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On the Initial-value Problems with Data on a
Characteristic Surface for Linear Systems
of First Order Equations

By

Masatake Miyake*

§1. Introduction and Definitions

We study in this paper the following initial-value problem

(1.1) A(t, x)aa i(t, x)—l—i”(t %55 )u(t x)= f(t %),

(1.2) i

0=l7<x)a tERla xz(xla Tty xn)ERn>

where $<t % ) ZBk(t x) +C(t x). A, B, and C are N xN-

=1
matrices, & and f are vectors with N—components, ie., =" uy, ---, uy) and
]7=t(f1, o -

Throughout this paper we study the problem in the class of analytic
functions. More precisely we assume that the coefficients, initial-data
(1.2), ]7 and solutions are analytic functions in a neighborhood of the
origin.

We assume that the initial surface =0 1is characteristic of the

system (1.1), namely

det A(0, x)=0.

Definition 1.1. We say that the initial surface t=0 is simple char-
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acteristic if for a positive integer r,

(i)“H(o, x; 1, 0)| 50,

(1.3) rank A(0, x)=N—r, 2, 92

la|=7r

n
where H(t, x; v, §)=det(4(, x)t+ 2, Bu(t, x)&r).
E=1
Now we remark that (1.3) is equivalent to that 4,(0, x; &) is not
zero as a homogeneous polynomial in & of degree r, where H(0, x;7,&)=

B0, x5 )TN "4 h, 100, x5 E)V T L hn(0, x; &).

Definition 1.2. We say that the initial surface t=0 is double char-

acteristic if for a positive integer r,

rank A0, x)=N—r, 2]

laj=7r

((%)alf(o, x; 1, 0)| =0,

(1.4)

(%)“H(o, %1, 0)| ~0.

la|=r+1

This condition is equivalent to that A,(0, x; ) is zero as a polyno-
mial in € and A,.,(0, x; &) is not zero as a polynomial in &.

In section 2, we study the initial-value problem in the case of simple
characteristic. From section 3 on, we study the problem in the case of
double characteristic. In section 4 we state the main theorems under the
assumption (3. Ass.) when r=2. In appendix we study the case with a
certain assumption other than (3. Ass.). In section 8, we give only the
results in the case where r=1.

The arguments in this paper may be used for the initial-value prob-
lems of higher order system.

Our method relies essentially on the paper of Y. Hasegawa [6].

I. G. Petrowsky [12] and S. Mizohata [ 8] had proved the existence
of null solutions and S. Matsuura [ 11] had proved the existence of null
solutions for overdetermined system with constant coefficients (see also L.
Hérmander [77]).

Similar problems were investigated by J. Vaillant [97], [10] and Y.
Hasegawa [6]. Especially Mrs. Hasegawa treated the initial-value prob-

lems for the single equations. In the case where r=1, our results are
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similar to those of [6].

Finally, the .author wishes to thank Professor Mizohata and Mrs.

Hasegawa for their valuable suggestions and constant encouragements.

§2. Simple Characteristic Initial-value Problem

In this section we review the reasoning given in the paper of G.F.D.

Duff [1]. Without loss of generality we may assume

(1.3 rank A0, x)=N—r, %sH 0, x; 1,000, (r=1).
1

Let V(x) (CCM) be the image of 'A4(0, x) and K(x) be the kernel of
‘A0, x), then we have dim V(x)=N-—r and dimK(x)=r. Let
{B(x)}Y_,,, be a base of ¥(x) and di(x), (i=r+1, ..., N) be an inverse
image of b,(x), i.e.,

(2.1) '40, %)d:(x)=by(x), (i=r+1,..., N).

Let {I«(x)}7_, be a base of K(x)," then we have

r{ . 0 \
P(x) A0, Q7N ()= s

(2.2)

r
——

1
r{ 0"y
'P(%)B1(0, x)'Q~ (%)= |

L

where P(x)=(1(%), -+, [,(%),d,:1(2), -+, n(x))” and Q(x)=(B1(#), ---

3

1) &;(x), b,(x) and Z,(x) are determined analytically at x in a neighborhood of the
origin.

