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Introduction

This paper gives a full account of the theory which was outlined in

the author's previous paper Hi2].

It is usual to solve the so-called D-Neumann problem in sufficiently

small balls when one wants to prove the exactness in sheaf level, of the

Spencer sequence for a differential equation Du = 0 with unknown u

(Sweeney []16]). In this direction an essential development has been

made recently for some reasonable class of elliptic systems (MacKichan

CIO], Sweeney H17]). However in the non-elliptic case very little was

known yet concerning the Neumann problem, and there are many impor-

tant differential equations which are not elliptic; for example, the tangen-

tial Cauchy-Riemann equation associated with a real submanifold in a

complex manifold, is certainly not elliptic. In the author's knowledge, it

seems no one has succeeded in solving the Neumann problem (in suffici-

ently small balls) for such an equation. Is there any other approach to

prove the exactness in this case? Fortunately the tangential Cauchy-

Riemann equation has some good nature because of the intimate relation

to the complex analysis in several variables, so that many techniques in

the complex analysis should be applied to the study of such an equation.

With this fact in mind, we attempt here to present a new method

for proving exactness or partial exactness of a complex of first order dif-

ferential operators between vector bundles, provided that this complex

admits sufficiently many functions which, when regarded as scalar multi-

plication operators, commute with the differentiation of the complex. (Such
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a function is called analytic with respect to the complex.) This is the

localization principle which is based on the idea of the Oka map, and we

mainly concern ourselves with this in §1. The word "localization" comes

from the procedure to apply this principle (§1.2-1.3): We first fix a

point of the manifold on which the complex is defined, and cut out a

small neighbourhood of this point and situate it into some good free space,

extending the complex outside this neighbourhood so that suitable partial

homotopies can be easily constructed for the resulting complex on this

free space. Next we localize these homotopies to a smaller neighbour-

hood like an analytic polyhedron, in which the partial exactness of the

complex is thus proved. If the analytic functions are so many that one

can make such a neighbourhood arbitrarily small, then the partial exact-

ness follows also in sheaf level at that point. Here we have meant by a

"partial homotopy", a partial homotopy for complexes such as constituted

by spaces of sections satisfying some growth condition at the infinity.

These conditions, however, are rather technical and disappear finally by the

localization. To introduce partial homotopies we employed here the func-

tional analytic method of Hormander Q4], [J5] relying on a priori esti-

mates concerning some Dirichlet norms. But this gives only auxiliary

partial homotopies, and the essential step consists in the choice of the

appropriate growth conditions to give actually suitable partial homotopies

to which our principle can be applied.

In § 2, we shall apply the result of § 1 to the Dolbeault type sequences

for real submanifolds, and prove some partial exactness of these sequences,

as well as the dual version of this partial exactness. These sequences

were introduced by Kohn-Rossi Q9] for hypersurfaces, but the generaliza-

tion to the case of higher codimension is obvious (§2.1). They coincide

either with the Spencer sequence for the tangential Cauchy-Riemann equa-

tion, or with the product of a finite number of its copies. The standard

real submanifolds in the sense of Tanaka [1&2 are basic in the study of

general real submanifolds, in fact when perturbed suitably on a compact

subset, they serve as the good free spaces indicated above. The process

to cut out neighbourhoods to be situated in these free spaces, can be done

by a local approximation of real submanifolds by standard ones (Lemma
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2.5.2). The a priori estimate for deriving partial ho mo topics in each of

these free spaces, can be obtained from a simple estimate for the

Dolbeault type sequences associated with the standard real submanifold, and

from a general subellipticity theorem concerning the Dolbeault sequences.

The a priori estimate for the standard one involves the Dirichlet norm

defined by the partial Gaussian measure depending on a real parameter.

In proving this estimate the most crucial point is to remedy the difficulty

arising from the involvement between the Gaussian measure and the Levi

form. The subellipticity theorem mentioned above, was proved by Kohn

[jf] in case the real codimension equals 1; in case of higher codimension

this was proved by Hormander £6] in a general frame work on subellipti-

city. This subellipticity theorem plays the role to ensure the stability of

the estimates for standard real submanifolds under a small perturbation

on a compact subset, so that these estimates can be modified to fit for

the free spaces indicated above.

At the end of this paper we give two appendices. Appendix 1 con-

sists only of supplements to §2. In Appendix 2 we give a simple appli-

cation of our localization principle to the Spencer sequences of some

elliptic differential equations with constant coefficients. This seems to

suggest that the applicability of our principle is not restricted to the

tangential Cauchy-Riemann equations.

Throughout this paper we assume the differentiability of class C°° for

manifolds, vector bundles, differential operators and so on, unless the con-

trary is stated explicitly. When F is a vector bundle over a manifold

M, C°°(F) denotes the set of smooth sections of F over M, whereas

C°°([/, F) denotes the set of smooth sections over U if U is an open

subset of M. We denote by F(S, G) the set of sections over S of a

sheaf G over a manifold of which S is a subset.

The author should like to express his sincere gratitude to Professors

S. Matsuura, M. Sato and N. Tanaka for their critical advices and con-

stant encouragement. He also thanks his colleagues T. Kawai and M.

Kashiwara for their stimulating conversations.
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1. Localization Principle

§ 1.1. Basic notions and formulas. We shall first give and fix a

complex

... i-l 9*" •*' 9* * + l

where E\ i£Z are vector bundles over a manifold M and 9*: El-+El+l

are first order differential operators such that 9*+1-9' = 0. For brevity we

denote this complex by E' and also denote by C™(E°) the corresponding

complex ...-^C00(Ei-l)-*C°0(Ei)-*C°°(Ei+l~)-^---. If •••->^'-1-»^-»^+1

— > • • • is a subcomplex of CM(E'), then we simply write ^f* for this com-

plex.

Definition 1.1.1. A subcomplex A of C°°(E') is called topological

if and only if (1) A\ i 6 Z are locally convex topological vector spaces

such that the inclusions Aic^C°°(Ei) are continuous and (2) dl\Aim.

A-^Al+l are continuous for these topologies. When each A1 is complete,

we say that A is complete.

Throughout this paper we require all subcomplexes of C~(E'} to be

topological without mentioning this word explicitly. This assumption is

not so restrictive since every algebraic subcomplex can be made a topolo-

gical one by inducing the topology from C°°(E').

Definition 1X2. Let A', B' be two subcomplexes of C°°(J?') such

that A'(^B' and let s\ i^q be continuous linear maps from A1 to Bl~l.

The family of maps s = (sO^ is said to be a (—00 5 q)-homotopy for the

inclusion A'c^B' if and only if (1) (di~~lsi + si+ld*)u = u for i<q and for

u€A*, and (2) dq~lsqu = u for ueA* such that d*u = 0.

Note here that the inclusions A1c^B\ Kq are continuous if there is

a (—oo9qyhomotopy for A'c^B'.

Definition 1J..30 Let A', B; C' be subcomplexes of C~(E') such

that A'CB'(^C\ Let further s\i>q be continuous linear maps from
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C* into Cl~l and sq a continuous linear map from Cq into

The family of maps s = (st)i^g is called a (g, w)-homotopy of C' modulo

04', £') if and only if (1) s^A^CB*'1 for i>q and (2) (9''-V' + s''+1

dl)u = u modulo El for zj># and for u£Cl.

In this definition the validity of being (g, °o)-homotopy of 5 is inde-

pendent of the topologies of A' and B', so we shall apply this definition

even to the case A', B' are merely algebraic subcomplexes. Note also

that the conditions in Definitions 1.1.2 and 1.1.3 are a little delicate at

the extreme point i — q\ the naturality of these will be understood from

the argument in the next section.

Now let F be a vector bundle over M and Q be an open subset in

the complex plane C. Then we have the canonical identification C°°(@,

C°°(F)) = C00(^xM,F) where F is the pull back of the bundle F by the

projection n :CxM->M. Given a smooth function / on M, we obtain

a map which assigns an element, denoted by C^H/5 of C°°(F) to each

F<EC~(C, C-(JO) by setting

where 1M is the identity map of M and ft is the projection from F onto

F. For a locally convex space A, C°°(J2, A} denotes the space of smooth

^4-valued functions on J2 with the topology of uniform convergence on

compact subsets for the semi-norms defining the topology of A. If

C°°(F} is continuous, then C°°(£, A) is a subsapce of C°°(£xM, F) =

C°°(jP)) and the inclusion C°°(J2, ^)c_>C°°(J?, C°°(F)) is continuous.

Definition 1.1.4. Let A' be a subcomplex of C°°(E'). A function

is A' -admissible if and only if the following conditions are

fulfilled for each ieZ:

(1) fu, fu, (p(f)u € A1 for any u € A1 and for <p e CJ(C).

(2) %(CM/W(C-/)eQ(C, ^') for M6^ ' and for <p, % e CJ(C)

such that supp ^?Asupp x=0.

(3) [n/e^- for every FeQ(C, ^)-

(4) The above maps u\-*fu, u\-*fu, u\-+<p(f)u

(C— /), Fl->HF']/ are continuous.
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Definition 1.1.5. A function /€C°°(F) on an open subset U of M

is called E' -analytic in U if and only if d\fu) — fdlu for any i^Z and

The -E'-analyticity is a local property and the product of two E'-ana-

lytic functions is again #' -analytic, in fact, there is a way to define

j£' -analytic functions to be solutions of a homogeneous first order differ-

ential equation: Let (T(9*) denote the principal symbol of the differential

operator d\ We interpret here 0"(9') as an operater of order 0 of T*

into Horn (E\ Ei+l). (T* denotes the complexified cotangent bundle of

M.) Define for f€C°°(U) an operator #''(/) of order 0 from E*\U to

EM\U by setting &(f ) = (?(&) -df. Then

(1.1.1) di(fu}-fdiu = ̂ i(f)u u€C"(U, £')•

The operator $* is a first order differential operator from the trivial bundle

of rank 1 to Horn (£"*, El+l), and f is .E'-analytic in U if and only if

#'(/)= o iez.

We denote by -4(£/, £"") the ring of ^'-analytic functions in 17 and write

A(E') instead of A(M, £"")- The ring A(U, E') is an analytic ring in

the sense of M. Sato, that is, for every entire analytic function 0(2:1, • • - ,

*,) and for (/l5 ...,/,) 6 ̂ (£/, £')", the function 0(/i, .--,/») is also

£"-analytic in C7. In particular 1/(C— /) (£€C, feA(E')) is ^'-analytic

where /=^=C-

Finally we conclude this section by mentioning several formulae

which are used frequently in the next section: From (1.1.1) it follows

immediately

(1.1.2) di+l&'(f)u=-&'+1(f)d'u u e c-(j?0.

By using this and noticing that z?'( /), i € Z are C°°(M)-linear,
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whence it follows that

(1.1.3) &M(fW(f)u = 0 M <=

For every F(C), CeC of C~(C, C~(£"')) we have

(This can be checked directly for elements of C°°(C, Caa(Eiy) of the form

(pu where #> G (^(C), u€LC°°(El)\ then the general case follows immediate-

ly by approximating a given F€ C°°(C3 C°°(£f)) m the C°°-topology by

linear combinations of such elements.) From (1.1.3) and (1.1.4) we

obtain the following

Lemma 1.1.6. If f is E' -analytic, then

(1.1.5) 9'+1

§ 1.2. Fundamental theorems. To state the fundamental theorems

we still need some notation: Let K be a closed subset of M, and -4" a

subcomplex C°*(E'}. Then ^4*{J^} is a subcomplex of ^(' whose terms

A'{K}9 i^Z are given by

If A' is complete, then ^4"{^} is also complete. Let now / — (/i5/23---3

fp) be a p-tuple of functions on M. Then P(/) denotes the open set

and P[/] denotes the closed set

Now our main theorems are stated

as follows.

Theorem 1.2.1. Let /=(/i5 • • • j / / » ) ^ ^ p-tuple of E' -analytic func-

tions which are all A' -admissible for a complete subcomplex A' of C°°(E').

Suppose that s = (si}i^q is a continuous (— co3 q)-homotopy for the identity
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inclusion A'c^A'. Then one can construct for any a>l, a (— °°,

homotopy ff = (o~i)i^q for the inclusion

Theorem 1.2.2. Let /=(/i, • • • > / / > ) be a p-tuple of E' -analytic func-

tions which are all C ' -admissible for a subcomplex C' of C°°(E'} and

suppose that s = (sl)j^q is a (g, ^)-homotopy of C' modulo (0, 0). Then

there is for a>l a (q, ^-homotopy ff = ( f f ^ q of C' modulo (C"{P(/)C}5

C'{P(a/)c}) where P(/)c and P(af)c denote the complements in M of

P(/), P(af) respectively.

The proofs of these theorems proceed by the induction on p; the
passage from the case p = k to the case p = k+l will be done for each

& = 0, 1, 2 , - - . by the following lemmas.

