.

In the present paper, the techniques of programming will be described and a program written in FORTRAN will be presented. This program is tested on a system consisting of five algebraic equations. Lastly, in illustration, will be shown an application of our program to the computation of subharmonic solutions of Duffing's equation.

The author expresses his hearty gratitude to Professor M. Urabe for his constant advice and encouragement.

The author also wishes to acknowledge the assistance of Miss. T. Takahashi, Mr. Y. Kono and Mr. Y. Nakatani in the computer room of the RIMS, Kyoto University.

Received September 29, 1971 and in revised form February 25, 1972. Communicated by M. Urabe.

^{*} Faculty of Engineering, Tokushima University, Tokushima 770, Japan.

YOSHITANE SHINOHARA

2. The Method of Computation

We consider a global problem of finding the solutions of the system (E) in a bounded region R:

$$R = \{(x_1, x_2, \dots, x_m) : l_i \leq x_i \leq m_i \quad (i = 1, 2, \dots, m)\}.$$

We assume that the real-valued functions $f_k(x_1, x_2, ..., x_m)$ (k=1, 2, ..., m)are continuously differentiable in the region R. We assume further that the solutions under consideration are all simple, that is, for all solutions of (E) lying in R, the Jacobian of F(x) with respect to x does not vanish.

From the equations of the system (E), we choose m-1 equations

(2.1)
$$f_{\alpha}(x_1, x_2, ..., x_m) = 0$$
 $(\alpha = 1, 2, ..., m-1).$

For this system, we request that the rank of the matrix

$$(\partial f_{\alpha}/\partial x_i)$$
 ($\alpha = 1, 2, ..., m-1; i=1, 2, ..., m$)

is equal to m-1. The system of equations (2.1) then determines a curve

$$C: \quad \mathbf{x} = \mathbf{x}(s),$$

for which from (2.1) we have

(2.2)
$$\sum_{i=1}^{m} \frac{\partial f_{\alpha}}{\partial x_i} \cdot \frac{dx_i}{ds} = 0 \qquad (\alpha = 1, 2, ..., m-1).$$

Put

(2.3)
$$D_i = (-1)^i \cdot \frac{\partial(f_1, f_2, \dots, f_{m-1})}{\partial(x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_m)}$$
 $(i=1, 2, \dots, m),$

then from (2.2) we have

(2.4)
$$\frac{dx_i}{ds} = \lambda \cdot D_i \qquad (i=1, 2, ..., m),$$

where λ is an arbitrary parameter. Let us choose a parameter s so that

s may be an arc length of the curve C. Then we readily have

(2.5)
$$\lambda = \pm \left[\sum_{i=1}^{m} D_i^2\right]^{-\frac{1}{2}}.$$

Hence from (2.4), for the curve C we have a system of differential equations of the form

(2.6)
$$\frac{d\boldsymbol{x}}{ds} = \boldsymbol{X}(\boldsymbol{x}).$$

Now we take a point $\mathbf{x} = \mathbf{x}^{(0)}$ on the curve *C* and suppose $\mathbf{x}^{(0)} = \mathbf{x}(0)$. Then we can trace the curve *C* integrating numerically equation (2.6) by a step-by-step method, say, the Runge-Kutta method. Let $\mathbf{x}^{(l)}$ (l=1, 2, ...)be an approximate value of $\mathbf{x}(s)$ obtained at the *l*-th step by the numerical integration. Then we may have $f_m[\mathbf{x}^{(0)}] \cdot f_m[\mathbf{x}^{(1)}] \leq 0$. Otherwise we continue the numerical integration of (2.6) until we have

(2.7)
$$f_m[\mathbf{x}^{(l-1)}] \cdot f_m[\mathbf{x}^{(l)}] \leq 0.$$

Once we have had (2.7) for some l, we check whether $|f_m[\mathbf{x}^{(l-1)}]|$ or $|f_m[\mathbf{x}^{(l)}]|$ is smaller than a specified positive number ε . If this is not satisfied, we multiply the step-size of the numerical integration by 2^{-p} $(p \ge 1)$ and repeat this process. Then after a finite number of repetitions we shall have

(2.8)
$$\begin{cases} f_m \llbracket \mathbf{x}^{(l-1)} \rrbracket \cdot f_m \llbracket \mathbf{x}^{(l)} \rrbracket \leq 0, \\ |f_m \llbracket \mathbf{x}^{(l-1)} \rrbracket| \quad \text{or} \quad |f_m \llbracket \mathbf{x}^{(l)} \rrbracket| < \varepsilon. \end{cases}$$

The value $\mathbf{x}^{(l-1)}$ or $\mathbf{x}^{(l)}$ satisfying (2.8) gives an approximate solution of the given system of equations (E). Starting from $\mathbf{x}^{(l-1)}$ or $\mathbf{x}^{(l)}$, we then can compute a solution of (E) by the Newton method. However, if ε is very small, $\mathbf{x}^{(l-1)}$ or $\mathbf{x}^{(l)}$ itself will give an accurate approximate solution of (E).

Our method is based on the above principle.

In order to find a point $x = x^{(0)}$ on the curve *C*, it suffices to find a solution of the system (2.1) consisting of m-1 equations after assigning

a suitable value to some one of x_i 's (i=1, 2, ..., m). Our method is clearly applicable to systems consisting of m-1 equations. Hence, repeating such a process, our method is reduced to finding a solution of a single equation.

In the course of the numerical integration of (2.6), it may happen due to the accumulated error that

$$|f_{\alpha}[\mathbf{x}^{(l)}]| \geq \xi$$

at some *l*-th step for some positive integer $\alpha \leq m-1$, where ξ is a prescribed positive number. When (2.9) happens, one however can correct $\mathbf{x}^{(l)}$ so that the corrected value $\tilde{\mathbf{x}}^{(l)}$ may satisfy inequalities

$$|f_{\alpha}[\tilde{x}^{(l)}]| < \hat{\varepsilon}$$

for all $\alpha = 1, 2, ..., m-1$. To do so, it suffices to apply the Newton method to (2.1) starting from $\mathbf{x} = \mathbf{x}^{(l)}$ leaving one of $x_i^{(e)}$'s (i=1, 2, ..., m) unchanged.

If we continue the numerical integration of (2.6) beyond the approximate solution obtained or begin the numerical integration of (2.6) in the reverse direction, then we shall have (2.8) again provided there are solutions of (E) on the curve. Continuing our process, in the region R, we thus can get numerically all solutions of (E) lying on a branch of the curve C.

The curve C may consist of some different disconnected branches [Fig. 1, Fig. 2]. In order to find all these branches, a special setup is needed.

We divide each interval $[l_j, m_j]$ (j=2, 3, ..., m) into subintervals of equal length h_j and denote an arbitrary subinterval obtained by $[L_j, L_j+h_j]$.

To begin with, we consider two equations

$$(2.10) f_1(x_1, x_2, l_3, L_4, \dots, L_m) = 0,$$

$$(2.11) f_2(x_1, x_2, l_3, L_4, \dots, L_m) = 0$$

in the region $R_1^{[2]}$:

$$R_1^{[2]} = \{ (x_1, x_2, \dots, x_m) : l_i \leq x_i \leq m_i \ (i=1, 2), \ x_3 = l_3, \\ x_j = L_j \ (j=4, 5, \dots, m) \}.$$

Our method begins with the calculation of the intersections of two plane curves (2.10) and (2.11). In order to find all the branches of the curve (2.10) lying in the region $R_1^{[2]}$, we divide the region $R_1^{[2]}$ into subregions $D_i^{[2]}$ so that

$$R_1^{[2]} = D_1^{[2]} \cup D_2^{[2]} \cup \cdots \cup D_{n_2}^{[2]} \qquad [Fig. 1],$$

where $D_i^{[2]}$ are rectangles with the length $m_1 - l_1$ and the breadth h_2 .

First, we calculate the intersections $S_1^{(1)}$, $S_2^{(1)}$, ... of the curve (2.10) with the straight line $x_2 = l_2$. Starting from these points, we trace the

branches of the curve (2.10) numerically until we reach the boundary of $D_1^{[2]}$. Suppose that the branches of the curve (2.10) have reached the boundary $x_2 = l_2 + h_2$ of $D_1^{[2]}$ at $S_1^{(2)}, S_2^{(2)}, \dots$. Then we store these $S_1^{(2)}, S_2^{(2)}, \dots$ as points of delivery for the succeeding step. In the course of tracing the branches of the curve (2.10), we compute the intersections of these branches with the curve (2.11) with sufficient accuracy.

