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On a Nonlinear Bessel Equation*

By

YOSHINORI KAMETAKA**

1. Introduction

In the theory of type II superconductivity A. A. Abrikosov

discovered in 1957 that the so-called Abrikosov's mixed state can be des-

cribed as a special solution of Ginzburg-Landau equation the basic equation

of the theory of superconductivity (C2H). Suppose that there exists a

cylindrical superconductor of type II at temperature below its critical value

Tc and there exists external magnetic field parallel to its axis of cylinder

the strength of which is lower than upper critical field HcZ. Abrikosov's

mixed state is the phenomenon that the magnetic flux penetrates the

superconductor forming triangular lattices of flux lines and the fluxoid of

each flux line is quantized. To describe one flux line Abrikosov derived

from Ginzburg-Landau equation the singular boundary value problem for a

nonlinear Bessel equation.

( -^(0-r"V(r)+v2r-2Kr) = (l-^2(r)Xr) re(0, oo)
(1-1)

{ it<0) = 0, ti<oo) = l .

Here r is the independent variable which means the distance from the

center of flux line. w(r) is the dependent variable called order parameter

of Ginzburg-Landau which takes real value between 0 and 1 where w(r)

= 0 the sample is in normal state and where w(r) = l the sample is in

full superconducting state. tt/(r) means —=-uo(f). In 1966 E. Abrahams and
dr
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T. Tsuneto ([j£J) derived simple nonlinear diffusion equation to describe

space-time variation of Ginzburg-Landau order parameter u(x, i) (complex

valued) under suitable physical situation.

(1.2) ^u(x,t)=Au(x,t)+(i-\u(x,t)\
2)u(x,i) (^0^^3x(o5 oo).

(1.1) can be obtained from (1.2) through the separation of variable

(1.3) u(x, t)=u(xi, xz> #33 0= u(rcosO, rsind, x^ t) = w(r}eivd

by cylindrical coordinates in R3. On the other hand in the theory of

superfluidity in 1961 L.P. Pitaevskii ([4]) and in 1963 E. Gross ([5])

derived also (1.1) to describe vortex line in superfluid 4 He. They start

from the basic equation

(1.4) i--u(x, t}=-Au(x, t)+\u(x, t)\2u(x, t) (x,

Through the separation of variable

(1.5) u(xi, x2, %3, t) = u(r cosfl, r

(1.1) can be obtained from (1.4). From (1.3) or (1.5) u(x, t} is single

valued if and only if v is an integer. This fact corresponds to the

quantization of fluxoid (or circulation) of flux line (or vortex line).

Through the numerical calculation of energy the fundamental mode cor-

responding to v = l is most favorable to exist in nature. The numerical

integration of (1.1) in the case of v = l was performed by V.L. Ginzburg

and L.P. Pitaevskii in 1958 ([6]). Their results can be seen in figure 1.
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Fig. 1 Numerical solution of (1.1) in the case of v = l due to
V.L. Ginzburg and L.P. Pitaevskii ([6])
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As shall be stated precisely in section 2 the nonlinearity appeared in

(1.1) can be generalized slightly. But to see what happens it is sufficient

to observe the special case (1.1). After some preparations (section 2~~4)

we can give our results in section 5. Theorem 1~4 are concerned with

the boundary value problem (1.1) replacing the boundary condition at

infinity by the boundary condition at finite point r = L. If L is smaller

than or equal to some critical value LQ then the interval QO, I7\ is sub-

critical, that is, there exists no nontrivial solution (theorem 1). If L is

larger than LQ then the interval [J), L] is supercritical, that is, there

exists uniquely the nontrivial solution (theorem 2). Theorem 3 asserts

that if we put Dirichlet boundary condition at r = L then the nontrivial

solution is the strictly increasing function of L. This fact plays an im-

portant role in the proof of theorem 6-^12. Theorem 5 asserts that

there exists a family of formal power series solution in powers of r of

(1.1) in the case of v = l, 2, 3, • • • . Theorem 6 and 7 assert that there

exists uniquely the solution of (1.1). This solution is obtained as the

limit function of sequences of approximate solutions from above and below

(theorem 8). As can be seen in figure 1 the solution of (1.1) is strictly

increasing function of r (theorem 10) and strictly concave function of r

if v satisfies OO<Jl (theorem 11). For V = 13 2, 3, ••• if we choose

suitable value as the first coefficient of the formal power series solution

in theorem 5 (approximate value for this can be found through theorem

9) then this formal power series is the asymptotic series of the true solu-

tion of (1.1) as r approaches zero on the real positive axis (theorem 12).

So we can investigate precisely the influence of the nonlinearity on the

modification of true solution from the Bessel function of order v which is

the exact solution of unperturbed liner equation obtained from (1.1) neg-

lecting the nonlinear perturbation w3(r). Concerning the relation between

the true solution of (1.1) and the formal power series solution in powers

of r"1 of (1.1) near r=oo We can only assert the property (iii) of

theorem 6. This means that the first two terms of the formal power

series solution is asymptotically equal to the true solution of (1.1) as r

tends to infinity.
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2. Problems and Assumptions

We consider the boundary value problem BVP for the nonlinear

Bessel equation on the infinite interval (0, oo).

^[>( ); v:(r)=/(«<r)) r€(0, oo)
(2.1)

Here

r is the independent variable. w(r) is the dependent variable. w/(r)

means —j-w(r). v is a real positive parameter. f(w) is a nonlinear func-
cir

tion of w which will be specified later. If f(w) = w then the equation

(2.1) reduces to the Bessel equation of order v. So we call the equation

(2.1) nonlinear Bessel equation. At the same time we consider also the

boundary value problem for the nonlinear Bessel equation on a finite

interval (0, £) (L>0).

(2.2)

a is a parameter which varies in the interval QO, 1]. We assume that

the nonlinearity f(w) possesses following properties which are satisfied

trivially by the special function f(w) = (l—w2)w which appeared in section

1.

Assumption I. (i) /(w)€C2[05 1]3 that is, f(w\ f'(w) and f"(w)

are continuous functions of w on the interval £0, 1].

(ii) /(0)=/(1)=0.

(iii) /'(»)< 0 for w€(0, 1).

Assumption 2. f(w) possesses the asymptotic series representation
oo

2 fjW* as w approaches zero on the real positive axis.
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Assumption 2'. f(w) is holomorphic in a neighborhood of the origin
oo

on the complex w-plane. It has the Taylor series expansion f(w) =

which has a positive radius of convergence.

By assumption 1 we can find the positive constant CQ such that for

any positive constant c^c0 the function F(w\ c)=f(w*) + c2w satisfies

Assumption I', (i) F(w\ c)eC2[0, 1].

(ii) K0;c) = 0, F(l;c) = c2.

(iii) F"(w\ c)<0 for we (0,1).

(iv) F'(w\ c)>0 for we [0,1).

For the special case f(w) = (\—w2')w the smallest possible c0 is V2.

BVP (2.1) is equivalent to

); v, cD(r) = F(ti;(r); c)
(2.10

I ti<0) = 0, w(oo) = l.

Here

BVP (2.2) is equivalent to

( &\jw( ); v, c:(r) = F(w(r); c)
(2.20

3. Associated Linear Eigenvalue Problem

As a linearized problem for BVP (2.20 we consider the following

linear eigenvalue problem EVP.

(3.1)

or equivalently
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f X\jp( );v](r) = ^(r) r 6(0,
(3.10

Here JJL or /l = # — c2 is the eigenvalue parameter. EVP (3.1) has the

least eigenvalue #0(^3 c, L3 a) = c2 + ^o(^5 A #)• Here Ao(v3 £, #) =

y'fj>3 a)L~2 is the least eigenvalue of EVP (3.1'). y"i(v, a) is the first

positive zero of the function (1—a)zj ' v(z} + ajv(z} (as usual Jv(z) re-

presents the Bessel function of order y). Corresponding to this least eigen-

value EVP (3.1) has the unique normalized eigenfunction (PQ(J", y3 L9 a) =

fcl(ji(v, 0))/v(y"i(u, a)L~lr). Notice that ^0(r; v, i, a) is also the eigen-

function of EVP (3.1X) corresponding to the least eigenvalue A0(v3 L, a)

so it does not depend on the constant c. Normalization of this eigen-

function is as follows

max ^oO*; v, L9 cx) = l = <pQ(rmix(v, L, d)\ v, L, a).

Here rmax(v3 L, cx)=ji(v9 0)y"i 1(y, a)L. Therefore ^o(r; y, i, a)>0 for

4. Iteration Schemes

To construct approximate solutions we consider the following itera-

tion schemes IS:

(4.1)

; v, c); v, c](r) = F(%_1(r; v; c); c) r€(0 5 oo)

,c)-05 %(oo;v, c) = l y = l, 2, 3, ...

J2fC%( j ^3 C3 A «); ^ cH(r) = F(%_i(r; y3 c, Z3 a); c) r€(0 3 L)

(4.2) m

(l—otyLwjtL', v, c3 £3 ct) + cx.Wj(Lm
9 y, c, I/3 a) = 0 J=19 23 33

,. y c £ Q/)=I



(4.3)
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( ; J>> c, L3 a, ff); v, c](r)=F(^-_i(r; v, c, L, a3 5); c)

rG(0 3 £) t0/(0; v, c, L3 a, 0) = 0

(1— a)£wj(L; v, c, £3 a, ff)+cw/£; v, c, L, a, tf) = 0

7 = 1,2 ,3 , . . .

