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Projective Limit of Haar Measures on O(n)

By

Yasuo YAMASAKI

Introduction

In this paper, we shall show that the Gaussian measure £l~] on R0000

is obtained as the projective limit of Haar measures on 0(n\ This is a

natural extension of the fact [J2] Q3] : the Gaussian measure on R°° is
obtained as the projective limit of the uniform measures on the n-

dimensional spheres.

D. Shale ^4] considered the family of Haar measures on 0(n) to

construct a finitely additive measure on 0(oo). But he did not treat the

projective limit. Also a report by H. Shimomura £5] is useful for the

information on this topic.

§1. Orthogonal Group O(ri)

The n -dimensional orthogonal group 0(ra) is the group of all orthog-

onal transformations of Rn. If we fix a C.O.N.S. (= complete orthonormal

system) of Rn, it is identified with the group of all matrices (&#) which

satisfy the orthogonality relations:

(1-1)

Because of (1.1), only n(n — 1)/2 matrix elements are independent,

and the other n(n + l)/2 matrix elements can be considered as functions

of the formers.

Usually, n(n— 1)/2 Euler angles are used as independent variables of
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0(n), but in this paper, for the convenience of later analysis, we shall

use another system of independent variables which we shall explain in

the last part of this section.

Let Sn_i be the unit sphere of Rn\

(1.2) Sn.i = {(xl9 *2f - - . , *„); *? + *| + - + *5 = l}.

The group 0(n) can be regarded as a transformation group of S»_i- The

group of all orthogonal transformations which keep the vector (0, 0, • • - ,

0, 1) invariant, is isomorphic with 0(n—l\ so we identify them. For

any U, V^0(n\ we have UV~l^O(n — 1), if and only if the last row

vector of U is equal with that of V, namely

(1.3) unj = vnj (l^j<*n).

Therefore, the coset space 0(n — l)\0(ra) is identified with S»_i. Suppose

that a mapping SM_i ^ x—* Ux £O(n) is given such that the last row

vector of Ux is just x. In other words, each Ux is a representative of

the coset which corresponds to x. Then, any U£0(n) is written

uniquely in the form:

(1.4)

For V€:0(n}9 the last row vector of UXV is xV, So, if U is represented

as (1.4), we have

/u, o\ /u, owr o\
(1.5) UV=( )UXF=( }Uxy

\o i/ \o i / \o i/

/z/iJF o\
= C/»K for some JFeO(re-l).

\0 I/

Therefore, any multiplication from right on 0(re) induces (1) a multiplica-

tion from right on 0(n— 1), and (2) an orthogonal transformation on

5.-!.

Consider the uniform measure on Sw_i and the Haar measure on

0(71 — 1). From the above discussion, we see that their product measure
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is just the Haar measure on 0(ra), if we identify Z7G0(n<) with (£/i, x)

£=.0(n— l)x Sw_i. Here we assume that the mapping x-+Ux is measura-

ble, but this assumption is satisfied if Ux is defined and continuous except

on some closed null set of Sn_i.

Now, we shall define concretely the mapping x->Ux. Let {ei, e2s • • - ,

en} be the C.O.N.S. of Rn. If xn = <x, en>=£0, the vectors x, d,

62, ••-, en-i are linearly independent. Then, we adopt the Schmidt's

orthonormalization of them as row vectors of Ux.

Explicitly writing, the matrix elements of Ux is as follows;

Unj — Xj

if(1.6) <

Hereafter, let the mapping x-+Ux be always the above one.

Since 0(n}~0(n— 1) X Sw_i, repeating the similar procedure, we

have 0(n}~SiX 52X ••• X S»_i. Then, the Haar measure on 0(n) is the

product measure of uniform measures on Sk (l^k^n— 1). More

exactly speaking, we can formulate as follows. Let cpn be the mapping

OM->0(n-l) such that

fUl °\(1.7) Vn(U)=Ui where U=[ }UX.
\0 I/

Then the mapping <pk+i°<Pk+2°---°<Pn maps O(n) to 0(&). Denote the

matrix elements of the image matrix as u($ (l^z"»/^A;). They are

functions on 0(n).

If we adopt u(ff (l<,j<Lk-l,2<^k^n) as n(n-l}/2 independent

variables of 0(n\ the Haar measure fin on 0(n) is represented as follows

(except normalization constant):
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n k-l _l k-l

k=2 j=l 3 j=l

the content of Q ] being the uniform measure on Sk-i.

§20 Projective Limit

Since the Haar measures jun satisfy

(2.1) jun_i(A) = /tn(<p~l(A)) for a Borel subset A of 0(n — I)9

according to a theorem due to Bochner, we can construct the projective

limit probability space (J2, &9 /*). It satisfies the following properties:

PI) acno(n-)
n=l

P2) fn-i
:=<Pn0fn' Here, fn is the restriction of nn on fi, where

oo

Tin is the projection from T10(n) onto O(TI).
n=l

OO

P3) ^§ is generated by \J f~l(fen\ where &n is the whole of Borel
n=l

subsets of 0(n).

P4) #(f-\Aj) = Mn(A) forAe&n-

The matrix elements u|A} (l<.i,j<:k) can be regarded as functions

on j?s as well as on 0(n) for n^>k. Then, for any

(2.2) f

u(fj(a)) is a measurable function on J2 because of P3).

Lemma 1.