2)  (¢4(%),...,¢x(x)) denotes the matrix with i-th column vector &,(x).
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Bn(x)), and bi(x)='B1(0, x)l«(x), (i=1, -..,7), since the assumption (1.3)’
implies dim ‘B1(0, x)(K(x))/V(x)=r.
Now we transform the unknown function #(z, x) to #(s, x) in a

neighborhood of the origin by
(2.3) (2, 2)="Q(x)a (2, x).
We rewrite the system (1.1) in the following form
WD A0, D+ 5 B0, ) i+, )2
’ 0t E=1 >0k, >0t
+ 5 Bty 0+ €, =T
E=1 0%,

Then we have the following system equivalent to (1.1);

0._N._< ., 0 0 0\ ., _7 7% .
oy T B bl w s s s Jut <[ >, =1,
(2.4)

o _ X,/ .9 a>' Lz .

o= B0l % i g ot <as >, Gmral ),

where x'=(xg, ---, ,) € R*! and b;(t, x; tr, t&1, &), (i=1,...,1) are
polynomials in 7, & and &=(&s,.--, £,) of degree 1. < , > denotes the
scalar product.

Theorem 2.1. Under the assumption (1.3), the following conditions
are necessary and sufficient for the existence of a solution of the problem
(1.1)-(1.2) in a neighborhood of the origin:

@5 <Tu), 2(0, %3 5 ) U@ —f@)>=0, (=1, ).

For the proof of Theorem 2.1 we use the following lemma.

Lemma 2.1. (Goursat-problem) Let us consider the following problem
to the system (2.4), then there exists a unique solution in a neighborhood

of the origin:

Ui x1=0=Vi(t: x/): (7':13 ) T)a
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vi|t=0=Vt'(x)> (i—:l‘—]‘l,--', N)

For the proof of the lemma, see [1], [2] and [9]. Or, we can

prove it in the same way as Proposition 5.1.

Proof of Theorem 2.1. Since the system (1.1) is equivalent to (2.4),
we prove the theorem for (2.4). Let V(x)='(Vi(%), ---, Vn(x)) be the
initial-data of (2.4), i.e., V(x)='Q(x)U(x), then the condition (2.5) is
transformed into

@6) L Viw= 1550, %3 0,0, L))+ <T@, fO, 0>
* axl g =) 1 5 s Vs 9ax/ J ! 1 5 b ]

(i=1, ..., 7).
Since the necessity is clear, we prove the sufficiency. Now let us
consider the following Goursat-problem to the system (2.4);

‘Ui[x1=o=Vi(0, x')—l—txi(t, x/), (l:l’ sy r)
2.7)

vilico=Vi(x), (i=r+1, ..., N),

where %;(t, x’) are arbitrary analytic functions in ¢ and x’. Then Lemma
2.1 asserts the existence of a unique solution v;(¢, x), (i=1,---, N) in a
neighborhood of the origin. Let us show that this solution satisfies
v/0, x)=V(x), (i=1,..., ) in a neighborhood of the origin. At first we
note that »;(0, x), (i=1,..-,7) should be a solution of the following initial-

value problem;

9 40, x)= %b-(o % 0,0 1>u-(0 2)+ <Ii(x), F0,x)>
axl 1 ) = 1] 9 b) b aax/ 7 9 z b b

(2.8)
(0, )| z,20=Vi(0, x), (i=1,.-., 1),
where v;(0, x)=Vi(x), G=r+1,.--, N).

On the other hand, V;i(x), (i=1,---,r) is also a solution of (2.8) in
view of (2.6). Then we have v;(0, x)=V (%), (i=1,---,r) in a neighbor-
hood of the origin.

Finally the non-uniqueness of the solution is obvious from the arbi-
trariness of x;(¢, ") in (2.7). Q.E.D.
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§3. Reduction to the Standard Form

To study the double characteristic case we reduce the system (1.1) to

the standard form as in §2. Without loss of generality we may assume

rank A0, x)=N—r, ),

lal=r

(-;_EYH(O, % 1,0)| =0,

(1.4)
ar+1H

W(O, X, l, 0)#0.
1

The assumption (1.4)" implies immediately
dim ‘B0, x)(K(%))/V(%)<r—1, (k=2,..., n),
(3.1) dim *B1(0, x)(K(%))/V(x)=r—1,
*B1(0, %)l 12(x) 70,

where 115(x) (€ K(x)) is a null vector of ‘Bi(0, x) modulo V(x), i.e.,
'B1(0, %)l 15(x) € V().

We shall prove only that 'B;(0, x) I12(x)=~0, since the others are
proved by the same reasoning. It suffices to prove that ‘B;(0, 0)I12(0) =
0. We now assume that ‘B;(0, 0)/12(0)=0. If we put Ps=(T15(0), 123,
) 773, d,.1(0), -+, dy(0)) and Qs=(77)13, sty er, 7;”1(0), Tty —I;N(O)), where
we choose {I;5}7_,( CK(0)) and {B;3}7_; so that {I15(0), T2s,---, L,3} is a
base of K(0) and {13, ---, by3, 8,.1(0), ---, bx(0)}, is a base of CY. Then

we have

0 )

.