Lemma 1.2.3. Let A{, A2, A'3 be three complete subcomplexes of

C°°(E') with inclusions A'^A^ A'2c^A'3. Suppose that si = (s[)^q and
S2 = (s2)t^q are (~ °°j q)-homotopies for the inclusion A{^A2 and for the

inclusion A'2(->A'3 respectively. If an E' -analytic function f is A]-admis-

sible for i = l, 2, 3, then there is for each a>l, a (— oo , q)-homotopy

s = (si)i^q for the inclusion

Lemma 1.2.4. Let B{, B2, B'% be closed subcomplexes of a subcom-

plex C' of C°°(E') with inclusions B[<^B2(ZB'3, and assume that sa =

(5«)^?3 a = l, 2 are (g, oo)-homotopies of C' modulo (B'a, B'a+1). If an

E' -analytic function f is C' -admissible as well as B'a-admissible for a,=

1, 2, 3, then there is for each a>l, a (q, oo^homotopy s = (s^i^q modulo

Proof of Lemma 1.2.3. For a positive number c we denote by Dc

the disc |C|<c in the complex plane C. Set b = l/a «1) and choose

0, (p^ % 6 CcT(C) so that 0 = 1 in a neighbourhood of Da, <p = \ in a neigh-

bourhood of supp 0, % = 1 in a neighbourhood of supp <p, supp%C-^i«

Now assume that u € A{{P\jLf~^}> i^q. Then the ^{-admissibility of /

implies
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In view of this we first define /gCO^C^C^i, ^i"1) bY setting

/SCO - (C -/M((9?(C)/8r) u (C -/)) C € C.

Note that this is actually well defined by -4j-admissibility of /. We fur-

ther set

_ g%(C)/9C f~
J f-C

to define /f, /f 6 C%(Di9 A\~1}. Here the domain of integration has been

taken as the whole plane C; /?, J\ certainly belong to C^(Diy A^~~l) since,

A^~l being complete, the integrals always exist in A\~l for each C^C.

(This is the only reason why we should assume the completeness of sub-

complex A' in Theorem 1.2.1.) Now we set

(1.2.1) »'»=[/fl/+t?y-2(/)W-1/3]/

as a definition of the map sl : A[{P{jafl}— >^3~1{J°E/D}> l"£S?' Since si is

a (— oo5 g)-homotopy, the inclusion ^fi~1C^3~1 is continuous as remark-

ed after Definition 1.1.2, which actually ensures that the first term in

(1.2.1) belongs to A%~1; the second term also belongs to A\~l by com-

bining formula (1.1.1) (with z, f replaced by i — 2, /) with the ^-admis-

sibility of /. That slu 6 A{~l{P(f)} follows immediately from the fact

that /f, /ieCo(£>i, ^r1)-
Now we may only check (di~lsi + si+ldi)u = u when u € Ai {P[_af^\} ,

i<q and dg-lsqu = u when u G A{{P[_af~}} satisfies dqu = Q. First sup-

pose that u€Ai{P\ja,f~]}, i<q. Note that

if 0eQ(C), hence
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Thus we obtain by noting C(C— /)*H/ = 0,

Using (1.1.4) and Lemma 1.1.6 we obtain from this

*- Va =

Hence

(1.2.2)

To compute the terms in the right hand side, we first observe

whence

(1.2.3)

Similarly

(1.2.4) 9'-1

Thus (1.2.2) combined with (1.2.3), (1.2.4) implies

It remains only to show that dq~lsqu = u if dqu = Q, u€Aq{P Ta

however the above argument can apply also to this case with some ob-
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vious modification and the proof for this may be much simpler. The

continuity of maps s\ i<^q is checked directly by inspecting (1.2.1).

Q.E.D.

Proof of Lemma 1.2.4. Set 6 = I/a and choose <p, x'eCj(C) so that

x'=l in a neighbourhood of 5$, <p = l in a neighbourhood of supp %', and

i' Then

W(C-/) 6 C?(C, C'+1),

for the left hand side can be written in the form

which actually belongs to C"3(C, C/+1) according to Definitions 1.1.1 and

1.1.4. In particular, if one takes V so that xf = l in Db>, 6<6'<1, then

(1.2.5) /"(C) =

where the first identity is the definition of Ju. Now set for i^> q

(1.2.6) F«(O

and define

where we have chosen % so that % = 1 in a neighbourhood of D6, supp%C

D^. Certainly 5^6 C1'"1 if i>q\ slu = Q modulo J5J'1 when u^B{,

i>g; it is also obvious that the maps 5*: C*-*Cl~l, i>g and the map

sq: d>-+C°°(Eq-1} are continuous. If u eCi{P(f)c}, then /M and <p(f)u

vanish identically, so that s*a = 0. Thus the first condition of Definition

1.1.3 is fulfilled when (A',B'} replaced by (B{ + C' {P(/)c}, B'3
{P(a/)c}), so we may only prove that (di~lsi + si+1di^)u = u modulo

Ci{P(af}c}, i:>q. Using the formula (1.1.4) we obtain

since FM(C) is analytic by (1.2.5) and (1.2.6.), the last term here equals
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wm'ch> however, vanishes modulo Cl{P(afY} in view

of the fact that 9x/9f(/) = 0 in a neighbourhood of P(a/). Thus

(9f'-V + jf'+19')^ = Cx(O(9'"1^ll(O)II/ modulo C'{P(a/)c},

and it suffices to show that, when i^>q,

(1.2.7) [zCCXS'-^+r^XO]/^ modulo 5j + C'{P(a/)c}.

Note that, according to (1.1.2) and to the .E'-analyticity of 1/(C— /), it

holds

Hence, «2 — (^D/gj being a (9, oo)-homotopy of C' modulo (B'2, B'3), we

obtain

(1.2.8) /=9*-1ai((C-/>!+1/") + *ri((C-/>!+Va>")

-/>!+29!'+1/K) modulo

where the first identity defines /. Since SI = (SI)«'B« is a (g, oo)-homotopy

of C' modulo (Bi, 52)5 we have

(0'a{+1 + a{+29'*1)/"a3/" modulo C-(Z)t/,

This, combined with (1.2.8) and s|+1(5j+1)C-Bl, gives

)«) modulo C-(1V,

which in turn implies

modulo
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Noticing [(C — />i + 1/*I]/ = 0 and by the ^g-admissibility of /, we thus

obtain

:x(O(9'-1f"(O+^a*il(O):/ = x(/)^(/)i4 = %(/)tt modulo Bl

On the other hand M-x(/)zi = (l —X(/))H € C*{P(o/)c} (i.e. =0 modulo

C"'{P(a/)c}). Thus (1.2.7) is proved. Q.E.D.

Now we shall prove Theorems 1.2.1 and 1.2.2.

Proof of Theorem 1.2.1. When p = l, there is nothing to be proved

by Lemma 1.2.3. Assuming that the conclusion is true when p = k, we

shall now prove the theorem when p = k-\-l. Set /= (/i,---, f p - i ) = ( / i5---5

fk) and choose a positive constant a so that l<o'<a. By the induc-

tive hypothesis there is a (—oo, g)-homotopy si for the inclusion

^4'{P[a/]} <-* A'{P\ji f~^r and a (— oo5 ^r)-homotopy s2 for the inclusion

A{P[_a'f~]} c_> ^4'{P[/H}- Note here that every ^'-admissible function is

also A'{K}-admissible for any closed subset K of M. Thus, applying Lemma

1.2.3 to these si9 52, we obtain a (— °o5 ^)-homotopy 5 for the inclusion

<i+A-{P\:ft}{Plfk+1-J}. Since J-{P[a/]}{P

and ^•{P[/]}{P:/^i:> = ̂ -{P[/]}, a is the

desired (g, cxD)-homotopy. Q.E.D.

Proof of Theorem 1.2.2. In order that the induction proceeds easily,

we shall first prove the following inclusion:

(1.2.9) S
1=1

The first inclusion is obvious. To prove the second we introduce the

pseudo-multiplication:

goh=g+h-gh g,h£C~(M).

As is well known, this multiplication is commutative and associative,

moreover g°h=l at z^M if and only if either ^(2:) = ! or h(z} = l.

Choose % 6 C°°(C) such that % = 1 in a neighbourhood of the closed set
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C\Z?i and such that % = 0 in a neighbourhood of Db(b = l/a) and set

Then 0 = 1 in a neighbourhood of P(/)c, hence 0u = u if u € C'{P(f)c}.

But 0 can be written as a sum of terms ±%(/;1)%(/;1).--%(/^)3 jo<Jp5

and for & £ C' ± ^(fi^(fi^)' "%(fi )"- belongs to C° according to the

C"-admissibility of /,, l<Ii<Jp; it even belongs to J] C°{P(afi}c} because
z = i

the choise of %. Thus (1.2.9) is proved.

Now we shall prove the theorem when p = k + I assuming that the

conclusion is true when p = k. Set /=(/i> '••? fp-i)
 =(fi> • ••>/*) and

choose positive numbers a, a!r so that l<a"<a'<a. By the inductive

hypothesis we find a (g, oo)-homotopy Si = (si)i^q of C° modulo (C'{P

(a//f)c},C'{P(af)c}) and a (9, oo)-homotopy s2 = (s^q of C' modulo (C°

{P(af}c}, C'{P(o/)}). Applying Lemma 1.2.4 to these $1, 52 and f=fp,

we obtain a (g, cxD)-homotopy 5=(50i^9 of C* modulo (C'{P(a///)c} +

^iX}). But, by (1.2.9) we have

Thus 5 is also a (gr, oo)-homotopy of C' modulo (C'{P(/)C}3 C'{P(a/)c}).

Q.E.D.

§ 1.3. Consequences from the fundamental theorems. We shall

start with a few corollaries which will clarify how to apply Theorems

1.2.1 and 1.2.2.

Corollary 1.3.1. Let A'9 s and f satisfy the hypothesis of Theorem

1.2.1. If each A1 contains CJ*(£*') and if P(/) is relatively compact in

M, then the sequence

(1.3.1) • • •

/s exact.
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Corollary 1.3.2. Let C", s, / satisfy the hypothesis of Theorem 1.2.2.

If each Cl contains C^(El) and if PC^o/H is compact for some 0<60
<C1,

then the sequence

(1.3.2) APC/H, E'-^rprfi, £«)->/XP[/:I, E^^--

is exact, where E^ i G Z 0r£ £/?£ sheaves of germs of C°° sections of E^.

Proof of Corollary 1.3.1. Suppose that u 6 Q(P(/i), £"'), i <^g. Then

there is a constant c>l such that supp u(^P[_cf^\. Choose now a con-

stant b so that !<6<c and apply Theorem 1.2.1 to a = -j- and / re-

placed by bf. Then we obtain a (— °o3 g)-homotopy o~=(o't)i^q for the

inclusion ^•{P[c/]}c_>^'{P[&/]}. Note u € ̂ {P[c/]} (because ^6

and supp ^CP[c/]). Thus tfu is well denned and lies in

C^(P(f\Ei-l\ moreover di~lffiu = u if 9''z* = 0. Thus

the exactness of (1.3.1) is proved.

Proof of Corollary 1.3.2. Suppose that u eT(P[/l F)), ^? satisfies

the equation dlu = §. Then there is a constant 61 such that feo<^i<!3

and an element v e C°°(P(6i/), JE1') which, when restricted to P[/]3 in-

duces & and still satisfies dlv = 0. Choose 62, &s so that 6i<&2<^3<!

and choose ^ E Q(P (6i/)) such that 0> = 1 in P(62/). Then ^v e C?(£')

CCZ" and 9f'(^)eCf'+1{P(62/)c}. Now apply Theorem 1.2.2 for a = b3/b2

and for / replaced by 62/3 then we find a (g, oo)-homotopy tf = (o~*)i^q of

C' modulo (C'{P(62/)
C}5 C'{P(63/)

C}). Thus, by Definition 1.1.3, we
have

from which it follows

Thus, if one denotes by w the element of /"(PC/I? El~l) induced by

6l((pv)^ then dt~1w=uy which proves the exactness of (1.3.2).
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We shall now explain some of the further implications of Corollaries

1.3.1 and 1.3.2. Let A',s satisfy the hypothesis of Theorem 1.2.1 and

assume C^(E'^)(^A\ Assume further that there is a sequence of positive

integers p., v = l, 2, • •• and a sequence /" = (/I,/2, •••,/£,) ^ = 1, 2> • • • >
such that each f\ l<,k<;(fv, v = l, 2, ... is ^'-analytic and ^'-admissible.

If P[/v] are compact, P[/yjC^(/P+1) and if M=\JP(fv\ then the
sequence

(1.3.3) •••^Cj(tf'-1)^Cy(£*)-*

is exact. This is an immediate consequence from Corollary 1.3.1.

Remark. In Corollary 1.3.2 we may assume only the compactness of

PC/H instead of assuming that PC&o/D is compact for some 0<60<1;
for, if PC/] is compact, then, for every neighbourhood of PT/] there is

some 0<60<1 such that any component of PE^o/H which intersects

is necessarily contained in this neighbourhood.