Next, we calculate the intersections of the curve (2.10) with the straight line $x_2 = l_2 + h_2$. Some of them are points of delivery obtained at the preceding step. Starting from these points of delivery in the direction of increasing x_2 , we trace the branches of the curve (2.10) numerically until we reach the boundary of $D_2^{[2]}$. Suppose that the branches of the curve (2.10) have reached the boundary $x_2 = l_2 + 2h_2$ of $D_2^{[2]}$ at $S_1^{(3)}, S_2^{(3)}, \dots$ Then we store these $S_1^{(3)}, S_2^{(3)}, \dots$ as points of delivery for the succeeding step. In this tracing, it may happen that the branches starting from the points of delivery on the straight line $x_2 = l_2$ $+h_2$ return back to the points, say $S_5^{(2)}, ...,$ on the straight line $x_2 = l_2 + h_2$ without going outside $D_2^{[2]}$. In such a case, the points $S_5^{(2)}$, ... may be points of delivery obtained at the preceding step. In such a case the points $S_5^{(2)}, \cdots$ are called points of trivial delivery. When the points $S_5^{(2)},\,\cdots$ are not points of delivery obtained at the preceding step, they are called points of reverse delivery. Clearly points of trivial delivery appear in pairs and we need not trace the branches of the curve (2.10)starting from both points in pairs. As the points of reverse delivery are concerned, it is necessary to trace the branches of the curve (2.10) in the direction of decreasing x_2 starting from these points. Among the intersections of the curve (2.10) with the straight line $x_2 = l_2 + h_2$, there may be some points, say $S_6^{(2)}, \ldots$, which are neither points of delivery nor points of reverse delivery. When such points appear, it is necessary to trace the branches of the curve (2.10) starting from these points in two directions, that is, the direction of increasing x_2 and that of decreasing x_2 . When we trace the branches of the curve (2.10) in the direction of increasing x_2 , we may reach the straight line $x_2 = l_2 + 2h_2$ at some points. In such a case, we store these points as points of delivery for the succeeding step. In the course of tracing the branches of the curve (2.10), we

always compute the intersections of these branches with the curve (2.11) with sufficient accuracy.

We continue the above process step by step. Then we shall obtain all solutions of the simultaneous equations (2.10) and (2.11) lying in the region $R_1^{[2]} = D_1^{[2]} \cup D_2^{[2]} \cup \cdots \cup D_{n_2}^{[2]}$.

Let $S_1^{(1)}$, $S_2^{(1)}$, $S_3^{(1)}$, $S_4^{(1)}$, ... be the points corresponding to the solutions of the simultaneous equations (2.10) and (2.11) lying in $R_1^{[2]}$ (Fig. 2).

Fig. 2

We consider the three equations

- (2.12) $f_1(x_1, x_2, x_3, L_4, ..., L_m) = 0,$
- (2.13) $f_2(x_1, x_2, x_3, L_4, ..., L_m) = 0,$
- $(2.14) f_3(x_1, x_2, x_3, L_4, ..., L_m) = 0$

YOSHITANE SHINOHARA

in the region $D_1^{[3]}$:

$$D_1^{[3]} = \{ (x_1, x_2, x_3, x_4, \dots, x_m) : l_i \leq x_i \leq m_i \quad (i=1, 2), \\ l_3 \leq x_3 \leq l_3 + h_3, x_j = L_j \quad (j=4, 5, \dots, m) \}.$$

Starting from the points $S_1^{(1)}$, $S_2^{(1)}$, $S_3^{(1)}$, $S_4^{(1)}$, ..., we trace the branches of the curve defined by (2.12) and (2.13) numerically until we reach the boundary of $D_1^{[3]}$. If these branches reach the boundary $x_3 = l_3 + h_3$ of $D_1^{[3]}$, say at $S_2^{(2)}$, $S_2^{(2)}$, $S_3^{(2)}$, ..., then we store these $S_1^{(2)}$, $S_2^{(2)}$, $S_3^{(2)}$, ... as points of delivery for the succeeding step. In the course of tracing the branches of the curve defined by (2.12) and (2.13), we compute the intersections of these branches with the surface (2.14) with sufficient accuracy.

Next, by the use of the procedure applied to the simultaneous equations (2.10) and (2.11), we calculate the solutions of the simultaneous equations

(2.15)
$$\begin{cases} f_1(x_1, x_2, l_3+h_3, L_4, \dots, L_m) = 0, \\ f_2(x_1, x_2, l_3+h_3, L_4, \dots, L_m) = 0 \end{cases}$$

in the region $R_2^{[2]}$:

$$R_2^{[2]} = \{ (x_1, x_2, \dots, x_m) : l_i \leq x_i \leq m_i \quad (i = 1, 2), \\ x_3 = l_3 + h_3, \quad x_j = L_j \quad (j = 4, 5, \dots, m) \}.$$

Some of the solutions correspond to points of delivery obtained at the preceding step. Starting from these points of delivery in the direction of increasing x_3 , we trace the branches of the curve defined by (2.12) and (2.13) numerically until we reach the boundary of $D_2^{[3]}$:

$$D_{2}^{[3]} = \{ (x_{1}, x_{2}, \dots, x_{m}) : l_{i} \leq x_{i} \leq m_{i} \quad (i = 1, 2), \\ l_{3} + h_{3} \leq x_{3} \leq l_{3} + 2h_{3}, \quad x_{j} = L_{j} \quad (j = 4, 5, \dots, m) \}.$$

If these branches reach the boundary $x_3 = l_3 + 2h_3$ of $D_2^{[3]}$, say at $S_1^{(3)}, \dots$, then we store these $S_1^{(3)}, \dots$ as points of delivery for the succeeding step.

If the branches starting from the points of delivery on the plane $x_3 = l_3$ $+h_3$ return back to the points, say $S_3^{(2)}, \dots$, on the plane $x_3 = l_3 + h_3$ without going outside $D_2^{[3]}$, then the points $S_3^{(2)}, \cdots$ are either points of trivial delivery, that is, the points coincident with some points of delivery obtained at the preceding step, or points of reverse delivery, that is, the points which do not coincide with any points of delivery obtained at the preceding step. Clearly points of trivial delivery appear in pairs and we need not trace the branches of the curve defined by (2.12) and (2.13)from both points in pairs. From the points of reverse delivery, however, it is necessary to trace the branches of the curve defined by (2.12) and (2.13) in the direction of decreasing x_3 . Among the points corresponding to the solutions of (2.15), there may be some points, say $S_4^{(2)}, \dots,$ which are neither points of delivery nor points of reverse delivery. From these points, if exist, it is necessary to trace the branches of the curve defined by (2.12) and (2.13) in two directions, that is, the direction of increasing x_3 and that of decreasing x_3 . When we trace the branches of the curve defined by (2.12) and (2.13) in the direction of increasing x_3 , we may reach the plane $x_3 = l_3 + 2h_3$ at some points. In such a case, we store these points as points of delivery for the succeeding step. In the course of tracing the branches of the curve defined by (2.12) and (2.13), we always compute the intersections of these branches with the surface (2.14)with sufficient accuracy.

We continue the above process step by step. Then we shall obtain all solutions of the simultaneous equations (2.12), (2.13) and (2.14) lying in the region $R_1^{[3]} = D_1^{[3]} \cup D_2^{[3]} \cup \cdots \cup D_{n_3}^{[3]}$.

Let $S_1^{(1)}$, $S_2^{(1)}$, ... be the points corresponding to the solutions (2.12), (2.13) and (2.14) lying in $R_1^{[3]}$. We consider the four equations

- $(2.16) f_1(x_1, x_2, x_3, x_4, L_5, \dots, L_m) = 0,$
- $(2.17) f_2(x_1, x_2, x_3, x_4, L_5, ..., L_m) = 0,$
- $(2.18) f_3(x_1, x_2, x_3, x_4, L_5, \dots, L_m) = 0,$
- $(2.19) f_4(x_1, x_2, x_3, x_4, L_5, \dots, L_m) = 0$

in the region $D_1^{[4]}$:

$$D_1^{[4]} = \{ (x_1, x_2, \dots, x_m) : l_i \leq x_i \leq m_i \quad (i = 1, 2, 3), \\ l_4 \leq x_4 \leq l_4 + h_4, \quad x_j = L_j \quad (j = 5, 6, \dots, m) \}.$$

Starting from the points $S_1^{(1)}$, $S_2^{(1)}$, ..., we trace the branches of the curve defined by (2.16), (2.17) and (2.18) numerically until we reach the boundary of $D_1^{[4]}$. Then we repeat the process applied for the simultaneous equations (2.12), (2.13) and (2.14). Then we shall obtain all solutions of the simultaneous equations (2.16), (2.17), (2.18) and (2.19) lying in the region $R_1^{[4]} = D_1^{[4]} \cup D_2^{[4]} \cup D_3^{[4]} \cup \cdots \cup D_{n_4}^{[4]}$, where

$$D_{k}^{[4]} = \{ (x_{1}, x_{2}, \dots, x_{m}) : l_{i} \leq x_{i} \leq m_{i} \quad (i = 1, 2, 3), \\ l_{4} + (k-1)h_{4} \leq x_{4} \leq l_{4} + kh_{4}, \quad x_{j} = L_{j} \quad (j = 5, 6, \dots, m) \}.$$

Continuing the above process, after a finite number of steps, we obtain all solutions of the given system (E) lying in the region $R = R_1^{[m]}$.

