Abstract Potential Operators on Hilbert Space

(Dedicated to Professor Yasuo Akizuki on his 70th birthday)

Ву

Kôsaku Yosida*

Let X be a (real or complex) Hilbert space. A linear operator V with its domain D(V) and range R(V) both strongly dense in X is called an *abstract potential operator* (see K. Yosida [2], p. 412) if the inverse V^{-1} exists in such a way that

$$(1) A = -V^{-1}$$

is the infinitesimal generator of a one-parameter semi-group of class (C_0) of linear contraction operators on X into X. The purpose of the present note is to prove the following existence theorem. (Hereafter, we shall denote by S^a the strong closure of a subset S of X.)

Theorem. Let U be a linear operator satisfying three conditions:

$$(2) D(U)^a = X,$$

$$(3) R(U)^a = X,$$

(4) U is accretive, that is, $Re(Uf, f) \ge 0$ for every $f \in D(U)$.

Then there exists at least one abstract potential operator V which is a closed linear accretive extension of U; V might coincide with U.

Proof. The proof is given in two steps. The first is to construct a maximal accretive extension V of U by virtue of R.S. Phillips' theory of

Received March 2, 1972.

^{*} Dept. Math., Gakushuin Univ., 1-5-1, Mejiro, Toshima-ku, Tokyo 171, Japan.

Cayley transform (cf. B. Sz.-Nagy and C. Foias [1], p. 167). The second is to prove that this V is an abstract potential operator by making use of the abelian ergodic theorem for pseudo-resolvents (see K. Yosida [2], p. 215).

THE FIRST STEP. For every $\lambda > 0$ and $f \in D(V)$, we have, by (4),

(5)
$$||\lambda Uf + f||^2 = (\lambda Uf + f, \lambda Uf + f) = ||\lambda Uf||^2 + 2Re(\lambda Uf, f) + ||f||^2$$

$$\ge ||\lambda Uf||^2 + ||f||^2 \ge ||\lambda Uf||^2 - 2Re(\lambda Uf, f) + ||f||^2 = ||\lambda Uf - f||^2.$$

Hence the inverse $(\lambda U + I)^{-1}$ exists and moreover, the Cayley transform C defined through

$$C \cdot (Uf + f) = (Uf - f)$$

is a contraction operator mapping R(U+I) onto R(U-I). Let us define a bounded linear extension \hat{C} of C:

(7) through continuity on $R(U+I)^a$, and through putting $\hat{C} \cdot g = 0$ on the orthogonal complement of R(U+I).

This everywhere defined contraction operator \hat{C} cannot admit eigenvalue one. Assume the contrary and let $\hat{C} \cdot f_0 = f_0$ with $||f_0|| = 1$. Then its adjoint operator \hat{C}^* , which is also a contraction, must satisfy $\hat{C}^* \cdot f_0 = f_0$ because

$$\begin{aligned} &\|\hat{C}^* \cdot f_0 - f_0\|^2 = \|\hat{C}^* \cdot f_0\|^2 - 2Re(\hat{C}^* \cdot f_0, f_0) + \|f_0\|^2 \\ &\leq \|f_0\|^2 - 2Re(f_0, \hat{C} \cdot f_0) + \|f_0\|^2 = 1 - 2 + 1 = 0. \end{aligned}$$

Thus we obtain, by (6) and (7),

$$(f_0, (U-I)f) = (f_0, \hat{C} \cdot (U+I)f) = (\hat{C}^* \cdot f_0, (U+I)f) = (f_0, (U+I)f),$$

hence $(f_0, f) = 0$ and so $f_0 = 0$ by (2).

Therefore the inverse $(I-\hat{\mathcal{C}})^{-1}$ exists and so we can define a linear operator V through

(8)
$$V \cdot (I - \hat{C}) f = (I + \hat{C}) f.$$

V is an extension of U. In fact, we have, by (6), (I-C)=I-(U-I) $(U+I)^{-1}=2(U+I)^{-1}$, that is, $U=(I+C)(I-C)^{-1}$, proving that V is an extension of U. Here the existence of $(I-C)^{-1}$ is assured by that of $(I-\hat{C})^{-1}$. We can prove that V is accretive. For, by putting $f=(I-\hat{C})^{-1}g$ and observing (8) and the contraction property of \hat{C} , we obtain

$$Re(Vg, g) = Re((I + \hat{C})f, (I - \hat{C})f) = ||f||^2 - ||\hat{C} \cdot f||^2 \ge 0.$$

We can also prove, by (8) and the boundedness of the operator \hat{C} , that V is a closed linear operator. Moreover, by (8), we have (I+V) $=I+(I+\hat{C})(I-\hat{C})^{-1}=2(I-\hat{C})^{-1}$, and so we obtain the existence theorem

(9)
$$R(V+I)=D(I-\hat{C})=X$$
 (and also $R(\lambda V+I)=X$ whenever $\lambda>0$).

Hence the accretive extension V is maximal as regards its range $R(\lambda V + I)$ for $\lambda > 0$.

The Second Step. We will show that V is an abstract potential operator following after the proof of Theorem 2 on p. 414–415 in K. Yosida $\lceil 2 \rceil$.