; v, c, £, a, S) = S<p0(r; v, L, a)

Here 50(/l) is the function of A € [0, /(O)] defined as the f -coordinate of

the cross point of two curves ??=/(?) and 7] = A$ on the (f, 77) -plane

which is different from the origin for A </'(()). That is, the function

<J0(A) is defined by the implicit relation:

for
(4.4)

It follows from (4.4) that:

(4.5) 0<l-ff0W)=-{/r(l)}-1A + OU2) as

Let fix a positive constant 5 satisfying 0<£<1. We define the function

8Q(X) as the ? -coordinate of the cross point of two direct lines y =

(1-f )/(£)(! -fi)"1 and ? = >l£. That is

(4.6) «oU)=i-
It follows from (4.4) and (4.6) that:

(4.7) floOO^SoW) for

We call the interval Q03 L] is subcritical (supercritical) if A0(v, L3 a

5. Results

Now we are ready to state our results. Under the assumption 1 we

have

Theorem 1. // the interval [03 ZT| is subcritical then BVP (2.2)
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has no nontrivial solution w(r) satisfying 0 <I w (r) <J 1 for r£[J)3 L].

Theorem 2. If the interval [J)3 L] is supercritical then BVP (2.2)

has the unique nontrivial solution w(r; v, L, a) in the class of functions

{w(r)6C2(03 L); 0<>(r)<;i /or r G [03 L]} twYA following properties:

(i) tc;(r;y3£3

(ii) w(r; v, i, a) = BoO>, L, a)rv + 0(rv+2) 0s r->0.

.flfere

(5.1) z*0(v3 L, a)

g-(v, Z, a) zs ̂ '̂ n by (7.3).

(iii) OO(r; v3 L, a)<l /or r6(03 L).

(iv) TAe solution %(r; V3 c, Z3 a) o/ IS (4.2) &m<fs ^o w;(r; V3 L, a)

monotone decreasingly and uniformly with respect to r 6 [J)3 L] «5 y tefzds

^o infinity.

(v) TAe solution w/r; y, c, L3 a, #) o/ IS (4.3) tends to w(r; v3 Z, a)

monotone increasingly and uniformly with respect to r £ [J)3 L~] as j tends

to infinity.

(vi) For y = l, 2, 33 ••• t()(r; v, ^0(^3 A <^)) w ^ asymptotic series of

w(r; y, Z/3 a) «5 r approaches zero on the real positive axis. Here

w(r\ V, UQ) is the formal power series solution appearing in theorem 5.

(So this statement requires assumption 2 or 27.)

Theorem 3. Let fix a= 1. // the interval [J)3 ij z's supercritical

then for any L^ >Ia £^£ interval [[O, £2!] w «/so supercritical. Correspond-

ing nonlinear eigenfunctions w(r; v, LI, 1) fl^d w;(r; y, L2, 1) satisfy the

inequality :

(5.2) «<r; v, LI, l)<w(r; P3 L2, 1) /or r€(0 3 LI].

Theorem 4. For 0«y fixed C K i G ( 0 5 l ] //" ̂  interval |J)3 L] fs

supercritical for a=<%i then for any az£[_Q,l) satisfying a2<(%i the

interval C03 L] *"s «/5o supercritical for a=a2. Corresponding nonlinear
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eigenf unctions w(r\ v, L, <%i) and w(r\ v, L, #2) satisfy the inequality:

(5.3) w(r\ v, L, QJi)<w(r; v, L, a2) for r€(0, L~].

Under the assumption 2 or 2' we have

Theorem 5. For v = l, 2, 35 ... the nonlinear Bessel equation

); ^HW=/Wr)) /z«5 « family of formal power series solution

w(r; v, uQ}=rvu(r; », UQ)= 2 up1^". Here UQ is any positive number
l = Q

(any complex number in the case of assumption 2'}. HI (1 = 1, 2, 3, • • • )

are given by

{ M! = O
(5.4)

[ Ul=-r\l + 2vrl £ ft £ ukl...ukj Z = 2,3,4, . . . .
U-l)v+k=l-2 ki+- + kj=k J

ysi,*so

Especially under the assumption 2X w(r; v, u0) is a holomorphic true solu-

tion of the nonlinear Bessel equation £?[_w( ); vH(r) =/(ii>(r)) m some

complex neighborhood of r = 0.

Under the assumption 1 we have following theorems:

Theorem 6 (Existence). BVP (2.1) has the solution w(r; v) with

following properties :

(i) Kr;

(ii) 0<w;(r;)0<l for rG(0,oo).

(iii) 1 — w(r; v) = 0(r~2) as r->oo.

(iv) w(r; v)=uQ(vy + 0(rv+2) as r->0.

Here

(5.5) Zi0(v) = (2y)

Theorem 7 (Uniqueness). An^ nontrivial solution w(r) 6C2(0,, oo)
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of the nonlinear Bessel equation &\jo{ ); *Q(r) =/(«/(r)) satisfying 0

w(r)^0 for r6(03 oo) coincides identically with w(r\ v).

Theorem 8 (Convergence of approximate solutions), (i) The

solution w(r\ v, L, 1) of BVP (2.2) tozds to w(r\ v) monotone increasingly

and compact uniformly with respect to rE[J)3 oo) as L tends to infinity.

(ii) The solution Wj(r; v, c} of IS (4.1) tends to w(r\ v) monotone

decreasingly and uniformly with respect to r G [J)3 oo) ^5 y ^^^5 to in-

finity.

(5.6) lim ||(r-» + l){w(r; v)-^(r; v, c)}|| = 0.
/->oo

(5.7) lim ||(r- + l)r(r+l)-1{w'(r; v)-^(r; v, c)}|| = 0.

(5.8) lim IKr-' + DrV + D-M^'Cr; v)-«?(r; v, c)}|| = 0.

(iv) Especially for v = l we have

(5.9) lim IKr-'

(5.10) lim IKr
y-**

;^ wse ^^ notation \\w(r}\\= sup

Theorem 9 (Convergence of approximate solutions at

(5.11) lim laoOO-aoyO', c)| =0.

(5.12) MO/^, c) = lim
r-»0

; v,
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Theorem 10 (Monotonicity).

(5.13) w'(r;iO>0 for rG(0,oo).

Theorem II (Concavity). If v satisfies 0<v<^l then we have

(5.14) w"(r;v)<0 /or r€(0, <*>).

Under the assumption 1 and 2 (or 2') we have

Theorem 12 (Asymptotic expansion at r = 0). For y = !3 2? 3, •••

the formal power series solution w(r\ y, u0(v)) (appeared in theorem 5)

z's £/zg asymptotic series of z#(r; y) as r approaches zero on the real posi-

tive axis.

Remark 1. Under the assumption 2' theorem 5 asserts that w(r\

v, &0(y)) (y — 15 2, 3, • • • ) is also the true solution of the nonlinear Bessel

equation moreover by theorem 12 its behavior near r = 0 is asymptotically

equal to that of the global solution w(r\ v). So it arises the question

that whether w(r\ v, MO(V)) coincides identically with w(r\ v) or not. We

could not answer this question in this paper.

Remark 2. If f(l — v}= ^ f j V J is holomorphic in some neighborhood
y=i

of v = Q then the nonlinear Bessel equation &[_w( ); v](r)=/(w(r)) has a

formal power series solution in powers of r"1 :

Theorem 6 (iii) asserts that tu(r; v) is asymptotically equal to the first

two terms of the formal power series solution w(r\ v) as r tends to in-

finity. It arises the question that whether w(r; v) can be the asymptotic

series of the true solution w(r\ v) or not. In this paper we could not

answer this question. Especially we could not show the existence of

Iimr2{l— ti;(r; v)}.
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6. Preliminary Lemmas

Following lemmas are needed in the proof of lemmas in section 7.

Lemma 6.1. The modified Bessel equation 3?[w( ); y, l](r) = 0 has

the fundamental system of solutions Iv(r) and Kv(r) which have following

properties :

(i) r{/i(r)^(r)-/l,(r)S(r)} = l for r6(0,oo).

(ii) I,
»=0

+2) as

(iii) j / . O O X ) for r6(0, oo) A = 0, 1, 2, ... .

(iv) /i(r) = 2-1{/,-1(7-) + /,+i(r)} = 2r-1(v)(r/2)"-1 + 0(r"+1)

as r— >0.

(v) /,,(r) = (2sr)-1'2er{l+0('-~1)> as r-»oo.

(vi) 7i(r)-(27rr)-1/2er{l + (9(r-1)} as r-+oo.

(vii) -^-/.(rXO /or r 6 (0,oo).

(viii) /J(r) = vr-1J1P(r)+/,,+i(r)<(i»r-1 + l)/,(r) /or r€(0, oo

(ix) Kt(r) = x{2 sinv?r}-1{/-.(r)-/1I(r)> =

= 2-1 if ( - l)'(v -; - !)!(/ !)-1(r/2)«- + ( - l)"+1/v (r){r +

fe=0 /=!

" (v = 0,1,2, . . . ) -

7" /5 ^Ae Euler constant.
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(x) Kv(r} = 2-lr(v}(r/2Yv + 0(r~v+2} as r-»0 (if

as r->0.

