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On the Limit for the Representation
by the Sum of Two Abundant Numbers

By

Sin HITOTUMATU

1. Introduction

For a positive integer n., let us denote by S(n) the sum of all divisors

of n including 1 and n itself. If S(n)>2n, =2n, or <2ra, n is called

the abundant, perfect, or deficient number, respectively. We shall denote

by S the set of all abundant numbers. It has long been known that the

natural density 5(S) of the set S exists and satisfies

0.241<<J(S)< 0.314,

and S constitutes an asymptotic basis of finite order, namely, every suf-

ficiently large integer is a sum of a bounded number of abundant

numbers.-^ Here, the abundant numbers are so defined as to include the

perfect numbers, without affecting, however, the density of the set of

abundant numbers.

Now, L. Moser has proved2^ that every sufficiently large integer ra>fto

can be represented as the sum of two abundant numbers, viz.

n = x + y, x, yGS.

The limit may be taken, for example, nQ = 83160. For simplicity, we

put

Received October 22, 1971.

1) cf. [3], Satz 9, p. 20. The author wishes to express his gratitude for the referee
who has indicated this fact.

2) The author knows the result in the book by Ogilvy [1].
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According to Ogilvy's book [1], the precise limit n0

mm [>o I {n > nQ} C M]

is not known. In the present paper, the author would like to show that

the precise limit n0 is 20161.

Though some part of the proof is due to a systematic search by com-

puter, careful conversational considerations were necessary during the

search,3 * so that, I hope, it will be worthwhile to report the present

result.

2. Elementary Properties of Abundant Number

It is well known that if n is decomposed into prime factors

(1) n=Pi1---pe
rZ

l (.Pi's are all distinct)

then we have

(2) ^=

Hence, if n € S, all multiple of n is again in S. If n is a perfect

number, then all its multiple other than n itself is in S. Further, if p

is a prime and not a Mersenne number, 2m~1p€ES, provided that 2w>p.

For example, every multiple of 6 except 6, every multiple of 28 except

28, and every multiple of 20, 88, • • • are all abundant numbers.

For even integers, the limit in the Moser's result is very simple.

Every even integer 7i^>48 can be represented by one of the forms

12 + 6/71, 20 + 6/71, or 40 + 6/71 (in ^2)

and hence it is in M. On the other hand, 46 is not in M.

The least odd abundant number is 945 = 33-5B7, and the next smallest

one is 1575 = 32-52-7. Combining the multiples of 6, 20 or 28 (except 6

3) The main part of the present paper has been published in [2], in Japanese.
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and 28 itself) with them, it is easy to see that every integer n divisible

by 3, 5, or 7 is in M if n,>951, 1555, or 1603 respectively, and that

these are the precise limit for the multiples of 3, 5, or 7 respectively.

3. A Reduction of the Limit

Moser's limit 83160 is equal to 945x88; here 945 is the least odd

abundant number, and 88 is the least abundant number coprime to it.

Hence every integer ft > 83160 can be written in the form

(3) n = 945Z + 88/71 (/, m > 0)

and both terms in (3) are in S.

Now, let us remark that though 315 = 32-5-7 itself is a deficient

number, it is quite close to S, say

3(315) =

315
=2/1_ 1 \

\ 105 /'

It is easy to see that 315/ES provided that / contains at least one prime

factor less than 105, and especially for Z = 2, • • - , 89. Therefore, every

integer n written in the form

(4) n = 3l5l + 8Sm (1 = 2, ..., 89; m,>0)

is in M, and this is true for n greater than

(5) 315x89 + 88 = 28123.

Thus we could reduce the limit quite a lot.

4. Determination of the Precise Limit

After the limit is reduced to (5), our main interest is restricted to

odd integers n less than (5) which is not a multiple of 3, 5, or 7 and

cannot be represented as (4). They are the numbers of the form
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315Z —88771 (Z = 89, 87, ... (odd); 77i>0). We fix m and look for the

smallest odd Z0 such that

(6) *0 = 315(Zo-3)-8877i<ES.

If we can find such Z0<89, then every n = 3151 — 88m (/o^Z^895

I odd) may be represented as

(7) ra = £0 + 315(Z-Z0 + 3)eM.