3. Program and Its Test

We have written a program of our method in FORTRAN and have tested it on a system of algebraic equations which appears in the factorization of a polynomial.

Our system of algebraic equations is connected with the factorization of the polynomial

$$P(x) = x^7 + a_1 x^6 + a_2 x^5 + \dots + a_6 x + a_7$$

into

$$(x^{5}+px^{4}+qx^{3}+rx^{2}+sx+t)\cdot(x^{2}+lx+m).$$

Put

$$P(x) = (x^{5} + px^{4} + qx^{3} + rx^{2} + sx + t) \cdot (x^{2} + lx + m)$$
$$-(k_{1}x^{4} + k_{2}x^{3} + k_{3}x^{2} + k_{4}x + k_{5}),$$

then comparing the coefficients of powers of x in both sides, we have

$$\begin{cases} p+l=a_{1}, \\ q+pl+m=a_{2}, \\ r+ql+pm-k_{1}=a_{3}, \\ s+rl+qm-k_{2}=a_{4}, \\ t+sl+rm-k_{3}=a_{5}, \\ tl+sm-k_{4}=a_{6}, \\ tm-k_{5}=a_{7}. \end{cases}$$

Eliminating l and m from these equations, we have

(3.1)

$$\begin{pmatrix}
k_1 = f_1(p, q, \dots, t) = p^3 - 2pq + r - a_1 \cdot (p^2 - q) + a_2 p - a_3, \\
k_2 = f_2(p, q, \dots, t) = p^2 q - q^2 - pr + s - a_1 \cdot (pq - r) + a_2 q - a_4, \\
k_3 = f_3(p, q, \dots, t) = p^2 r - ps - qr + t - a_1 \cdot (pr - s) + a_2 r - a_5, \\
k_4 = f_4(p, q, \dots, t) = p^2 s - pt - qs - a_1 \cdot (ps - t) + a_2 s - a_6, \\
k_5 = f_5(p, q, \dots, t) = p^2 t - qt - a_1 pt + a_2 t - a_7.
\end{cases}$$

Hence we see that $Q(x) = x^5 + px^4 + qx^3 + rx^2 + sx + t$ is a factor of the given polynomial P(x) if and only if the coefficients (p, q, r, s, t) of Q(x) satisfy the equations

$$(3.2) f_k(p, q, r, s, t) = 0 (k=1, 2, 3, 4, 5).$$

We have tested our program on the system of equations (3.2) for the polynomial

(3.3)
$$P(x) = (x^2+1) \cdot (x^2+x+1) \cdot (x+\alpha) \cdot (x+\beta) \cdot (x+\gamma).$$

For (3.3),

(3.4)
$$\begin{cases} a_1 = 1 + A, \ a_2 = 2 + A + B, \ a_3 = 1 + 2A + B + C, \\ a_4 = 1 + A + 2B + C, \ a_5 = A + B + 2C, \ a_6 = B + C, \ a_7 = C, \end{cases}$$

where

YOSHITANE SHINOHARA

(3.5)
$$\begin{cases} A = \alpha + \beta + \gamma, \\ B = \alpha \beta + \beta \gamma + \gamma \alpha, \\ C = \alpha \beta \gamma. \end{cases}$$

For $\alpha = 0.5$, $\beta = -0.5$, $\gamma = -1$, we have tested our program. In this case, by (3.5),

$$A = -1, B = -0.25, C = 0.25,$$

therefore, by (3.4), we have

 $a_1=0, a_2=0.75, a_3=-1, a_4=-0.25,$ $a_5=-0.75, a_6=0, a_7=0.25.$

Hence, by (3.1), the equations (3.2) become

(3.6)
$$\begin{cases} f_1(p, q, r, s, t) = p^3 - 2pq + r + 0.75p + 1 = 0, \\ f_2(p, q, r, s, t) = p^2q - q^2 - pr + s + 0.75q + 0.25 = 0, \\ f_3(p, q, r, s, t) = p^2r - ps - qr + t + 0.75r + 0.75 = 0, \\ f_4(p, q, r, s, t) = p^2s - pt - qs + 0.75s = 0, \\ f_5(p, q, r, s, t) = p^2t - qt + 0.75t - 0.25 = 0. \end{cases}$$

Now Q(x) is a factor of P(x) given by (3.3). Therefore, if p, q, r, s and t are all real, then Q(x) must be one of the following polynomials:

$$(x^{2}+1)\cdot(x+0.5)\cdot(x-0.5)\cdot(x-1)$$

$$=x^{5}-x^{4}+0.75x^{3}-0.75x^{2}-0.25x+0.25,$$

$$(x^{2}+x+1)\cdot(x+0.5)\cdot(x-0.5)\cdot(x-1)=x^{5}-0.25x^{3}-x^{2}+0.25,$$

$$(x^{2}+1)\cdot(x^{2}+x+1)\cdot(x+0.5)=x^{5}+1.5x^{4}+2.5x^{3}+2x^{2}+1.5x+0.5,$$

$$(x^{2}+1)\cdot(x^{2}+x+1)\cdot(x-0.5)=x^{5}+0.5x^{4}+1.5x^{3}+0.5x-0.5,$$

$$(x^{2}+1)\cdot(x^{2}+x+1)\cdot(x-1)=x^{5}+x^{3}-x^{2}-1.$$

This means that the real solutions of equation (3.6) are

Geometric Method for the Numerical Solution

$$(p, q, r, s, t) = \begin{cases} (-1, 0.75, -0.75, -0.25, 0.25), \\ (0, -0.25, -1, 0, 0.25), \\ (1.5, 2.5, 2, 1.5, 0.5), \\ (0.5, 1.5, 0, 0.5, -0.5), \\ (0, 1, -1, 0, -1). \end{cases}$$

By the use of our program, we have computed real solutions of the equations (3.6) in the region:

$$-1.5 \le p \le 2$$
, $-0.6 \le q \le 3$, $-1.5 \le r \le 2.5$,
 $-0.5 \le s \le 1.9$, $-1 \le t \le 1$.

The result obtained is as follows.

p	-0.10000	00000 0	0.53118	62061>	$< 10^{-12}$	1.50000	0000
q	0.75000	00000 -0	0.25000	00000		2.50000	0000
r	-0.75000	00000 -1	1.00000	0000		2.00000	0000
s	-0.25000	00000 -0	0.80144	22459>	< 10 ⁻¹⁵	1.50000	0000
t	0.25000	00000 0	0.25000	00000		0.50000	00000
p	0.50000	00000	(0.19005	17937 imes 10	-11	
q	1.50000	0000	1	L.00000	0000		
r	-0.51261	91138×10^{-11}	1	L.00000	0000		
S	0.50000	00000	().81179	75042×10	-11	
t	-0.50000	00000	- 1	L.00000	0000		

This result shows the usefulness of our method and program.

4. Application to the Computation of Subharmonic Solutions of Duffing's Equation

In papers [3] and [5], M. Urabe has developed Galerkin's procedure for the computation of periodic solutions of nonlinear periodic differential equations, and in paper [4], he has investigated the subharmonic solutions of Duffing's equation by means of the techniques developed by himself in [3] and [5]. In his method, the Newton method is employed for the numerical solution of the determining equation, that is, the equation which should be satisfied by the Fourier coefficients of the trigonometric polynomial approximating the desired periodic solution. In order to find starting approximate solutions of the determining equation, he solves the determining equation consisting of a very small number of equations making use of graphical methods or perturbation techniques. This method of finding starting approximate solutions, however, does not seem to work well always.

In order to find starting approximate solutions, we can apply our method to the determining equation consisting of a moderate number of equations. For experimentation, we have applied our method to the determining equation for 1/3-order subharmonic solutions of Duffing's equation.