(xi) ( - l ) - v ( r ) > 0 for r€(0, oo) 4 = 0,1,2,

(xii) *J(r) = -2-1{^y-i

(xiii) J5:v(r) = 7r1/2(2r)-1/2c-r{l + 0(r-1)} as r->oo.

(xiv) lK(r)=-7r1/2(2r)-1/2e-r{l + 0(r-1)} as r-*o

(xv) - r . O O X ) /or r6(0, oo).

(xvi) -IKW^-iCrHvr-XOO^

/or r<E(0 ,oo) (t/ j/

) /or r€(0, oo) (if 0<v<l/2).

const. fi?osg ^o^ depend on r.

These properties of the modified Bessel function are well known so

we omit the proof of lemma 6.1.

Lemma 6.2. // the function u(r)eC2(Q, oo) (or C2(0, IT)) satisfies

the equation

<?[_u( ); V5c](r) = 0 /or r€E(0 3 oo) (or (0, £))

/or c^O and behaves as u(r) = o(r~v} as r->0, u(r)=0(l) as r->oo

(or (l-a)Lu'(L) + au(L) = Q) then u(r) = 0 /or r€(0, oo) (^ (0, L)).

7. Green's Functions

We define the Green's functions G(r, 5; v), G(r, s; v, L, a), G(r, s; v, c)

and G(r, s; v, c, L, a) for BVP (2.1), (2.2), (2.10 and (2.27) respectively

regarding right hand sides of respective equations as given functions.
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Definition 7.1.

f (2i;)-Vr-y 0<s<r<oo
(7.1) C(r,*;iO={

[ (2»)-vrvs~v 0<r<s<oo.

Definition 7.2.

(7.2) G(r, 5; v, I, a) = G(r, 5; v)-#(v, £, a>V

for (r35)e[0, L]x[0, i].

Here

(7.3) ^(y, I, a) = (2v)-1{a-(l-aM{a+(l-a)v}-1I-2y.

Definition 7.3.

f Iv(cs)Kv(cr} 0<5<r<oo
(7.4) G( r s 5 ; v , c ) =

I /,(cr)^(c5) 0<r<5<oo.

Definition 7.4.

(7.5) G(r, 5; v, c, L, a) = G(r, s; v, c)-g(y, c, L, a)Iv(cr)Iv(cs}

for (r55)e[03i]x[03L].

Here

(7.6) g(v,c,L,a) =

= {(l~a}cLK'v(cL}+aKv(cL}}{(l-a}cLrv(cL}

For the sake of abbreviation we use following notations when the

integrals of the right hand sides have the meaning.

Definition 7.5.

(7.7) «?[/( ); *]« = J~G(r, 5; v}f(s)sds .

Definition 7.6.
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(7.8) <?[/( ) ; v, L, a](r) = ^G(r, s ; v, L, a)f(S)sds .

Definition 7.7.

(7.9) ^[F( ) ; v, c](r) - \~G(r, s ; v, c)F
Jo

Definition 7.8.

(7.10) &[_F( ); v, c, £, aQ(r) = ( G(r, 5; v, c, L,

Green's functions defined above have following properties:

Lemma 7.1.

(i) G(r,S;v)eC0([0, oo)x[0)oo)-{(0,0)}).

(ii) G(r, s ; v) = G(s, r ; v) for (r, s) € (0, co) x (0, oo).

(Hi) G(r, s; v)>0 /or (r, s)e(0, «»)x(0, oo).

(iv) -|^(r,S;v), (-|-

6C°((0,co)x(0,«x,)-{(r>5)€/Z2;r=a».

-R2 /s ^^ 2-dimensional Euclidean space.

(v) For any fixed r06(03 oo)

lim -~-£0, 5; v) - lim
,

r<s r>s

(vi) For «wy fixed s 6 (0, oo)

J2?[C( , s; v); v](r)=0 for r6(0, oo)-{5>.

(vii) ^[vV2; v](r) = l for r€(0, oo).

Lemma 7.2.

(i) G(r, 5 ; v, L, a) 6 C°([05 L] x [0, L] - {(0, 0)}).
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(ii) G(r,s;v,L,a) = G(s,r;v,L,a) for (r, *) 6 (0, r] x (0, I].

(iii) G(r, s ; v, L, a) > 0 for (r, s) <= (0, L) x (0, L).

(iv) -?-G(r,s;v,L,a), (-^) G(r, s; v, L, a) €

(v) For any fixed r0 6 (0, L)

ri 3
lim — -G(r, s; v, £, a) — lim — -G(r, 5; V3 I, a)^

(vi) For a^ yz^J 5 6 (0, L)

(vii) (l-a)L--G(r, 5; y, L5 a) , 5; v,
r=L

for s € (0, L).

(viii) g?[>2r-2; v, £, a](r) = l-{2-lL-*' + »g(v, L, a)Lv}rv <^1

for r e (03 L).

Lemma 7.3.

(i) G(r, s; v, c)€C0([0, oo)x[0, oo)-{(0, 0)}).

(ii) C(r, 5; v, c) = G(s, r; v, c) /or (r, s)€(0, oo)x(0, oo).

(iii) G(r, 5 ; v, c) > 0 /or (r, 5) & (0, oo) X (0, oo).

(iv) -|-G(r)S;v,c), (-|-)2G(r, 5; v, c)€

eC°((0, oo)x(0, oo)_{(r,5)€ JR
2 ;r = s}).

(v) For any fixed r0 6 (0, oo)

lim -=- G(r, s; v, c) — lim
-
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(vi) For any fixed s G (0, oo)

JS?CG(, s- v, c); v, cH(r) = 0 for r€(0, oo)-{5}.

(vii) ^[c2 + vV-2; v, c](r) = l /or r € (0, oo).

(viii)
9r

-G(r,s; v, c) ,*;*, c)

(r, s)(E(0, oo)x(0, oo).

Here C(y, c) fs « constant which depends on v and c but is independent

of r and s.

Lemma 7.4.

(i) G(r, s; v, c, I, a) e C0([0, L] X [0, L]- {(0, 0)».

(ii) G(r, 5; v, c, i, a) = G(s, r; v, c, Z, a)

for ( r ,*)<=(0, i)x(0,L).

(iii) G(r, 5 ; v, c, L, a) > 0 for (r, 5) € (0, i) X (0, L).

9 / 9 \2

(iv) - ( r , 5 ; v , c , I , a) , ( - G(r, s ; v , c , L 5 a) €

(v) For «^_y fixed r0 6 (0, L)

lim -~-G(r9 5; v, c, L, a) — lim -^G(r, 5; v, c, L, a)

= ro1-

(vi) For any fixed s 6 (0, L)

ffj\ /"*/ . r\ —I/ \ rv r
J$r|_G\ 3 5 j V, C, L, C£); V) CJ^^O for

(vii) (1— a)L-=-G(r, 5; v, c, Z, a) , 5; v, c, £, a) =
r=Z,

/or 5 e (0, L).

(viii) ^Qc2 + v2r~2 ; y, c, L, af|(r) =
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= l-cL{g(v, c, L,

for r€[0,L].

Lemma 7.1 and 7.2 can be obtained by standard arguments noticing

that the differential equation 3?\jJ,( ); i/](r) = 0 has the fundamental

system of solutions u(r) = rv and r~\ So we omit the detailed proof.

Lemma 7.3 and 7.4 follow from the fact that the differential equation

-£?G^( )? ^3 c](r) = 0 has the fundamental system of solutions u(r) = Iv(cr)

and Kv(cr} and from their properties stated in lemma 6.1. We shall only

show the proof of lemma 7.4 (viii).

Proof of Lemma 7.4 (viii). Let r € (0, L). we have by definition

7.8 and definition 7.4 that:

(7.11) S[V + v2r-2; v, c, L, oQ(r) =

5; V3 c)-^(v, c, i, ^)/y(cr)Jv(c5)}(c2 + v

By lemma 7.3 (vii) we have

(7.12) ("cCr, 5; v3 c)(c2 + vV2>d5 = l for r€(0 3 L).
Jo

From (7.11) and (7.12) we have
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cL ^
— g(v, c, L, a)Iv(cr}\ -=-{csH(cs)}ds =

Jo as

= l-cL{g(v, c, L, a)/i(cL)-H:i(cL)} /„(«•).

This proves the first equality in lemma 7.4 (viii). Here we use following

relations :

~
ds

= 0 and {csl'v(cs)} = 0.

From lemma 6.1 (i) we have

(7.13) cL{^(c£)/i(cL)-X'i(cL)/I,(cIr)} = l for L>0.

Using this relation (7.13) direct calculation leads to

(7.14) cL{g(v, c, L, a)/i(cL)-Jffi

(7.14) shows the last inequality in lemma 7.4 (viii).

Lemma 7.5. // /(r)€C°(03 oo) satisfies /(r) = 0(rv) «5 r->0

f(r) = 0(r~2) as r— > oo ^g^ following two statements are equivalent.

«(r)€C2(0, oo),

(i) • <?\_u( ); vlr)=/(r) /or r€(0, eo),

&(r) = 0(ry) <zs r—>03 w(r) = 0(l) <25 r—>CXD.

(ii) u(r) = &[f( ); y](r) /or re(0,oo).

