Invariant Measure of the Infinite Dimensional **Rotation** Group

By

Yasuo Yamasaki

§1. Preliminary Discussions

Let H be a real Hilbert space, and O(H) be its rotation group, namely the group of all orthogonal operators of H. We intend to However, such construct an invariant probability measure on O(H). measure does not exist as proved below.

Let $\{e_n\}$ be a CONS (=complete orthonormal system) of H, and α_{nm} be the mean of $(Ue_n, e_m)^2$ with respect to a measure μ on O(H), namely

$$\alpha_{nm} = \int (Ue_n, e_m)^2 d\mu(U).$$

If μ is left invariant, for any orthogonal operator U_0 we have

$$\alpha_{nm} = \int (U_0 U e_n, e_m)^2 d\mu(U) = \int (U e_n, U_0^* e_m)^2 d\mu(U),$$

hence especially we have $\alpha_{nm} = \alpha_{n1}$, therefore α_{nm} does not depend on m.

Thus $\sum_{m=1}^{\infty} \alpha_{nm}$ must be 0 or ∞ , according to $\alpha_{n1}=0$ or >0. On the other hand, for any $U \in O(H)$ we have $\sum_{m=1}^{\infty} (Ue_n, e_m)^2 = ||Ue_n||^2$ =1, so that integrating both hand sides with respect to μ we get $\sum_{m=1}^{\infty} \alpha_{nm} = 1$, which is impossible. Therefore, left invariant measure can not exist on O(H).

In a similar but rather complicated way, we can prove that O(H)invariant measure does not exist on $\mathcal{L}(H)$, the set of all linear continuous

Received October 28, 1971.

operators of H, except the Dirac measure concentrated on zero operator. The latter is trivially O(H)-invariant.

Hence, in order to construct an O(H)-invariant measure, we must extend the group O(H) to some space which is larger enough than $\mathcal{L}(H)$.

§2. Gaussian Measure

If we fix a CONS $\{e_n\}$ of H, H can be identified with (l^2) , the space of all square summable sequences. The space (l^2) containes R_0^{∞} , and is contained in R^{∞} , where $R_0^{\infty} = \{(x_1, x_2, \dots) | \exists n, x_{n+1} = x_{n+2} = \dots = 0\}$ and R^{∞} is the space of all sequences.

Any linear operator A from R_0^{∞} to R^{∞} is determined uniquely from the double sequence (a_{nm}) by the relation:

$$e_n = (0, 0, \dots, 1, 0, \dots) \xrightarrow{A} (a_{n1}, a_{n2}, \dots, a_{nm}, \dots)$$

Thus the set $\mathcal{L}(R_0^{\infty}, R^{\infty})$ of all linear operators from R_0^{∞} to R^{∞} can be identified with $R^{\infty\infty}$, the space of all double sequences. However, since $R^{\infty\infty}$ is isomorphic with R^{∞} , we can consider Gaussian measure with variance 1 on the space $R^{\infty\infty}$. This is a measure on $R^{\infty\infty}$ such that for any finite number of $a_{n_1m_1}, \dots, a_{n_km_k}$, their joint distribution becomes k-dimensional Gaussian measure with unit variance.

Let $O_0(H)$ be the group of such orthogonal operators of H that keep invariant R_0^{∞} . If $U \in O_0(H)$, U can be considered as an operator on R_0^{∞} , and its adjoint operator U^* can be considered as an operator on R^{∞} . In this sense, the above constructed Gaussian measure is $O_0(H)$ -invariant as proved below.

If $A \in \mathcal{L}(R_0^{\infty}, R^{\infty})$ corresponds to (a_{nm}) , for any $U \in O_0(H)$ AU corresponds to $(\sum_{k=1}^{\infty} u_{nk}a_{mk})$ and U^*A corresponds to $(\sum_{k=1}^{\infty} a_{nk}u_{mk})$ where $Ue_n = \sum_{k=1}^{\infty} u_{nk}e_k$ which is actually a finite sum. Thus, multiplication of U from right or of U^* from left induces a rotation of row or column vectors of (a_{nm}) . Since Gaussian measure is rotationally invariant, such transformation keeps it invariant.