Let now C1', s satisfy the hypothesis of Theorem 1.2.2 and assume

'. Assume further that there is a sequence of positive integers

pv, v = l, 2, ... and a sequence /" = (/!, • • • , fv
p) such that each /£, 1<^&

<Jpv; v = l, 2, ... is j&'-analytic and C' -admissible. If P[_fv~] are compact,

P[/"]CP(r+1) (resp. P[/y+1]CP(/v)) and if M=\JP(f") (resp.u
{z0} for a point 206M), then the sequence

(1.3.4)

(1.3.5) U,-1-^!,-*!^1 - • > • • • (resp.)

is exact. In case some approximation theorem holds for solutions of the

equation dq~lu = Q in the domain of the form P(/), the exact sequence

(1.3.4) can be slightly extentded, for example, if every solution of dq~lu

= 0 in P(/y) can be approximated by global solutions of dq~lu = Q in the

C°° topology, then the sequence

(1.3.4X
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is exact. The exactness of (1.3.5) follows directly from Corollary 1.3.2.

The proof of the exactness of (1.3.4) and of (1.3.4)' is routine and omit-

ted.

Now we shall define the dual complex F' of E' and prove some

lemmas which indicate what can deduced, on the side of the dual F'

from the conclusions of Theorems 1.2.1 and 1.2.2. Let ® be the line

bundle of (complex-valued) ra-forms on M (n = dimRM) and set F1 = (E~i)*

®(9 where E{* denotes the dual vector bundle of El. Denote by < | >

the canonical duality homomorphism from E~t(£)Ft onto (9. Then there

is a unique differential operator 9*': Fl-+F1^1 such that

where we have assumed that M is oriented and the integration is taken

over the orientation of M. Obvionsly 9*(z+1)9*f = 0 and the complex

pi-l a*^-*) pi 9** fi + l

is called the dual complex of E'. To state the lemmas we need a nota-

tion: &(U, F), where F is a vector bundle over M and U is an open

subset of M, denotes the set of all sections of F with coefficients in the

space of distributions on M, whereas d>'(U^ F) denotes the subspace of

&'(U, F) of all elements with compact support.

Lemma 1.3.3. Let K, K' be two closed subsets of M such that

Kr and let Q be the interior of K. Let further A' be a subcomplex such

that CQ(E')CA' and suppose ff = (o~i)i^q is a (— °° , q)-homotopy for the

inclusion A'{K}c^A'{Kf}.

If u is a distribution section of E1 (i>—q) defined over a neigh-

bourhood of K satisfying the equation d*lu = Q, then one can find V€L

&(Q,F) such that d*V-l>v = u\a.

Proof. On the subspace {d~{w \ w € C£ (fl, E~1)} of CJ(fl, E~i+1) we

define a linear form I by

l(d-*w)=(<w\u>.
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This is actually well defined and continuous since

Thus, by the Hahn-Banach theorem, there is v 6 3J\&^ Fl~1} such that

l(d-iw)=(<d~iw\v>, hence (<d~iw\v> = (<w\ u>, for we C%(S, E~{),

that is, 9*(/-1)t7 = u|1fl. Q.E.D.

By the similar reasoning we can prove

Lemma 1.3.4. Let $, & be open subsets of M such that 5c+&'.

Suppose that C' is a subocmplex of C00^1) such that C^(E')CC'^ and

that (7=(<rO^« is a (?» °°}-homotopy of C' modulo (C'{(Q'y}, C'{QC}}.

If ue£r(Q,Fi\i<—q satisfies 9*f'a = 0, then one can find v

Fl~1} such that d*(i-^v = u.

Let @'F\ i£Z denote the sheaf of germs of distribution sections of

Fl. Using Lemmas 1.3.3 and 1.3.4 we can easily deduce from Theorems

1.2.1 and 1.2.2, the following corollaries.

Corollary 1.3.5. Let A\ 5, f satisfy the hypothesis of Theorem 1.2.1.

If Q'CE'OC^' and if PC^o/H is compact for some 0<60<1> then the

sequence

is exact.

Corollary 1.3.6. Let C", 5, / satisfy the hypothesis of Theorem 1.2.2.

If CJCEOCC' and if P(/) is relatively compact in M, then the sequence
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is exact.

§1.4. Suitable estimation. In this section we present a method

to derive from certain estimates concerning some Dirichlet norms for E',

suitable subcomplexes of C°°(J?') as well as some related partial homo-

topies to which Theorems 1.2.1 and 1.2.2 can be applied. To fix the

Dirichlet norms we choose a volume element dv and Hermitian inner

products < , >,• for the vector bundles E\ and we set

, v)i= \<ii,

\\u\\%=\<u,

Further, we define the formal adjoint dl'.El-+El~l of the differential

operator d*'1 : E*~l -> E* by setting

(u, div}=(di~lu, v} ue

Then the square root of

is the so-called Dirichlet norm for the complex E' (with respect to

inner products < , >/, i£Z and volume dv ). By completing C^(El) by

the norm || ||/ we define the Hilbert space Hl. As is well known, H*

can also be regarded as the space of all locally square integrable sections

u of El such that | |M||,- <+<*>. (Here we shall of course extend the norm

|| ||,- to any locally square integrable sections of E* allowing oo to be

one of the values of this norm.) The differential operators 9', dl give

rise to linear, closed, densely defined operators T{ \ £P— »£P+1, Sl \ Hl

-^JT''-1; an element u^H* is in the domain D(T{) of T (resp. D(S*)

of 51) if and only if dlu (resp. 8'u)9 defined in the distribution sense,

belongs to Hi+1 (resp. fl"1'"1). The adjoint of T*~l does not coincide

with S* in general. To guarantee the identity of these we shall impose

the following assumption for each
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(*) There is a sequence yv E Q(M) such that (1) for any compact

v = l in K when v sufficiently large , (2) the inequality

is valid for some constant C not depending on v and u.

Lemma 1.4.1 (Hormander C4]). Let the assumption (*) be fulfilled.

Then CQ(E{) is dense in D(Ti)r\D(Si) for the norm \\u\\i + Di(u)~*. In

particular S'^r'-1)*.

j_
Here we have considered the Dirichlet norm Di(u) 2 to be extended

over D(Ti)/^D(Si).
We shall now study some consequence of the estimates of the form

\\u\\] <,CDi(u) HeCJCE'')- We first refer to a result of Hormander [4]

which is fundamental in the subsequent study : Denote by N( T), R( T\

the null space and the range of an operator T from one Hilbert space

into another.

Theorem 1.4.2 (|jQ). Let (*) be fulfilled and assume that the esti-

mate

(1.4.1) IMIf^CAOO ueCS(E')

is valid for some constant C>0. Then R(Ti~l) = N(Ti) and N(S*) =
R(Si+l). In particular R(Tl\ R(Tl~l\ R(Si\ R(Si+l) are closed.

If R(Tl) is closed, then there is a unique bounded operator Qt+l: Ht+l

-+H1 with the following properties:

(i) ^(^^ejvcryn^cr)
(ii) lHnri—T*Qi+l is the orthogonal projection of H*+l onto RtT*^.

Here we have used the notation L^ to express the orthogonal complement

in H when L is a subspace of a Hilbert space H. From Theorem 1.4.2

we obtain the following lemma which is useful later.

Corollary 1.4.3. Let the hypothesis of Theorem 1.4.2 be fulfilled.

Then the operators Q\ Qt+l above are well defined and it holds
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(1.4.2) (Ti-lQi + Qi+lTi)u = u uGD^T*).

Moreover, if the differential operator Ai = di'ldi + 8i+ld* is hypoelliptic, then

Qlu (u£.Hl) is smooth whenever u is smooth.

Proof. The first half is obvious. To prove the second half, note

that the estimate (1.4.1) implies

Thus, R(A^ = H\ if one defines the operator Al = Ti~lSi + Si+lT* by set-

ting D(Ai) = {ueD(Si^D(r)\Siu€D(Ti-l\ rueD(Si+1)}. By the

hypoellipticity of A1, A*v is smooth if and only if v € D(Al) is smooth.

Since QiAiv = Siv veD(A{) by the definition of Q*9 Q
lu is smooth when-

ever u is smooth. Q.E.D.

With the application of Theorems 1.2.1 and 1.2.2 in mind we will

assume one of the following assumptions, frequently in the sequel:

(jtfq) The estimate (I A. I) is valid for i^q, the differential operator

A1 is hypoelliptic when £<Cg,

(&q) The estimate (1.4.1) is valid for i^>q, the differential operator

A1 is hypoelliptic when i^>q.

According to Lemma 1.4.3 the assumption (j/ q} (resp. (^?)) gives a

sequence of operators (Ql}i^q (resp. (Ql)i^q) for which (1.4.2) is valid;

thus, if in addition one can choose a suitable subcomplex A' of C°°(F')

so that Ot(A*)<^At~l,Qi\At: A*-+Al~l is continuous when i<^q (resp.

j>g), then we obtain a (— oo3 g)-homotopy s = (sl)i^q for A't->A. (resp.

(<jr, oo)-homotopy s = (st)^q of A') setting sl = Ql\Al i<^q (resp. l^g).

But a question still remains. How rich is the set of all functions which

are E' -analytic and ^"-admissible? The answer is in fact indispensable

when applying Theorems 1.2.1 and 1.2.2. Instead of solving this difficult

problem we adopt here the inverse process: First we choose a subring R

of A(E'} (for this notation see §1.1) with certain good properties; then

we find a subcomplex A'R of C°°(E') so that (X(^J?)C^jf \ i^q (resp.
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i>q) if (X5) (resp. (^a)) is fulfilled, and so that any /6i? is ^-admis-

sible.

Definition 1.4.4. A subring R of A (.#') is said to be well filtered

if and only if there is an ascending chain of linear subspaces of R RQ^.

-R iC-RzC"- and a sequence of elements of C°°(M) PCy, v = l, 2 , - - - satisfy-

ing the following conditions:

(i) *o=C, R=\jRk.
k

(ii) For fl^jy z'EZ and for every element f£Rk one can find a finite

number of elements of Rk_ig^ /=!, 2, • • - , $ / so £to ^ estimate

(1-4.3)

(iii) 0<^%y ;^l , xtf->l (v->oo) m ^ C° -topology ^ %vf is bounded

for any f€.R.

(iv) For j 'GZ ^r^ is a sequence of constants Cv v = l, 2, ••• tending

to 0 <zs v->oo? /^ which the estimate

(1.4.4)

holds.

Now we set for a given subring R of A(E')

Af
R={ue Cr(E*) | ^zi G Ff, gd*u € ff'+1 for all ge R}

and define the locally convex topology of A*R by adding seminorms

l f + i , where g runs over R, to the seminorms defining the topology of
f')- Obviously ^, i e Z are complete and d*(A& C ̂ le+1

s 9Z" | A1
R : A1

R ->

is continuous, thus the complex A'R — ---- > A*R~l — > A1
R — > AR

+l —>•••

is a complete subcomplex of C°°(E').

Theorem 1.4.5. Let the notation be as above. If a subring R is

well filtered, then every f^R is AR-admissible. If moreover the assump-
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tions (*) and (^ q} (resp. (^)) are satisfied, then Q^Aj^CA^.Q^A^i A{
R

-+Al£l is continuous for i<^q (resp. i>q\ so that s = (st)i^q (resp. s =

(s{)i^q) is a ( — c>o3 q)-homotopy for A'R-+A'R (resp. (9, oo)-homotopy of A'R)

if one defines s{: A^-^A^'1, i^q (resp. s1': A1
R-+ A{

R~l i>q and sq: Aq-+

£-(£*-!)) as the restrictions of Ql to A1
R.

The proof we divide into parts:

Proof of the first half of Theorem 1.4.5. We first prove the condi-

tion (1) of Definition 1.1.4. That fueA*R for feR,u€A*R and the

continuity of map Ai
R^u \->fu € A1

R follow immediately from the definition

of A*R. Let us prove fu£A*R for f^R, u€A{
R. Let f^Rk and let gj

/=!, 25 . - . 3 5 / of Rk-i satisfy (1.4.3). Then, for any g€.R,

Since obviously \\gf u\\i= \\fgu\\i < + CXD? we have thus proved fu£.Al
R.

The map J^ ^ u-+fu 6 ^4^ is evidently continuous. Note that

for <p(C)€Co(C) and f°r f^A(E'). Since #?, dcp/d^ are bounded, we ob-

tain also by using (1.4.3) \\g(p(f}u\\i< + °°, \\gd*(q>(f)u) \\M< + 00 if

u^AJi and /, g€R. Thus <p(f)u€A*R. The continuity of map A*R3u

-*<p(f)u€Ai
R(f€R) is also evident. The condition (2) of Definition 1.1.4

can be proved similarly.