We consider Duffing's equation in the form

(4.1)
$$\frac{d^2x}{dt^2} + \frac{\sigma}{\omega} \cdot \frac{dx}{dt} + \frac{1}{\Omega} \cdot x(1 + \varepsilon x^2) = \frac{1}{\Omega} \cdot \cos t,$$

where $\Omega = \omega^2$.

A 1/3-order subharmonic solution of (4.1) is a solution of (4.1) of the form

(4.2)
$$x(t) = c_1 + \sum_{n=1}^{\infty} \left(c_{2n} \cdot \sin \frac{n}{3} t + c_{2n+1} \cdot \cos \frac{n}{3} t \right).$$

Replacing t by 3t in (4.1) and (4.2), we see that a 1/3-order subharmonic solution of (4.1) is a solution of the form

Geometric Method for the Numerical Solution

(4.3)
$$x(t) = c_1 + \sum_{n=1}^{\infty} (c_{2n} \cdot \sin nt + c_{2n+1} \cdot \cos nt)$$

of the equation

(4.4)
$$\frac{d^2x}{dt^2} + \frac{3\sigma}{\omega} \cdot \frac{dx}{dt} + \frac{9}{\Omega} \cdot x(1 + \varepsilon x^2) = \frac{9}{\Omega} \cdot \cos 3t.$$

If x(t) is a solution of (4.4), then $-x(t+\pi)$ is also a solution of (4.4). Hence we suppose that

$$-x(t+\pi)=x(t)$$

is valid for every 1/3-order subharmonic solution (this is certified for subharmonic solutions obtained in [4] by numerical computations). Then for a 1/3-order subharmonic solution, instead of (4.3), we have

(4.5)
$$x(t) = \sum_{n=1}^{\infty} [c_{2n} \cdot \sin(2n-1)t + c_{2n+1} \cdot \cos(2n-1)t].$$

In order to find starting approximate solutions, we consider a Galerkin approximation (see [4]) of the form

(4.6)
$$\bar{x}(t) = c_2 \cdot \sin t + c_3 \cdot \cos t + c_4 \cdot \sin 3t + c_5 \cdot \cos 3t.$$

By [4], we have the following determining equation for (4.6):

$$(4.7) \begin{cases} f_{1}(p, q, r, s) = \left(\frac{9}{\mathcal{Q}} - 1\right)p - \frac{3\sigma}{\omega}q + \frac{9\varepsilon}{\mathcal{Q}} \cdot (0.75p^{3} - 0.75p^{2}r + 0.75q^{2}r + 0.75pq^{2}r + 1.5pr^{2} + 1.5ps^{2} - 1.5pqs) = 0, \\ f_{2}(p, q, r, s) = \frac{3\sigma}{\omega} \cdot p + \left(\frac{9}{\mathcal{Q}} - 1\right)q + \frac{9\varepsilon}{\mathcal{Q}} \cdot (0.75q^{3} + 0.75p^{2}q - 0.75p^{2}s + 0.75q^{2}s + 1.5qr^{2} + 1.5qs^{2} + 1.5pqr) = 0, \\ f_{3}(p, q, r, s) = \left(\frac{9}{\mathcal{Q}} - 9\right)r - \frac{9\sigma}{\omega}s + \frac{9\varepsilon}{\mathcal{Q}} \cdot (-0.25p^{3} + 0.75r^{3} + 1.5p^{2}r + 1.5q^{2}r + 0.75pq^{2} + 0.75rs^{2}) = 0, \\ f_{4}(p, q, r, s) = \frac{9\sigma}{\omega} \cdot r + \left(\frac{9}{\mathcal{Q}} - 9\right)s - \frac{9}{\mathcal{Q}} + \frac{9\varepsilon}{\mathcal{Q}} \cdot (0.25q^{3} + 0.75s^{3} - 0.75p^{2}q + 1.5p^{2}s + 1.5q^{2}s + 0.75r^{2}s) = 0, \end{cases}$$

where

$$p=c_2, q=c_3, r=c_4, s=c_5.$$

For

$$(4.8) \qquad \qquad \sigma = 2^{-5}, \quad \varepsilon = 1, \quad \omega = 4,$$

by the use of our program we have computed solutions of (4.7) in the region:

$$|p| \leq 3, |q| \leq 3, |r| \leq 0.3, |s| \leq 0.3,$$

and we have obtained the following solutions.

	Р		q		r		\$	
1:	0.72425	89710	-0.73255	43253	0.01522	20003	-0.06028	79583
2:	0.27228	11702	0.99350	38304	0.01522	20003	-0.06028	79583
3:	-0.99654	01409	-0.26094	95049	0.01522	20003	-0.06028	79583
4:	0.66808	50948	0.71625	13275	0.01424	33206	-0.08455	08252
5:	-0.95433	43925	0.22045	30000	0.01424	33206	-0.08455	08252
6:	0.28624	92976	-0.93670	43277	0.01424	33206	-0.08455	08252
7:	0.00000	00000	0.00000	00000	0.00055	57640	-0.06667	68579
				Table 1				

Now from the form of (4.4), we can easily see that if x(t) is a solution of (4.4), then $x[t+(2\pi/3)]$ and $x[t+(4\pi/3)]$ are also solutions of (4.4), and that if $\bar{x}(t)$ is a Galerkin approximation of a 2π -periodic solution of (4.4), then $\bar{x}[t+(2\pi/3)]$ and $\bar{x}[t+(4\pi/3)]$ are also Galerkin approximations of 2π -periodic solutions of (4.4) with the same order as $\bar{x}(t)$. For the solutions of (4.7) shown in Table 1, we readily see that the Galerkin approximations $\bar{x}_2(t)$ and $\bar{x}_3(t)$ corresponding to the 2nd and 3rd solutions in Table 1 are equal respectively to $\bar{x}_1[t+(2\pi/3)]$ and $\bar{x}_1[t+(4\pi/3)]$, where $\bar{x}_1(t)$ is the Galerkin approximation corresponding to the first solution in Table 1. Likewise we readily see that the Galerkin

approximations $\bar{x}_5(t)$ and $\bar{x}_6(t)$ corresponding to the 5th and 6th solutions in Table 1 are equal respectively to $\bar{x}_4[t+(2\pi/3)]$ and $\bar{x}_4[t+(4\pi/3)]$, where $\bar{x}_4(t)$ is the Galerkin approximation corresponding to the 4th solution in Table 1. The Galerkin approximation $\bar{x}_7(t)$ corresponding to the 7th solution in Table 1 will be supposed to be a Galerkin approximation of a harmonic solution of original Duffing's equation (4.1).

Starting from the solutions of (4.7) shown in Table 1, by the use of the techniques described in [4] we have computed Galerkin approximations of higher order for subharmonic solutions and harmonic solution. However, by the reason mentioned above, we have not carried out the computations starting from the 2nd, 3rd, 5th and 6th solutions in Table 1. Tables 2 and 3 show the results. In these tables, for each approximate solution, is given an error bound δ such that

$$\left[\left|\bar{x}(t)-\hat{x}(t)\right|^{2}+\left|\bar{x}(t)-\dot{x}(t)\right|^{2}\right]^{\frac{1}{2}}\leq\delta,$$

where $\cdot = d/dt$ and $\hat{x}(t)$ is an exact solution corresponding to the approximate solution $\bar{x}(t)$.

Periodic solutions of (4.4) with $\sigma = 2^{-5}$, $\varepsilon = 1$, $\omega = 4$:

1	$\bar{x}_1(t) = 0.72456$	14343	sin	t	-0.73222	00674	cos	t
	+0.01522	23982	sin	3 <i>t</i>	-0.06033	11349	cos	3t
	+0.00112	92234	sin	5 <i>t</i>	+0.00021	38735	cos	5 <i>t</i>
	+0.00003	31833	sin	7 <i>t</i>	-0.00000	00135	cos	7t
	+0.00000	05831	sin	9 <i>t</i>	+0.00000	06017	cos	9 <i>t</i>
	+0.00000	00138	sin	11t	+0.00000	00272	cos	11 <i>t</i>
	-0.00000	00001	sin	13t	+0.00000	00007	cos	13t

 $\delta = 6.6 \times 10^{-8}$, Stability: stable.

2	$\bar{x}_4(t) = 0.66825$	85789	sin	t	+0.71578	29204	cos	t
	+0.01424	01915	sin	3t	-0.08465	09661	cos	3t
	-0.00154	34867	sin	5 <i>t</i>	-0.00028	97473	cos	5 <i>t</i>
	+0.00002	33942	sin	7 <i>t</i>	+0.00007	35294	cos	7t

+0.00000 22613 sin 9t -0.00000 16730 cos 9t -0.00000 00815 sin 11t -0.00000 00660 cos 11t -0.00000 00013 sin 13t +0.00000 00037 cos 13t +0.00000 00001 sin 15t.