132

Hereafter, Gaussian measure with variance 1 on R^{∞} will be denoted with g.

§3. Other Invariant Measures

Consider a triplet $E_1 \subset H \subset E_2$ of separable Hilbert spaces where E_1 is continuously and densely imbedded in H while H is continuously and densely imbedded in E_2 . Let $\mathcal{L}(E_1, E_2)$ be the set of all linear continuous operators from E_1 to E_2 . It contains $\mathcal{L}(H) = \mathcal{L}(H, H)$.

Let $O_1(H)$ be the group of such orthogonal operators of H that keep E_1 invariant and act homeomorphically on E_1 , and $O_2(H)$ be the group of such orthogonal operators of H that can be extended to a homeomorphic operator on E_2 . We intend to construct a measure on $\mathcal{L}(E_1, E_2)$ which is right invariant with respect to $O_1(H)$ and left invariant with respect to $O_2(H)$.

Let $\{e_n\}$ be a CONS of H such that $e_n \in E_1$ for any n. Identifying H with H^* (=the dual space of H), the space E_2^* can be continuously and densely imbedded in H. Let $\{e'_n\}$ be another CONS of H such that $e'_n \in E_2^*$ for any n.

Now, for any $A \in \mathcal{L}(E_1, E_2)$, Ae_n belongs to E_2 . So that the mapping $A \rightarrow Ae_n$ is a mapping from $\mathcal{L}(E_1, E_2)$ to E_2 . Therefore any given measure μ on $\mathcal{L}(E_1, E_2)$ induces a measure μ_n on E_2 . Namely, for any measurable set B (=the set which belongs to the smallest σ -field which contains all Borel cylinders) of E_2 ,

$$\mu_n(B) = \mu(\{A; Ae_n \in B\}).$$

(We suppose that μ is defined on the smallest σ -field of $\mathcal{L}(E_1, E_2)$ which makes (Ax, ξ) measurable for any $x \in E_1, \xi \in E_2^*$.)

For any $U \in O_2(H)$, $UAe_n \in B$ is equivalent with $Ae_n \in U^{-1}B$. Therefore if μ is left $O_2(H)$ -invariant, μ_n is also an $O_2(H)$ -invariant measure on E_2 . Hence, μ_n must be a superposition of Gaussian measures with different variances and E_2 must be a nuclear extension of $H.^{[1][2]}$ (Except the trivial case of Dirac measure.) On the other hand, for any $A \in \mathcal{L}(E_1, E_2)$, $A^*e'_n$ belongs to E_1^* . Hence, from the measure μ the mapping $A \rightarrow A^*e'_n$ induces a measure μ'_n on E_1^* . For any $U \in O_1(H)$, $(AU)^*e'_n \in B$ is equivalent with $A^*e'_n \in U^{*-1}B$. Therefore if μ is right $O_1(H)$ -invariant, μ'_n is also an $O_1(H)$ invariant measure on E_1^* . Hence, μ'_n must be a superposition of Gaussian measures with different variances and E_1 must be nuclearly imbedded in H.

Theorem. If any infinite dimensional rotationally invariant measure exists on $\mathcal{L}(E_1, E_2)$ (except Dirac measure), E_2 must be a nuclear extension of H, and E_1 must be nuclearly imbedded in H.

The converse is also true.

We shall prove the converse. Let $E_1 \subset H \subset E_2$ be a nuclearly imbedded triplet. We choose CONS $\{e_n\}$ of H in E_1 and $\{e'_n\}$ in E'_2 .

Any $A \in \mathcal{L}(E_1, E_2)$ is uniquely determined from the double sequence (a_{nm}) by the relation $a_{nm} = (Ae_n, e'_m)$. Hence $\mathcal{L}(E_1, E_2)$ can be identified with a subspace of $R^{\infty\infty}$. Consider the Gaussian measure g on $R^{\infty\infty}$. If $g(\mathcal{L}(E_1, E_2)) = 1$, g can be identified with a measure on $\mathcal{L}(E_1, E_2)$. Right $O_1(H)$ -invariance and left $O_2(H)$ -invariance of this measure are easily checked.