To prove the condition (3) we need a formula: Let F(C,-2r)£C£

(C, CJ(£0) = C?(CxM, 50 (5* is the pull back of E{ by the projection
CxM-»M)3 and let C = * + V~—1 y. Then

= 2
dx

2

dy
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Hence we obtain for any (C, z) G C X M

]+

Thus we have finally

Now suppose f€R, F€ C%(C, A*R). We shall prove [FJ/e^i. Note

that the proof of (1) of Definition 1.1.4 gives g-F<EQ(C3^) if

Thus, applying (1.4.5) to V replaced by gV, we obtain

(1.4.6)
Note

where both gdlV, ^(f)g- belongs Q(C, Al
R

+l} as we have proved

above. Applying (1.4.5) to these and to i replaced by i + l, we conclude

This5 combined with (1.4.6), proves [V^eA^ The map Q(C5 A& 6 V

~^y~}f^-^-R is evidently continuous. (The condition (4) of Definition 1.1.4

was also proved above.) Q.E.D.

Remark. In this proof we have not used %v and the requirement

gj are elements of Rk-i? in fact what we have needed is only gj^R-

(But, nothing is gained by this improvement.)
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To prove the second half of Theorem 1.4.5, we require the following

Lemma.

Lemma 1.4.6. Assume (*) and suppose that the estimate (1.4.1) is

valid and that a subring R is well filtered. Let f€R, ueHir\C°°(Ei),

<J''(/zO 6 ff1'"1, and d*(fu)€Hi+l. Then fueH\ hence fu€D(T*)r\

D(S{) and

Proof. Let .RoC-RiCJ^O" and %„ satisfy the conditions of Defini-

tion 1.4.4. Since %„/ is bounded, we have xvfu G H*. From (1.4.4) and

from the formulas

it follows that 9'(x./u)e Hi+1, <5!'(%v/w)e H''~l, and that

Thus, in view of Lemma 1.4.1, x»fueD(Ti)r\D(Si). Applying (1.4.1)

to x»fu we obtain

Hence, for v so large that 2CC?^-o-, we have

Note that the right hand side does not depend on v, thus by the Fatou

Lemma we obtain

That is, fu€.H*. According to Lemma 1.4.1 this implies fu
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Z>(S'), hence

Q.E.D.

End of the proof of Theorem 1.4.5. To prove the last half of Theo-

rem 1.4.5 it suffices to prove that Ql(Al
R)CAR"l,Ql\AR:AR-^AR-1 is

continuous provided that (1.4.1) is valid for i = l and for i = l — 1, and

that Al~l, A1 are hypoelliptic. We set P=l- Tl~lQl. Then P is the

orthogonal projection from Hl onto N(Sl).

We first prove that Pu€AR if u € A1
R. Since u — PueN(Sl")J- =

R(Tl-^ = N(Tl) and since ARCD(Tl\ we have TlPu=Tlu while Pu €

N(Sl) implies SlPu = Q. To sum up

(1.4.7) TlPu=Tlu, SlPu = Q.

Hence the hypoellipticity of A1 implies that Pu is smooth. Set now v = Pu

and note \\fTlv\\i+1 = \\fdlu\\i+l<+°o, if /eJR. Thus, to prove v^Al
R

we may only show that ||/tf||/< + CXD for any f£R. If f£R0 = C, then

this is trivial. Suppose that ||#t>||/< +°° if g^Rk-i, and let f€-Rk.

Let further g> y = l, 2, ...,5/ satisfy (1.4.3) with i = l-l. Then

where we have used (1.4.7) in the last step. Thus

The right hand side is finite by the inductive hypothesis. Since ||9//i;||/+i

= ||/7T/t;||/+i< + oo as remarked above, we conclude by Lemma 1.4.6

li/t>||/< + °°, hence we have proved v=Pu£A*R whenever u£AR.

Obviously the map AR 3 u~>Pu € AR is continuous.

From the characterization of Ql it follows

(1.4.8) T'-lw=u-Pu, Sl'lw=Q

where we have set w=Qlu. If u€AR, then u — Pu€AR, so, arguing
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just as we proved Pu^.Al
R using (1.4.7), we obtain from (1.4.8)

the continuity of the map A1
R-+ u \->Qlu=w£ Al

R~l is also evident.

Q.E.D.

We conclude this section by studying briefly the relation between the

estimation for Em and that for the dual complex F': Let F' be the dual

of E' as defined in §1.3 and < | > the duality homomorphism from

E~~l§§Fl to 6. We define an an ti -isomorphism between E~* and F1 by

setting

, *v>idv=<u\v>

*u = v if and only if u = *v.

We also introduce Hermitian structures < , >,- on F1 as well as inner

products ( , )f- and norms || ||« for sections of F1, iGZ by

<v,v'>i=<*v, V>_,-

(v, v")t=<v9 vf>{dv

We further write

(8*'u9 v)i=(u, d*v-»v) u e Q(FO, v e cj

as a definition of the differential operator d*im. Fi->Fi~l. Then we have

Lemma 1.4.7 Under the above notation the following statements are

valid.

(1) ||*U||,.=|HU.
(2) 0"(*ii) = *(<5-'u).

(3) 9*X*u) = *(9-'u).

(4) f€A(E') if and only if f£A(F').

(5) A subring R of A(E') is well filtered if and only if R is well

filtered as a subring of A(F').
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(6) The assumption (^?) (resp. (^)) is satisfied for Er if and only

if (&-q) (resp. (<sf-q)) is satisfied for F'.

The proof is elementary and omitted.

2. Application to Tangential Cauchy-Riemann Equation

§2.1. Definitions. In this section we define the Dolbeault se-

quence for a closed real submanifold M of a complex manifold Jf, and study

some basic notions and facts concerning this sequence. (Note that the

closedness assumption is inessential because any submanifold of a manifold

has always a neighbourhood in which it is closed; we may only replace

X by such a neighbourhood if M is not closed. The definition below, in

fact, does not depend on the choice of such a neighbourhood.) Denote by

/° the sheaf of germs of smooth functions in X which vanish when re-

stricted to M, and by J2(/>>?) the sheaf of germs of smooth (p, q) forms

on X. Set further Q = ̂ ti(p'q\ then Q is a sheaf of rings by the exter-

ior multiplication. We denote by / the sheaf of ideals of Q generated

by I° + dI° where §: £<*•«>-> j?(*.«+1> is the differentiation of the usual

Dolbeault sequence for X, Following Kohn and Rossi Q9] we now define

sheaves D(p'^ by defining D=%D(p'q) so that the sequence 0-»I-»J2-»D

->0 is exact. (Note that / is homogeneous, that is, I=^I(P'Q\ I(p>q} =

Ir\Q(p'q\} Since 9/C/, We can define a sheaf homomorphism db: D-+D

such that dbD^p'q^ (^_D^p'q+l\ making the following diagram commutative:

0 - >/ - > Q - >D - »0
ja ja J96

0 - > I - > ti - >D - >0

Thus we have obtained for /?I>0 the complex

which we shall call the p-th Dolbeault sequence for M. The equation

dbu = Q for a section u of D° is called usually the tangential Cauchy-

Riemann equation of M. (For simplicity we write D° instead of Z^°'0);
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note that D° is no other than the sheaf of germs of smooth functions

over M.) We now assume that M is generic, that is, TZ(X)= TZ(M) +

V — 1 TZ(M) 1) (not necessarily the direct sum) for every z €: M. (Here

T(X\ T(M} are the real tangent bundles of X, M respectively, and T(M)

is regarded as a subspace of the complex vector space T(X).) Then

the sheaves D(p'q^ are all locally free D°-sheaf and db is a first order dif-

ferential operator. Thus, for each (p, q) there is a unique vector bundle

such that D^p>q^ is the sheaf of germs of sections of this vector bundle.

To avoid making too many notations, we shall identify the sheaf D^'^

with this vector bundle from now on, hence all D^p'q^ should be regarded

as vector bundles over M in the sequel.

Now we shall give a more explicit description to bundles D^p'q\ The

exterior multiplication of & induces the multiplication of D which satisfies

the anti-commutativity relation with respect to the bidegree (/?, q). We

thus obtain canonical bundle homomorphism Ap D(l'^ ®AqD(Q'l^D(p'q\

This is actually an isomorphism as is easily seen. We shall investigate

bundles D(1'0), D(0>V more in detail. Denote by D° the subbundle of T(M}

whose fiber D°z over each ZeM is Tz(M)r\4i:l TZ(M\ and by T*C(Z)
the complexified cotangent bundle of X regarded as a real manifold. Then

T*C(X) can be decomposed into a unique direct sum T*C(X)= r*(1'0)(Z)

+ r*0-1^) so that r*(1'0>C3T) (resp. r*(0'1}(Z)) denotes the subbundle

of C-linear (resp. C-antilinear) elements of T*C(X). (Note T(Q'l\X) =

ig(o.i).) Since I ( 1>°> = 0, D<l-V=T<l-Q\X)M. On the

other hand, since D° C T(M)C T(X), there is a canonical duality homo-

morphism D°X r*(M)(X)9(A;, y)^<x\ y> EC which is C-linear in y
M

and C-antilinear in x. (Note that D° is the largest complex subbundle

of T(X)\M contained in T(M).) The bundle D((U) is a quotient bundle

of r*(0'1)(^)|M and the kernel of projection r(M)(Z)|M->I)((U) is just

the annihilator of D° in T*(Q>l\X)\M. Thus we obtain also a canonical

duality homomorphism D° X D(0)1) ^ (x, y)-> < % y> G C, C-linear in y
M

and C-antilinear in x. Moreover D^x = Q (resp. D(
2

0)1) B y=0) if and

only if <x\y>=Q for all y^D^^ (resp. for all x€D°). Thus, this

1) By V^T we denote the real tensor field of X defining the complex structure; never
confuse this with the multiplication of V-^leC in the complexification.
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duality homomorphism induces an anti-isomorphism between J9°* and

D(0>1). (We call a C-antilinear bundle isomorphism an anti-isomorphism.)

To sum up

Lemma 2,1.1, J9(1'0)= T*(1'0)(JT)|M. D(p^ is canonically isomorphic

to ApD(1'0)(g)AqD(0'1\ and D(0>1) is canonically anti-isomorphic to the dual

D°* of D°.

The last statement is very useful when introducing norms for the

0-th Delbeault sequence Z^0'"); a Hermitian structure on the bundle D°

induces automatically the Hermitian structures on AqD°*, hence those on

Remark. fiber-dimCJD°=dimc^r— codim/zM, fiber-dim CD(1>0) — dim CX.

Finally we briefly describe a procedure for actually computing the

Dolbeault sequences of the real submanifold M. Let N=dimcX, n =

N— codimnM. Let further n denote the canonical projection of $ onto the

quotient D=

Definition 2.1.2. Let (zi, • • • , ZN) be a system of coordinates in X.

The real submanifold M is said to be generically situated to the system

(zi, • ••,zpi) if and only if the sections Ti(dzj) j = l,2, • • - , J V ; 7t(dzj)

y=l, 2, • • - , n are linearly independent everywhere on M.

For simplicity we set ^j=n(dzj

and more generally set

where / is a p- tuple of numbers between 1 and N, and K is a q- tuple of

numbers between 1 and n.

By Lemma 2.1.1 we can write a section u of D^p>q^ as a sum of the

form 2 ui K £i K f°r some functions &/ # so that &/ K is an alterna-
i/i=j.iiri=<r ' '

ting function of / and of K, that is, ulsx changes sign if two indices in
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/ or K are permuted. Thus we can identify D(p'q^ with the trivial bundle

£(£,<?) Of rank / )x( ; by identifying each u with the alternating func-

tion {uitK} of I and K, which we can interpret as a section of E(plQ^ of

course-

Definition 2.1.3. The complex

g& > . . p fi(P,n) _ > Q _ > m _

defined by the above identification is called the trivialization of the p-th

Dolbeault sequence of M by the coordinate system (z, • ••, Zn).

Now let us compute the differentiation 9& of this trivialization E^p>'\

We write for smooth function u

- n _
dbu= Eduk^k=i

as a definition of the first order differential operator dk, k = 1, 2, • • • , 71.

Note 96C/,^ = 0 and note 96(M /\v) = dbu /\v + (-l)dcBUu /\dbv. By com-

puting 96( 2 ^/ ^C/ ^) with these formulae in mind, we obtain for a
I.K

section u = {uf^} of £"(/J'3)

(2.1.1) (9^)/.i = ( - l ) ( - l ) y - 1 S / t t

where ir\Z/ denote the ^ -tuple of the remaining indices after deleting Z/

from L. In (2.2.1) the index I does not play no essential role evidently.