Lemma 7.6. // /(r) € C°(0, IT] satisfies /(r) = 0(r") as r-*0

following two statements are equivalent.
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(i) ^C^( ); v](r) = 0 for r 6 (0, L),

(r)=O(r") 0s r->0, (l-a)i

(ii) n(r) - *[/( ) ; v, L, aQ(r) /or r G (0, oo).

Lemma 7.7. // F(r) € C °(03 oo) satisfies F(r) - 0(r*) (p > - v - 2)

0s r— »0 0^ F(r) = 0(l) 05 r-^oo ^^^ following two statements are

equivalent.

(i) J*?[>( ); i>, c](r) = F(r) for r 6 (0, oo),

~") 0s r—>0 5 &(r) = 0(l) 0s

(ii) u(r) = &[F( ); v, cH(r) /or r6(0? oo).

Moreover u(r) given by (i) or (ii) satisfies

0(r") O/ >

(iii) u(r), r^(r), r2^(r) = 0(r^+2 |logr|) (i/ v =

Lemma 7.8. // F(r) 6 C°(0, L] safe^es F(r) = 0(rp) (p>-v-2)

as r —> 0 ^/zew following two statements are equivalent.

(i) /or r 6 (0, Q,

as

(ii) u(r) - arCfX ) ; v, c, L, QQ(r) /or r € (0, L).

Moreover u(r) given by (i) or (ii) satisfies (iii) I'M lemma 7.7.

We shall only prove lemma 7.7. Proofs of lemma 7.5, 7.6 and 7.8
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are not essentially different from that of lemma 7.7. So we omit it.

Proof of Lemma 7.7. First we show that (ii) implies (i) and (iii).

By direct differentiation of the expression (ii) it is easy to see from

lemma 7.3 that u(r} satisfies the equation

(7.15) <?[u( ) ;v,c](r) = JKr) for r G (0, oo).

Let v<jo + 2. We have from (ii) that:

as r-»0.

This proves (iii) in the case of v<p + 2. Let yJ>/?+2. We have from

(ii) that:

00>+2|logr|) (if V-

0(r*+2) (if

(if v = p + 2)

(if v>p+2) as r-»0.

This proves (iii) in the case of v^>p + 2. Let r^>l. We have from (ii)

that:

(7.16) | u(r) |

S
CO

G(r, s; v, c)sds .
_ . i
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By lemma 7.3 (vii) we have

(7.17) f~G(r, s; v, c)c2sds<{°°G(r, s; v, cXc2 + v2s
Ji Jo

From (7.16) and (7.17) we have u(r) = O(l) as r->oo. The part in (iii) and

(iv) concerning the behavior of u'(r) is obtained as follows : first differentiate

(ii), second use the estimate of the first derivative -=-G(r, 5; y, c) of the

Green's function in lemma 7.3 (viii), then repeat the same arguments as

that for u(r). The part concerning the behavior of u"(r) is obtained

from the equation (7.15). Thus we proved that (ii) implies (iii). Next

we show that (i) implies (ii). By the same arguments as above

u(r) = #lF( ); v, c](r) for r6(0, oo)

satisfies (i) replacing u(r) by £(r). Applying lemma 6.2 to the function

u(r) — u(r) we can conclude that u(r) — £(r) = 0 for rG(0, oo). This

shows that u(r) satisfies (ii).

Lemma 7.9. // F(r) is a bounded continuous nonnegative function

defined on (0, oo) and does not vanish identically then we can find a

positive constant S for any positive number L such that

(7.18) it(r) = flr:K );v,c:(r)^^0(r;v,i,a) for

Here <p$(r\ v, Z,, a) is the eigenfunction appeared in section 3.

Lemma 7.10. If F(r) is a bounded continuous nonnegative function

defined on (0, L) and does not vanish identically then we can find a

positive constant d such that

(7.19) u(r) = 9[F( ); v, c, L, aQ(r)^fy>0(r; v, i, a) for r<E[0 3 L~].

We shall only prove lemma 7.10. Proof of lemma 7.9 is not essen-

tially different from that of lemma 7.10. So we omit it.

Proof of Lemma 7.10. From the assumptions on the function F(r)

we can find suitable positive numbers F0, LI and L2 (0<Z,i<Z,2<L) such
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that

(7.20) F(r)^FQ for r € [la, £2].

From (7.20) we have

CL

(7.21) u(r)=\ G(r, 5; v, c, L,
Jo

Gr, 5; v, c, £,
JI*!

Here

f£ 2
(7.22) u(r}= \ G(r, 5; V5 c, L,

JL1

It is easy to see that <p$(r\ v, L, a) satisfies that:

^0(r;v,i,a)eC°i:o,il

^o(r; v,L, a)=0(ry) as r->03

0<^o(£;v,L,a)^l (if 0^a<l),

<pQ(L\ v ,L 5 l ) = 03 0<-^(L; v,L, !)<CXD (if

So to show lemma 7.10 it is sufficient to show that:

(7.23) limr-y^(r)>03
r->0

(7.24) u(L)>0 (if 0^a<l),

and

(7.25) tf(i) = 0, ^;(^)<0 (if a=l).

Let r 6 (0, LO. We have from (7.22)

(7.26) u(r) = Iv(cr)( '' \Kv(cs)- g(», c, L, a)
J L1

From (7.26) and lemma 6.1 (ii) we have



174 YOSHINORI KAMETAKA

(7.27)
r-»0

{Kv(cs}-g(v, c, L, a)Iv(cs)}sds>Q.

(7.27) shows (7.23). From (7.22) we have

(7.28) u(L)={Kv(cL)-g(v, c, L, a)Iv(cL)}\ 2Iv(cs}sds .
J L1

(7.29) u'(L)= c{Kl(cL-)-g(v, c, L, a^I'^cL)}^'' ''Iv(cs)sds .
J L1

From (7.6) and lemma 6.1 (i) we have

(7.30) u(L} = (l-a){(l-a)cLrv(cL} + aIv(cL)}-l( 2Iv(
J L1

>0 (if

=0 (if a=l).

(7.31) u'(L)=-L~lIi;l(cL)\ 2Iv(cs)sds<0 (if a=l).
JLl

(7.30) and (7.31) show (7.24) and (7.25). This completes the proof of

lemma 7.10.

Lemma 7.11.

(i) ^G(r 3 5 ;v 5c 3L 5 l )<0 for (r, 5) 6 (0, L) x (0, L).

(ii) If 0<Zi<i2 then we have

(7.32) G(r, s;»9c9 Ll9 l)<G(r, 5; v, c, L23 l)<G(r, 5; v3 c)

for (r,j)e(0,ii)x(0,£i).

of Lemma 7.11. The first inequality in (7.32) follows from (i).

The second inequality in (7.32) follows from (7.5) and (7.6). From

(7.5), (7.6) and lemma 6.1 (i) we have
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(7.33) ^-G(r, s; », c, L, 1)= - -^#0, c, £, l)/,,(cr)/,(cs) =

= L-17;r2(cL)71>(cr)71I(ca)>0 for (r, 5) 6 (0, L) X (0, L).

(7.33) shows (i).

Lemma 7.12.

(i) -^G(r,5;y, c,I ,oO<0 /or (r, s) € (0, i] x (0, L].

(ii) If I^ai>a2^0 wg &#!;£

(7.34) G(r, 5; v, c, L, aO<G(r, 5; y, c, £, a2) /or (r, 5) 6(0, L]x(0, L].

Proof of Lemma 7.12. From (7.5), (7.6) and lemma 6.1 (i) we

have

(7.35) G(r, 5; V3 c, £, a)- — g b , c, i,

- - {(1 - a)c£ JJ(cL) + a/y(cL)} -2/,(cr)/y(cs) < 0

for (r, s)G(05r]x(0, £].

(7.35) shows (i). (7.34) follows from (i).

8. Proof of Theorem 1

Suppose that BVP (2.2) has a nontrivial solution w(r) which satisfies

0<J«;(r)<il for re[0, 17]. By lemma 7.8 we have

rL
(8.1) w(r)=\ G(r, 5; y, c, L, a)F(u;(s); c)sd5

and

rL
(8.2) ^0(r; y, I5 a) = )0

G(^ 55 ̂ » c
? 4 ^)Ao(^3 c3 L, a)^o(5; y, i, a)sds .

It follows by integration applied to equation (8.1) multiplied with
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rL
(8.3) \ #oO>5 c, L, a)<pQ(r; v, L, a)w

Jo

f^f 2 '
= \ \ G(r, s; v, c, Z,3 a)F(w(s)i c)/<oO>, c, i, a)p0(r; v, L, a)sdsrdr.

Jo Jo

It follows by integration applied to equation (8.2) multiplied with

(8.4)

f z f z

= \ \ G(r, 5; v, c, Z3 a)^o(^j cs i, a)^o(5; ^5 ̂ , QL)F(w(f)\ c^sdsrdr.
Jo Jo

By the symmetricity of the Green's function (lemma 7.4 (ii)) the right

hand sides of both (8.3) and (8.4) are identical. By subtraction we have

(L
(8.5) \ <?0(r; v, L, a){Mv, c, L, a)w(r)-F(w(r)',

Jo

Now the interval [J)3 L] is subcritical, that is, Ao(^5 c, £3 a)^f (^5 c)-

Since F7/(w; c)<0 for w6(0, 1) then the function ^0(^3 c3 Z3 a)w;(r) —

F(w(r)\ c) is continuous nonnegative and is not identically zero. Since

(Po(r; v, jL3 a)>0 for rG(0 3 L) then the value of the left hand side of

(8.5) must be strictly positive. This is a contradiction. This completes

the proof of theorem 1.