V being accretive, we have, as in (5), $||\lambda V f + f|| \ge ||\lambda V f||$ for every $f \in D(V)$ and $\lambda > 0$. Hence, by (9), we can define a bounded linear operator

$$(10) J_{\lambda} = V(\lambda V + I)^{-1}$$

satisfying

It is easy to see that J_{λ} is a pseudo-resolvent, i.e.,

$$(12) J_{\lambda} - J_{\mu} = (\mu - \lambda) J_{\lambda} J_{\mu}.$$

Therefore, by (11), we can apply the abelian ergodic theorem to the effect that

(13)
$$R(J_{\mu})^{a} = \{x \in X; s - \lim_{\lambda \uparrow \infty} \lambda J_{\lambda} x = x\} \quad \text{for all } \mu > 0,$$

(14)
$$R(I-\mu J_{\mu})^{\alpha} = \{x \in X; s-\lim_{\lambda \downarrow 0} \lambda J_{\lambda} \ x = 0\}$$
 for all $\mu > 0$.

By $R(V)^a = R(U)^a = X$, we have $R(J_\mu)^a = X$ by (10) and so, by (11) and (12), the null space of J_λ consists of zero vector only, independently of $\lambda > 0$. Hence J_λ is the resolvent of a linear operator, i. e.,

(15)
$$J_{\lambda} = (\lambda I - A)^{-1}$$
, where $A = \lambda I - J_{\lambda}^{-1}$ is independent of $\lambda > 0$.

We have thus $D(A)^a = R(J_\mu)^a = X$ and so, by (11), the operator A is the infinitesimal generator of a contraction semi-group of class (C_0) . We can also prove that $R(A)^a = X$. For, we have, by (10) and (15),

$$(\lambda I - A) J_{\lambda}(\lambda V f + f) = \lambda V f + f = (\lambda I - A) V f = \lambda V f - A V f,$$

that is,

(16)
$$-AVf = f \quad \text{whenever} \quad f \in D(V),$$

proving that $R(A)^a = D(V)^a = D(U)^a = X$. Thus, by (14) and $AJ_\mu = (\mu J_\mu - I)$, we obtain $s - \lim_{\lambda \downarrow 0} \lambda J_\lambda f = 0$ for all $f \in X$. This implies that the inverse A^{-1} exists. In fact, the condition $Af_0 = 0$ is equivalent to $\lambda (\lambda I - A)^{-1} f_0 = f_0$ and hence $f_0 = s - \lim_{\lambda \downarrow 0} \lambda J_\lambda f_0 = 0$.

Thus $-A^{-1}$ is an abstract potential operator. On the other hand, (16) shows that the inverse V^{-1} exists. Hence, by $(\lambda \ I - A) = J_{\lambda}^{-1} = (\lambda \ V + I) V^{-1} = \lambda \ I + V^{-1}$, we obtain $-A = V^{-1}$, completing the proof of our Theorem.

Remark. We shall verify (2), (3) and (4) for Newtonian and logarithmic potentials

(17)
$$(Uf)(y) = \int_{\mathbb{R}^n} K_n(|y-z|) f(z) dz \qquad (n \ge 2),$$

$$K_n(r) = r^{2-n} \quad \text{for } n \ge 3, \quad \text{and } K_2(r) = \log r^{-1}.$$

The proof of $D(U)^a = R(U)^a = X = L^2(R^n)$ can be obtained by making use of the fact that, for $0 < \delta_1 < \delta_2$,

$$u_{x,\delta_1,\delta_2}(y) = (K_n(\delta_1) - K_2(\delta_2))^{-1} \int_{\mathbb{R}^n} K_n(|y-z|) (d\nu_{x,\delta_1}(z) - d\nu_{x,\delta_2}(z))$$

is continuous in γ satisfying

$$u_{x,\delta_1,\delta_2}(y) = 1$$
 if $|y-x| \leq \delta_1$,
 $= 0$ if $|y-x| \geq \delta_2$,
 $0 < u_{x,\delta_1,\delta_2}(y) < 1$ if $\delta_1 < |y-x| < \delta_2$.

Here $\nu_{x,\delta}$ is the unit measure uniformly distributed over the hypersurface of the sphere of centre x and radius δ in \mathbb{R}^n .

The Gauss-Frostmann energy inequality

$$\int_{\mathbb{R}^n} (Uf)(y) \cdot \overline{f(y)} \, dy \ge 0 \qquad (n \ge 2)$$

holds good whenever $f \in L^2(\mathbb{R}^n)$ is of compact support satisfying $\int_{\mathbb{R}^n} f(y) \, dy = 0$. It is easy to prove that such f's constitute a strongly dense subset of $L^2(\mathbb{R}^n)$.

Another Treatment of the Second Step (Added on 20 April, 1972). As in the above proof of the non-existence of the eigenvalue 1 for the operator \hat{C} , we can show that $\hat{C} \cdot f_0 = -f_0$ implies $\hat{C}^* \cdot f_0 = -f_0$ and hence $(f_0, Uf) = 0$, proving by (3) the non-existence of the eigenvalue -1 for \hat{C} . Thus $V = (I + \hat{C})(I - \hat{C})^{-1}$ given by (8) admits the inverse $V^{-1} = (I - \hat{C})(I + \hat{C})^{-1}$. Hence we can prove that V is an abstract potential operator without appealing to the abelian ergodic theorem.

Remark (added during the proof). On reading the pre-print, Prof. K. Sato gave interesting comments and extensions. See his paper to appear.

References

- [1] Sz.-Nagy, B. and C. Foias, Harmonic Analysis of Operators on Hilbert Space, North Holland Publ. Co., 1970.
- [2] Yosida, K., Functional Analysis, the Third Ed., Springer-Verlag, 1971.