(2.3)

(2.4) n . + 2

V 2 ) V 2 /

/n ̂  re, w&«-e /* fs Gamma function.
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Proof. From P4), we have

( u{fj(<ai)dji = { uWdyn = Q.
JQ J0(n)

Similarly, using 2) also, we see that

S J O(n)

Substituting (1.8),

(2.5) =( Iuu
J 0(m)

n-\
where /y= integration of u($ by II \ dmk, mk being the uniform

measure on Sk.

Now, we shall calculate

Since

Using (1.6), we have

, \UX, we have

-£/-(«-!) o"

_o i_

re

Uxdmn-i =
.0 1_

jr(w-l)

* n«-i)
Jn-l

J) 0_

where J(rl} = ( ^^ dmn-i = (* sm^dddA" sin"-*'"1 ddO. Thus we
Js.-irw^+i Jo Jo

have

(2.6)
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On the other hand, since

we have (2.4) from (2.5) and (2.6).

Lemma 2. {\ln u(/j (ci)'9 n^>max.(i, /)} forms a Cauchy sequence in

L2(&, /JL). The speed of convergence is dependent on j, but uniform in i.

Proof. From (2.4), we have \\<Jnu(fi\\ = l9 and

/ V 2 /
-j + 1\

/

The latter tends to 1 as re, m— >°o because we have asymptotically

no '
From Lemma 2, ^nu(/j converges to a function X^ in £2(j?, /^).

Then, JTy is defined for almost all a), and some suitable subsequence of

{\jnuW (a))} converges to Xij(u>) almost everywhere. Evidently, we have

(2.7) XiJMdJu = Q and

§3. Identification with the Gaussian Measure

Proposition 1. For almost all a), ($'€.&, the following (1) and (2)

are equivalent.
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(1) Zy-(ft)) = Zy(fl)0 for any i, j.

(2) HW(a)) = n$(ft)') for any i,j,n where ra J>max(i, /).

Proof. (2)=^(1) is evident, because -3T//0)) is the limit of some

subsequence of {<Jnu("j (ft))}.

On the other hand, from the definition (1.6) of ET^, we see that for

U€.0(n)9 if Z7= ^ .. \UX9 then the column vectors of U\ is obtained

by the Schmidt's orthonormalization of the projections to Rn~l of the

column vectors of U. Therefore, if m<^n, the column vectors of C/(m)

is the Schmidt's orthonormalization of the projections to Rm of the column

vectors of U^n\ and in the limit of n— >oo (fixing TYI), \ln times of the

matrix elements of U(n} tend to JC,7. So, u(ff (l^i,j^rn) is obtained

by the Schmidt's procedure from Xij. Q.E.D.

Consider the mapping i/r : a) 6 @ -> (X/;-(o))) € i?0000, where .S0000 is the

space of all double sequences. ^ is one-to-one excpet on a suitable null

set of Q9 because Xij(ct>) = ^-(coO for any i, y implies U;y )(ft)) = u/J))(ft>0

for any £, y, 7i, therefore fn(a))=fn(o)f) for any /&, so that o) = a)f.

Next, we shall discuss the measurability. From P3) of § 2, the

probability measure fj. is defined on the smallest tf-ring d£ which makes

all u{*j((£i) measurable. This is equivalent to say <^> is the smallest (T-ring

which makes ^y(co) measurable as seen from the proof of the proposition

1. Therefore the image ^r(^) is the smallest (T-ring which makes all

projections a=(a^ £ I?0000— ><z,-y £ Rl measurable. In other words, -^r(^) is

the smallest (T-ring which makes all Borel cylinder sets with the base in

R%°° measurable, where RQ°° is the space of all double sequences which

vanish except for finite number of (i, /).

Finally, we shall show that the measure JUL on Q is mapped to the

Gaussian measure g on R°°°°.

For this purpose, we shall prove that

(3.1)
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where £// are arbitrary real numbers and the summation is carried out for

Since JnuflW tends to JT/y(fl)) in L2(£, /*)» the left side of (3.1) is
approximated by

(3.2)

the error tending to 0 as T&->CO.

The integral (3.2) is equal with

(3.3) ( exp[>T==lZ
JO(ii) f .y

because #w is the Haar measure on 0(n).

Since the convergence <Jnu($-:>Xij is uniform in j, VTZ- z4_f-,/ in the

integrand of (3.3) can be replaced by ^n — iu^-fy with good approxi-

mation, if n is large enough and i+j<zk for some fixed k. Namely,

with small error the left side of (3.1) is approximated by

(
J0(n)

Substituting (1.8), this quantity is equal except the normalization constant

of jun with

(3.4) Jexp[V^lL «y ̂ ^iu^i] _n[{l - Zfai"--,

f *~z" /l^ • ) M-fe-2 r | jfe-j n
However <1— 2 — ̂ r 2 converges to exp — -^-S^f/ uniformly in

( /=i 7i — J J L £ y=i J
^,7 as ?i— >oo. Thus, the integral (3.4) including the normalization con-

stant converges to exp — —2 £?/ as
L ^ i,/ J

Thus, we have proved
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Theorem. The protective limit space (J2, &9 #) is isomorphic with

the Gaussian measure g on R0000. Namely, there exists a measure-

preserving one-to-one mapping \[r from a suitable subset @ of @ onto a

suitable subset R0000 of R0000 where [*(&} = g(R0000) = l, and </> preserves

matrix elements in some sense.
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