Thus the p-th Dolbeault sequence D(p>'^ is isomorphic to f Vfold product

of the 0-th Dolbeault sequence D^Q>'\ (This isomorphism is not canonical;

it depends on the choice of the coordinates (z^ ..., ZN}.} Since locally

there always exists a coordinate system for which a given real submani-

fold is generically situated, it suffices to study the 0-th Dolbeault sequence

only, at least as far as local problems are in question.
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§2.2, Basic estimates- Let V be an n -dimensional complex vector

space with dual F*. Choose basis {e^ • • - , en} in V and {e^ • ••, e*} in

F* so that < e/1 e* >=<?#. Here <J^ denotes the Kronecker delta. Given

a Hermitian form h{y, z\ y, ^6 F on F3 we define a differential operator

, V*) by setting

ef

where we have defined the coordinate system (z3 . . - 3 zn) so that this ex-

presses the element zi€i-\ ----- \-znen in V. Actually the operator 9^) does

not depend on the choice of {ei3 • • - , en}\ it depends only on h. We get

also differential operators

by requiring that

(2.2.1) d(h)(uw) = d(h)u/\w u e

Introducing a Hermitian inner product < , > and norm | | on V^

we let now V be an n- -dimensional Hilbert space. Given a Hermitian form

A( j, z) on F, we can find a unique Hermitian endomorphism h of F

such that A(y, ^)=<%j? z>(=<y 3 %z>) and we will define the eigen-

values of h as the characteristic values of h. As usual we shall now

extend the inner product < , > over AqV*> q = l, 25 . . - , n. First note

that there is a unique C-antilinear isomorphism FGz-^zEF* such that

<j3 z> = <y|z>. We introduce on F* the Hermitian structure < 3 >

setting <23 y> = < y, z> and define < , > on AqV* so that <yl/\y2A

.../\yq,zl/\z2/\.../\zq>=det\<yj,zk>\ if y\ ..., j9; z1, . . .3**eF*.

Now take an element v of AnV* such that |v |=l . We regard t; as a

holomorphic 7i-form on F3 so that \/—lnv/\v is a volume element

(measure) of V. Set d G^V^^^e-^v /\v. We can then form the

adjoint 8[h} of 9(^) by setting
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Now let Ai<^A2^'-^An be the eigenvalues of a Hermitian form

h. For any g-tuple K of different indices between 1 and n we set

(2.2.2) Cff(A)

Further, we set for l<q<^n

(2.2.2)' c,(A)

where the minimum should be taken over the set of all q- tuples K of

different indices between 1 and n. Then our main result here is the fol-

lowing

Theorem 2.2.1. Let the notation be as above. Then the following

estimates are valid:

(2.2.3) cq(h^\u\2dGt(V)^\d^u\2dG^

(2.2.3)' -cn_q(h)^\u\2dGt(V^\dwu\2dGt((n

Before proving this theorem we shall write 5fA) in a more explicit

form: We first assume that the base {ei, • • - , € „ } is orthonormal and

that h is diagonalized for {ei5 • • - , ew}5 that is, dh(z, z)fdzj='kjZj^

j^n. (This assumption leads to no loss of generality since Cp(fi) = Cp

whenever h and h! are unitarily equivalent and since the measures dGt(V}

have also the unitary invariance.) We set

d
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By integration by parts we have

(2.2.4) (§ju, v)t + (

where we have set (u, v)t = \ uvdGt(V). We set for any g-tuple K=

{&!,•• -5 kq} of indices from {1, 2, • ••, n}

We can write then

u=

so that UK is alternating in K, and we identify u and {UK}- Then, by

the rule (2.2.1) we obtain

(2.2.5)

From (2.2.4), (2.2.5) it follows now

(2.2.6)

where // denotes the g -tuple of indices obtained by adding j to / as a

first index.

Lemma 2.2.2. The notation being as above, it holds for U = {UK}€.

= E ( Z 115^11?+ E
IA-|=9 -

denotes the complement {1, 2, • • - , }\K and \\u\\2
t = (u, u)t for

As proved in Hormander Q4] we have
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= L L |9yM2- S
\K\ = q j

Also we have

I7I-4-1 i,h

-- E E
\K\ = q j^K ' " ' 1/1 = 5-1 j+k

To sum up we obtain

\dwu\*+\8[Mu\*= £ (E \S>jUK\2 + £

+ ( / [E_ E(^

which, combined with (2.2.4), proves

= S

The second term here actually vanishes since []£j, d^] = Q whenever

Thus the proof is complete.

Lemma 2.2.3. Let the notation be as above. Then

(2.2.7) S \\^u\\2
t^tcK(K)\\u\\2

t

(2.2.?y

/or uG C^(F) «wJ /or £#£ry q -tuple K of different indices between 1 <z^J n.

Proof. Note [ffi, 9/1] = * — 2^y. Hence
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Suppose now 2 ay Ay=0; 0 <| ay <^ 1, / E J^T. Then

From these and from (2.2.2) we obtain (2.2.7), (2.2.7)'. Q.E.D.

Proof of Theorem 2.2.1. Obvious by Lemma 2.2.2 and Lemma 2.2.3.

Note that nothing follows from Theorem 2.2.1 when £ = 0, so we men-

0 \i
| u | dG0(V)}2i

these are due to Hormander [JT]- Let A i < ^ A 2 < r - - < J A w be the eigenvalues

of a Hermitian form h and set Ay" = max(0, Ay), A7 = max(0, —Ay) . We

define the function c* by

9 \K\ = q jELK J j<=Kc 3

where the minimum should be taken over the set of all ^-tuples K of

different indices between 1 and n.

Theorem 2.2.4 (C6H). The notation being as above,

(2.2.10) c*0
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if u€C%(r,A<>V*).

This can be proved by Lemma 2.2.2 combined with the estimates

which are also consequences from (2.2.4).

Finally we shall list up some elementary properties of the functions

cq, c* without proof. Let H(V} be the set of hermitian forms on V and

set Hq(n = {heH(n\cq(h)>0}, H*(V)={heH(V)\c*(h)>Q}. Fur-

ther, let Hq(V}°, H*(V)° be the interiors of Hq(V}, H*(V} respectively.

Lemma 2.2.5. Let A i^ / l2<J - - -<J /U be the eigenvalues of a Hermi-

tian form h. Then

(1) heHq(V) if and only if A g^0 and 4-9+i^O

(2) h£H*(V) if and only if Aa > 0 or A«_ ? + i < 0

(3) heHq(V)° if and only if Aq > 0 and An-q+i < 0

(4) H*q(VY=H*q(V\i.z.H*q(V} is open in H(F)

(5) cq(]fi) = cq(h')9 c*(A) = c*(A/) whenever h, hf are unitarily equi-

valent.

(6) cq(sK) = cq(K) for any real s=^03 cq(Q) = q.

(7) c*(sK) = sc*(K) for 5>0

(8) cg, c* are lower semi-continuous on Hq(F)°, H*(V} respectively.

§2.3. Standard real submanlfolds. In this section we shall show

that Theorem 2.2.1 implies certain estimates concerning some Dirichlet

norms defined for the Dolbeault sequences of a remarkable class of real

submanifolds, namely, the standard real submanifolds of the second kind

in the sence of Tanaka

Definition 2.3.1. Let V^ W be vector spaces over C, R respectively,

and let Wc be the complexification of W. A map /: Vx V-*WC is cal-

led a W -hermitian form on V if and only if (1) f(y>z) is C-linear in

y, (2) f(y9z)=f(z,y) (s + it = s—it if 5, t G W}, (3) the elements

f(y> *)+/(*> y) y> z£V span W. The standard real submanifold as-

sociated with a JF-hermitian form /on V is the real submanifold
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rc|Cz, x}eVx w}

situated in complex vector space VxWc.

Remark. By standard real submanifolds Tanaka means much wider

class of real submanifolds than those defind above. All of the Mf cor-

responds to those of the second kind in the sense of []18].

As already studied in []18], Mf has some good properties, for

example, Mf is a Lie group in the following way. Let p be the projection

of Vx Wc onto V. Set for ?, f'e Vx Wc

(2.3.1) pf (£ 0 = § + ? + 2^lf(p(^}, p(S)).

Then the map pf is a complex affine transformation of Vx Wc into it-

self; moreover, if gGM/, then P|(M/) = M/. M/ becomes a Lie group if

one takes P|(O as the product f, £' of elements ?, f '€M/.

Since the left multiplications of M/ are extended to affine transfor-

mations of VxWC) they induce bundle automorphisms of T(Vx W c ) \ M f .

Of course each of these automorphisms maps the subbundles r(M/), V—1

T(Mf} onto themselves, in particular D°f = T(Mf')r\^:i:lT(Mf\ T(Mf} +

are subbundles of T( V x Wc) | Mf. But T(M/) + V11! r(Af/)

= T(Vx Wc^)\Mf\ for note Tx Wc = (Vx r) + V-l(Fx r), and

= VxW when VxW° identified with its tangent space at the origin.

Thus Mf is generic. Since the Dolbeault sequences for Mf

0

are also invariant under holomorphic transformations of M/, the left mul-

tiplications of Mf induce automorphisms of these sequences. Hence the

bundles Df and D(
f°'q} (<?2>0) can be naturally indentified with the pro-

ducts of Mf and of their fibers over one point of M/, e.g. over the origin.

Thus, in particular Df is canonically isomorphic to the trivial bundle

MfxV (V=(VxW)r\^-\.(VxW}\ and D(
f
Q'9) are anti -isomorphic to

MfxAqV* (see Lemma 2.1.1).
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Introduce now a Hermitian inner product < , > on V. Then this

defines canonically Hermitian structures < , > on the vector bundles

D(
f°'q} <jr = 03 1, 2, ... ft, according to the above identification by the group

structure of Mf. By the diffeomorphism Vx W$ (z9 #)->(*, # + V— If

(z, ,z))€E.M/5 one can induce a measure dVt on Mf from measure dGt(V}

dx 2) on Vx W^ where we have chosen a translation invariant measure

dx on W. Further, we define the adjoint d*f of 9/ by setting

, v>dVt

u e CyC/)'0-'-1*), i? <E Cy(D(0'<>).

Now set for £ € W*

to define the Hermitian form &(£) on F". Let c^ be the function defined

by (2.2.2}' as in the previous section with respect to the inner product

< , > on F, and set

Then we obtain as the main result of this section

Theorem 2.3.2. The notation being as above

(2.3.2) t

(2.3.2)'

Proof, (i) Proof of (2.3.2). We identify Vx W with Mf by the

map (*, #) i->(^5 x + <f^If(x, A;)), and sections of D^°'9) with ^i9F*-valued

functions over Fx ?F (in view of the anti-isomorphism between D(
f
Q'q}

2) For the notation dGt(V) see §2.2.
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and the trivial bundle MfxAqV* over M/). Then the Dolbeault sequence

D(
f°''} is regarded as a complex of the following form:

and it suffices to prove

To show this we introduce the partial Fourier transform:

u(z9 £)= ( e-
i<sl6>u(z9 oc}dx (z9 f) e Fx JT*.

Then a simple computation shows

where we have let the notation d^^ 8*h} be as in §2.1. Hence we obtain

by applying Theorem 2.2.1

Choose a translation invariant measure dg so that <c?^| C?A;> =n~d (d =

6.imRW}. (We regard here dx, dg as elements of AdW, AdW* respec-

tively.) Then the Plancherel formula ( | u(z, x) \ 2dx = ( \ u(z, f ) | 2d£

proves (2.3.2).

(ii) Proof of (2.3.2)7. Similarly proved.

We shall now give a sufficient condition for c q ( f ) to be positive.

Definition 2.3.3. A JF-hermitian form / on V is said to satisfy
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the condition vq if and only if for every O^f € W* one can find a sub-

space of V of dimension at least g + 1 on which the Hermitian form

— <?l/(y> *)> 7? z^ ^ is positive definite.

Lemma 2.3.4. Tjf / satisfies the condition vq^ then c?(/)>0 for

<^ n.

Proof. Since the condition vqQ implies the condition vp if

it suffices to prove cB_ f fo(/)>0. By (3) of Lemma 2.2.5, h(

if f =7^0, f G W*. Then the compactness of the projective space (JF*\0)/

(J?\0), together with (6) and (8) of Lemma 2.2.5, implies

min

Since cn_00(0) =71 — 90, cw_9o(/)>0 is proved. Q.E.D.

We conclude this section by indicating the identity of the trivialization

for the complex D^°''^ in the sence of Definition 2.1.3 with that done

here by using the group structure of M/. Let {ei, • • - , en} be an ortho-

normal base in V and choose a base {e/, • • - , ed'} in the real vector space

W. We set for z^Vx Wc

to define the coordinate system (zl5 z2, • • - , z^v), N=n + d in Fx JFC.

Then M/ is obviously generically situated in the sense of Definition 2.1.2.

As remarked at the end of §2.1, the sections C£=9&2£, l<J&<Jra form a

• • • ,frame in D(
f°'v and the sections Cjf^C^i A ••• AC^? where K=

runs over all ^- tuple from {1, 2, • • - , ra}, form a frame in D(
f°'q). It is

obvious that P£*(dzk) = dzk, l^k^n where pr was defined by (2.3.1);

therefore the sections Ci3 l^=k<^n are invariant under the left multipli-

cation of Mf hence the sections C]f3 \K\=q l<^q<=n are also invariant.

It is obvious that <w, z;>, defined by the anti-isomorphism between the

trivial bundle MfxAqV* and D(
f°'q\ coincides with 2 ^r^ if ^3 v €

i/n=<?
Here, of course we have set u= 2 UK^K so tnat "Xs *s
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alternating in K.

§2.4. Real submanifolds of the second kind. In this section

we shall introduce some important geometrical regularity conditions for

real submanifolds, and prove a subellipticity theorem for the Dolbeault

sequences, referring to a result of Hormander Q6J.

