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§ I. Preliminary Discussions

Let H be a real Hilbert space, and 0(H) be its rotation group,

namely the group of all orthogonal operators of H. We intend to

construct an invariant probability measure on 0(H). However, such

measure does not exist as proved below.

Let {en} be a CONS (= complete orthonormal system) of H, and

anm be the mean of (Uen, em}2 with respect to a measure ju on 0(H\

namely

If /JL is left invariant, for any orthogonal operator UQ we have

hence especially we have ctnm = cxni, therefore anm does not depend on m.
oo

Thus 2 °Lnm must be 0 or c>o? according to ani = Q or >0.
m=\ oo

On the other hand, for any UeO(H) we have 2 (Uen, em)2 = \\Uen\\
2

m=l
= 1, so that integrating both hand sides with respect to ft we get

OO

2 ctnm= 13 which is impossible. Therefore, left invariant measure can not
m=l
exist on O(-ff).

In a similar but rather complicated way, we can prove that 0 CEO-

invariant measure does not exist on J1(H\ the set of all linear continuous
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operators of H, except the Dirac measure concentrated on zero operator.

The latter is trivially 0(H)-mvariant.

Hence, in order to construct an 0(H) -invariant measure, we must

extend the group 0(H) to some space which is larger enough than

§2. Gaussian Measure

If we fix a CONS {en} of H9 H can be identified with (72), the

space of all square summable sequences. The space (I2) containes J?^,

and is contained in R*3, where R%={(XI, x^ ...)|%3 xn^i = xn+2='" = Q}

and R°° is the space of all sequences.

Any linear operator A from RQ to ^°° is determined uniquely from

the double sequence (anm) by the relation:

ew = (0, 0, . . - , 1, 0, . . . )— 4_>(oni, an2, • • - , anm, • • • )

Thus the set j2(Ro, R°°) of all linear operators from RQ to ^°° can be

identified with J?0000, the space of all double sequences. However, since

R0000 is isomorphic with R°°, we can consider Gaussian measure with

variance 1 on the space R0000. This is a measure on R0000 such that for

any finite number of an^m^ • • - , ankmk, their joint distribution becomes

^-dimensional Gaussian measure with unit variance.

I 3t O0(H) be the group of such orthogonal operators of H that keep

invariant R%. If U^OQ(H\ U can be considered as an operator on R%,

and its adjoint operator U* can be considered as an operator on R°°. In

this sense, the above constructed Gaussian measure is 00(^T)-invariant as

proved below.

If AeJ2(Ro, R00) corresponds to (anm\ for any U£0Q(H) AU
oo oo

corresponds to (2 Unk^mk) and U*A corresponds to (2 ankUmk) where
k=i k=i

Uen=^ unkek which is actually a finite sum. Thus, multiplication of U
k=i

from right or of i7* from left induces a rotation of row or column

vectors of (anm). Since Gaussian measure is rotationally invariant, such

transformation keeps it invariant.
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Hereafter, Gaussian measure with variance 1 on R™°° will be denoted

with g.

§3. Other Invariant Measures

Consider a triplet EiCHCE2 of separable Hilbert spaces where EI

is continuously and densely imbedded in H while H is continuously and

densely imbedded in E2. Let £(E^ E2) be the set of all linear continuous

operators from El to E2. It contains £(H)=J2(H, H}.

Let Oi(-ff) be the group of such orthogonal operators of H that keep

EI invariant and act homeomorphically on E^ and 02(H) be the group

of such orthogonal operators of H that can be extended to a homeomor-

phic operator on E2. We intend to construct a measure on J?(£i5 E2}

which is right invariant with respect to O\(H} and left invariant with

respect to 02(H).

Let {en} be a CONS of H such that en£Ei for any n. Identifying

H with jff* (=the dual space of fl"), the space E$ can be continuously

and densely imbedded in H. Let {e'n} be another CONS of H such that

e'n€.E% for any n.