9. Proof of Theorem 2

Theorem 2 is obtained by almost direct application of the results

obtained by A. Pazy and P. Rabinowitz (C?]). For the sake of self-

consistency we show the outline of the proof of theorem 2.

Proposition 9.1.

(i) l=sfl>0(r; v3 c3 L, a)>wi(r; v, c, L, a)^>---^

v, c, i, a)^0 /or rG[03 L~]

y = l,2, 3,-..
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(ii) w(r\ », c, L, a) = lim %(r; v, c, L, a) is the solution of BVP (2.2)
J-»00

# satisfies

0^w>(r; v, c,L, a)^l /or r<E[0, L].

Pra?/ 0/ Proposition 9.1. By lemma 7.8 it follows from IS (4.2)

(9.1) wj(r; v, c, £, a) = ^[J1(%_i( ; v, c, Z,, a); c); vs c, Z,, oQ(r)

for r6(0, £) /=!, 2, 3, ... .

By lemma 7.4 (viii) we have

; c); v, c, L, a](r)<

=M)o(r; y, c, L5 a) for r<E(0, L).

Therefore by the monotonicity of the nonlinearity F(w; c) (assumption

1' (iv)) and by the positivity of the Green's function G(r3 5; v, c, L, a)

(lemma 7.4 (iii)) we have step-by-step the required inequality of proposi-

tion 9.1 (i). If follows that %(r; v, c, i, a) are uniformly bounded with

respect to j and converge to the limit function w(r; v, c, Z, a) for every

fixed r^CO, IT] as y tends to infinity. Letting j tend to infinity in (9.1)

the limit function w)(r; v, c, i, a) satisfies the integral equality

(9.2) fl>(r; v, c, L, a) = ^[F(M)( ; v, c, £, a); c); vs c, L, a](r)

for r 6 (0, L).

By lemma 7.8 it follows from (9.2) that w(r\ v, c, L, a) satisfies BVP

(2.2^) or equivalently BVP (2.2). This completes the proof of proposi-

tion 9.1.

Proposition 9.2.

(i) If 0<5^50(A0(v5 I, a)) we have

', v, L, aO=^0(r; v, c, a, <J)<^i(r; v, cs L, a, <J)<i---<^

-i(r; v, c, L, a, <J)<^(r; v, c, L, a, <?)<! for r€(0, L).
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(ii) w(r; v, c, L, a, 5) = lim Wj(r ; v3 c, L, a, 5) z's the nontrivial solu-
y-»oo

of BVP (2.2) satisfying

0/ Proposition 9.2. By lemma 7.8 it follows from IS (4.3)

(9.3) tfy(r; v, c, I, a, ff) = Sf[l?X»/-i( ; v, c, L, a, 8); c); v, c, £, «](r)

for r(E(0, L) y = l, 2, 3, -.- .

Since the interval |J)5 i] is supercritical, that is, #0(^3 c, Z3 ̂ )<F7(0; c)

then we have

(9.4) F(d<pQ(r; v, L, a); c)^0(v, c, £, a)ff^0(r; v, L, a)

for r 6 [0, £].

From (9.3) and (9.4) we have

(9.5) tfl(r; v, c, £5 a, 5)-^[F(^0( ; *, A a); c); v, c, i, a](r)^

= d<p0(r; v, L, a)=ii;o(r; v, c, L, a, 5) for r e(05 L).

By the monotonicity of the nonlinearity and the positivity of the Green's

function starting from (9.5) we have step-by-step the required inequality of

lemma 9.2 (i). It follows that WJ(T\ v, c, Z/, a, d) are uniformly bounded

with respect to j and converge to the limit function w(r; v, c, Z, a, 8)

for every fixed r 6 CO, IT] as / tends to infinity. Letting j tend to infinity

in (9.3) we have

(9.6) w(r- v, c, L, a, 8) = ̂ F(w( ; v, c3 L3 a, 5); c); v, c, Z3 a](r)

By lemma 7.8 it follows from (9.5) that w(r\ v, c3 L, a, 5) satisfies BVP

(2.2). This completes the proof of proposition 9.2.
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Proposition 9.3.

(i) For any 8 satisfying 0<5^50(/t0(v5 L, a)) we have

«>(r; v, c, L, a)^>w(r; *>, c, I, a, fl) /or re[05 IT).

(ii) For any nontrivial solution w(r) of BVP (2.2) satisfying

<;i /or re[03ZT| we caw yfod fl constant d

w>(r: v, e, L, a) ̂  w(r) ̂  W(T ; v, c, L, a, 5) /or r6[0, i].

Proo/ o/ Proposition 9.3. Since we have

(9.7) M>0(r; v, c, I, aO = l><fy0(r; v, L, a)= tc?0(r; v, c, L, a, 5)

for r € (0, L),

it follows

(9.8) ^(r; v, c, i, a) = ̂ [F(a>0( ; v, c, Z, a); c); v, c? i, a](r)^

!>&[_F(WQ( ; v, c, Z, a, 5); c); v, c, I, aQ(r)=wi(r; v, c, L, a, 5)

for re(05 L).

From (9.1), (9.3) and (9.8) it follows step-by-step

(9.9) %(r; v, c, L, a)^wj(r; v, c, L, a, 8) for rG(0, L) y = l, 2, 3, ....

Letting y tend to infinity in (9.9) we have the required inequality in (i).

By lemma 7.8 the nontrivial solution w(r) of BVP (2.2) satisfies the

integral equality

(9.10) «<!•) = SfCJW )5 0; v, c, L, oG(r) for r€(0, L).

By lemma 7.10 we can find a positive constant 8

such that

(9.11) w(r);><tyo(r; v3 L, a)=w0(r; v, c, L, a, 8) for r€(0, L).

By the same reasoning as above we have from (9.11) that:
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(9.12) ®i(r; v, c, L, a)^>w(r)^>&i(r'9 v, c, L, a, 8) for r € (03 L).

From (9.12) we have step-by-step

(9.13) 0/r; v, c, L, a)^w(r)^wj(r; v, c, L, a, 8} for rE(0, i)

Letting y tend to infinity in (9.13) we obtain the required inequality in

(ii). This completes the proof of proposition 9.3.

Proposition 9.4. For any 8 satisfying 0<<J<J #0(^0(^5 L, #)) we

have

(9.14) w>(r ; v, c, £5 a)=u;(r; v, c, £, a, 5) for r G [0, IT],

Proof of Proposition 9.4. By the symmetricity of the Green's func-

tion G(r, s; v, c, L, a) (lemma 7.4 (ii)) it follows from (9.2) and (9.6)

(9.15) ( {F(w(r; v, c, L, a, <J); c)^1^; v c, L, a, ff)-
Jo

-F(w(r\ v, c, L, a); c)®-1^; v, c, L, a)}w)(r; v, c, L, a)x

Xw;(r; v, c, L, a,

Suppose that w;(r; v, c, Z, a) — ̂ (r; v, c, £5 a, 5) do not vanish identically.

Since F"(w\ c)<0 for w;€(0, 1) (assumption 1' (iii)) then the integrand of

above integral in (9.15) is a nonnegative continuous function of r which

does not vanish identically. So the value of the above integral in (9.15)

is strictly positive. This is a contradiction. This proves proposition 9.4.

Proposition 9.3 and 9.4 show that the limit function w(r\ v, c? L, a)

=w(r', », c, L, a, 8) dose not depend on the special choice of the con-

stants c and 8. So we write this limit function as w(r\ v, L, a). Thus

we obtained the nontrivial solution w(r'3 v, L, a) of BVP (2.2). Proposi-

tion 9.4 together with Proposition 9.3 asserts the uniqueness of the non-

trivial solution of BVP (2.2) in the class of functions mentioned in

theorem 2. Theorem 2 (iii) follows from
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v, c,

for r 6 (0, L).

Theorem 2 (ii) and (vi) follows from the expression

(9.16) w(r; y, L, a) = uQ(v, L, a)rv —

', y, L, a))(sl-v-r-2vsl + v}ds for rE(0, L).
o

Here u$(y, L, a) is given by (5.1). (9.16) follows from lemma 7.6. We

omit the detailed discussion because which is not essentially different from

that for theorem 6 (iv) and theorem 12.

10. Proof of Theorem 3 and 4

By lemma 7.8 w(r; y, L^ 1) and w(r\ v9 L^ 1) satisfy following

integral equalities respectively.

(10.1) Xr; v, Ll3 l) = ^[F(ii;( ; V3 Ll9 1); c); v, c, Ll9 l](r)

for r e (0, LO.

(10.2) w(r; v, L2, l)-^[F(w;( ; v, L2, 1); c); V3 c5 L2? l](r)

for r E (0, L2).

From theorem 2 (iii) we have

(10.3) w(r ; v, Li, 1)< 1 for r G (0, LO.

By lemma 7.11 it follows from (9.1) in which L is replaced by LI and

from (10.3)

; v, c, L2, l) = Sf[F(l; c); v, c3 L2, l](r)

5 "3 L!, 1); c); v, c, Li, r](r) = ii;(r; v, Ll9 1)

for r € (0, LO.