Let $\mathscr{U}(E_1, E_2)$ be the set of all Hilbert-Schmidt operators from E_1 to E_2 , namely

$$A \in \mathscr{U}(E_1, E_2) \iff \sum_{n=1}^{\infty} ||Af_n||_{E_2}^2 < \infty$$
 for CONS $\{f_n\}$ of E_1 .

Since $\mathcal{M}(E_1, E_2) \subset \mathcal{L}(E_1, E_2)$, it is sufficient to prove $g(\mathcal{M}(E_1, E_2)) = 1$.

Without loss of generality, we can suppose that $\{e_n\}$ is a common orthogonal system of H and E_1 with $||e_n||_{E_1} = \alpha_n$, and $\{e'_n\}$ is a common orthogonal system of H and E_2^* with $||e'_n||_{E_2} = \beta_n$. From the assumption of nuclear imbedding, we get $\sum_{n=1}^{\infty} \frac{1}{\alpha_n^2} < \infty$ and $\sum_{n=1}^{\infty} \frac{1}{\beta_n^2} < \infty$. Now, $A \in \mathcal{N}(E_1, E_2)$ is equivalent with $\sum_{n=1}^{\infty} \frac{1}{\alpha_n^2} ||Ae_n||_{E_2}^2 < \infty$, hence with $\sum_{n,m=1}^{\infty} \frac{1}{\alpha_n^2} \left(Ae_n, \frac{e'_m}{\beta_m}\right)^2 = \sum_{n,m=1}^{\infty} \frac{1}{\alpha_n^2} \frac{1}{\beta_m^2} \alpha_{nm}^2 < \infty$. Since $\sum_{n,m=1}^{\infty} \frac{1}{\alpha_n^2} \frac{1}{\beta_m^2} < \infty$, $\mathcal{N}(E_1, E_2)$ is identical with a nuclear extension of $(l^2)_2$, the space of square summable double

sequences. So that the Gaussian measure g lies on $\mathscr{U}(E_1, E_2)$, namely $g(\mathscr{U}(E_1, E_2)) = 1$.

§4. Properties of the Gaussian Measure

Gaussian measure g on $\mathcal{L}(E_1, E_2)$ is right $O_1(H)$ -invariant and left $O_2(H)$ -invariant. Moreover;

1°) g is right $O_1(H)$ -ergodic and left $O_2(H)$ -ergodic.

For the proof of left $O_2(H)$ -ergodicity, we shall show that for any bounded measurable function f(A), the relation f(UA)=f(A) for any $U \in O_2(H)$ implies f(A)=constant modulo g-null set.

Since we suppose that g is defined on the smallest σ -field that makes (Ax, ξ) measurable for $x \in E_1$ and $\xi \in E_2^*$, any bounded measurable function f(A) can be approximated with a tame function. Namely, for given $\varepsilon > 0$ there exist finite number of $x_1, x_2, \dots, x_n \in E_1$ and $\xi_1, \xi_2, \dots, \xi_n \in E_2^*$ and a function φ of n real variables such that

$$\int |f(A) - \varphi((Ax_1, \xi_1), \dots, (Ax_n, \xi_n))|^2 dg(A) < \varepsilon$$

Since g is left $O_2(H)$ -invariant, if f(UA) = f(A) we have

$$\int |f(A)-\varphi((Ax_1, U^*\xi_1), \dots, (Ax_n, U^*\xi_n))|^2 dg(A) < \varepsilon.$$

Therefore we have

$$\int |\varphi((Ax_1, \xi_1), \dots, (Ax_n, \xi_n)) - \varphi((Ax_1, U^*\xi_1), \dots, (Ax_n, U^*\xi_n))|^2 dg(A) < 4\varepsilon.$$

If $U^*\xi_1, \dots, U^*\xi_n$ are orthogonal with $\xi_1, \xi_2, \dots, \xi_n$, the left hand side becomes

$$2\int |\varphi((Ax_1,\xi_1),\ldots,(Ax_n,\xi_n))-m|^2 dg(A),$$

where

$$m = \int \varphi((Ax_1, \xi_1), \cdots, (Ax_n, \xi_n)) dg(A).$$

Hence, $\varphi((Ax_1, \xi_1), \dots, (Ax_n, \xi_n))$ is approximated with a constant function, so that f(A) is approximated with a constant function. Therefore, letting $\varepsilon \to 0$, f(A) must be a constant function.

