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Axiomatization of Models for Intermediate

Logics Constructed with
Boolean Models by Piling Up

By

Tsutomu Hosor* and Hiroakira OnNo

In [2] has been given a constructive method for the axiomatization
of finite intermediate models. But the application of which, though con-
structive by nature, to even rather small finite models is already beyond
man or computer’s capacity. Besides, even if applied, obtained axioms
are usually too complicated to be dealt with. So it is often the case,
when we study the lattice structure of the intermediate logics, that we
feel feeble with the lack of knowledge of axiomatizations of models and
that it is wanted to have at hand a simple and handy axiomatization for
such an often discussed model as S, 1 S?%.

For the case of infinite models, Jankov [5] has given an example of
models which are not finitely axiomatizable. But we should try, we
think, to contrive a way of axiomatization for infinite models, as far as
axiomatizable, for the facility of the study of logics.

Here we give an axiomatization for models, possibly infinite, of the
form 8711 8721 ... 1 S%¢, that is, models constructed with Boolean models
by pile operation (piling). We don’t assert that this axiomatization is
important by itself. But, as mentioned above, these models are often
used when discussing intermediate logics and their axiomatization has been
hoped for.

On the other hand, for the study of the intermediate logics, we in-
troduced three operations for logics, MNN, M\UN and M1 N. The

Received September 7, 1971.
* Department of Mathematics, Tsuda College, Tokyo 187, Japan.



2 T. Hosor anp H. Ono

former two are defined for logics. Further, if M and N have been
axiomatized, the axiomatic systems for MNN and M\UN are easily
obtained. The last operation piling M1 N, however, is defined on the
basis of model representations of M and N, giving different logics for
different representations. It provides a difficult open problem to seize the
pile operation by the axiomatic method. Our purpose of this paper is to
attack this problem. And here we give a first clue for this problem by
partly axiomatizing those models mentioned above.

We suppose familiarity with [ 3], and notations and results in it will

be often used without special notices.

§1. Preliminaries

First, we prepare some definitions and lemmas, most of which are
borrowed from [3]. Except when mentioned otherwise, we use lower
(upper) case Latin letters for propositional variables (for well-formed for-
mulas). Bold upper case letters are preserved for logics. Lower case
Greek letters are for values of models. As models for intermediate logics,
we only use pseudo-Boolean models, that is, relatively pseudo-complemented
lattice with the maximum and the minimum elements. As this is the
case, an ordered relation => is already defined for each model, with the
designated element as the minimum. We take 1 as the minimum (and
the sole designated) value of a model M and wy as the maximum, both,
possibly without the suffix. We use four logical connectives D (implication),
A (conjunction), \/ (disjunction) and — (negation). The same symbols
are used for the corresponding operations in models. Conjunction and
disjuction are also used in the forms A and V. We abbreviate ((aDb)
A(B>a)) as a=b. 1sisk  1sisk

By L, we mean the intuitionistic propositional logic.

The next definition provides specially named formulas.

Definition 1.1. Z(a, 5)=(aDb)V(bDa),
Xﬂ: V (aiEaJ')a

1=i<j=n+1
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{P1(ax)=('—l a1 Day) Da,
Pn+1(¢l1, Ty an+1)=((an+1 )Pn(als ) a;t)))“n+1)>an+1
(n=1).

Definition 1.2. An I (C,D, or N) formula is a formula which con-
tains no other logical commectives but implication (conjunction, disjunction,
or megation, rvespectively). An ICN formula is a formula whose logical
connectives are implication, conjunction and negation, at the most. Other

combinations are defined similarly.

Lemma 1.3. AV B and (ADc)D(BDc)Dc) are interdeducible in
L if AN B does not contain the propositional variable c.

Proof. This can be easily ascertained.

Corollary 1.4. Z(a, b) and X, are interdeducible in L with some 1
formulas.

For the definitions of MNN, M\UN, and M 1 N, we refer to [3]. It
should be noticed, that in constructing M 1 N, first we take the sets of
values of M and N to be disjoint and we identify ws and 1y. So, when
we speak of M-part (N-part) of M1 N, we mean the set of values of

M 1 N constructed from those equal or less (greater) than the former 1ly.

Lemma 1.5. If a logic is obtained by adding to L some (possibly
infinite) ICN formulas as axioms, then it has the finite model property.

This lemma is proved in [8] for the case of finite additions. But
this can be easily extended as above.

Lemma 1.6 ((6)). For any logic M, there exists a set of models
{M, |2 € 4} such that M)(x[‘\ (8,1 M,).
€4
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In the following §§, we deal with only those axioms that are inter-
deducible in L with some ICN formulas. Thus, all the logics dealt with
have the finite model property. By this fact and by 1.6, we only have to
deal with those logics expressed as hQA (81t M,) where each M, is finite.

Lemma 1.7 ((7]). If a logic is obtained by adding to L some 1
formulas as axioms and if it has a finite model, then it is separable. (For

the definition of separability, see [1].)