Repeating these arguments we have
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(10.4) %(r; v, c, L2, l)>w(r; v, LI, 1) for r£(0, LX).

Letting j tend to infinity in (10.4) we have

(10.5) w(r ; v, L2, l)^w(r ; v, LI, 1) for r G (0, £0.

By lemma 7.11 it follows from (10.1), (10.2) and (10.5)

w(r; v, i2, l)>w(r; v, £1, 1) for r£(0, LI).

This proves theorem 3. Proof of theorem 4 is not essentially different

from that of theorem 3. The part of lemma 7.11 must be replaced by

lemma 7.12. We omit the detailed discussion.

II. Proof of Theorem 5

Replacing dependent variable w(f) by rvu(r) the nonlinear Bessel

equation JSP(j0( ); ^(r) = f(w(r)) reduces to

(11.1) r2^

Inserting formal power series &(r; v, UQ)= Ylukrk into u(r) in (11.1) we
&=o

obtain the formal relation

(11.2) (2v + l)tt1r+2>/{/(/ + 2v)ii /+ Z fj Z M*1..-^} = 0.
/=2 (/-l)«' + *=/-2 *i + -+fty=Ay^i,*^o J

Equating the coefficient of r' of the left hand side of (11.2) to zero for

Z = l, 2, 3, ••• we obtain the recurrence formula which determine the coef-

ficients HI recurrently and uniquely.

( "i = 0,
(H.3)

( Ul=-r\i+2»rl Z fj E uki...Uk.- ~ " -

u0 may be any positive constant in the case of assumption 2 and may be

any complex constant in the case of assumption 2'. Under the assump-
oO

tion 2' f(w)= 2 l / / |wy has the same radius of convergence as f(w\ So
•7 = 1

h(w) = w~ f(w) is a holomorphic function of w in a complex neighborhood
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of w = 0. By the implicit function theorem we have the unique holomor-

phic solution f/(r) of the equation

(11.4)

Replacing U(r) in (11.4) by its Taylor series expansion 2 Utr
l we have

1 = 0
the equation:

(11.5) E E V - U o l - Z X \fj\ E Ukl...Uk/ = Q.
l=Q 1=2 (j-U» + k=l-2 ki+-+kj=k J

j^l.k^O 3

It follows from (11.5) the recurrence formula:

(11.6) U0=\uQ\, C/i-0,

U,= X \fj\ Z Ukl...Ukj Z = 2 ,3 ,4 , . . . .('-&:£i-* ki+-+k^k

From (11.3) and (11.6) we have \Ui\<,Ui for 1 = 0, 1, 23 ... This means
00

the convergent power series £/(r)= XI Up1 is a majorant series of the
l = Q

oo

formal power series u(r\ v, MO)= 2 z^r*. Thus we conclude that the
/ = o

formal power series solution u(r; v, u0) is a holomorphic function of r in

a complex neighborhood of r = 0. Proof of theorem 5 is completed.

12. Proof of Theorem 6 and 7

Proposition 12.1.

(i) l=wQ(r; v, c)>s>i(r; v, c)^---^

;>%_i(r; v, c);>%(r; v, c)^0 /or r€[03 oo) y=i, 2, 3, . . . .

(ii) w)(r; v, c) = lim%(r; v, c) satisfies the integral equality:

(12.1) a>(r; v, c) = gr[JX»( ; v, c); c); v, c](r) /or r€(0,

of Proposition 12.1. By lemma 7.7 we have
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(12.2) %(r; v, c} = ̂ [_F(wj.l( ; y3 c); c); v, c](r) for r6(03 oo).

By lemma 7.3 (vii) we have

(12.3) W1(r; v, c) = ̂ [F(l; c); v3 c](r)<

<^[c2 + y2r-2; v, c](r) = l=w;0(r; v, c) for r£(03 oo).

From (12.2) and (12.3) we have

M>2(r; v3 c) = ̂ [_F(wl( ; v, c); c); v, c](r)<:

^DF(1; c); *3 cQ(r)=fl>i(r; v3 c) for r€(0 3 oo).

Repeating these arguments we have

(12.4) %(r; y3 c)^%_i(r; i^3 c) for r€(03 oo) j=!9 23 33 ••• .

From (12.4) it follows that %(r; v, c) tends to the limit function w>(r;

v, c) monotone decreasingly as j tends to infinity. Letting j tend to

infinity in (12.2) we have (12.1). This completes the proof of proposition

12.1.

Proposition 12.2. The solution w(r\ v, L, 1) of BVP (2.2) with a=l

converges to the limit function w(r; v) monotone increasingly and compact

uniformly with respect to r€[J), oo) as L tends to infinity. w(r; v) satis-

fies the integral equality.

(12.5) w(r; ^ = &£F(w( ; y); c); v, c](r) /or r€(0 3 oo).

Proof of Proposition 12.2. By lemma 7.8 t#(r; v3 L3 1) satisfies the

integral equality :

(12.6) w(r; v3 £, l} = ̂ F(w( ; v, L3 1); c); v, c3 Z3 l](r) for r€(0 3 oo).

By theorem 3 w(r; vs i, 1) converges to the limit function w(r; v) mono-

tone increasingly as L tends to infinity. Letting L tend to infinity in

(12.6) we have (12.5). It follows that w(r; v) is continuous with respect

to r. By Dini's theorem. w(r; v, L, 1) converge to w(r; v) monotone in-

creasingly and compact uniformly with respect to r€[!03 oo) as L tends

to infinity.
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Proposition 12.3. // the function w(r) belongs to the class of func-

tions {w(r)£C2(0, oo); 0<;w;(r)<;i, w(r)^0 for r£(03 oo)} and satisfies

the nonlinear Bessel equation £?[_w( ); ]T\ (r) = /(w(r)) for r£(0 3 oo)

it satisfies the inequality

(12.7) w(r\ v)^w(r)^fi)(r; v, c) /or r <E (0, oo).

o/ Proposition 12.3. By lemma 7.7 w(r) satisfies the integral

equality :

(12.8) «;(/•) = #[F(«;( ); c); v, e](r) for r€(0 3 oo).

For any positive number L (for which the interval QO, IT) is supercritical)

by lemma 7.9 we can find a constant 5 (0<<y<^oOJoO>5 £5 1))) such that

(12.9) w(r)^70(r; v, Z, 1) =^0(r; V3 c3 Z3 1, d) for

By lemma 7.11 it follows from (12.9)

(12.10) w(r} = $[_F(w( );c);v,c](r)^

^^[Ffeo(; ^5 c3 L3 1, ff); c); v, c3 L3 l](r)-^(r; v3 c3 L3

for r e (0, L).

It follows from (9.3), (12.8) and (12.10)

(12.11) wOO^/r; v, c, L3 1, 5) for rE(0 3 L) ; = 1, 2, 3, ....

Letting JF tend to infinity in (12.11) we have

(12.12) w(r)^w(r; v, L3 1) for r€(0 3 L).

Letting L tend to infinity we have

wO")J>w;(r; v) for r€(0 3 oo).

Starting from the inequality

w(r)<:i for re(03 oo),

we have by the similar arguments as above

(12.13) w(r) <:%(r; V3 c) for r6(03 oo) y=l, 2, 3, ....
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Letting j tend to infinity in (12.13) we have

w(r)<Xr; y, c) for r<E(0, oo).

This completes the proof of proposition 12.3.

Proposition 12.4.

(12.14) 0<1— w)(r; v, c)<Jl — w(r\ v)<Jconst. r~2 for r€E(0 3 oo).

Pra?/ <?/ Proposition 12A. Suppose that two positive numbers r and

L are connected by the relation

(12.15) r = rraax(y, £, l)=;"i(v, O);!1 ,̂ 1)^-

By the normalization of the eigenfunction we have from (12.15)

(12.16) £>0(r; V3 L, 1) = 1.

For sufficiently large r (for which the corresponding L satisfies AoO'j -^? 1)
^ f(ft \ft~ \ \\7fi \\n\Tf* \\\r -n-rn-nnQif-inn 199we have by proposition 12.2

(12.17) w(r- v)^w(r; V3 i, l)^0Wo(v, A l))^o(r; V3 4 1).

From (4.6), (4.7), (12.16) and (12.17) we have

ffoWo(v, L, l))^l-ffoWo(v, L, 1)) =

v, L, l) + /(5)(l-5)~1}-1^const. ZT2<:const. r~2.

This completes the proof of proposition 12.4.

Proposition 12.5.

(i) %(r; v, c), rM>;(r; v3 c), rVj(r; v, c) =

07

9(r20 (if v>2;) ^ r->0.
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(iii) w(r'9 v), 7V(r; v), rV'fr; ^ = 0(r») 0s r-»0.

(iv) w>;.(r; v, c)5w>'(r; v, c), w'(r; v) = 0(l) fl5 r-»oo /=1,2,3, ....

(v) ®5(r; v, c), w'f(r- p, c), wrf(r- v) =

o/ Proposition 12.5. Proposition 12.5 is easily obtained by re-

peated applications of lemma 7.7 to (12.1), (12.2) and (12.5). So we

omit the detailed calculation.

Proposition 12.6.

(12.18) z0(r; V3 c)=«;(r; v) /or rG(0 5 CXD).