Now, for any A € j£(.Ei, E2\ -4ew belongs to E"2. So that the mapping

A-*Aen is a mapping from j2(J?i, /?2) to 1?2. Therefore any given

measure # on J2(£"i, E2) induces a measure #„ on E2. Namely, for any

measurable set B ( = the set which belongs to the smallest ff-field which

contains all Borel cylinders) of E2,

(We suppose that {JL is defined on the smallest tf-field of J?(£i, E2) which

makes (Ax, f) measurable for any x£Ei, $£E2.)

For any U€02(H\ UAen€B is equivalent with AeneU~lB. There-

fore if /t is left 02(.ff)-invariant, yn is also an 02(£T)-mvariant measure

on E2. Hence, jj.n must be a superposition of Gaussian measures with

different variances and E2 must be a nuclear extension of '

(Except the trivial case of Dirac measure.)



134 YASUO YAMASAKI

On the other hand, for any A€JP(Ei,Ez), A*e'n belongs to E*.

Hence, from the measure & the mapping A-*A*e'n induces a measure n'n

on Ef. For any UeOi(H\ (AU)*e'neB is equivalent with A*er
n

6 U*~1B. Therefore if [j. is right 0i(£f)-invariant, /J.'n is also an Oi(H)-

invariant measure on E*. Hence, ii'n must be a superposition of Gaussian

measures with different variances and EI must be nuclearly imbedded

in H.

Theorem. If any infinite dimensional rotationally invariant measure

exists on J2(£i, E2} (except Dirac measure), E2 must be a nuclear extension

of H, and EI must be nuclearly imbedded in H.

The converse is also true.

We shall prove the converse. Let E\(^H(^E2 be a nuclearly

imbedded triplet. We choose CONS {en} of H in EI and {e'n} in E$.

Any A €: Jl(Ei, E2~) is uniquely determined from the double sequence

(anm) by the relation anm = (Aen, e^). Hence J2(E^ E2) can be identified

with a subspace of R°°°°. Consider the Gaussian measure g on J?0000. If

g(j2(Ei,E2)) = l, g can be identified with a measure on J2(Ei,E2}. Right

0i(jjf)-invariance and left 02(jEO-invariance °f this measure are easily

checked.

Let %(Ei, E2) be the set of all Hilbert-Schmidt operators from EI to

j£2, namely

Ae%(ElyE2) ^ I>\\Afn\\l<™ for CONS {/„} of E,.

Since %(E^ E2)C£(Ei, E2\ it is sufficient to prove g(9l(Ei, £2)) = 1.

Without loss of generality, we can suppose that {en} is a common

orthogonal system of H and EI with ||eK 11^=0^, and {e'n} is a common

orthogonal system of H and E$ with \\e'n\\E*2-= $n> From the assumption
00 1 °° 1

of nuclear imbedding, we get 2 — 2" ̂  °° anc^ 2 ~o2~ ̂  °° • Now,
»=i <^« »=i P»

A€9t(Ei9Ez) is equivalent with f] -̂ || Aen \\* <oo3 hence with f; -l~
n=\OCn

 2 n,m=lC£n

= f i4-o2»<°°. Since L 1 1 <oo, ^(^,£2) is identical
n,m=l(X,n pm n,m=l OCn pm

with a nuclear extension of (/2)2> the space of square summable double
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sequences. So that the Gaussian measure g lies on %(E\^ E2\ namely

4. Properties of the Gaussian Measure

Gaussian measure g on -£(£i, Ez) is right Oi(H} -invariant and left

02(£0-invariant. Moreover ;

1°) g is right 0i(#)-ergodic and left 02(#)-ergodic.

For the proof of left 02(#)-ergodicity5 we shall show that for any

bounded measurable function f(A), the relation f(UA)=f(A) for any

U&02(H) implies f(A) = constant modulo g-null set.