Right $O_1(H)$ -ergodicity of g is proved in a similar way.

 2°) Since the variance of any matrix element of A is 1, we have

$$\int (Ax, \xi)^2 dg(A) = 1 \quad \text{for } x \in E_1, ||x|| = 1 \quad \text{and} \quad \xi \in E_2^*, ||\xi|| = 1,$$

3°) If $x_1, x_2, \dots, x_n \in E_1$ are mutually orthogonal in H, the distributions of Ax_1, Ax_2, \dots, Ax_n are mutually independent. Namely,

$$g(\{A; Ax_1 \in B_1, ..., Ax_n \in B_n\}) = \prod_{k=1}^n g(\{A; Ax_k \in B_k\}).$$

This result comes from the fact that using the matrix representation of A for suitable CONS, Ax_k corresponds to k-th row vector.

4°) Though the measure g can not be constructed on O(H), the orthogonality of A is assured in the following sense. For any $x, y \in E_1$, we have

$$\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^{n}(Ax, e_k')(Ay, e_k')=(x, y) \quad \text{for g-almost all } A.$$

This can be regarded as the orthogonality in mean. The proof is obtained from the strong law of large numbers.

§5. Uniqueness

Let $E_1 \subset H \subset E_2$ be a nuclearly imbedded triplet of separable Hilbert spaces, and μ be a right $O_1(H)$ -invariant and left $O_2(H)$ -invariant measure on $\mathcal{L}(E_1, E_2)$. Let $\{e_n\}$ and $\{e'_n\}$ be CONS of H contained in E_1 and E_2^* respectively.

As mentioned in §3, the mapping $A \rightarrow Ae_n$ induces a measure μ_n on E_2 . Since μ_n is $O_2(H)$ -invariant, it is a superposition of Gaussian measures with different variances. If we assume that μ is left $O_2(H)$ -ergodic, then μ_n is also $O_2(H)$ -ergodic so that μ_n must be a single Gaussian measure with some variance. Since μ is right $O_1(H)$ -invariant,

136

measures μ_n do not depend on n. Therefore they are the same Gaussian measure.

The variance is determined as 1, if we assume that for any $x \in E_1$, ||x||=1 and $\xi \in E_2^*$, $||\xi||=1$

$$\int (Ax,\,\xi)^2\,d\mu(A)=1.$$

Moreover, assume that if $x_1, x_2, \dots, x_n \in E_1$ are mutually orthogonal in H, the distributions of Ax_1, Ax_2, \dots, Ax_n are mutually independent. Then, the joint distribution of Ae_1, Ae_2, \dots, Ae_n is the direct product of the distributions of Ae_k , which are the Gaussian measure with unit variance. Thus, μ must be identical with the measure g on $\mathcal{L}(E_1, E_2)$.

Theorem. A measure μ on $\mathcal{L}(E_1, E_2)$ is determined uniquely as g under the following three conditions.

- (1) μ is right $O_1(H)$ -invariant and left $O_2(H)$ -invariant.
- (2) μ is left $O_2(H)$ -ergodic.

or (2)' μ is right $O_1(H)$ -ergodic.

(3) For any $x \in E_1$, ||x|| = 1 and $\xi \in E_2^*$, $||\xi|| = 1$, we have

$$\int (Ax,\,\xi)^2\,d\mu(A)=1.$$

Remark that the mutually independence of $Ae_1, Ae_2, ..., Ae_n$ is not necessary for the uniqueness of the invariant measure. From the next section on, we shall prove the theorem.

§6. Characteristic Function

Consider the following characteristic function of μ .

$$\alpha(T) = \int \exp\left[i \sum_{n,m} t_{nm}(Ae_n, e'_m)\right] d\mu(A),$$

where $T = (t_{nm})$ is a double sequence which vanishes except finite number of (n, m).