" |

r . 0

Q31:4(0, 0)P;= 0 l » Q3! 'By(0, 0)P3=| . * .
-

We now define a modified characteristic polynomial L:(z, ) by

L(r, §)=det(Q5*("4(0, )+ 31 ‘Bi(0, 0)£1)P)
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_ det P;
det Q3

H(0, 0; 7, &).

Then we have that the coefficient of &;71c¥~""1 of Li(r, &) is zero.

contradicts (1.4)'.

Then there exists a vector @,,12(x)€ {@,.1(%x), ---, @v(x)} such that
(32) tA(O, x)aﬂrl,z(x):tBl(os x)flz(x)a

where {@,.1, ---, 4y} denotes a vector subspace of C" spanned by d,,1, -

JN_l and 6N.

Now we choose some vectors {l;2(x)}7-; (CK(x)) and {diz(x)}Y,.,

so that {T;2(x)}7_, is a base of K(x) and {d, 1,2, ---» @nz} = {@rs1s -5 AN}

Let us define {B;5(x)}, as follows

tBl(oa x)ar+1,2(x):7;12(x>a

(3.3) ‘Bi(0, x)ia(x) =bia(x), (G=2,.., 1),

TA(0, x)d;z(x) =3i2(x)> (E=r+1,.., N).

Hereafter we assume

(3. Ass.) 'B(0, %) 12(%)/V(%)=0, (k

Then we have

Proposition 3.1.

0
r . 0
P, A0, x)Q' = L

1 b
0
0
10
(0 1
1 0
r .
1
(3.4) P B1(0, x)Q3 = r{ g 0’
* *
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r

—_—N—
0---0
* *
tPZBk(O)!x)tQEI': - 7 |» (k'_:z: Tty n):
..
\ | J

where Pz(x)=(712(x), ) Trz(x)a ‘_ir-t—l,z(x),"', a:NZ(x)) and Qz(x)—_—(zlz(x),
-y bya(x)).

Proof. It suffices to prove that {b;2(x)}Y, is a base of CY. It is
obvious that {b;2(x)}!_, are linearly independent according to (3.1). If
512(0) € {832(0), ---, bu2(0)}, we choose a vector by so that {B14, b22(0), ---,

Ba2(0)} is a base of CV, then we have

0 0
0 ! ) 1 * %
r ." 0 ; r ._.
QZl tA(O: 0>P2= 0 1 ’ QZI tBl(O: O)PZ"_‘ 1 L | )
0 0
01 :ooo0|: ¥
0 *

where Q4 =814, 852(0), -+, bx3(0)).
Now we define a modified characteristic polynomial Ly(z, £) by

Lz, §)=det Qi *(4(0, 0)x+ 5 'BA(0,0€)Py)

_ det Py
det Q4

H(0,0; 7, &).

Then we have that the coefficient of &7*1tV=7-1 of Ly(c, &) is zero. This
contradicts (1.4)". Q.E.D.

Now we transform the unknown function # to # by

(3-5) ﬁ(ts x)thZ(x)ﬁ(t: x):

then we have the following system equivalent to (1.1);
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0, 3 0 bos 2
{ta(t, x)ﬁ—%- k§1 th, (e, x)@—k—l—c(t, x) Ul+6xlvr+1

Yoy L, 0,0 i)
=2 bt 5315 oy tox )V

+ % bl-<t x; L‘»—a t—a 9 v+ <T1 ]?>
j=r+1 AN ’ ot ’ 0.’)6'1’6%'/ / ? ’
0 _N..< iii) 7o 7
B8 gy v Bl w5 150 b g it <l /2

(i:2: Tty T),

0 0, _ ¥ ( ., 0,0 i) .
—a—t—1)7+1 +—0—9;Ivl—j§16r+1’] ty x5t 51 ° taxla % Uj

+ <@y [

N >
’%Ui: 2 b,',(t, x5t 0 0 0 v+ <@, 2>,

=1 0t 0xy 0%
(i=r+2,--, N),
where b;(t, x; tt, t&1, &) denote polynomials in v, &1 and &'=(&,, ---, &,)
of degree 1.