Proof of Proposition 12.6. By lemma 7.7 it follows from (12.1) and

(12.5) that w(r; v, c) and w(r;v) satisfy following equations respectively

(12.19) -{rw'Cr; v, c^/' + Kc^vV2)^; V5 c) = jF(«>(r; v, c); c)r

for r 6 (0, °°).

(12.20) -{r^(r; v^' + KcHvV2)^; ») = F(w(r; v); c)r

for r€ (0 ? co)0

From (12.19) and (12.20) we have

(12.21) [r{^(r; ^5 c)w(r; v)-fl)(r; v, cV(r; v)}T =

= {F(w(r; v); c)^"1^; v)-F(w;(r; v, c); eOfiT^r; v, c)} X

Xw(r\ v)fi)(r; v, c)r for re(0, oo).

By proposition 12.5 (ii) and (iii) we have

(12.22) r{a>'(r; ^, c)w;(r; v)-w;(r; v, eX(r; V)}=0(r2y) as r->0.

Integrating both sides of the identity (12.21) over the interval QO, r] and

using (12.22) we have
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(12.23) rw(r; »)w(r; v, c){a>'(r; v, c) w~l(r; v, c)-wf(r; v)w~l(r; y)} =

v); cOttT1^; v) — F(fl>(«; v, c); c)®"1^; v c)M$; v) X

Xw(s; v, c))sds for rG(0 3 oo).

= \
J

Suppose that (12.18) do not hold. By assumption I7 the integrand of the

right hand side of (12.23) is continuous, nonnegative and not identically

zero. So the value of the right hand side of (12.23) is greater than some

positive constant /#' for sufficiently large positive r. Thus we obtain the

inequality :

(12.24) rw(r; *Xr; v, c) [

for sufficiently large r.

By proposition 12.4 we can find another suitable positive constant 0 such

that

(12. 25) [log^r; v, c)^1^; v)>T^{log H3}'

for rl>ri (ri is sufficiently large).

Integrating (12.25) over the interval [>i, r] we have

(12.26) log{iZ;(r; v3 c^-^r; v)}^

^log r0 — log rf + log{fi>(ri; v3 c)^"1^!; v)} for r^ri.

As r tends to infinity the left hand side of (12.26) approaches zero by

proposition 12.4, on the other hand the right hand side of (12.26) tends

to infinity. This is a contradiction. This proves proposition 12.6.

By proposition 12.6 the limit function w(r; v, c} = w(r\ v) does not

depend on the special choice of the constant c. So we write this limit

function as w(r; v). By (12.1) or (12.5) w(r\ v) satisfies the integral

equality :

(12.27) w(r; j») = *[*(«< ; v); c); v, c](r) for r€(0, oo).
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By proposition 12.5 (ii) or (iii) we have

(12.28) w(r\ v) = 0(rv) as r->0.

By proposition 12.4 we have

(12.29) l-w(r\ y) = 0(r-2) as r-»oo.

By lemma 7.7 it follows from (12.27), (12.28) and (12.29) that w(r\ v)

is the solution of BVP (2.1). Theorem 6 (ii) follows from proposition

12.1 and 12.2. Theorem 6 (iii) follows from (12.29). Theorem 7 follows

from proposition 12.3 and 12.6. By lemma 7.5 w(r\ v) satisfies the in-

tegral equality:

(12.30) w(r; ^ = ̂ f(w( ; *)); v](r) for

From (12.30) we have

(12.31) w(r; v) = M0(*

for r € (0, oo).

Here uo(^) is given by (5.5). By (12.28) it follows easily that the

second term of the right hand side of (12.31) is 0(ry+2) as r-»0. This

shows theorem 6 (iv). This completes the proof of theorem 6 and 7.

13. Proof of Theorem 8

Theorem 8 (i) and (ii) follows from proposition 12.1, 12.2 and Dini's

theorem. From theorem 8 (ii) it follows

(13.1) lim]Kr; v)-%(r; ^, c)|| = 0./->-

(12.27) and (12.1) can be rewritten as

(13.2) w(r; ^ = (°°G(r, 5; v, c)F(w(s; v); c)sds for r€(0, oo)B
JQ

(13.3) wj(r; v, c)=("G(r, s; v, c)JX»y-i(*; v, c); c)sds
JQ
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for rG(0, oo) /=!, 2, 3, ... .

From (13.2) and (13.3) we have

(13.4) |ti;(r; v)-%(r; v, c)|<;

/•oo

<5^"(0; c)c~ 2 \ G(r, 5; v, c)|w(s; v) — %_i(s; v, c)|
Jo

for r G (0, oo).

It follows from (13.4)

(13.5) N(r;v)-%(r;y,c) |^

c)c-2||Kr; v)-%_i(r; v, c)||fl>i(r; v, c)

for r e (0, oo).

Inserting the inequality (13.5) in which j is replaced by / — I into the

right hand side of (13.4) we have

(13.6) |w(r;v)-»/r;v,c)|^

S
oo

G(r, 5; v, c)c2wh(s; v, 0)5^5^
o

c - w r ; v - % _ 2 r ; v , r , 5 ; v , c w l S ; v , c ;
Jo

= {r(0;c)c-2}2||w(/-; v)-%_2(r; v, c)||iB2(r; v, c) for r€(0, oo).

Repeating these arguments finally we have

(13.7) |«(r;v)-fl>/r;v,c)|^

^{F'(0; ^c-2}^'2^1^,,,^.^; v, c)||w(r; v)-%_[B/2>1(r; v,

for r 6 (0, oo).

By proposition 12.5 (i)
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is a finite number therefore we have from (13.7)

(13.8) ||(r- + l){w(r; v)-fl>/r; v, c)}||̂

2D+1(r; v, c)|| X

x ; v,

From (13.8) and (13.1) we have (5.6). Differentiating (13.2) and (13.3)

with respect to r we have

(13.9) w'(r; v)=-G(r, s; v, c)F (w(s; v); c)sds for r€(0, 0x3).
Jo or

(13.10) »;(r; v, c)= -rG(r, s; v, c) F(w^l(s; v, c);

for r 6 (0,oo) /=!, 2, 3,

From (13.9) and (13.10) we have

(13.11)

--G(r , 5; v, c)| \w(s; ^-w^s; v, c)|c

G(r, s; v, c}\w(s; v) -wy_i(s; v, c)\c2sds
Q

for re(0, oo).

By the same arguments as was used to obtain (13.7) from (13.4) we

have from (13.11)

(13.12) |w'(r; v)-

X%,/2]+i(r;^3c)||w;(r;^)-%_ [ :, /23-i(r; v, c)|| for

From (13.12) we have

(13.13) !Kr- + l)
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rgC(v, c){JT(0; c)c-2}^'2^1||(r-' + l)%u/2]+1(r; v, c)||x

X |Kr; v)-^^^!^; v, c)||

From (13.13) it follows (5.7). w(r; v) and %(r; v, c) satisfy following
equations :

(13.14) -w"(r; v)-r-
lw'(r; v) + (c2 + v2

r-
2)w(r; v}=F(w(r; v); c)

for r € (0, °o).

(13.15) -w'fr; », c^-r^w^r; v, C) + (c2 + v2r-2)%(r; v, c) =

= F(fl>y_i(r; v, c); c) for r e (0, oo).

From (13.14) and (13.15) we have

(13.16) ||(r-" + l)r2(r2+l)-1V(r; v)-^'(r; v, c)}||^

1r-1{w' (r; v)-fl>;(r; v, c)}|| +

r-2){W(r; v)-%(r; v, c)}|| +

v); c)-F(w^(r; V, c); c)}||̂

r; v)-»;(r; v,

; v)-%(r; v,

From (13.16), (5.6) and (5.7) we have (5.8). Thus we proved theorem 8

(iii). Next we consider the special case of v = l.

Proposition 13.1. For v = l we have

(i) {r-lwj(r- 1, c)}', «y(r; 1, c)=0(r) as r^O y = 2, 3, 4, ...

(ii) {r-J«;(7-; 1)}', w"(r; l) = 0(r) as r^O.

o/ Proposition 13.1. From (13.14) and (13.15) it follows that

t7(r)={r"1w(r; 1)}' and t?Xr) = {r~lfi>y(r> 1> c)}' satisfy following equations:
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(13.17) {r3v(r)Y = r2{c2w(r; l)-F(w(r; 1); c)> for r€(0, oo).

(13.18) {r3Vj(r)Y = r2{c2wj(ri 1, c)-F(%_i(r; 1, c); c)} for r€(0 , oo).

By proposition 12.5 (i) and (ii) we have

(13.19) rst;(r) = r{™'(r; l)-w(r; l)}=0(r2) as r->0.

(13.20) rVr) = r{rfl>J(r; 1, c)-fl>/r; 1, c)}-0(r2)

as r->0 / = 2, 3, 4, ....

Integrating (13.17) and (13.18) over the interval [0, r] and using (13.19)

and (13.20) we have

(13.21) rMr) = r*2{cV*; l)-F(w(*; 1); c)}ds for r<E(0 , oo).
Jo

(13.22) r3z;Xr)=r52{c2%(5; 1, c)-F(%_i(s; 1, c); c)}c/5
Jo

for re(0, oo) y = 2, 33 4, ....

By proposition 12.5 (i) and (ii) it follows from (13.21) and (13.22)

(13.23) v(r), t7y(r) = 0(r) as r->0 ; = 2, 3, 4, ....