If μ is right $O_1(H)$ -invariant and left $O_2(H)$ -invariant, $\alpha(T)$ is invariant under any transformation of the form $T \rightarrow UTV$, where U and

Yasuo Yamasaki

V are orthogonal matrices which correspond to elements of $O_1(H)$ and $O_2(H)$ respectively.

The relation: $T \equiv T' \Leftrightarrow {}^{\exists}U, V; T' = UTV$ is evidently an equivalence relation, and $\mathfrak{x}(T)$ is constant on any equivalence class. We shall remark that T is equivalent with T' if and only if the eigenvalues of T^*T are identical with those of T'^*T' . Therefore any T is equivalent with a diagonal matrix \varDelta . Thus, we have

$$\mathbf{x}(T) = \mathbf{x}(A) = \int \exp \left[i \sum_{n} \lambda_{n}(Ae_{n}, e_{n}')\right] d\mu(A),$$

where λ_n^2 are the eigenvalues of T^*T .

Put $\mathbf{x}(T) = \varphi(\lambda_1^2, \lambda_2^2, \dots, \lambda_n^2, \dots)$. If we prove that $\varphi(\alpha_1, \alpha_2, \dots) = \exp\left[-\frac{1}{2}\sum_{n} \alpha_n\right]$, then for any T we have $\mathbf{x}(T) = \exp\left[-\frac{1}{2}\sum_{n,m} t_{nm}^2\right]$ because $\sum_{n,m} t_{nm}^2 = Tr(T^*T)$, thus μ must be the Gaussian measure with unit variance, namely $\mu = g$.

In order to determine the function $\varphi(\alpha)$, we need a lemma.

Let $[0, \infty)^{\infty}$ be the set of all non-negative sequences, and $[0, \infty)_0^{\infty}$ be a subspace of $[0, \infty)^{\infty}$ such that

$$\alpha = (\alpha_n) \in [0, \infty)_0^{\infty} \Leftrightarrow \exists n; \alpha_{n+1} = \alpha_{n+2} = \cdots = 0.$$

Definition. A real function $\varphi(\alpha)$ defined on $[0, \infty)_0^{\infty}$ is called completely monotonic if it satisfies;

 $(-1)^{m} \varDelta_{\alpha_{1}} \varDelta_{\alpha_{2}} \cdots \varDelta_{\alpha_{m}} \varphi(\alpha) \geq 0$

for any $m=0, 1, 2, ..., \forall \alpha \in [0, \infty)_0^{\infty}, \forall \alpha_k \in [0, \infty)_0^{\infty}, where \Delta_{\alpha_1} \varphi(\alpha) = \varphi(\alpha + \alpha_1) - \varphi(\alpha).$

Lemma (Infinite dimensional Bernstein's theorem). Let $\varphi(\alpha)$ be completely monotonic on $[0, \infty)_0^{\infty}$ and right continuous at $\alpha = 0$. Then, there exists uniquely a finite measure $m(\beta)$ on $[0, \infty)^{\infty}$ such that

$$\varphi(\alpha) = \int \exp\left[-\sum_{n=1}^{\infty} \alpha_n \beta_n\right] dm(\beta) \quad \text{for } \forall \alpha \in [0, \infty)_0^{\infty}.$$

The proof, omitted here, is obtained from the corresponding theorem

for finite dimensional case.

For a while, we assume the complete monotonicity of $\varphi(\alpha)$, which we shall prove later. Then from the lemma, there exists a corresponding measure $m(\beta)$ on $[0, \infty)^{\infty}$.

As mentioned in §5, under the conditions (1), (2) and (3) of §5, the measure μ_1 of Ae_1 is a Gaussian measure with variance 1. Therefore we have

$$\int \exp[i\lambda_1(Ae_1, e_1')]d\mu(A) = \int \exp[i\lambda_1(x, e_1')]d\mu_1(x) = e^{-\frac{1}{2}\lambda_1^2},$$

thus $\varphi(\alpha_1, 0, 0, ..., 0, ...) = e^{-\frac{1}{2}\alpha_1}$.