Since we suppose that g is defined on the smallest CF-field that makes

( Ax^ $ ) measurable for x€~Ei and $€E%, anv bounded measurable

function f(A) can be approximated with a tame function. Namely, for

given e>0 there exist finite number of xi9 x2, • • - , xn£Ei and Si9 ^2, • • - ,

and a function cp of n real variables such that

Since g is left (^(^O-invariant, if f(UA)=f(A) we have

Therefore we have

If £/"*?!, • • - , £/"*?» are orthogonal with £ i, £2, • • • 5 f » j the left hand side

becomes

where

771-
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Hence, <p((Axi, ?i), • •-, (Axn, ?w)) is approximated with a constant

function, so that f(A) is approximated with a constant function. There-

fore, letting e—>>0, f(A) must be a constant function.

Right Oi(^)-ergodicity of g is proved in a similar way.

2°) Since the variance of any matrix element of A is 1, we have

l for *6£x, ||*|| = 1 and £e£?,||£|| = l,

3°) If #1, #2, • • - , xn€Ei are mutually orthogonal in H9 the distri-

butions of Axi, Ax2, • • • > Axn are mutually independent. Namely,

g({A\ Axi€Bl9 - . . , ̂ ^65B})-n^({^; ^** SB*}).

This result comes from the fact that using the matrix representation of

A for suitable CONS, Axk corresponds to k-th row vector.

4°) Though the measure g can not be constructed on 0(H), the

orthogonality of A is assured in the following sense. For any x, y€Ei,

we have

1 n

lim— ZX^^j ek) (Ay, eC) = (x, y) for ^-almost all A.
«->«, n k=i

This can be regarded as the orthogonality in mean. The proof is obtained

from the strong law of large numbers.

§ 5. Uniqueness

Let Ei(^H(^E2 be a nuclearly imbedded triplet of separable Hilbert

spaces, and ju be a right Oi(£f)-invariant and left 02(#)-invariant measure

on MjE\i £2). Let {en} and {e'n} be CONS of H contained in EI and

E$ respectively.

As mentioned in §3, the mapping A-^Aen induces a measure lin on

£2. Since jun is 02(-£0-invariant, it is a superposition of Gaussian

measures with different variances. If we assume that fj. is left 02(H}-

ergodic, then yn is also O2(JfiT)-ergodic so that jun must be a single

Gaussian measure with some variance. Since ju is right 0i(jET)-invariant,
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measures jun do not depend on n. Therefore they are the same Gaussian

measure.

The variance is determined as 1, if we assume that for any

||*|| = 1 and

Moreover, assume that if x\^ x^ • • - , xn£Ei are mutually orthogonal

in H, the distributions of Axi, Ax2, • • - , Axn are mutually independent.

Then, the joint distribution of Aei, Ae2, • •-, Aen is the direct product of

the distributions of Ae^ which are the Gaussian measure with unit

variance. Thus, # must be identical with the measure g on JZ(Ei, £2).

Theorem. A measure jj. on J?(£i, £2) is determined uniquely as g

under the following three conditions.

(1) & is right Oi(H}-invariant and left 02(H) -invariant.

(2) ft is left 02(H}-ergodic.

or (2)' n is right Oi(H}-ergodic.

(3) For any x^E^ \\x\\ = l and £ eE$, ||f|| = l, we have

Remark that the mutually independence of Ae^ Ae2, • ••, Aen is not

necessary for the uniqueness of the invariant measure. From the next

section on, we shall prove the theorem.

§6. Characteristic Function

Consider the following characteristic function of /*.

where T=(tnm) is a double sequence which vanishes except finite number

of (ft, TTI).

If JJ. is right Oi(^T)-invarinat and left 02(^T)-invariant, %(T) is

invariant under any transformation of the form T-+UTV, where U and
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V are orthogonal matrices which correspond to elements of Oi(H) and

Oz(H) respectively.

The relation: T=T <=> 3U,F; T = UTV is evidently an equivalence

relation, and %(T) is constant on any equivalence class. We shall remark

that T is equivalent with T' if and only if the eigenvalues of T*T are

identical with those of T'*Tf. Therefore any T is equivalent with a

diagonal matrix A. Thus, we have

where ^jj are the eigenvalues of T* T.