Finally we note how to be deduced the functions a(z, x) and c(z, x)
in the first equation of the above system from (1.1). Let N(x) (CCY)
be the kernel of A(0, x) and W (x) be the image of A(0, x), then we

have dim B;1(0, x)(N(x))/W(x)=r—1. Then there exists a vector 7(x) €
N(x) such that

Bl(os x)?<x)e W(x)> Bl<0’ x)7(x)750'

It follows that <B;(x), P(x)>=0, (i=2,.-,N) and <Iis(%),
Bk(o, x)?(x)>=0: (k=2,9 n)'S)

Then we have

Proposition 3.2. Under the assumption (1.4) we have

3) <lyy(%), Bx(0, x)?(x)>=0, (k=2, ..., n) follows from the assumption (14)".
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<T15(x), %?(x)> ’t=0=a(0, %) <Bra(x), 7(2)>,

(3.7
0

<712(x)’ 3(0, x5 ax

> =e(0, ) <Bu(), 7(x)>,

where <b1(x), P(x)> 0.

Proof. It is obvious according to the above reasonings.

§4. Initial-value Problems in the Case Where r =2

We now assume

(4.1) "’a'_f(o, )T 1)/ V(%) =0, *z(o, u %)leuwf(x):o,

where 'Lf(t, x;i Tig= — f—a—(’BkTm)—f—’Cle. We note that the
0x 0xp,
assumption (4.1) implies

a(t, x)=ta(t, x), c(t, x)=té(t, x),

bl](t’ %5t o’ taxl’ t@x/ =tbult, %5 0t’ 0x, 0x' /)’

4.1y

for any j€{2, ..., r} in the system (3.6). Then we have

Lemma 4.1. Under the assumption (4.1), the following boundary-
value problem to the system (3.6) has a unique solution in a neighborhood

of the origin:

() =

Vil zm0=Vi(t, x"), (G=2,...,7)

0= W;'(t’ x/)a (]=O> 1)

x=

(4.2)

Vrs1l xy=t=0= Vyea(x),

vi|t=0=Vi(x)’ (Z=T+2, ) N)

Theorem 4.1. (Initial-value problem) Under the assumptions in
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Lemma 4.1, the following conditions ave necessary and also sufficient for
the existence of a solution in a mneighborhood of the origin of the initial-
value problem (1.1)-(1.2):

<D, 2(0, 53 5 ) U= fO, )>=0, (=1, 1),
(4.3) <Tra(a), (A<1>(x)+$<o, % %))am(x)
+ zm(x; %) U(x)— FO(x)> =0,

0A 0 0 -
W ) — . — Egph) .. —
where AM(x) Y 0, x), ,?(t, X} 0x> Dttty (x, o ), 1@, x) f;o

kZ0

f‘”(x)t”/p! and 1M(x) is a special solution of the equation
AQ0, x)i M (x) +$<0, %3 %) U(x)=f(0, x).
In Theorem 4.1, the necessity follows immediately from the construc-

tion of the formal solution of the problem (1.1)-(1.2),

(4.4) (e, x)=éoﬁ(”)(x)ti’/p!.

Lemma 4.2. (Goursat-problem) Let us assume
(4.5) a(0, x) =0, pa(0, x)+c(0, x)#0 for p€{0,1,2, ...}

Then the following Goursat-problem to the system (3.6) has a unique solu-
tion in a neighborhood of the origin:
Ui|x1=0: Vi, =), (i=2, .., 1),

(4.6)
vil1-0 =Vi(x), (f=r+1, .., N).

Theorem 4.2. (Initial-value problem) Under the assumptions in
Lemma 4.2, the following compatibility conditions are necessary and suffici-
ent in order to exist at least ome solution of the initial-value problem (1.1)

-(1.2) in a neighborhood of the origin:

@n  <Tu), 2(0,x; %)ﬁ(@—f(o, D>=0, G=1,..,7).
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In Lemma 4.2 we can not eliminate the condition a(0, x)=~0. In

fact if we assume
(4.8) a(0, x)=0, c(0, x)=-0,
we have

Theorem 4.3. (Goursat-problem) Let us assume (4.8), then the
Goursat-problem (3.6)—(4.6) has not always an analytic solution in a neigh-
borhood of the origin. Precisely we can find such Goursai-data that there

exists no analytic solution in any neighborhood of the origin.

Remark 4.1. In Theorem 4.1, if we only assume a(0, x)=c(0, x)=
0, we can not obtain necessary and sufficient conditions of type (4.3).
Moreover, without the condition (3. Ass.), we can not obtain the compati-
bility conditions of type (4.3) for the existence of solutions of problem
(1.1)-(1.2) (see Theorem A.l).

Remark 4.2. Under the assumptions in Theorem 4.3, we can not
decide whether the initial-value problem (1.1)-(1.2) has a solution or not

in view of Theorem 4.3.

Remark 4.3. In the case where a(0, x)0, poa(0, x)+c(0, x)=0
for some po€ {0, 1, 2, ...}, there can not exist a solution of the Goursat-
problem (3.6)-(4.6) without compatibility conditions between the Goursat-
data (4.6). Moreover even if there exists a solution, it is not unique in

general.