Lemma 1.8. Let M be S, 1811 S, and 0 be the value in M cor-
responding to the 1 of S§-part. Let o and B be values in the Si-part.
Then () the wvalue (@D B)Da)dDa is either 1 or 0, and
(i) ((@DB)Da)Da=0 if and only if =0 and [f>a.

Lemma 1.9. Let M be a model of the form S1t N and o and B be
values in M. Then Z(a, 8)=1 if and only if a=8 or a<p.

These are easily ascertained.

§2. Balloon Type

In this §, we give an axiomatization for the models of the form
S, 1 8%, which we call as of balloon type by the resemblance of the shape
of the models expressed by the Hasse diagram. The case of m=1 has
been dealt with in [4].

Definition 2.1. A4=Z(a, b))V (/1 aDa).
Corollary 2.2. For any m and n, S,1873 A.

Proof. Suppose that the values o and B are incomparable, that is,
Z(a, B)5~1. Then a=a, since « is a non-minimal value belonging
to the S%-part of the model.

Lemma 2.3. Let M be a finite model of the form S, 1 N containing
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A where N is not of the form S, 1 N'. Then there exists an integer k=2

such that N is isomorphic to S% as ordered sets.

Proof. Let W be the set of values {&| a=~1, w}. First we prove
that W=~¢. Suppose otherwise. Then, for any value @, =1 or o.
This means that N is of the form N’ 1 8;. Since M is not a linear model,
there exists a pair of incomparable values a and 8. Now, Z(«, B)1.
Since N is of the form N 1 8;, =1, yielding —W—aDa=al1.
Contradiction. Next, let be that « € W. Then, o and "« are incompara-
ble. So, Z(a, Ta)7=1. Since M> A, @D« must be 1. Hence, if
aeW, 7aDa=1. Now, let & be the minimal value of N-part of M.
Then, we can prove that if d<a<w, ¢ €W. Suppose that a & W. T«
must be w. Then ——a=1. Suppose that there exists a value 8 incom-
parable with @. Then Z(a, B)V (T —a@Da)=*~1. Contradiction. Hence,
« is comparable with any value. Therefore, there must be a pair
of incomparable values @ and 7 between ¢ and «&. Then, again,
Z(B, )V(——18DB)+1. Contradiction. Thus, W\U{0, w} is isomorphic
to some finite Boolean model as ordered sets.

Theorem 24. L+A4O>CS,N [\< SxtSHDOTS, 185
m,nlo

Proof. We prove only the first relation. By 2.2, [\ (S 1SN DL+ A4

and S, DL+ A. By 1.5, there exists a set of ﬁnlte models {M,|2€ 4}

such that L+A><[\(81TML). By 2.3, each S; 1M, is of the form
€4

S,18% for some m and n or S; for some k (1<k<w). Hence,
L+ ADS,N /\ (Sx 1 S%).

myn<

Corollary 2.5. S, 1S O L+ A+ Py,
Syt SEDC LA A+ Pyyy+ Xatomy

Corollary 2.6. S,1 St is separable.

In most of the succeeding §§, proofs go almost similarly as above.
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So, details will be often omitted.

§3. Phi Type

In this §, we give axiomatization for the models of the form
S, 18%18,, which we call as of ¢ £ype by the analogy of the shapes of

their Hasse diagrams.
Definition 3.1. B=Z(a, b))V ((—aV 1 a)AP:(c, a)).
Corollary 3.2. For any m and n, M=S, 1 811 8,2 B.

Proof. Suppose Z(a, 8)5~1. Then « and S belong to S%-part of M
and they are incomparable. In this case, Ta@=w, yielding —aV 1«
=1. Suppose y=w, then —y=1, yielding (—1rD7r)Dr=1, that is,
Py(y, ®)=1. Suppose y<w, then T17=w, yielding (T7D7)Dr=7. I
7 belongs to S%-part, then Py(r,a)=(aD7)Da)Da=1 by 1.8. If 7
belongs to S,-part, obviously P:(7, ®)={(aDr)Da)dDa=1.

Lemma 3.3. If a finite model S11 N contains B, then there exists
N’ such that N=N'1 8;.

Proof. Suppose otherwise. Then there must exist a value a incom-
parable with —a. Then, Z(a, "@)=+1 and @V 1 a =1, contradic-

tion.

Lemma 3.4. Let M be a finite model of the form Syt N1 S, con-
taining B where N is neither of the form S1 TN nor N'18,. Then
g=1 and there exists an integer k=2 such that N is isomorphic to S*

as ordered sets.