 $\delta = 1.3 \times 10^{-7}$, Stability: unstable.

Table 2

Periodic solution to (4.1) with $\sigma = 2^{-5}$, $\varepsilon = 1$, $\omega = 4$:

 $\bar{x}_7(t) = 0.00055\ 57640\ \sin t \qquad -0.06667\ 68581\ \cos t$

 $+0.00000 00143 \sin 3t -0.00000 05181 \cos 3t.$

 $\delta = 1.5 \times 10^{-9}$, Stability: stable.

Table 3

References

- [1] Shinohara, Y., A geometric method of numerical solution of nonlinear equations and error estimate by Urabe's proposition, *Publ. RIMS. Kyoto Univ.* 5 (1969), 1-9.
- [2] _____, The geometric method and a generalized Bairstow method for numerical solution of polynomial equation, J. Math. Tokushima Univ. 4 (1970), 19-32.
- Urabe, M., Galerkin's procedure for nonlinear periodic systems, Arch. Rational Mech. Anal. 20 (1965), 120-152.
- [4] _____, Numerical investigation of subharmonic solutions to Duffing's equation, *Publ. RIMS. Kyoto Univ.* 5 (1969), 79-112.
- [5] Urabe, M. and A. Reiter, Numerical computation of nonlinear forced oscillations by Galerkin's procedure, J. Math Appl. 14 (1966), 107-140.
- [6] Yamauchi, J., S. Moriguchi and S. Hitotumatu, Denshikeisanki no tame no suchikeisanho 1, Baifukan, 1965 (Japanese).

C	MAIN PRUGRAM FOR NUMERICAL SOLUTION OF NONLINEAR EQUATIONS
c c	THE NUMBER OF SOLUTIONS IS STORED IN NUM,
0000	THE TWO FURMATS(NO, 4000,5000) ARE NECESSARY. DIMENSION X(MAX),F(MAX),FX(MAX,MAX),XM(MAX),XL(MAX),XH(MAX), DXM(MAX),DXL(MAX),ANSX(MAX,20,MAX) COMMON EPSIL,F,FX,XM,XL,XH,DXM,DXL,ANSX
U	DIMENSION X(5),F(5),FX(5,5),XM(5),XL(5),XH(5),DXM(5),DXL(5),
*	COMMON EPSIL,F,FX,XM,XL,XH,DXM,DXL,ANSX
	READ(5,1000) (XM(I),XL(I),XH(I),I=1,M) READ(5,1000) (DXM(I),DXL(I),I=1,M) CALL GLOBAL(M,NUM)
10	IF(NUM) 10,11,12 WRITE(6,5000)
11	GO TO 15 WRITE(6,4000)
12	GU 10 15 WRITE(6,2000) NUM DO 14 K=1,NUM
13	DU 13 I=1,M X(I)=ANSX(I,K,M)
14	CALL KANSU(X,F,M) WRIIE(6,3000) M,(X(LM),LM=1,M),(F(LM),LM=1,M)
1000 2000	FORMAT(15F5.2) FORMAT(1H1,25H*****NUMBER OF SOLUTIONS=,I3)
3000	FORMAT(1H ,3X,10HDIMENSION=,13,(/5X,5E20,10))
+000 5000 15	FORMAT(1H ,18H****MAKE MEMORY GREATER) CALL EXIT
C	SUBROUTINE GLOBAL(M,NUM)
C	GEOMETRIC METHOD FOR FIVE VARIABLES, MAY 25,1971, SHINDHARA THIS SUBPROGRAM COMPUTES THE ZEROS OF A SYSTEM OF EQUATIONS
C C	F(X)=0, WHERE F AND X ARE M-DIMENSIONAL VECTORS SUCH THAT F=(F1,F2,,FM) AND X=(X(1),X(2),,X(M)), IN A BOUNDED
C C	REGION K=(X(I), XL(I)≦X(I)≦XM(I), I=1,2,.,.,M),
C	INPUTING DATA ARE XL(I),XM(I) AND THE BREADTH XH(I) (I=1,2,
000	AUXILIARY DATA DXL(I),DXM(I) ARE ALSO NECESSARY, WHERE DXL(I)≦XL(I), DXM(I)≧XM(I),
C	DIMENSIUN X(MAX),F(MAX),FX(MAX,MAX),ANSX(MAX,20,MAX),
C	YF (MAX, 20), YYF (MAX, 20), KS (MAX), KKS (MAX), KSR(20)
C	KKR(2C),XM(MAX),XL(MAX),XIL(MAX),XIR(MAX),XH(MAX),
	A MAN, MANY, DIMONY MANY, LI TANÀNY, MITANAN, DANÉHANA
C	DXL(MAX),MANS(KIZAMI), WHERE 20 DENOTES A SIZE OF
C C	THE MEMORY, Common EPSIL,F,FX,XM,XL,XH,DXM,DXL,ANSX
C C C	THIS PRUGRAM IS WRITTEN FOR THE CASE MAX=5. THIS PRUGRAM WORKS FOR M SUCH THAT MAX≧M≧2.
C	M IS THE NUMBER OF DIMENSION OF THE VECTOR X.
C	THE NUMBER OF SOLUTIONS IS STORED IN NUM, ANSX IS THE SOLUTION VECTOR,
С	

SUBROUTINE GLOBAL(H,NUM)

		DIMENSIUN X(5),F(5),FX(5,5),ANSX(5,20,5),IANS(5),KRANS(20,5),
	1	GG2(2),WX(5),RUNGE(5,4),YF(5,20),YYF(5,20),KS(5),KKS(5),
	2	KSR(20),KKR(20),XM(5),XL(5),XIL(5),XIR(5),XH(5),A(5,5),RUNGX(5),
	3	LLJ(5),MJ(5),DXM(5),DXL(5),MANS(5)
		COMMON EPSIL,F,FX,XM,XL,XH,DXM,DXL,ANSX
~		
G		NUMBER OF BITS OF MANIISSA
~		
Ŭ		
	10	MJ(1)=1
С		DOMAIN
		WRIIE(6,1200) (XM(I),XL(I),XH(I),I=1,M)
		WRIIE(6,1300) (DXM(I),DXL(I),I=1,M)
		DO 999 MCUT=1,KIZAMI
		WRITE(6,1400) EPSIL,CONST
		DO 11 I=1,M
	11	MJ(I)=(XM(I)-XL(I))/XH(I)+1.0
		DELTAS=0,03125
r,		TANS(47-0
0		
		M3=MJ(3)
		M2=MJ(2)
		DO 500 LL5=1,M5
		LLJ(5)=LL5
		XIL(5)=XL(5)+FLOAT(LL5=1)*XH(5)
		XIR(5)=XIL(5)+XH(5)
		WALPHA=0,1E-04
		KS(4)=0
		RUNG(5)=X(5)
С		FOUR-DIMENSIONAL CASE
	757	DO 400 LL4=1,M4
		IF(JIĞEN*2) 756,755
	756	LLJ(4)=LL4
		XIL(4)=XL(4)+FLOAT(LL4=1)*XH(4)
		XIR(4)=XIL(4)+XH(4)
		WALPHA=0,1E+04
		KS(3)=0
		WX(4)=X(4)
		RUNGX(4)=X(4)
		IANS(2)=0
С		THREE-DIMENSIONAL CASE
	755	DO 300 LL3=1,M3
		IF(JIGEN=2) 753,753,754
	/54	1F(M402) 218,203,218
	155	LLJ(0)=LLO V1 /3)=V1 /3)+E1 0AT/1 / 3-1)=V4/3)