Let M be a generic submanifold of a complex manifold X and let

N=dimcX, n = N — codimRM. Define as in §2.1 the subbundle D° of

T(M) as the intersection r(M)nVI=Tr(M).

Defininition 2.4.I. The real submanifold M is said to be of the

second kind if and only if every real vector field can be written as a

sum of sections of D° and of brackets of sections of D°, that is, T(M) =

Let S denote the quotient bundle T(M)/D°. If M is of the second

kind, we can define for each z € M, a surjective anti -symmetric bilinear

map D°z®D°^(x®y)-*[_x, y~]zeEz so that [X2, FJ2 is the residue

class of the value [X, Y~]z e TZ(M) if X, Y are sections of D°. From

the vanishing of the Nijenhuis tensor it follows immediately

(2.4.1) [>, yj=[\l-ix, V

Definition 2.4.2. The notation being as above, the Levi-Tanaka

form at z^M is the £Vhermitian form fz on Dz defined by

3)

That this is actually SVhermitian, follows from (2.4.1).

Definition 2.4.3. A fF-hermitian form /on V is said to satisfy the

condition aq if and only if, for every O ^ f E W*^ one can find, either a

subspace of V of dimension at least q + 1 on which the Hermitian form

3) In this formula, the former V— 1 is the tensor field induced from the complex
structure whereas the latter expresses the multiplication of v

/— leC in the com-
plexification Sc

z.
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(#, y)=<f\f(x, y)> xy y€V is positive definite, or a subspace of

V of dimension at least n — gr + 1 on which A(f) is negative definite. The

real submanifold M is said to satisfy the condition aq (resp. the condition

Vq) if and only if for each z EM, /z satisfies the condition aq (resp. the

condition vq in the sense of Definition 2.3.3).

The following lemma will clarify the implication relation between the

conditions a, v = l,2,--n.

Lemma 2.4.4. If the condition vq is satisfied, then

The condition aq is satisfied if and only if the condition ocn-q is satisfied.

The condition vq is satisfied if and only if the condition ap is satisfied for

each

Now we introduce a Hermitian structure < , > on the vector bundle

D°. Then each fiber D° is an ra -dimensional Hilbert space. We set

A*(f)(*, y)= <£ \ f z ( x , y)>, x, y£D0
z, geS* to define the Hermitian

form hz(£) on D°, and we define the function cq over 51* by setting

*.(£)= c?(&,(£))

where we have defined the right hand side by (2.2.4). By (2) of Lemma

2.2.5, M satisfies the condition aq if and only if c^X) everywhere on

8*\Q GET* minus the zero section). Thus, if M satisfies the condition aq,

then, according to Theorem 2.2.4 and (8) of Lemma 2.2.5, there is a con-

stant CK> for every compact subset K of 5'*\0, such that

(2.4.2)

SeKr^3z,ue c%(Dz x sg,

where ds is a translation invariant measure on Dz X Ez and the differ-

ential operators d(hz(£», d(hs(e» on ®z should be regarded also as differential

operators on D° x Ez in trivial fashion. By a theorem in Hormander [JT],

we see that (2.4.2) implies that the Dolbeault sequences for M are sub-

elliptic at their (g + l)-th terms provided M satisfies the condition aq.
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To make this precise, note first that the Hermitian structure < , > on D°

naturally induces the Hermitian structure < , > on each D^0>Q\ Q<Cg<^

through the canonical anti-isomorphism between AqD°* and Z)(0'?) (Lemma

2.2.1). Choosing a measure dv on M, we can thus define the norm

\\u j — (\<u, u> d v j 2 for sections u of D(0>q\ Q^q^n. We now intro-

duce Sobolev norms || ||(S), s€R for sections of the vector bundles D^>q\

0<^<Jft. (Usually these norms for sections of a vector bundle E over

M are defined in the following way: Take a locally finite coordinate

covering {o)x} over M, and choose a partition of unity {(p\}((p\ € C^C^))

and local frames si, • • • , s{ € C00^^ JF) (e = fiber-dim £). We set (p\u =

^u^isi for u£C%(E) to define uXii^C^((jD^)^ further we define || ||5
f = i
by

regarding o)x as situated in Wn and wx,i as an element of C^(RW) (m =

dim^M). The norm || ||(S) is not unique but the passage to another

coordinate covering, or another partition of unity, or another local frame

gives also an equivalent norm on C%(K, E) for every compact subset J^

of M.)

Theorem 2.4.5. The notation being as above, define the adjoint 8b

of the differentiation db: C00(D(Q'q-l^->C00(D(0'q^ of the Dolbeault sequence

D<°''> for M, by

If M satisfies the condition <xq, then the differential operator

cr(i?(0'ff)) ^ u-+(dbu, dbU) e CZ(DW-'+V@DW-*-V)

is subelliptiC) that is, for every compact subset K of M there is a constant

CK>Q such that

(2.4.3) ||n||2

(J)
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By Theorem 1.4.2 in Hormander [6] we can reduce (2.4.3) to (2.4.2)

with ds replaced dvz\ dvz can be regarded as a translation invariant

measure on TZ(M), hence also it is regarded as a translation invariant

measure on DzxSz by the short exact sequence 0->J92-» TZ(M)-+3Z->Q.

Remark. The estimate (2.4.3) implies the subellipticity of the gene-

ralized Laplacian QCD(0'?)) 3 u - >(dbdb + 8bdb)u e Q(D(0'g)). In fact we

can prove the following by using the method of Hormander [J7]: Let

E) FI j = l, 2, • • • , s be Hermitian vector bundles over a manifold M and

let X{ : E-+Fi) l^i^s be first order differential operators. Assume that

for each compact subset K of M one can find constants £>0, C>0 such

that

Then the operator 2 X**Xi is hypoelliptic where Xi* is the adjoint of Xi
i = l

with respect to the Hermitian structures of E and F{. In [_1^\ E, FI were

assumed to be the trivial bundle of rank 1 and Xi to be real. The pre-

sent generalization, however, leads to no change of the argument Q7]

except a few obvious modifications.

Finally we mention a lemma which computes the Levi-Tanaka form

of the standard real submanifold M/, where / is a JF-hermitian form on

V. Recall that M/ is a Lie group whose left multiplications are extended

to aifine transformations of Vx Wc. Therefore we may compute only

the Levi-Tanaka form at 0. As done before, T0(M/) can be naturally

identified with Vx W by identifying TQ(VxWc} with VxWc. Let

D ° = T(Mf} r\ ̂ '^ T(Mf} and let 3 = T(M)/D ° . Then D° = (VxW}/\

W)=r, and SQ=VxW/V, by which we identify £0 with W.

Lemma 2.4.6. Under the above identification f is identical with the

Levi-Tanaka form of Mf at the origin. Thus Mf satisfies the condition

aq (resp. the condition i^) if and only if f satisfies the condition aq (resp.

the condition v).
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We will give the proof of Lemma 2.4.6 in Appendix 1.

§2.5. Exactness theorem for the Dolbeault sequences. The

main object of this section is to prove the following

Theorem 2.5.1. Let M be a generic real submanifold of the second

kind, and denote the p-th Dolbeault sequence of M by

0 _ » £(/>,0) 6 > £(/>,!) _ y ... 6 ? £(*,») _ > 0.

If M satisfies the condition V5o, then one can find for every z£M an arbi-

trarily small neighbourhood U such that the following sequences are exact :

We will prove this by combining Theorem 2.2.1 and Theorem 2.4.5.

Before proceeding we require a lemma which allows us to approximate

locally an arbitrary real submanifold of the second kind by a suitable

standard one.

Lemma 2.5.2. Let M be a real submanifold of the second kind and

let Z>°=r(M)nV^:F(M), S=T(M)/D°. Let further f, be the Levi-

Tanaka form at z£M. Then there is an analytic diffeomorphism o~ from

a neighbourhood U in X of z into the complex vector space Dl X Ec
z satis-

fying the following conditions :

(1) <rGO = 0.

(2) dff,\D2 = lD;.

(3) There is a neighbourhood & of 0 in D° X Ez and a smooth

map p: Q-*3Z such that

a) p(j, oc) (y€.D°5 x^Sz^ (7,3;) E$) vanishes at 0 to order

b) ff(Mr\ U) = {(y,x + J=l(f,(y, y) + p(y, *))) € D°2 x El | (y, x)
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This lemma follows easily from the implicit function theorem, we

give the proof for this in Appendix 1, not to violate the continuity. (See

also Greenfield Q3].)

Now we assume that M can be written in the form

M={(Z, *+V

where / is a JF-hermitian form on V satisfying the condition vq^ and p

is a smooth W- valued map of V X W vanishing to the order 0 ( | z \ 3 + | z \

| x | + | x | 2) at the origin. This is actually no loss of generality in prov-

ing Theorem 2.5.1 in view of Lemma 2.5.2; one may only extend the

function p in the lemma to the whole space D% X Ez by changing p out-

side a neighbourhood of 0. It suffices to prove the conclusion of Theorem

2.5.1 with M of this form and for * = 0. Take arbitrary %eC7(Fx W}

such that % = 1 in a neighbourhood of the origin and set for a

*)G Vx W}

(2.5.1) Ma = {(z, x + J=l(f(z, *) + a-2%(*, x)p(az9 a

(z, x)eFx W} if

Then there is a neighbourhood of 0 in M and a neighbourhood of 0 in

Ma (a =7^0) which are mutually mapped onto the other by the analytic cor-

respondence (*, x) <-» (az, a2x\ Thus it suffices to prove the conclusion

of Theorem 2.5.1 with M replaced by Ma and for 2 = 0. Note that the

hypothesis p(z, x} = 0(\ z \ 3+ \z\ \ x + x\2} implies that pa(z, x) = a~2

x(z, x)p(az, a2x) converges to 0 in the topology of C%(K0, W) when

a-^-0, where KQ = suppx. Thus the submanifold Ma might be said to con-

verge to the standard real submanifold MQ = Mf when a->0. (Note also

that the dependence of Ma on a€R is smooth.)

Choose now a base {e^ • • - , en} (over C) in V and a base {e(, • • - ,

ef
d} (over R) in W^ and introduce the coordinate system (zi, • • • , ZN\ N=

d in Fx Wc by setting z= f> Zie{+ % z^e'; z^VxW0. Then, if

\a\ is sufficiently small, the real submanifold Ma is still generically situa-

ted with respect to the coordinate system (zi, • • - , ZN). (See Definition
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2.1.2.) By this coordinate system we shall trivialize the 0-th Dolbeault

sequence of Ma

0 _ > £)<0,0) da > £)(0,1) d<* > ... 3a ^ £>((),«) _ > Q

as done at the end of §2.1; the resulting complex we denote by

A _ . TO 9o v rl da v dg ~u - > j^i a - > Hi a - > ••• - > \j

where El denotes the trivial bundle of rank ( j over M a . Identifying

each Ma with Vx W by the diffeomorphism Vx W^(z, x)-»(z, x + \l — l

(f(z,z^ + pa(z,x}y)eMaCVxWc, we can regard £*, 0<,q<,n as the

trivial bundles Eq of rank f ^ J over the vector space VxW. We thus

have defined the complex of the differential operators da depending on a

parameter a (belonging some interval |a| <S«o) acting the same vector

bundles Eq, Q<,q<,n

0 _ > E° da > E1 _ > ••• da > ̂ ^ _ > 0,

and we shall denote this complex by E°a hereafter. As often done so far,

we interpret a smooth section of Eq as an alternating function depending

on g-tuples from {1, 2, . . . 3 n}, and with values in C°°(V x W}. (See the

discussion after Definition 2.1.2.) Recall that, if we define the first order

differential operators da>k, l^k^n by

then dau for u^C°°(E6^ l<^q<^=n are given by replacing d(,u, 9# by

9au, da>k in (2.1.1). A simple computation shows

(2.5.2)

where the Hermitian forms h'(z, z~)= 2 hjkzjzk, l^i^d are defined by

/(*,*)= I! A'(*,*)e{. Set
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<u,v>= S UR-VE u,v£C^(VxW,E«)
\Ki = q

\u\2=<u, u>.

We introduce a one -parameter family of measures on Vx W setting

c£Ff = (27rV — l)~we~* | z | dzidzi--- dzndzndxidx2-- • dxj,

and define the adjoints d*a of da by

Now the proof of Theorem 2.5.1 follows essentially from the following

Lemma 2.5.3. // £>0 (resp. £<0), then there is a constant a0>0

and a constant C^>0 such that

(2.5.3)

if n — qQ<^q<^n (resp. O^g^^o) o,nd if \a\ <a0.