Put x(r) = ^(Af, Al, • - - , t?n, ...)• If we prove that <p(a^a^ • • • )

= exp — — -J^aH , then for any T we have x(r) = exp| — -— 2*Jm
L £ n J L ^ 7Z.7W J

because 2 ^»m== Tr(T*T\ thus /^ must be the Gaussian measure with
n,m

unit variance, namely jU = g-

In order to determine the function <p((%), we need a lemma.

Let Q), oo)°° be the set of all non-negative sequences, and Q), c^0)^

be a subspace of Q), oo)°° such that

Definition. ^4 real function (p(ci) defined on QO, o0)^ w called

completely monotonic if it satisfies'^

for any 771 = 0 , 1 , 2 , . . - , vaG[0, oo)-, va*6[0, oo)-, ^^ AUlq>(a)

Lemma (Infinite dimensional Bernstein's theorem). Let <p(a) be

completely monotonic on QO, oo)~ and right continuous at a = Q. Then,

there exists uniquely a finite measure TTI(/?) on £0, oo)°° such that

for

The proof, omitted here, is obtained from the corresponding theorem
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for finite dimensional case.

For a while, we assume the complete monotonicity of <p(a\ which

we shall prove later. Then from the lemma, there exists a corresponding

measure m(@) on QO, °o)°°.

As mentioned in §5, under the conditions (1), (2) and (3) of §5,

the measure jUi of Aei is a Gaussian measure with variance 1. Therefore

we have

-
= e 2

Comparing with the result of the lemma, this means /?i = — for m-
LJ

In the same way, we have 02 = 03 = ••• = @n = ••• =— for 77i-almost

thus <p(ai, 0, 0, • - . , 0, ...) =

Comparii

almost all /?.

In the

all 0. Therefore we get

which was our final purpose.

§7o Complete Monotonicity

Let R%°° be the set of infinite dimensional matrices which vanish

except finite number of elements, and x(T) = cp(ai, a^ • • - , otn, • • • ) be a

function on R%°° where a& are eigenvalues of T* T.

A finite subset {2\, T2, . - - , Tn} of ^0°° is called admissible if

(Tj— Tk)*(Tj— Tk) is diagonal for any 1<^/, &<Jra.

Proposition, If <p(a) is positive definite for any admissible sub set >

then

a) K^)^0 for

b) Jai^(a) 25 negative definite for any admissible subset.
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The complete monotonicity of <p(pt) is easily derived from this

proposition.

Proof of a). For a = (<Zi, a2, • • - , am, 0, • ••), put Tk = (t$) where

t($=\lag5p-kmtq. Then (T— Tk}*(Tj- Tk} is a diagonal matrix whose

(p,/0 element is 2o^. From the positive definiteness, we have

hence (p(2a)^> — - r-^(O). Letting n,->oo3 we have
Tl 1

Proof of b). We shall prove that for any admissible set { Tk} and

any complex numbers {/U}, we have Zl^A/fe^a^C?} — Tk)<;0.

We can find such T0 that satisfies T0*Tk = Tk*TQ = Q for any

l<^k<^n, and TQ*TQ is a diagonal matrix whose diagonal elements are
„, _ fVyd) /T/d) "\ot\ — \a± 3^2 3 • • • ; •

Put

Sk=Th, l'k = lk for l<^k<,n

and

S* =!*_„+ To, A^- -^^_ w for 71 + 1^^^2/1.

Then, {5^} is an admissible set. From the positive definiteness of 7. for

{5^} we have

2 Z lj\kx(Tj-Tk)-2 E lj\k%(Tj-Tk-TQ)^Q.
j,k=i j,k=i

However, the diagonal elements of (T— Tk- T0)*(Tj- Tk- jT0) are

evidently the corresponding diagonal elements of ( 2 y — Tk)*(Tj— Tk) plus

<%i. Thus, we have proved b).
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