Remark 4.4. The following Goursat-problem to the system (3.6) has

a unique solution in a neighborhood of the origin;
'Uilx1=0=Vi(t> x/>: (Z"—‘l) e T+1),
'Uilt=0 =Vi(x)3 (i=7‘+2, Tty N)'

The proof is similar to that of Lemma 4.2, or see Théoréme 3.1 in [27].
From this Goursat-problem we see that we can give data of v;, (i=r+

2, ..., N) at t=0 arbitrarily.
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§5. Proof of Theorem 4.1

Proposition 5.1.2 Let us consider the following Goursat-problem,

then there exists a unique solution in a neighborhood of the origin:

00 X 0, . 0, o*
5,’;6_%1)1_ j§1 {talj(t, x)w—l—t ]_j(t, x)m‘ T tClj(t, x)—a-;%
+ le(t: X, 01 0x, 0x ”J+hl(t’ x)’
61 pwi= 3 e gt b x5 (s 3 oo )b

+h£(t, x): (Z=2, ~--,7‘),

3._N{.. 0 oy (s 5. 0 6)}
T 21 ta; (t, x) Y -l-b,,(t, x; oxy o vi+h(z, x),

j=

(i=r+1, -, N).
a i Vs .
(52) vrlso= Wit ), (G=0,1),

(5'2) U | % =0 Vi(t7 x/)> (1‘:23 ) T),
'Uilt=0 =Vi(x>: (L=T+1, "':N):
where b;; and ci; arve differential operators of the first order, and d.; are

0*  9* 0*

di tial tors the nd order i hich —sy ———— g
[fferential operators of seco rder in whic 91 Do, and 92

do not appear.
Remark 5.1. The system (5.1) is obtained as follows; differentiating
the first equation in (3.6) with respect to ¢ and substituting the term

%U,—.q by the third equation in (3.6).

Proof. Without loss of generality we may assume that the Goursat-

data are all zero. We can easily show that the formal solution of type

4) A more general Goursat-problem was treated by L. Garding ([2], Théoréme 3.2).
We here give a more elementary proof.
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(5-3) ‘U,'(t, x>: ZZ ,U(’_P,q)(x/)tpxg/_p!q!’ (izlazs“': N)
5,920

can be constructed uniquely.

In order to prove the convergence of the formal solution in a neigh-
borhood of the origin, we make a majorant system of (5.1).

Let

X=-Z¥—+X1, Y=xz—l—~--+xm

where « is a sufficiently small positive constant defined later. Let M/

O_XZY

) be a common majorant of a;(Z, x), --- and the coefficients

> 0 8
of d“’(” X P 0x 0% )

hi(t, x), =1, -.-, N).

Then we have the following majorant system of (5.1):

be a majorant of

and let CMN/(l— X: Y

8> _  MN { 3./ 00 9? 92
D e g 2\ ot X5 T Yo
0
o o 0 N\ }
(5.4) +d1]<'§_ "a_— T Tty axn>>1«U]+C )
0,  MN { (.i_ 0 (0 jl). }
amm_l XY L\ X T X T 05, 5. )t Cp
0
0 . MN [3(x0 0 5 (0 ﬁ_). }
5T X+Y{,§1<X 5 +0x1+b3]<0x2’ ""ax,) it Gy
0

where b;; are differential operators with positive coefficients of the first

order, and d,; are differential operators with positive coefficients of the
i 0* 0®

s 5~ and =—.

0t%° 0t0x, 0x?

We shall prove the existence of a solution of (5.4) with non-negative

second order which do not contain the terms

coefficients. Clearly if such a solution exists, it is a majorant of the for-
mal solution (5.3).
Now let us construct a solution of (5.4) depending on X and Y.
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Namely, let us consider the following initial-value problem:

P <5 o NUNNEPHY 5 8 (E T Y P
(1 0 )OXZWIMMN j§1 <a2+ a +1>X0X2

_ (X0 L5 (0 . 2 V(!
=wv| 2 (5 a5 3oy oyt Cl
i
66 (o) wm|, =0 (=01, wlxo=0, (=23

If we choose sufficiently small «, the formal solution of (5.5)—(5.6),

(5.7) wi(X, )= 3 wX?Yplgl,  (i=1,2,3)
b,q=0

has non-negative coefficients. In fact it suffices to choose & so that 0<
a<1/MN.