Proof, a) Case i>03 n — qQ<^q<^n. Note 90 — 9/ m the notation

of §2.3. Hence the assumption that f satisfies the condition v9o implies

cg(/)>0. Therefore applying Theorem 2.3.2, we find a constant C>0

such that

(2.5.4)

Now let KQ denote the support of % (see (2.5.1)), and choose another

compact KI which contains K0 in its interior and choose <^G

so that <p = l outside K^ (p = Q in a neighbourhood of K0, and

everywhere. Since 9a, d*a coincide with 903 ^o outside K0, we obtain

from (2.5.4)
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We set $a((p}u = (pdaU--da((pu). Then $«($?) is of order 0, and z?a(^)*w

= (pdt
au — d^qnji) where i?fl(00* denotes the conjugate transposed of $a((p)

when $a(#0 regarded as a matrix of scalar operators. Since &a(<p) = Q

outside KI, we can find a constant C such that

(2.5.5)

Now choose 0GC7(FxJF) so that 0 = 1 in a neighbourhood of

. We will estimate ||0w||2i/2) by the right hand side of (2.5.5) plus

|2c?Fj and times a positive constant, when a\ is sufficiently small.

Note that the condition v f f o is stable under small perturbation of real sub-

manifolds, so that there is a constant a'>0 such that Ma, \a <=a still

satisfies the condition v?0. Further, note that the condition yqQ implies

the conditions aq n — q0^q^n. Hence, by Theorem 2.4.1, we obtain

a constant Ct9 depending only on £>0, such that, when |a|<X

(2.5.6) \\<I>u\\2

(The independence of this Ct on the parameter a€Q — a', a'H can be

checked directly by analyzing the rather long course of the proof of

Theorem 1.4.2 of Q6] which we rely on when stating Theorem 2.4.1.)

Now let us prove (2.5.3) when \a\ is sufficiently small. Assume the

converse is true, that is, there is a sequence au such that av— >0 (y— »oo)3

and a sequence uv£C%(Eq) such that \\uv\
2dVt=l whereas \ ( 1 9^ | 2

+ \dt
au\2}dVt^»§ (y^oo). Then ||0M,||(i/2) is bounded by (2.5.6), so the

generalized Relich lemma implies that the sequence uv\K^ y = l, 2, ••• is

precompact in L2(Ki). Thus we could assume from the beginning that

\ \ufJl—uv\
2dVt-+Q JU, when v— >oo. But this, combined with (2.5.5) im-

f
plies \ | Up— uv 1

 2dVt— >0, that is, uv is a Cauchy sequence. Denote by

UQ the limit of this sequence. Since \(\dauv \ 2+ \Sf
ai>uv

 2)c?F?->0, dQuQ
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and SQUQ, defined in the distribution sense, both vanish. Since the operator

C^(Eq}^u-^(^Qu,St
Qu}eC^(E(l+l@Eq-l} is subelliptic by Theorem 2.4.1,

it follows UQ is smooth. Now we introduce a sequence yv£

v = l, 2, ... by setting

where f]Q^C^(Vx W} equals 1 in a neighbourhood of 0. If P(D} is a

differential operator of the form

then P(D}yv(z, 3c) = (P(D)^(z/v, x/v2} so that |P(^J^C for some

C>0 not depending on v. Therefore, in view of (2.5.2) and (2.1.1), the

entries of the matrix $(yv\ defined by $(7]v^u = 7]vdQu—dQ(7]vu) u€:

C^(Eq\ are bounded in absolute value by a constant C>0 not depending

on v. Thus \d(yv}u\<;C\u\ u^C^(Eq) for some constant C not de-

pending on v. Since dQ(7]vuQ)= — ?9(^v)^0, floG^Mo)= — $0?v)*^o, the

dominated convergence theorem implies

from which we further obtain by applying (2.5.4)

But Uwol2^^! since \ | M y | 2 c ? ^ = l v = l, 2, .... This contradiction

completes the proof in case £>0, n — qQ^q^n.

b) Case £<0, 0<^<J£o. Similarly proved.

Q.E.D.

Now we shall denote by E'a the complex

Q 77»0 9a r1! 9a ... 9a rw A

Proof of Theorem 2.5.1. Note that, by the sequence yv v = \^ 2, ...
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having appeared in the above proof, the condition (*) in § 1.4 is fulfilled

with E' replaced by E°Q, hence also with E' replaced by E'a, \a <Ja0

because E'Q and E'a are the same outside KQ = supp%. Further, by Lemma

2.5.3 and the remark after Theorem 2.4.5, we conclude that the assump-

tion &n-qQ and jtfqQ in §1.4 are satisfied for E'a, a|<[ao if one takes

dVt, £>0 or dVt, £<0 as dv in §1.4.

Now our next aim here is to find a subring of the ring of E'a -analy-

tic functions which is well filtered in the sense of Definition 1.4.4. Let

P be the set of (holomorphic) polynomial functions over Vx W°, We

define for each element f€P unusual degree d ( f ) by the following rules

( i ) d(/) = 0 if and only if / is a constant.

(ii) d(z{) = l i — 1, 2, . . . 7 & , whereas d(zi) = 2 if n<i<;N.

(iii) d(fg) = d(f}+d(g} provided fg=£0.

Then we obtain filtration PoCP^P2"- setting Pk = { f € P \ d(f)<>k}.

Denoting the map V X W B (z, #)->(*, * + V^l(/(*, z) + pa(z, A;))) G Vx

Wc by £fl, we define a ring of E'a -analytic functions Pa as the pull back

**(P) Of P, that is, Pa={/°*a = **(/)|/6P}. We S6t alSO PJ=«J(P*)-

Choose a smooth function <pQ in W^ which vanish nowhere in W^ such

that CPQ(X)= \x\ =\lxiH ^| outside a compact subset, and set

Lemma 2.504. The ascending chain P^CP^C • • • ( ! « I SS^oX together

with the sequence %y v = l, 2, • • - , satisfies the condition of Definition 1.4.4

£'" replaced by E'a, that is, the ring Pa is well filtered for E'a.

Note that the Hermitian structures on Eq, Q^q^n are already de-

fined by the trivialization relative to the coordinates (,2^, • • - , zn\

It suffices to prove this lemma when a = 0, since the complexes E'a

coincide with E'Q outside a compact subset. But the case a = Q can be

checked directly in view of (2.5.2) and (2.1.1). Thus the combination of

Theorem 1.4.5 and of Corollaries 1.3.1 and 1.3.2 proves that the conclu-

sion of Theorem 2.5.1 is true for z = Q if M=Ma, \a <J a0 . (Note that

all domains of Ma of the form P(/)5 where f is a family of a finite

number of elements of Pfl3 form a fundamental system of neighbourhoods
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of Ma.) As was remarked after Theorem 2.5.1, this completes the proof

of this theorem.

Note that Mf = MQ in the above proof. Thus we have also proved

the following, more satisfactory result for standard real submanifolds.

Theorem 2.5.5. Let a W-hermitian form f on V satisfy the condi-

tion VqQ. If an open subset U of Mf can be written as an intersection of

Mf with some polynomial polyhedron of VxW°, then the sequence

is exact. If a compact subset K of Mf is written as an intersection of

Mf with some polynomially convex compact subset of VxWc, the sequence

r(K,

is exact.

Finally we state as an application of Theorem 2.5.5, a continuation

theorem of Hartogs-Bochner type. We begin with an easy consequence

of Theorem A of p. 184 of Naruki [11]:

Lemma 2.5.6. Let f be a W-hermitian form on V. If a smooth

function u, defined in a domain U of Mf, satisfies the tangential Cauchy-

Riemann equation 9&w = 0, and if u = Q in some non-empty open subset of

U, then u = Q identically in U.

Now our continuation theorem is stated as follows:

Theorem 2.5.7. Let a W-hermitian form f on V satisfy the con-

dition »2- Let Q be a relatively compact domain of Mf whose boundary

d@ is also a generic real submanifold of VxWc. Then every smooth

function u in d@ satisfying the tangential Cauchy-Riemann equation of 9J2,

can be extended uniquely to v£zC°°(iB) such that v\Q satisfies the tangen-

tial Cauchy-Riemann equation of ,2.

In view of Lemma 2.5.6 and of the exact sequence C^(M/) =

^\ we can prove this lemma following
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entirely the method of Ehrenpreis £l]. See also Theorem 2.3.2' of

Hormander Q5].

Appendix 1

First we prove Lemma 2.4.6. Recall that M/ is a Lie group whose

identity element is the origin 0 of Vx Wc. Since the tangent space of

Mf is naturally identified with VxW, Vx W is considered to be the

Lie algebra of Mf. By (2.3.1) the curve (tz, tx + ^] — lf(z, *)), t€R in

Mf is a one-parameter subgroup. Note that the tangent vector of this

curve at £ = 0 equals (>, x)^Vx W= TQ(Mf). Thus

exp(>3 x} = (z, # + V

Also by (2.3.1) we can compute expz*, exp tz' when z, z 'E V (C Vx

that is,

Note the following formula which is valid in the Lie group theory:

(a.l)

where the dots indicate the terms of higher order in t. Thus we obtain

from

,

From this it follows

f(z, *')=-!-(-[>, v^I^+V^ifc ̂ ])

which is the conclusion of Lemma 2.4.6.

Proof of Lemma 2.5.2. Since the statement of this lemma is entirely

of local nature, we can assume that X is a complex vector space. We can

assume that z is the origin 0 of X. We identify X with its tangent space
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at 0. Then D°, hereafter denoted by V^ is a complex subspace of X and

TZ(M) is a real subspace of X such that T^M^ + J^l TZ(M} = X.

Choose a complementary subspace W of F in TZ(M). Then

C (the direct sum).

With this direct decomposition in mind, let p1, p2 denote the projections

of X onto TZ(M}=V+W, '^-IW respectively, and let cl, c2 be the

restrictions of p1, p2 to the submanifold M. Since Vx W=TZ(M\ the

differential del at * C= °) is the identity of Fx JF. (We shall identify the

direct sum of two vector spaces with the cartesian product of them; thus

TZ(M)= V+W-=VxW, X=V+Wc=Vx Wc^ Thus we obtain by the

implicit function theorem an inverse r of cl defined in a neighbourhood

Q of 0 in VxW. The set r($) is a neighbourhood of z in M and

Now the extraction from c2-r of the second order terms in z gives

where A is an analytic polynomial in z with coefficients in JFC
5 / is a

F-hermitian form on V, and p'(*, ̂ )^0(|z| 3+ |z| | x \ + \ x |2). Then

the analytic transformation Vx Wc ^ (z, f)->(^r, f + A(z)) € JT maps r(J2)

onto

Jlf = {(*, ^ + V- l ( (^ , ^) + p(z, A;))) 6 Fx W

where p(z, x) = p'(z, x— Re(A(z))). Note that p(z, x) also vanishes to

order 0 ( | z | 3 + | 2 r | | ^ | + |A; | 2 ) at 0. Thus the proof is complete if one

proves the identity f—fz- However this is almost obvious from Lemma

2.4.6 and the convergence to Mf of Ma defined by (2.5.1). For, note

that Vx W is also regarded as the tangent space r0(Ma) of Ma. Thus

we can regard the Levi-Tanaka form fa of Ma at 0 as a ^-hermitian

form on V. Note that by the analytic correspondence (z, $ ) <-> (az, a2£),

a^O a neighbourhood of 0 in M7 is mapped onto a neighbourhood of 0

in Ma. Since this correspondence induces the map TQ(M')=Fx WB^z, x}
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->(az, a 2x) 6 V X W~ TQ(Ma\ the JF-hermitian form fa does not depend

on a; therefore Iim/fl=/i5 where /i is no other than the Levi-Tanaka
a->0

form fg of M at z since we can assume M=Mf. On the other hand

Mf = limMa as shown in §2.5. Since the Levi-Tanaka form of Mf at 0
a-»0

equals f by Lemma 2.4.6, we conclude

/=lim(the Levi-Tanaka form of Ma at 0)
0-»0

= limfa=fl=fZ9
a-»0

which is to be proved.

Finally we shall briefly describe a few algebraic operations between

standard real submanifolds. These are very useful in producing examples

to which Theorem 2.5.1 is applied.

Let F, W be vector spaces over C, R respectively, and let / be a

JF-hermitian form on V. A linear map ft of W into another real vector

space W induces naturally a linear map of Wc into JF'% which we

shall denote also by n. The map n>f: Vx V-*W'C is then a JF'-hermitian

form on V if it is onto. (Recall the condition (3) of Definition 2.3.1.)

Lemma 1. Let /, n be as above, and assume that it is onto. If f

satisfies the condition vq, then n*f satisfies also the condition vq.

Now let f be a JF'-hermitian form on a complex vector space V.

Then there is a unique W® JF'-hermitian form g on V@V such that

g(*> y)=f(*9 y) if x, ye V

g(*> y)=f'(*> j) if *, ye V1

g(x, y) = 0 if xeV, y€.V.

We call g the direct sum of / and /', and write g=f®f- We set also
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to define the W® JF'-hermitian form /(g)/' on V§§V\ which we shall

call the tensor product of f and f.

Lemma 2. The notation being as above, f®f satisfies the condition

vq if and only if both f and f satisfy the condition vq\ f®ff satisfies

the condition vq if f satisfies the condition vq.

Since the characterization of the condition vq for f is obvious in

case dimEJF=l, Lemma 1 and Lemma 2 combined with Lemma 2.4.6

give numerous examples of standard real submanifolds satisfying the con-

dition vq.