		KS(2)=0

с 7 7	752 751	<pre>KKS(3)=0 X(3)=X1L(3) WX(3)=X(3) RUNGX(3)=X(3) TW0=DIMENSIONAL CASE D0 200 LL2=1.M2 IF(JIGEN=2) 751,751,25 LLJ(2)=LL2 XIL(2)=XL(2)+FLOAT(LL2=1)*XH(2) XIR(2)=X1L(2)+XH(2) WALPHA=0.1E=04 KKS(2)=0 JIGEN=2 IANS(1)=1</pre>
C	12	YL=XL(1) X(2)=XIL(2) DETERMINE X(1) SATISFYING F(X(1),XIL(2),,XIL(5))=0 CALL KUTTA(X,HX,EH,2,JIGEN,1,LYESNO,YL,XM(1),0)
	13	CONTINUE
		IF(XM(2)-XIL(2)) 201,127,127
	15	CALL KANSU(X,F,JIGEN)
		GG2(1)=F(2)
		DO 16 LM=1,JIGEN
	16	ANSX(LM, JA, 1) = X(LM)
	17	IF(KS(2)) 1/02401/ JB=KS(2)
	φ.	GOSA=ALPHA*ABS(X(1))
		IF(GOSA=EPSIL) 18,18,19
	19	CONTINUE
		DO 23 LM=1,JB
	20	IF(ABS(YF(1)LM)=X(1))=GUSA) 20,20,23 IF(KSR(LM)=2) 21,22.12
	21	KKRR=1
	22	GO TO 25 KKPR-2
	24	GO TO 25
	23	CONTINUE
	24	KKKK=0
	25	CONTINUE
C	2.5	TRACE A BRANCH OF THE CURVE
		DO 100 KR=1,2 TEXKKPR=2) 27.26.26
	26	KKRK=1
		GO TO 100,
	27	JH=IANS(1) DO 28 LM=1.JIGEN
	28	X(LM)=ANSX(LM,JB,1)
		CALL KANSU(X)FJJIGEN) GG2(1)=F(JIGEN)
	29	H=DELTAS
	70	
C	30	TEST FOR SINGULAR POINT
		IF(JIGEN-2) 37,37,31
	31	IA=JIGEN=1 Do 34 IH=1.TA
		DO 33 IC=1,IA
	30	DQ 32 ID=1,IB
	02	DO 33 IH=IB'IY
	33	A(IC,IE)=FX(IC,IE+1)

```
CALL MATINV(A, IA, WX, 0, DETERM)
 34
      F(IB)=DETERM
      DO 35 IB=1,IA
DO 35 IC=1,IA
35
      A(IB,IC)=FX(IB,IC)
      CALL MATINV(A, IA, WX, D, DETERM)
      F(JIGEN)=DETERM
      SUM=0,0
      DO 36 IB=1, JIGEN
      SUM=SUM+F(IB)##2
36
      SING=SGRT(SUM)
      GO TO 38
      SING=SQRT(FX(1,1)**2+FX(1,2)**2)
37
      IF(SING=CONST) 39,40,40
38
      CALL KANSU(X,F,M)
WRITE(6,2000) SING,(X(IA),F(IA),IA=1,M)
39
      GO TO 123
      CALL KUTTA(X,WX,EH,KR,JIGEN,2,LYESNO,YL,XM(2),1)
40
      JIG=JIGEN
      DU 41 IA=1,JIG
41
      RUNGE(IA,1)=WX(IA)
      DU 42 IH=1,JIG
      RUNGX(IB)=X(IB)+RUNGE(IB,1)/2,0
42
      CALL KUTTA(RUNGX, WX, EH, KR, JIG, 2, LYESNO, YL, XM(2), 1)
      DO 43 IC=1, JIG
      RUNGE(IC,2)=WX(IC)
43
      DO 44 ID=1, JIG
      RUNGX(ID)=X(ID)+RUNGE(ID,2)/2.0
44
      CALL KUTTA(RUNGX,WX,EH,KR,JIG,2,LYESNO,YL,XM(2),1)
DO 45 IE=1,JIG
      RUNGE(IL,3)=WX(IE)
45
     DU 46 IA=1, JIG
46
     RUNGX(IA)=X(IA)+RUNGE(IA,3)
     CALL KUTTA(RUNGX,WX,EH,KR,JIG,2,LYESNO,YL,XM(2),1)
DO 47 IH=1,JIG
47
     RUNGE(IU,4)=WX(IB)
     DO 48 IC=1,JIG
     WX(IC)=X(IC)+(RUNGE(IC,1)+2.0*(RUNGE(IC,2)*RUNGE(IC,3))*
48
             RUNGE(IC,4))/6.0
     STEP-SIZE CONTROL
     EM=XH(JIG)+0.25
     IF(ABS(WX(JIG)-X(JIG))=EM) 50,49,49
49
     EH=EH+0,5
     GO TO 30
     CALL KANSU(X,F,JIGEN)
50
     JIH=JIGEN-1
51
     EM=0,1E-05
     DO 52 IC=1, JIH
     EM=AMAX1(EM,ABS(F(IC)))
52
     IF(EM+0,1E-03 ) 54,53,53
53
     CALL NEWTON(JIH, X, KONV, CONST)
     IF(KONV) 123,123,30
     CALL KANSU(WX,F,JIGEN)
54
     DO 55 IC=1,JIH
     EN=AMAX1(0.1E=07 JABS(F(IC)))
IF(EN=0.1E=02 ) 56,56,49
55
56
     GG2(2)=F(JIG)
     IF(GG2(1)*GG2(2)) 96,96,57
     DEX=WX(JIG) -XIR(JIG)
57
     RIGHT BUUNDARY TEST
     IF(DEX) 66,66,58
     GOSA=EM*ABS(WX(JIG))
58
     IF(GOSA-EPSIL ) 59,59,60
59
     GOSA=EPSIL
```

С

С

		IF(DEX=GOSA) 64,64,61
	61	IF(JIG=2) 63,63,62
	62	CALL NEWTON(JIH,X,KONV,CONST)
		IF(KONV) 123,123,63
	63	IF(EH=EPSIL) 64,64,98
~	64	JIH=JIGEN
C		
		WALPHATAMAX1(WALPHA)CM)
		NP2KAC1141
		DD-NN3(J17)
	65	YYE(TR.IR)=WY(TR)
		KKR(JH)=KR
		GO TO 123
	66	JIH=JIGEN
С		CHECK WHETHER THE INTEGRAL CURVE RETURNS THE START LINE
		SXIL=(WX(JIH)-XIL(JIH))*(X(JIH)-XIL(JIH))
		IF(SXIL) 70,67,92
	67	IF(JIH=2) 69,69,68
	68]F(WX(J1H)=X1L(J1H)) 92,80,92
	69	TF(WX(2)+XTI(2)) 92,74,92
	70	GOSA=EM*AUS(X(JIH))
		IF(GOSA=EPSIL) 71,71,72
	71	GOSA=EPSIL
	72	CONTINUE
		IF(ABS(WX(JIH)-X(JIH))=GOSA) 74,74,73
	73	IF(EH=EPS1L) 74,74,98
	74	IF(KS(JIH)) 86,86,75
	75	JB=KS(JIH)
		DO 79 LM=1,JB
		TE/COSA-EPSTIN 76.74.77
	76	GOSA=EPSTI
	77	CONTINUE
	••	IF(ABS(YF(IC,LM)-WX(IC))-GOSA) 78,78,79
	78	CONTINUE
		GO 10 89
	79	CONTINUE
		G0 +0 86
	80	IF (IANS(1)) 123,123,81
	81	
		DO 84 TC=1. ITH
		GOSA=AI PHA*ARS(WX(TC))
		TE(GOSA=EPSTL) 82.82.83
	82	GOSA=EPSIL
	83	CONTINUE
		IF(ABS(ANSX(IC,LM,1)=WX(IC))=GOSA) 85,85,84
	84	CONTINUE
		GO 10 123
	85	KRANS(LM)1)=3
	0 <i>4</i>	GU JU 125
	00	K6/ 126/-K6/ 126/74 979-978EM
		JB=KS(J(S)
		TF(JB=MEMORY) 866.866.112
,	366	DO 87 IH=1,M
	87	YF(IB,JH)=WX(IB)
		KSR(JB)=KR
		IF(JIGEN-2) 123,123,88
	88	H=DELTAS
		EH=H
		GO TO 92
	89	1F(KSR(LM)) Y0/91/90