In order to prove the convergence of (5.7) in a neighborhood of the
origin, we reduce the problem (5.5)-(5.6) to the equivalent problem as
follows; differentiating the second and the third equations with respect to
X, then we have a second order system. Now we give the following data

Ow,- . .
a_X" X=0’ (]“‘2’ 3);

) (X

0X X=0_<1 0 CMN,

(5.8) 1
Ows =<L__ _L>_ { Ows }
X lxeo Na ~MN —55) \MNox | o, T CMNYs

in a neighborhood of Y=0.

It is obvious that the initial-value problem obtained by the above
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procedure has a unique solution in a neighborhood of the origin. This

completes the proof. Q.E.D.

Proof of Lemma 4.1. It is sufficient to prove that the problem (3.6)-
(4.2) can be reduced to the Goursat-problem considered in Proposition 5.1
under the assumption (4.1)’.

We remark that under the assumption (4.1) we can construct the
formal solution of the problem (3.6)-(4.2) of type

(5.9) v:(z, x)=p§) v{P(x)t?/p!, @(G=1, ..., N),

instead of the formal solution of type (5.3).
It is easy to see that v{?;(x) should be a solution of the following

initial-value problem;

0 0 > 7
6100  Lo@i= 5 51(0,5 0,0, ;2 ) )+ <Tu, O, 2>,

(5.11) U(,°+)1|x1=o= Vr+1(x/):

where v{9(x)=Vi(x), (j=r+2, ..., N).
Now let us consider the following Goursat-problem equivalent to the
problem (3.6)-(4.2); differentiating the first equation in (3.6) with respect

to ¢ and substituting the terms vi, (i=r+1, ..., N) by the third and

0
0t

the fourth equations in (3.6), then we have the following system

aZ _ N 2. 02 N
mvl_j§1 {t a15(t, x)W—}_tle(t ok 0 1 0x’ ) 0t
0
+t(:1]<t x) +d11<t x5 a Z/)}vi+hl(t, x)’
G12) y 8 0 0
5“;_1171':]_@1[717 by %5 15— ot ° ax % )'UJ+ <l12, f>:

(i=23 Tty T):

5 X L0 0 9

_at_v,-_jglb,,(z 55t oy o 2 Yoyt <Tia, >,
(i=7‘+1, E) N)’
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where b;; are differential operators of the first order, and d,; are differ-

2
ential operators of the second order in which aaxz does not appear.
1
Goursat-data are given by
Y ' .
(a—x1> 'Ullx1=0: Wi(t) %), (]=O: 1),
(5.13)
7]1'1::1=0=Vi(t9 xl): (7/:29 Tty T),

Ur+1lt=o=v(r°131a ‘Uz'|t=o= Vi(x), (i=r+2, ..., N).

Clearly the problem (5.12)—(5.13) has the same formal solution with
that of (3.6)-(4.2). The problem (5.12)-(5.13) is a special case considered
in Proposition 5.1, then there exists a unique solution in a neighborhood

of the origin. This completes the proof.

Before we prove Theorem 4.1, we note that v\ (x), (i=1,...,7)

should be a solution of the initial-value problem

0_24}(0): f} d .(0 xi 0 )v‘-‘”-l—h 0, x)

L R = AN P P At RS
(5.14)

0 o= b-(o %50,0, 2 )v‘-°’+ <Taas f(0, 2)>

0x, © LN T P oax') I ’

(i=2, cey T),
j

<—a—> 0(10)Ix1=0= Wl(o’ %), (]:O, D,

(5.15) o

U(iO) l %=0=— V0, xl): (i=2, .-, T).

Proof of Theorem 4.1. We shall prove the theorem to the system
(3.6) instead of the problem (1.1)-(1.2). Then the compatibility condition
(4.3) is transformed into (5.10) and (5.14).

Since the necessity is obvious, we prove the sufficiency. Now let us
consider the following Goursat-problem to (3.6);

ai
(3_961 ”1

GRS

_0+tx(j)(t> %), (j=0, D),

*1
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(516) Ui|x1=0: V;’(O, x,)+txi(t3 xl): (1'223 Tty T),
Vrs1 I t=x;=0— V.10, x/), Ui|t=0= Vi(x)s (i=r+2, ..., N),

where V(x)='(Vi(x), ---, V(%)) is the initial-data of (3.6), and % and
%; are arbitrary analytic functions in ¢ and «’.

Then there exists a unique solution w;(¢, x), (i=1,2, ..., N) of the
problem (3.6)-(5.16) in a neighborhood of the origin. This solution is
also a solution of the initial-value problem to the system (3.6). In fact,
it suffices to show »{(x)=V(x), (i=1,...,r+1). It follows from the
construction of the Goursat-data (5.16) and the compatibility conditions
(5.10) and (5.14).