From (13.14), (13.15), proposition 12.5 (i), (ii) and (13.23) we have

(13.24) w"(r; 1), w-(r\ 1, c) = 0(r) as r->0 y = 2, 3, 4, ....

This proves proposition 13.1.

From (13.21) and (13.22) we have

(13.25) |v(r)-t;Xr)| ^r

r^ const. rfr + ir^c^Kr^ + ̂ Mr; l)-»y(r; 1, c)}|| +
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+ F'(0; (OIKr-' + lXwCr; l)-fl>,_i(r; 1, c)}|D for r€ (0 ; °o)

7 = 2,3,4, . . . .

From (13.25) we have

(13.26) \\(r-l + l){v(r)-vj(rm^

^const.lVIKr-' + lXwGr; l)-wy(r; 1, c)}|| +

+ F'(0; cOIKr-' + lXwCr; l)-«y_i(r; 1, c)}|G 7 = 2, 3, 4, ....

(5.9) follows from (13.26). (5.10) follows from (13.14), (13.15), (5.6)

and (5.9). This completes the proof of theorem 8.

14. Proof of Theorem 9

By lemma 7.5 it follows from IS (4.1) and proposition 12.5 (i)

(14.1) fl>y(r; v, c) = 9Ef(a>i-i( ; y, c) + c2{%-i( 5 v, c)-fl>/ ; v, c)}; v](r)

for r € (0, oo) j ^ [v/2] + 2.

(14.1) can be rewritten as

(14.2) a>Xr;», c) = «.y(v>c)r1>-

-r"(2v)-J Tc/(^-i(s; v, Cy) + cz{wj^(s; v, c}-Wj(s; v, c)}]x
^0

xisl-v-r-2vsl+lf}ds for r6(0,oo) ;^

Here

(14.3) Mo/(v, c) =

From (14.2) it follows easily

(14.4) uoj(y, c) = limr-I'»y(r; v, c) ;^



NONLINEAR BESSEL EQUATION 195

From (5.5) and (14.3) it follows

(14.5) |aoOO-a./v,c)| =

" * ; v ) ; c)-F(wi.l(s; v , c ) ; c ) -
o

; c)|u;(s; v)-fl>,-i(*; v,
o

By proposition 12.4 and 12.5 (i) we have

(14.6) |w(s; v)—wj-i(s\ v, c)|(52 + 5~y)^const. independent of 5 and j

for 56(0, oo) ;^[v/2]+2.

By (5.6) we have

(14.7) lim|w;(s; v)-%_i(s; v, c)|(52 + 5~l') = 0 for 5e(0, oo).

Since s(sy+2 + l)~1 is integrable on the interval [0, oo) from (14.5), (14.6)

and (14.7) it follows (5.10) by Lebesgue's bounded convergence theorem.
This proves theorem 9.

15. Proof of Theorem 10

w(r\ v) and %(r; v, c) satisfy the differential equations

(15.1) JSP[>( ; v); v, c](r) = F(u;(r; v); c) for r6(0, oo).

(15.2) J2?[fl>y( ; v, c); v, c](r) = f(»y_i(r; v, c); c) for 7-6 (0, oo)

;• = !, 2,3, -,
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Differentiating both (15.1) and (15.2) with respect to r we have the dif-

ferential equations which are satisfied by wf(r\ v) and w'j(r\ v, c) respec-

tively.

(15.3)

= F'(w(r-9 y); c)w'(r; v) + 2v2r-*w(r; v)=Fi(r; v, c)

for rE(0, oo).

(15.4) <2?[>j( ; v, c); V^+T, c](r) =

= F/(wj-1(r; v, c); c^.^r; v, c) + 2v2r-3%(r; v, c)=Fify(r; v, c)

for rG(0, oo) y = l, 2, 3, ....

By lemma 7.7 we have from (15.3) and (15.4)

(15.5) u/(r; v) = Sf|jFi( ; v, c); Vv2 + l, c](r) for r <E (0, oo).

(15.6) fl>J(r; y, c) = Sr[FlfX ; V3 c); ViA+I, cj(r)

for re(03oo) ; = 1 3 2 3 3 3 ....

Since WQ(T\ v, c)^l it follows

(15.7) ^i,i(r; V3 c)>0 for r€(0 3 oo).

By the positivity of the Green's function G(r3 s; Vv2 + l3 c) (lemma 7.3

(in)) it follows from (15.6)

(15.8) w{(r; V3 c)>0 for r6(03 oo).

From (15.8) it follows

(15.9) ^i.2(r; V3 c)>0 for r€(0 3 oo).

From (15.6) and (15.9) it follows

(15.10) wf
2(r\ v, c)>0 for r€(0 3 oo).

Repeating these arguments we have
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(15.11) w'j(r; v, c)>0 for rE(0, oo) y = l, 2, 3, ....

Letting j tend to infinity in (15.11) we have

(15.12) w\r\ v);>0 for rE(0, oo).

From (15.12) it follows

(15.13) Fi(r; v, c)>0 for re(0, oo).

From (15.5) and (15.13) it follows (5.13). This proves theorem 10.

16. Proof of Theorem 11

Differentiating (15.3) and (15.4) with respect to r we have

(16.1) &\ju/'( ; v); V^+2, c](r) = 2(2j;2 + l)r-V(r; v)-

"(w(r; v); c){u/(r; v)}2 + F>(r; v); cX'fr; v)

for r 6 (0, oo).

(16.2) JS?[>7( ; v, c); V^+l, c](r)-2(2v2+ l^Xfr; ^ c)

-6v2r-4%(r; v, c) + ^(Wy-iCr; v, c); c){^_i(r; v, c

-ifr; ^ 0; cX/_i(r; v, c) for re(0, oo)

Inserting the relations

(16.3) r-V(r; v)=-ii;//(r;

-F(w(r; v); c) for rE(0 3 oo)

(16.4) r'Xfr; *> c)=-®7(r; v, c) + (c2 + vV2)%(r; v, c)-

— F(%_i(r; v, c); c) for re(0, oo)

into the first term of the right hand sides of (16.1) and (16.2) respectively

we have
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(16.5)

-F>(r; v); c)u/'(r; v)^F2(r; *3 c) for r€(0 3 oo).

(16.6) 3?l-w'/( ; v, c); V5^f43 c](r)-4v2(l-y2)r-4%(r; vs c) +

-F'C^y-iCr; v, c); c){zD;._i(r; v3 c)}2-^^/-!^; v, c); c^w'/^r; v, c) =

= F2.Xr;v, c) f o r r e ( 0 3 o o ) y = l,2, 3, ....

By lemma 7.7 we have from (16.5) and (16.6)

(16.7) -w"(ri v) = $lF2( ; v, c); \/5^T43 c](r) for rE(0 3 oo).

(16.8) -<(r; v, c)-^[F2J( ; v3 c); V^+4, c](r)

for rG(0 3 oo) j=l9 2, 33 ....

Since v is assumed to satisfy 0 < v <^ 1 then we have

(16.9) F2fi(r; V3 c)>0 for rE(0 3 oo).

By the positivity of the Green's function G(r, 5; V5y2 + 43 c) (lemma 7.3

(iii)) we have from (16.8) and (16.9)

(16.10) -<(r; v, c)>0 for rG(0 3 oo).

From (16.10) we have

(16.11) F2>2(r; v, c)>0 for r€(0 3 oo).

It follows from (16.8) and (16.11)

(16.12) -<(r; v, c)>0 for r£(0 3 oo).

Repeating these arguments we have

(16.13) -<(r; ^5 c)>0 for r€(0 3 oo) j=l9 23 33 ....
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Letting j tend to infinity in (16.13) we have

(16.14) -w"(r\ v)^0 for r<E(0 , oo).

From (16.14) we have

(16.15) F2(r; v, c)>0 for r<E(0 , oo).

From (16.7) and (16.15) we have (5.14). This proves theorem 11.

17. Proof of Theorem 12

From (12.31) u(r; v) = r~vw(r\ v) satisfies

(17.1) u(r- y) = M0(v)-(2v)- ir f(svu (s; »y){sl~v -r~2vsl^}ds =
Jo

; v) for re(0, oo).

Here &oOO is given by (5.5). It is easy to see

(17.2) u2(r- y) = 0(r2) as r->0.

Suppose that it has been proved that:

(17.3) um(r\ v) = u(r; v)-"S Ulr
l = 0(rm} as r-»0.

/=o

Here coefficients HI are determined by the recurrence formula (5.4) with

UQ = UQ(V). From (17.3) and assumption 2 or 2' we have

(17.4) f(svu(s-9 J>))= S 2 = _ //

as 5->0.

If we introduce the coefficient um by the recurrence formula (5.4) then

we can rewrite (17.4) as

(17.5) f(svu(s', v))= - E l(lJr2v)uls
l+v-2 + 0(sm+v-1) as

/ = 2

Inserting (17.5) into (17.1) we have
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(17.6) i*(r;jO = i

1=2 JO

as

From (17.6) we have

m
(17.7) um+i(r; v) = u(r; y) — 2 uirl = O(rm+ ) as r—»0.

1=0

This proves that the formal power series 2 up1 is the asymptotic series

of 11(7", y) as r approaches zero on the real positive axis. This completes

the proof of theorem 12.
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