	90	KRANS(LM,1)=3
		GO 10 123
	91	KRANS(LM,1)=KR
		KSR(LM)=KR
		GO (O 123
	92	GG2(1) = GG2(2)
		JIS=J1GEN
		DO 93 IB=1,JIS
	93	X(I8)=WX(IB)
С	•	TEST FOR BOUNDARY
		DO 94 IC=1,JIS
		IF(X(IC)=DXM(IC)) 94,94,123
	94	CONTINUE
		D0 95 IC=1.JIS
	05	CONTINUE CONTINUE
	,,	IF(X(JIS)-XIL(JIS)+XH(JIS)) 123,123,30
	96	EN=ABS(GG2(1))
		IF(EN-EM) 99,97,97
	97	IF(EH=EPSIL) 99,99,98
	98	EH=EH*0,125
	~ ~	
~	99	JINEJIGEN Neuton Method
		CALL NEWTON (JIGEN & KONV.CONST)
		IF(KONV) 117,101,101
	101	CALL KANSU(X,F,M)
		IF(JIK-M) 103,102,102
	102	WRI1E(6,3000) JIGEN,(X(LM),LM=1,M),(F(LM),LM=1,M)
	103	EN=(X(JIK)=XIL(JIK)+XH(JIK))*(X(JIK)-XIR(JIK))
		IF(EN) 105,105,104
	104	WRITE(0,4000)
	105	JB=TANS(JIK)
	20-	IF(JB) 106,111,106
	106	DO 110 IC=1, JB
		DO 109 LM=1,M
		GOSA=WALPHA*ABS(X(LM))
	4 . 7	IF(GOSA=EPSIL) 10//10//108
	107	CONTINUE
	100	IF(ABS(ANSX(LM,IC,JIK)=X(LM))=GOSA) 109,109,110
	109	CONTINUE
		GO TO 121
	110	CONTINUE
	111	IANS(JIK)=IANS(JIK)+1
		JB=1AN5(J1K) TEL D=NGNODY) 443 443 440
	442	UPTIE/6-5000) 18
	112	NUM5=1
		GO TO 9000
	113	DO 114 LM=1,M
	114	ANSX(LM,JB,JIK)=X(LM)
		KRANS(JB,JIK)=0
	115	UU 110 LN=1,M
	110	NALEN/-ALEN/ CO 10 121
	117	WRI(E(6,51nn)
	118	CALL KANSU(WX,F,M)
		WRIIE(6,3000) JIGEN, (WX(LM), LM=1, M), (F(LM), LM=1, M)
		WRI1E(6,5200)
		IF(ABS(F(JIGEN))-0,1E-03) 119,119,123

119	IANS(JIK)=IANS(JIK)+1
	JB=IANS(JIK)
4400	IF(JB=MEMURY) 1199,1199,112
1144	NRANS(J0;J1;)=()
120	ANSX(IM,JH,JTK)=WX(IM)
121	GG2(1)=GG2(2)
	DO 122 LN=1.M
122	X(LN)=WX(LN)
	GO 10 29
123	IF(KKRR) 124,100,124
100	TELITCEN-2) ADE ADE DOA
125	TE(XM(1)=YL) 127,127,126
126	CONTINUÉ
	GO TO 12
127	JIK=JIGEN
	IF(KKS(JIK)) 128,131,128
128	JB=KKS(JIK)
	DO 130 LMN=1,JB
400	DO 129 IC=19M
129	TF(IC)LMN)=TTF(IC)LMN)
100	KS(JIK)=KKS(JIK)
	ALPHA=WALPHA
	IF(JIK-M) 200,132,132
131	KS(JIK)=0
	ALPHA=0.1E-04
4 7 0	IF(JIK=M) 200,132,132
132	WRITE(0,0000) LLJ(JIK),JIK
200	TE(M-2) 501-501-201
201	JIK=JIGEN
202	IF(JIK=2) 215,215,204
203	JIM=JIL=1
	IF(1ANS(JIM)) 205,222,205
204	IANS(1) = IANS(1) = 1
OOF	IF (IANS(1))216,216,208
205	TANS(I)=TANS(JIM)
	JREIANS(1)
	KS(JIGEN)=IANS(1)
	DO 207 IA=1, JB
	DO 206 IB=1,M
	YF(IB,IA)=ANSX(IB,IA,JIM)
206	ANSX(IB,IA,1)=ANSX(IB,IA,JIM)
207	KPANSITA -1)=KPANSITA - ITM%
208	JH=1ANS(1)
200	DU 209 IA=1,M
209	X(IA)=ANSX(IA,JB,1)
-	IF(KRANS(JB,1)-2) 210 ,213 ,204
210	IF(KRANS(JB,1)-1) 211,212,212
211	KKRR=0
	GO TO 214
212	KKRR=1
	GO TO 214
213	KKRR=2
214	CONTINUE
	GU 10 752
215	
044	JIL=5 TEXEKEN TINN 048-047-048
210	1F(NN3(J1L)) 218/21//218 A(Put-0 16-04
611	86708-0.55707

217 ALPHA=0,10=0 KS(JIL)=0

218	GU TO 203 JIM=J1L-1 IANS(JIM)=KKS(JIL) JU=IANS(JIM) DU 220 LA=1.JR
	DO 219 18=1,M
219	ANSX(1B, IA, JIM) = YYF(IB, IA)
220	KRANS(IA, JIM)=KKR(IA)
221	ALPHA=WALPHA
222	1F(JIGEN-M) 224,220,220 WRITE(6,6000) IGEN) ICEN
224	TF(JIGEN-4) 225.302.403
225	JIGEN=2
300	CONTINUE
	IF(M-3) 501,501,226
226	JIGEN=4
301	ALPHA=0 1E=04
UU1	KS(4)=0
	M402=0
	GQ TO 755
302	JIGEN=2
400	CONTINUE
227	IF(M#4) 201,201,22/
221	JTL=5
	IF(KKS(5)) 401,402,401
401	M402=1
_	GU 10 757
402	ALPHA=0,1E=03
	M402=0 KS(5)=0
	GO TO 757
403	JIGEN=2
500	CONTINUE
501	WRI1E(6,7000) MCUT
	JB=IANS(M)
502	1F(JB) 502,505,502 D0 504 KT1, JB
202	DU 503 L=1.M
503	X(I) = ANSX(I,K,M)
	CALL KANSU(X,F,M)
504	WRI1E(6,3000) M,(X(LM),LM=1,M),(F(LM),LM=1,M)
	GO TO 506
202 506	MANS(MCUT)=TANS(M)
200	TE(MCUT-1) 507.508.507
507	I=MCUT+1
-	IF(MANS(MCUT)=MANS(I)) 508,510,508
508	DO 509 I=1,M
509	XH(1)=XH(1)*0,5
999	
	GU TO 9000
510	WRI(6,8000)
•-	NUM=IANS(M)
1200	FORMAT(1H1,3X,12HDATA(REGION),(/3F20,10))
1300	FORMAT(1H0,3X,14HDATA(BOUNDARY),(/2F20,10))
1400	FURMAILINU,//,JX;OHEMBIL=;EZU,10;JX;OHUUNDI=;EZU,10; FORMAILIH _2012-25HTHERE IS & SINGU AR POINT /2012-5HSING=+E20.40
ເ⊳ບບບ ເ∳	//20x,1HX,(/15X,2220.10))
3000	FURMAT(1H ,3X,6HJIGEN=,I3,(/5X,5E20,10))
4000	FORMAT(1H , 30HABOVE IS OUT OF DOMAIN SECTION)
5000	FORMAT(1H ,5X,15,3X,10HNO EFFECTS)

•

5100 5200 6000 7000 7100 8000 9000	FORMAT(1H ,20X,17HNON CONVERGENCE) FORMAT(1H ,23HABOVE IS STARTING POINT) FORMAT(1H ,20X,16HABOVE IS SECTION,14,1H(,14,1H)) FORMAT(1H0,7,5X25H*****ANSWER FOR KIZAMI=,I3) FORMAT(1H,18H*****NOT OBTAINED) FORMAT(1H,18H*****NOT OBTAINED) FORMAT(1H0,20X,15HABOVE IS ANSWER) RETURN END
с с с	SUBPROGRAM OF ONE-DIMENSION CASE AND RUNGE-KUTTA METHOD AS JCOUNTED, THIS SUBPROGRAM COMPUTES A ROOT OF THE SINGLE EQUATION $F(x)=0$ on the interval (YL,YM).
C C C	AS JCOUNT=1, THIS SUBPROGRAM COMPUTES THE VALUE OF FUNCTION WHICH IS USED IN THE RUNGE-KUTTA METHOD.
с с	DIMENSION X(MAX),F(MAX),FX(MAX,MAX),A(MAX,MAX),WX(MAX),G(2) COMMON EPSIL,F,FX
	SUBROUTINE KUTTA(X,WX,EH,KR,JIGEN,J,LYESNO,YL,YM,JCOUNT) DIMENSIUN X(5),F(5),FX(5,5),A(5,5),WX(5),G(2) Common EPSIL,F,FX IF(JCOUNT-1 100,200,200
100	EPS=0,1E=04 UO 40 IU=1,3 DELIAG=0.03125 X(J)=YL CALL KANSU(X,F,1)
1	G(1) = F(1) DU 30 IC=1,8 X(J) = X(J) + DELTAG CALL KANSU(X,F,1)
2	G(2)=F(1) IF(G(1)*G(2)) 3,3,2 G(1)=G(2)
3	IF(YM-X(J)) 6,1,1 IF(ABS(G(1))-EPS) 5,4,4
23	GOSA=ASS(ACJ)#EFSIL IF(GOSA=EPSIL) 23,23,24 GOSA=EPSIL
24 25	IF(ABS(UELTAG)-GOSA) 5,5,25 X(J)=X(J)-DELTAG DELIAG=UELTAG*0,125 IF(ABS(UELTAG)-GOSA) 5,30,30
30	CONTINUE EPS=EPS*10.0
40	CONTINUE GO 10 6 L MERGEA
6	G0 10 7 LYESNO=-1
7 200	RETURN IA=JIGEN+1 Call BIBUN(X,FX,IA)
	DO 13 IB=1,IA DO 12 IC=1,IA DO 10 IU=1,IB
10	A(IC,ID)=FX(IC,ID) DO 11 IE=IB,IA A(IC,IE)=FX(IC,IE+1)
12	CONINUE IF(IA-1) 20,20,21
20	F(1)=FX(1,2) F(2)=FX(1,1) 60 10 22
21 13	CALL MAIINV(A,IA,WX,O,DÉTERM) F(IB)=DETERM DU 15 IB=1,IA