The non-uniqueness of the solution is obvious from the arbitrariness
of x¥) and %; in (5.16). This completes the proof. Q.E.D.

§6. Proof of Theorem 4.2

Lemma 6.1. (Goursat-problem) Let wus consider the following
Goursat-problem, then there exists a unique solution in a neighborhood of

the origin:

(G +artmmme {5 )+ (5r)

X 9° 0 0 }
P Rl Ty T

0\, 6 = 02 0
+ 257=3 {t (W) + kgl t 0t0xy, +57} vi

+ 2, (3) Gor) v Jrren,

I+lvl=2

(6.1) 02

vz=Mz(x’)|:x1L2—v2+ Sy ,"”_)i<_@_)’v.
010, 0t0x 0t 0x./ 7

1 1=7=3
i+1=2

o) G L) v ]+
T2 <0t><@x1 57) v | T F);
+1=1
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02 0*
@tz V3= Ma(x)(xla 21]3+ Z tatz
i 0 /4 a > j|
+ 1§]Z;§3 (3t> (0_x~z> (090' v |+ Fs(x),
t+lz+§I11*I§2

oV
(6-2) 'Ul|t=0=0: Uzlt=0=U2|x1=0:0: (-0—{> VU3

t=0=0, (j=0, 1).
Remark 6.1. For the simplicity, we assumed that the coefficients in
the right hand side are represented by M;(x’), although the lemma is true
if the coefficient of each differential appeared in the right hand side is a
function depending on x’.
In generally the lemma is true for the higher order system (see the

proof in detail).

Proof. Let us construct the formal solution of type

q
(6.3) vilt, 2)= 3 o0 (x) T Tk
5,920 P g

Substituting (6.3) into (6.1) and comparing the coefficients of ?x{, we

have

(p+1)o?b0= M (2’ )Lp v+ (p+1)qu* LV 4 pyP e D

o 0 (2,9) { (p+1,9) (b,q+1)
M P P TR I A L
+ ﬁ:p 0 WP 04 P 4)}_|_ 5 ( 0 ) (pz+q)}
F=2" Oxp 15723 \0x’ vi

ll__S_

+ Fi(x")0303,

(6.4) (ﬁ+1 q+1)_M2(x/)|:qv(z"+1 q)+ SZ“ p'ug’*p 1,1+49)
;

II IV\

0 () o |+ Faaotas
3 x -
1
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(17+2,¢1) _'.Ms(x/)

l—_l

U(P+2 »q— 1)+ Z pv(ﬁ+l »4q)
1=7=3

M

) (i+2, ’+q):|+F3(x')6p§
0x

FIAS
© "'||/\

N“

where 02 and 0¢ are Kronecker’s 0.

Since M;(x’) and F;(x’) are analytic functions, we assume

<clilha |2y reo] < sl

in |x’| <0, for some positive constants 4, B, 0 and 0.
Then we can prove the following estimates by induction on p and gq,

l(ai’) W | =

|G2) v | <

for some positive constant C depending on A, and the number of terms
of summations in the right hand side of (6.1). It is easy to prove (6.6)
by the lemma due to S. Mizohata [7]:

Let a(x) and b(x) be analytic functions satisfying

69 ) e

(2P+q+ Ial) C7ﬁ+3q+l+|a|B
)2
(6.6)

(2P+qp't' |a|)!c7p+34+|a|B, (i=2, 3)’

(Gl =it o

P

|dl

where r and s are non-negative integers. Then we have

l(%)a{a(x)b(x)}} < (r+s—]|;||a|)l kfl AB/Cr,

We omit to prove (6.6). (Similar estimates are given in [6].)

Then we have the following estimates for the formal solution

o |(5) G) (o) v

<(p+q+|a)IDrarieiE,
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(i=1,2,3), in |¢]<7, |21|<7, |x'| <& for some positive constants D, E
and 7. Thus we proved the lemma. Q.E.D.

Proof of Lemma 4.2. Let us recall the assumption (4.5),

a(0, x)=0, Pa(os x)+¢(0, x)=~0,

for any p€{0, 1,2, ...}, then we may assume a(z, x)=1, p+c(0, x) 0.
Especially,

(6.8) p+c(0,0, x)=0 for p€40,1,2, ...}

Thus we may rewrite the system (3.6) as follows;
a A — u a ~ =
{t—-{—c(O, 0, ") pvi= 3 2 thi(t, x)=—+1E(t, x)+ %18@, x)v1
0t E=1 0xp

N ., 0 L0 _6’_>.
+j2=:2b1]<t, x5t TR taxl’ tax’ v;

; 2,0 0y,
+ Z blj<t3 x5t 5t ° 5.76_1, a—x—/ U;‘|'g1(t» x)’

j=r+1
(6.9) .
0 —35p.. L, 0,0 i) 1
L CRES ST DA Ol
(i=2, ~--,7‘),
0o X 3 ., 0 0 @) ) _
—a*t—‘liz = j;lbu ty %3 tW’ 596—1’ Y% v+ gt(t, x),

(i=r+1, ..., N).