Appendix 2

SPENCER SEQUENCES FOR SOME ELLIPTIC SYSTEMS

OF FIRST ORDER DIFFERENTIAL EQUATIONS

WITH CONSTANT COEFFICIENTS

0. Definition of Spencer sequence. We first recall the construc-

tion of the Spencer sequences (see Spencer C15U). For a vector bundle

E over a manifold M we denote by /*(£) the bundle of k jets of E. A

first order differential operator D from E into another vector bundle F

induces naturally a (C°°(M) -linear) map from Jk+i(E) to Jk(E) for each

^^0; we shall denote the kernel of this by Rk. Restricting the projec-

tion Jk+i(E)-+Jk(E) to Rk+i, we obtain natural maps Rk+i-*Rk, k>\

and Ri-*E. If all of these maps are surjective, then we say that the

differential equation Du = Q is formally integrable. We set gi= T*$$Er\

RI in Ji(E) where we have written T* for the complexified cotangent

bundle of M. Now let C0^ and set Ci = AiT^^E/S(Ai~lT^^)gl} for

l, where d denotes the antisymmetrization.

Theorem A. Suppose that Du = Q is formally integrable and that

C\ £>0 are all vector bundles. Then the following statements are equi-

valent '.

(i) gi is involutive.
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(ii) There exists a unique differential complex C'

c° D° cl D* c2 °2

satisfying the following conditions'.

a) Du = Q if and only if D® = Q for every local section u of E.

b) C ' is formally exact.

c) The principal symbol of D\ 6(D1}: T*(g)C'-»C"'+1 is induced

by the antisymmetrization '

For the proof see Goldschmidt \J2T\ or Quillen Q13]. The complex C'

is usually called the Spencer sequence for the equation Du = Q, and has

the following important property:

Theorem B (Quillen D.3]). In addition to the hypothesis of Theorem

A, assume that gi is involutive. Then, for every complex cotangent vector

$€. T*, z€zM, the symbol 0~%(D) at $ is injective if and only if the symbol

sequence

Q _ ^ £0 *eW*\ £1 *t(Dl\ £2 _ ^

is exact. In particular D is elliptic if and only if C' is an elliptic com-

plex.

1. Main Theorem. Here we only state our main theorem. We

shall first list up the assumptions for differential operators D : E^>F to

which our theorem is applied:

(i) £", F are trivial bundles over C^3 and D is a homogeneous

differential operator of order 1 with constant coefficients.

(ii) fDu=Dfu if f is analytic in CN.

(Hi) D is elliptic.

(iv) For every complex cotangent vector, the symbol 0^(1)) is either

injective ', or 0.

(v) gi, defined above is involutive.

Note that the homogeneity of D implies that Du = Q is formally in-

tegrable, so that the Spencer sequence C' for Du = Q is well defined.
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Theorem I. Let D satisfy the assumptions (i)^(v), and assume

that K is a polynomially convex compact subset of CN. Then the sequence

is exact.

To prove this theorem we must study some type of short complexes

C~(IT, CO-^C-CR", C^-^C-CR", CO where P, Q are homogeneous,

first order differential operators with constant coefficients.

2. Study of short complexes. We denote by \x\, \z\ the euclidean

norms (| Xl \ 2+ ••• | xn\ 2)1/2, (| zl \ 2+ ••• + \zn \ 2)^ of R", Cn respectively.

Choose positive integers p, g, r, and let P&, k = l, 2, • - - , n be (JD, g)

matrices with complex entries and Q^ k = 1, 2, • • - , n- be (a, r) matrices

with complex entries. Introduce differential operators on Rw &(-* — J?

setting

9 \

For these we assume the following assumptions:

(A2) // « q-tuple of polynomials u satisfies the equation P(~^ — )u

= 0, f^» /Agre w u€C°°(Rny such that --
ox

(A3) C'-MltW-^C* is either exact, or 0 for any f eCw.

Since Q(~Q~J is homogeneous, the assumption (A2) can be replaced by

the following equivalent but seemingly stronger assumption:

(A2)' For every q-tuple of homogeneous polynomials u such that
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\~d — )U==Q> one can find a r -tuple °f homogeneous polynomials v such\

that »=<

Now the main objective in this section is to prove the following

Theorem 2. Let the assumptions (Al), (A2), (A3) be fulfilled.

Then there is a constant C>0 such that

(a.l) dx

Here we have set (?*(?)— S Q*£k with conjugate transposed mat-

rices Q% of Qkj k=l, 2, • • - , n.

To prove this theorem we first introduce several Hilbert spaces:

Introduce the Gaussian measure dG=

on Cn: (zi, • • • , Zn) and put

where we have written A(Cn^) for the set of analytic entire functions

on (7. The space Hz is also a Hilbert space with the norm ||/|| =

(\ | / | 2 r fG)2. Obviously all the (analytic) polynomials belong to Hz. In-

tegrating by parts we obtain

(a. 2) \ j f e * v) = (u>

for analytic polynomials u, v in z, where ( , ) denotes the polar form of

|| ||2, of course. From (a.2) it follows the following orthogonality rela-

tion:

(a.3) (z-, z*)=a! 8a/s
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for multi-indices a, 0. The system Oz°%, where a ranges over all multi-

indices, that is, all n -tuple of non-negative integers, is a complete orthogo-

nal system. In fact the Taylor series for u€Hz is identical with the

Fourier series of u by this system in Hz. For later convenience we

denote by Hz>k the subspace of Hz spanned by monomials za, \a\=k.

Let Hx be the Hilbert space with norm || || which consists of all

locally square-integrable functions / on W such that \\f\\2 = (2n)~n'2( \f\ 2

e ~ ~ l x l Z l 2 d x . To introduce a suitable orthogonal system for Hx we define

the Hermite polynomials Hn(t) on the real line ( — °o<£< + 00) by

The following formulas are well known:

(a.4) Jfl.COfl.COe-^ dt = m\ 8mtt

(a.5) -jL#,(0 = Bff,-i(0.

The completeness of the system (Hn(t))n^Q is also well known, so, if one

sets for multi-index a = (a^ • •• , (£«)

then the family (Ha(x))a is a complete orthogonal system for Hx

Let now u(x}=^baHa(x) and v(z)=^caz
a be the Fourier series

a a

of u£Hx and of v£Hz respectively. We set

uk= E baH*W
\*\=k

u>k= H caz
a.

\a\ = k

Since the maps u i— >M*, v \—*Vk are orthogonal projections, we have

(a. 6) (uk, u
f} = (uk, u'k) = (u, u'k) u,u'^Hx

(vk, v') = (vk9 v'k) = (v, vfi v, vr£Hz.
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As we have done in §1.4, the differential operators P \~Q~~ \ Q\~ft~~\

PV-* — )? Q\-ft — ) define linear, closed, densely defined operators. Sx: H**.— >

H*, Tx: Hr
x-+Hl, Sz: #*-»#£, Tz: HT

z-+Hl if one puts D(SX)= the set of

u^Hq
x such that P\-ft — )w3 defined in the distribution sense, lies in #|,

\ Ox /

and similarly for D( Tx), D(S2\ D( Tz). By the homogeneity of P--

• ••, we obtain immediately

(a. 7)

We obtain also from (a. 6) and (a. 7)

(a.8)

Let tt(^= 2 ^/ and # m = Z ^ for u€iHx and v^Hz. Then the
/** i^fe

formulas (a.7)-(a.8) together with the fact that \\u —

), imply

Lemma 2. The set of q-tuples of polynomials in x (resp. in z) is

dense in D(T*)r\D(Sx) (resp. in D(T*)r\D(S2')) for the graph norm

|| (resp. for \\v\\

Now we introduce a one-to-one correspondence HxBu-*u£Hz which

assigns za to Ha(x) for every multi-index a. This correspondence is

unitary by (a.3) and (a.4), i.e. preserving the norms, and is called the

Gauss-Laplace transformation. It follows from (a. 5) that the Gauss-

Laplace transformation preserves the differentiation. Thus, in particular we

obtain

Lemma 3. An element u£Hx belongs to D ( T X ) (resp. D(SX)) if
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and only if u belongs to D(TZ) (resp. Z?(S2)). For u£.D(Tx} (resp. D(Sx))

it holds Txu= Tzu (resp. Sxu = S2u).

With the aid of this lemma we can reduce the estimate (a.l) to the

following equivalent one:

(a.9) \\v\\ ̂  C(\\ r*|| + ||S,t;|l) v € D( T*)n£(S,).

In fact (a.l), (a.9) are equivalent to the identities N(SX) = R(TX\

N(Sz) = R(Tz) respectively. (See Lemma 1.4.2.) Moreover these identities

are the same by Lemma 3. The estimate (a.9) is rather advantageous

than (a.l), the reason for which we shall now explain below: First note

that, if u€D(T*), then

hence

by the formula (a. 2). Using (a. 2) we can also transform ||S2ii||
2 as fol-

lows:

I I o , . i i 2 _l|5'4 -

k,l

^(Pku, Pku, Pku)
k

Therefore we obtain

\\Tzu\\2+\\S:U\\z=\E(z,u(z»dG-E\Pku\2dG
J K
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where we have set for £ 6 Cn and for u G Cq

Note that no differentiation occurs in the right hand side of (a.10). This

is the reason why we prefer (a.9) to (a.l).

To prove Theorem 2 we still need some estimates concerning several

norms for analytic polynomials which are used in Quillen £14]: Follow-

ing Quillen we set for an analytic polynomial u

Let ( J be the binomial coefficients.
\qj

Lemma 4 (Quillen). IN|' = ^ | | H | | O for

Lemma 5 (Quillen). There is a constant C depending only on q

such that

Proof of Theorem 2. As remarked above, we may only prove the

estimate

for analytic polynomials u. (i) We first prove this when the sequence

(7 Q(£)> c« Pd)> £/>

is exact for every non zero ? 6 (7. In this case there is a constant e > 0

such that

Using Lemma 5 we obtain from (a. 10)
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where we have chosen constant C">0 so that m\PkU\2<^C'\u\2. Thus,
k

by Lemma 2.2.4

(a.ll) \\Tn2+\\Szu\2^(ek-Cf)\\u

On the other hand the sequence

is exact by the assumption (A2). Hence there is a positive constant such

Ck that

Find an integer kQ such that £kQ — C">0 and set C=min(C05 Ci, • --,

Cjk0_i, eft0 — C')- Since l la l^SH^II 2 by (a.6), the combination of (a.7),
K

(a.ll) and (a.12) implies

(ii) Now we shall prove (*) without the assumption imposed at the

beginning of (i). By a suitable unitary transformation of the coordinates

(*i, • • • , * „ ) we may assume the subspace {?€:Cn|P(£) = ()(f) = 0} of Cw

is characterized by f 1 = f 2 - - - =^ = 0. Given a vector ? = (?i, • • • , ? » ) ^ C W

we write £', f;/ for (fi, ..., ?p), (f^+i, • • - , f,»). Then the assumption (A3)

implies that there is a constant £>0 such that

Thus, as just proved above, there is a constant C>0 such that

for analytic polynomials u. Here both hand sides still depend on z".
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We integrate this inequality over Cn~p : z" after multiplying both hand

sides by

then

\\T*u\*+\\S,u\\*^C\\u\\.

Thus the theorem is completely proved.

3. Proof of Theorem 1. We shall prove Theorem 1 applying

Theorem 2 to the Spencer sequence C' for Du = Q. Let the hypothesis

of Theorem 1 be fulfilled. By Theorem A, the Spencer sequence C' is

then formally exact. Hence the assumption (A2) is fulfilled for each

i>0 if one sets p(-j-} = D*, Q(-j-} = D'-1. (Note that C"', f^O are

all regarded as trivial bundles and Dl are differential operators with constant

coefficients. This follows from the translation invariance of Du = 0 and

from the naturality of the Spencer sequences.) Recall that ffg(D) is either

injectivej or 0 for every complex cotangent vector f . Thus the assumption

(A3) is also fulfilled with P(-£-\ (?(-/") rePlaced by D^ D^ 0'>°)-
\ Ox J \ Ox /

This follows from Theorem B. Thus we can apply Theorem 2 to
D" and we obtain

where we have chosen translation invariant Hermitian inner products

< , >,• for trivial bundles C\ and we have set

Hence the assumption (^i) in §1.4 is fulfilled for the complex C" = ( ---- >

0->C°->C1->---)- Thus, to finish the proof of Theorem 1, we may only
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find a good subring of the ring of C' -analytic functions which is well

filtered in the sense of Definition 1.4.4. Note the assumption (ii) in I

implies that every analytic function in CN is C "-analytic. Let Pk be the

set of analytic polynomials of degree not larger than k. Let <p(z) be a

smooth function such that <p(z)=\z\ outside some compact subset of C^5

and set xv(z) = e~v~l<p(z^. Then one can easily check that the conditions of

Definition 1.4.4 are fulfilled by PoC^iC^O" and %v v = l, 2, • ••, that

is, P=\JPk is well filtered. Thus Theorem 1.4.5 combined with Corollary
k

1.3.2 completes the proof.
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