Comparing with the result of the lemma, this means $\beta_1 = \frac{1}{2}$ for *m*-almost all β .

In the same way, we have $\beta_2 = \beta_3 = \cdots = \beta_n = \cdots = \frac{1}{2}$ for *m*-almost all β . Therefore we get

$$\varphi(\alpha) = \exp\left[-\frac{1}{2}\sum_{n}\alpha_{n}\right],$$

which was our final purpose.

§7. Complete Monotonicity

Let $R_0^{\infty\infty}$ be the set of infinite dimensional matrices which vanish except finite number of elements, and $\mathfrak{x}(T) = \varphi(\alpha_1, \alpha_2, \dots, \alpha_n, \dots)$ be a function on $R_0^{\infty\infty}$ where α_k are eigenvalues of T^*T .

A finite subset $\{T_1, T_2, ..., T_n\}$ of $R_0^{\infty\infty}$ is called admissible if $(T_j - T_k)^*(T_j - T_k)$ is diagonal for any $1 \leq j$, $k \leq n$.

Proposition. If $\varphi(\alpha)$ is positive definite for any admissible subset, then

- a) $\varphi(\alpha) \ge 0$ for $\forall \alpha \in [0, \infty)_0^{\infty}$,
- b) $\Delta_{\alpha_1}\varphi(\alpha)$ is negative definite for any admissible subset.

The complete monotonicity of $\varphi(\alpha)$ is easily derived from this proposition.

Proof of a). For $\alpha = (\alpha_1, \alpha_2, ..., \alpha_m, 0, ...)$, put $T_k = (t_{pq}^{(k)})$ where $t_{pq}^{(k)} = \sqrt{\alpha_q} \delta_{p-km,q}$. Then $(T_j - T_k)^* (T_j - T_k)$ is a diagonal matrix whose (p, p) element is $2\alpha_p$. From the positive definiteness, we have

$$0 \leq \sum_{j,k} x(T_j - T_k) = n\varphi(0) + n(n-1)\varphi(2\alpha),$$

hence $\varphi(2\alpha) \ge -\frac{1}{n-1}\varphi(0)$. Letting $n \to \infty$, we have $\varphi(2\alpha) \ge 0$.

Proof of b). We shall prove that for any admissible set $\{T_k\}$ and any complex numbers $\{\lambda_k\}$, we have $\sum \lambda_j \bar{\lambda}_k \Delta_{\alpha_1} \varkappa(T_j - T_k) \leq 0$.

We can find such T_0 that satisfies $T_0^* T_k = T_k^* T_0 = 0$ for any $1 \leq k \leq n$, and $T_0^* T_0$ is a diagonal matrix whose diagonal elements are $\alpha_1 = (\alpha_1^{(1)}, \alpha_2^{(1)}, \cdots)$.

Put

$$S_k = T_k, \ \lambda'_k = \lambda_k \quad \text{for } 1 \leq k \leq n$$

and

$$S_k = T_{k-n} + T_0$$
, $\lambda'_k = -\lambda_{k-n}$ for $n+1 \leq k \leq 2n$.

Then, $\{S_k\}$ is an admissible set. From the positive definiteness of z for $\{S_k\}$ we have

$$2\sum_{j,k=1}^{n}\lambda_{j}\lambda_{k}\chi(T_{j}-T_{k})-2\sum_{j,k=1}^{n}\lambda_{j}\lambda_{k}\chi(T_{j}-T_{k}-T_{0})\geq 0.$$

However, the diagonal elements of $(T_j - T_k - T_0)^* (T_j - T_k - T_0)$ are evidently the corresponding diagonal elements of $(T_j - T_k)^* (T_j - T_k)$ plus α_1 . Thus, we have proved b).

References

- Minlos, R.A., Generalized random processes and their extension to measures, Trudy Moskov. Mat. Obšč. 8 (1959), 497-518 (in Russian).
- [2] Umemura, Y., Measures on infinite dimensional vector spaces, Publ. RIMS Kyoto Univ. 1 (1965), 1-47.