The results by computer4) for the search of IQ is given in Table 1. Here

we have omitted the case when m is divisible by 35 5, or 7, since the

precise limit may be estimated about 20000, and we have already seen

that the multiples of 3, 5, or 7 in such region are all in M. In the

Table, u is the limit 315 X 89 —88771, and — means that there is no 10

with (6) in the region Z0^89.

From Table 1, the only exceptional cases are 77i = 16 and 68. For

such 771, n = 315 / — 88771 cannot be represented in the form 315 X s + x

(s odd, x € S). It is not difficult to see that all odd abundant numbers s

less than 26627 = 315x89 — 88x16 and not a multiple of 315 are given

in Table 2.

We check for each n = 3151-88m (1 = 89, 87, ... (odd); 77i = 16, 68)

whether it is represented as n = s + t, where s is in Table 2, and t is an

even abundant number. The results for a possible decomposition are given

in Table 3; — means that no such representation is possible. Through

the considerations up to here, we can conclude that 20161 is the greatest

number not in M. Further, we have verified that only three numbers,

say
20161, 19067, 18437

are not in M in the region n^> 18000.

By similar check, I saw that the next largest integers not in M are

17891, 17261

4) In my experience, in the computation of S(ra), it was faster to divide n by 2, 3,

4, ••• up to VTI and add the divisor and the quotient when it divides ra, than to
decompose n into prime factors and use the formula (2).
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both correspond to m = 5S in Table 1, and these are only integers not in

M in the region n^> 17000.

Table 1

ii = upper bound 315x89—88771

*0=315(Z0-3)-8877i <ES

771

1

2

4

8
11

13

16

17

19

22

23

26
29

31

32

34

37

38

41

43
44

46

47

52

53

58

59

u

27947

27859

27683

27331

27067

26191

26627

26539

26363

26099

26011

25747

25483

25307

26219

25043

24779

24691

24427

24251

24163

23987

23899

23459

23371

22931

22843

1Q

11

19

27

47

27
11
—

51

27

27

19

19

59

47

59

47

43

19
27

27

35
19

43

19

43

75

27

*o

2432

4864

7208

13156

6592

1376
_

13624

5888

5624

3016

2752

15088

11132

14824

10868

9344

1696
3952

3776

6208

992

8464

464

7936

17576

2368

771

61

62

64

67

68
71

73

74

76

79

82

83

86

88

89

92

94

97

101

103

104

106

107

109

113

116

u

22667

22579

22403

22139

22051

21787

21611

21523

21347

21083

20819

20731

20467

20291

20203

19939

19763

19499

19147

18971
18883

18707

18619

18443

18091

17727

*o

35

35
43

27

—

27

47

59

35
27

51
59

43

67

75

35

51

75
43

43

35
83

51

43

59

43

*o

4712

4624

6968

1664
__

1312

7436

11128

3392

608
7904

10336

5032

12416

14848

1984

6848

14144

3712

3536

928

15872

5704

3008

7696

2392
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s

5775

6435

6825

7425

8085

8415

8925

9555

12705

SIN

prime factors

3.52*7.11

32.5.11-13

3-52.7.13

33.52.11

3.5-72.ll

32-5. 11-17

3.52-7.17

3.5.72.13

3.5.7. II2
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Table 2

s

15015

19305

19635

21945

22275

23205

25245

25935

26565

prime factors

3.5.7.11.13

33-5.11.13

3.5-7.11.17

3.5.7.11.19

34-52.ll

3.5-7.13.17
33.5-11.17

3.5-7.13.19

3-5.7.11.23

Table 3

I
89

87

85

83

81
79

77

75
73

71
RQ\j<y

67

65
63

61

59

n

26627

25997

25367

24737

24107

23477

22847

22217

21587

20957
20327

19697

19067

18437

17807

17177

III = J.U

decomposition

9555+17072

8925 + 17072

8415+16952

12705+12032

19635+ 4472

8085+15392

5775+17072

6825 + 15392

9555 + 12032

8925+12032
7̂7̂  _L 1 ARR9

7425 + 12272
—
—

5775+12032

12705+ 4472

n

22051

21421

20791

20161

19531

18901

18271

17641

17011

16381

III = UO

decomposition

6435 + 15616

8925+12496

8415 + 12376
_

8415+11116

8085+10816

5775+12496

6825 + 10816

8415+ 8596

8085+ 8296
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