Proof. First we prove that g=1. Suppose that g—=2. Let r be
the next maximum value, that is, for any 0=~7, w, 0<y. This 7 is not

the maximum value of N-part in M, In N-part, we can take a pair of
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incomparable values « and (8, that is, Z(«, B)51. By this assignment,
Py(r,a)=a1 since (yDr)Dr=r. Contradiction. Now, let ¢ and 0
be the minimum and the maximum values of N-part of M and W be the
set {a|e<a<d}. Then, we can prove that if o« €W, there exists a
value B €W incomparable with «. Suppose otherwise. There exists a
pair of incomparable values 8 and 7 between € and . Then Z(8, 7)1
and Py(0, 8)=RB=1. Contradiction. Next, we prove that ((¢>0) Do) D«
=1 for any « € W. Suppose that ((@Dd)Da)da=~1. Let 8 be a value
incomparable with a. Since Z(a«, B)=~1, Px(r, &) must be 1 for any 7.
We take 0 as 7. Since (—1020)D0=0, P00, a)=(aD0)Da)Da=1.

Contradiction. Thus we have the lemma.
Theorem 3.5. L—I—B><Smf\me(Sl, 1841 8))
DS, 18718
Proof. Similarly as 2.4.

Corollary 3.6. S,1S8718S: O L+B+P,.s,
Sn T S’lz T Sl><L+B+Pn+2+X(2’°+n+1)-

Corollary 3.7. S,1S%1 S, is separable.

§4. The Simplest Type

In this §, we treat the simplest type, that is, the models of the form
S, 18218S..

Definition 4.1. C=Z(a, b)\VVZ(c, d)V
eV A(((a=c)ANB=D)V (a=d) A(b=c)))).

Corollary 4.2. For any m and n, S,,1 821 S,>C.

Lemma 4.3. If a finite model M=S,* N contains C, where N is
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not of the form Sy, then there exist positive integers m and n such that

M=S, 1818,

Proof. Suppose that there exist two pairs of values «, B, 7, and 0
such that @ and B are incomparable and that v and ¢ are incomparable.
Then, since Z(a, f)5=1 and Z(7, )51, {a, B} ={r, 0} by the last part
of C, that is, there only exists a unique pair of values that are incom-
parable. Since TV 1 a=1 for this @, 7@ must be o, that is, N is
of the form N’ 18S;. So, we have that M is of the form S,, 1821 S, for

some m and n.
Theorem 4.4. L+COCS,N [\< (S,.18%18,)
m,nle
S, 1881 8S..

Proof. Similarly as 2.4.

Corollary 4.5. L+C+Py1 DCL+C+Xy4
SCN\(S.15115,). :

Now we list up similar results.

Definition 4.6. C,=Z(a, b))V Z(c, )V ((—aV T1a)A
(((a=c)NB=ad)V{(a=d)NB=c)))A

P,.(a;. ---, ay, a)). (n=1,2,...)

Theorem 4.7. L+C, > S,N f<\ (S»18%1S

k=n

DS, 1 8%1 S

Definition 4.8. C,=Z(a, b))V Z(c, A)V((—aeV 1a)A

((e=)N=d)V (e=d)A(b=c)))A
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Pm+2(a, A1y +ovy am+1))- (m=1, 2, )

Theorem 4.9. L+C, O>OCS.,NN(S:1S%1S,)
kE=m

n<o

O SntS8itS..

Definition 4.10. C, ,=Z(a, b)VZ(c, ))V({(TraV1a)A
((a=c)NG=ad)V{(e=DN (=)
Pm+2(a, @1y -y am+1)/\Pn+1(bla Tty bm a))

(m:l’ 2’ ey n=1’ 2, )
Theorem 4.11. L+C, ., DO S.N(Sn 1821 Sy).

Corollary 4.12. S, 1824S, DOCL+Cnn+tPuins1
><L+Cn+Pm+n+1
><L+Crln+Pm+n+l-

Corollary 4.13. S, 1818, is separable.

§5. A Mixed Type

In this §, we deal with models of the form S, 1 821 S, 1 S7, mixed

of the balloon type and the simplest type. We only give the results,
since they can be proved easily by the analogy of the preceding §§.

Definition 5.1. C¥,=CV(—1aDa)V(—1cDec).

Theorem 5.2. L+C¥,>CS.N /\< (S,182185,18D
prgsr<o

DS, 181 8,181

Definition 5.3. C¥,=C,V(—eDa)V(—icDoc).
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Theorem 5.4.  L+C%,s DTSN [ (S,18115,18D

q=n

DS, 18§18, 181
Definition 5.5. C} .=C,V(—1eDa)V(—1cDec).

Theorem 5.6. L+Ck . >OCS,N N (S,18218,18))
p=m

g,7<w

D Sx18i18, 185

Definition 5.7. C¥ ,=C,,V(—eDa)V(—cDc).

Theorem 5.8. L+C.n >SN [\ (S, 15118, 15D

qa=n
r<e

DT 8N(Sn 18118, 18D

Corollary 5.9. S,18218,18: >CLACE o1+ Priniz
><L+Cin+1+Pm+n+2

><L+ C;‘;,m+Pm+n+2-

Corollary 5.10. S, 1S%1S,1S8¢* DODCL+CF i1+ Puins2

+X(2"+m+n+1)-
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