DO 14 IC=1,IA A(IH, IC)=FX(IB, IC) 14 15 CONTINUE CALL MATINV(A, IA, WX, D, DETERM) F(JIGEN)=DETERM SUM=0.0 22 DO 16 IB=1, JIGEN SUM=SUM+F(IB)++2 16 SUM=SQRI(SUM) IF(KR-2) 18,17,17 17 SUM=-SUM DU 19 IL=1, JIGEN 18 19 WX(1E)=F(IE)*EH/SUM*(-1.0)**IE RETURN END С NEWION METHOD SUBROUTINE NEWTON(JIGEN, X, KONV, CONST) C C DIMENSIUN X(MAX),F(MAX),FX(MAX,MAX) С COMMON EPSIL, F, FX С DIMENSION X(5),F(5),FX(5,5) COMMON EPSIL, F. FX EPS=CUNST DO 20 KCOUNT=1,2 DO 15 ITERA=1,20 CALL KANSU(X,F,JIGEN) CALL BIBUN(X,FX,JIGEN) DO 10 I=1, JIGEN F(I)=-F(I) 10 CALL MATINV(FX, JIGEN, F, 1, DETERM) DO 11 J=1, JIGEN GOSA=EPS*ABS(X(J)) IF(GOSA-EPSIL) 16,17,17 GOSA=EPSIL 16 17 CONTINUE IF(AUS(F(J))-GOSA) 11,11,12 CONTINUE 11 GU 10 14 12 DO 13 J=1,JIGEN 13 X(J)=X(J)+F(J)15 CONTINUE EPS=EPS+10.0 20 CONTINUE KUNV=-1 RETURN 14 KONV=1 RETURN END C MATRIX COMPUTATION C MATINV(A,N,B,M,DETERM) C GAUSS-JURDAN METHOD. Ç AS M=0. THE DETERMINANT OF MATRIX A OF ORDER NOIS PLACED IN C DETERM AND NO SIMULTANEOUS SOLUTIONS ARE CALLED FOR. AS M=1, THE VECTOR B CONTAINS THE CONSTANT VECTOR WHEN MATINV IS C CALLED , AND THIS IS REPLACED WITH SOLUTION VECTOR . C C DIMENSION IPIVOT(MAX), A(MAX, MAX), B(MAX), INDEX(MAX, 2), PIVOT(MAX) C C COMMON EPSIL C

SUBROUTINE MATINV(A,N,B,M,DETERM)

		DIMENSION IPIVOT(5),A(5,5),B(5),INDEX(5 ,2),PIVOT(5)
		COMMON EPSIL
C		INITIALIZATION
		DC 20 J=1 N
	20	TPTVOT(J)=0
	6 U	DO = 37 I = 1.N
С		SEARCH FOR PIVOT ELEMENT
		AMAX=0,0
		DO 25 J=1,N
		IF(IPIVOT(J)-1) 21,25,21
	21	DO 24 K=1,N
	~~	$\frac{1}{1} \left(\frac{1}{1} \frac{1}{1} \right) \frac{2}{2} \frac{2}{2} \frac{2}{3} \frac{2}{3} \frac{2}{3} \frac{3}{3} \frac{3}{3$
	22	TPOW= 1
	20	TCOLUMEK
		AMAX=A(J,K)
	24	CONTINUE
	25	CONTINUE
		IF(ABS(AMAX)-EPSIL) 38,38,255
~	255	IPIVOT(ICOLUM)=IPIVOT(ICOLUM)+1
C		INTERCHANGE ROWS TO PUT PIVOT ELEMENT ON DIAGONAL
	26	DETERMINETERM
	20	DO 27 L=1.N
		SWAP=A(IROW,L)
		A(IROW,L)=A(ICOLUM,L)
	27	A(ICOLUM,L)=SWAP
		IF(M) 28,29,28
	28	SWAP=B(IROW)
		B(IKOM)=B(ICOFÓW) B(IKOM)=B(ICOFÓW)
	29	TNDEX(I.1)=TROW
	2.	INDEX(I,2)=ICOLUM
		PIVOT(I)=A(ICOLUM,ICOLUM)
		DETERM=DETERM*PIVCT(I)
¢		DIVIDE PIVOT ROW BY PIVOT ELEMENT
	70	
	30	$A(IGULUM_{P}L) = A(IGULUM_{P}L)/PIVUI(1)$
	31	H(TCOLUM)=B(TCOLUM)/PIVOT(T)
C	0.7	REDUCE NON PIVOT ROWS
-	32	DO 36 L1=1,N
		IF(L1-ICOLUM) 33,36,33
	33	T=A(L1,ICOLUM)
	~ 4	DO = 34 L=1, N
	04	A(LI)=A(LI)=A(LUULUM)L)* TE/ M) 35,36,35
	35	1F1 M / 02900902 B(14)=B(14)=B(TCOLUM)#T
	36	CONTINUE
	37	CONTINUE
		GO TO 41
	.38	IF(M) 40,39,40
	39	DETERM=0.0
		GO TO 41
	40	WRITE(6,1000)
:	1000	FORMAT(1H ,15H SINGULAR CASE)
	41	RETURA
		END Duordoorn of otven gouattons
С		SARLKARKUL ON CTACH CRAWITONS

```
SUBROUTINE KANSU(X,F,KOSU)
      DIMENSION X(5),F(5)
      P=X(1)
      Q=X(2)
      R=X(3)
      S=X(4)
      T=X(5)
      F(1)=P**3=2.0*P*Q+0.75*P+R+1.0
      IF(KOSU-2) 20,12,12
      F(2)=Q*P**2-Q**2+C,75*Q-P*R+S+0.25
12
      IF(KOSU-3) 20,13,13
F(3)=R*P**2-0*R+0.75*R-P*S+T+0.75
13
      IF(KOSU=4) 20,14,14
F(4)=S*P**2=Q*S+0.75*S=P*T
14
      IF(KOSU=5) 20,15,15
F(5)=T*P**2-Q*T+0,75*T=0,25
15
20
      RETURN
      END
      SUBROUTINE OF DERIVATIVES
      SUBROUTINE BIBUN(X, FX, KOSU)
      DIMENSION X(5), FX(5,5)
      P=X(1)
      Q=X(2)
      R=X(3)
      S=X(4)
      T=X(5)
      FX(1,1)=3.0*P**2-2,0*Q+0.75
      FX(1,2)=-2,0*P
      FX(1,5)=1.0
      FX(1,4)=0.0
      FX(1,5)=0,0
IF(KOSU=2) 20,12,12
FX(2,1)=2.0*P*Q-R
12
      FX(2,2)=P**2-2,0*2+0,75
      FX(2,3)=-P
      FX(2,4)=1.0
      FX(2,5)=0.0
      IF(KOSU-3) 20,13,13
13
      FX(3,1)=2.0*P*R-S
      FX(3,2)=-R
      FX(3,5)=P**2-Q+0,75
      FX(3,4)=-P
      FX(3,5)=1.0
      IF(KOSU=4) 20,14,14
      FX(4,1)=2.0*P*S-T
14
      FX(4,2)=-S
      FX(4,3)=0.0
      FX(4,4)=P**2-Q+0.75
      FX(4,5)=-P
      IF(KOSU-5) 20,15,15
15
     FX(5,1)=2.0*P*T
      FX(5,2)=-T
      FX(5,3)=0.0
      FX(5,4)=0.0
     FX(5,5)=P**2=Q+0,75
20
     RETURN
     END
```

С