It is obvious that the formal solution of (6.9)-(4.6) of type
PR

(6.10) vt x)= 3 oO(x)L- FL (i=1,2,.., N),
5,420 pl q!

can be constructed uniquely.
In order to prove the analyticity of (6.10) in a neighborhood of the
origin, we consider the following Goursat-problem equivalent to (6.9)-

(4.6); differentiating the first equation in (6.9) with respect to &, and

substituting the terms %—v;, (i=r+1, ..., N) by the third equations in
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(6.9), we have

{ 2 gz T (1 +¢(0, 0, x))—}ﬂl {Z 154ty %) 5 —=—+1e(, x)

+ %12 (2, x)%—-l—czu(t, x; 5%;, 5%7 }

+ E e 02+ B w52

s 22 0 O _52_>} .
+d11(t, X at > axls ax/ vJ+h1(t, x):
(6.11)

52 ___<’>L{N< .. 0 5 a>, ‘
T TR P G R ek ol g ”z+gz},
(l:2, sy r),
——az =0 3 . . 6’ 0 0 ) }
@tz Vi — 0t {'Zlb”(t’ X, t ax ax vj+g1 ,

<i=r+1: Tty N)’

where dy;, (j=1,2, ..., N) are differential operators of the second order,

and dij, (j=2,..-, N) do not involve terms g—:z and ka , (=1, n).
Goursat-data of (6.11) are given by

Vilio=v9(x),
(6.12) vilimo=00(%), vils—0=Vi(t, x'), G=2,...,1),

'Ut't O—V(x)a 'Uzlt O—U(I)(x): (i:T—I-]., L) N)a

where v{®(x), (i=1, ..., 7) and v{"(x), (i=r+1, ..., N) are defined in a
neighborhood of the origin by

C(Oa 09 x/)vg.m ”):xlg(oa x)US.O)_F Zr; bl]<07 x5 03 0’ O)Ug'O)(x)
i=2
(6.13)
y 0
+ 2 bl;<0 x5 0, =— 92 o )V(x)+gl<0 %),

j=r+l
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N
D)= 2 bi(0, %30, 0, 2 )of@) + 0, ),
0 1 i=1 X
”g'O)(x)ll.'l:O: V,'(O, xl)a (LZZ) Tt 7‘).

0 0) N
2 Vo) + (0, ),

N
610 @ = 160,530, .,
i=1 0x1

(i:r+1) ty N))

where v{9(x)=Vx), (i=r+1, ..., N).

We note that v{®(x), (i=1, ..., r) are defined uniquely by (6.13) in
a neighborhood of the origin. (Cauchy-Kowalewski Theorem).

Clearly (6.11)-(6.12) has the same formal solution with that of (6.9)
-(4.6) in view of the construction of the problem (6.11)-(6.12).

Without loss of generality we may assume that the Goursat-data (6.12)
are all zero.

Let
M

<1_ t"‘pxl ><1_xz+ "')'+xn>

be a common majorant of the coefficients of differential appeared in the
right hand side of (6.11). And the assumption, p+c¢(0, 0, z')5=0 for any
pPEA0, 1,2, ...}, asserts the existence of a majorant A(x") such that

pil _ ¥
p+(1+¢(0, 0, x'))<’4(“ )

for any p€{0, 1,2, .-} in a neighborhood of the origin. Thus we have

a majorant system of (6.11)

T e [ TN
IR, w1_<1_ t+ %1 )(1 x2+ +x> =1 0x,0t
Y Y

+ e lllu]<2 (09&1) (095 ) }101 * Z { g

L, 00 0 ﬂ)l <i>} 4]
+k§1t 0x,0t + 0t + 1+1§§z 0x./ \0x’ w,-{—c_l
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62 . NM r 3 { 82 62
0210t wz_(l_ t+ % )(1_xz+--~+xn) i_,§1 t-a-ﬁ-l_t 0x10t
0 0

(6.15)

* Bvnar ot B ) () Joe

I3 N

0tzw3=(1_ t‘l‘pxl ><l_xz+"'+xn) [jzi {tg_tzz

© B () GR) G e )

4
i+i+lv|=2

(6.16)  w

=0, (]:0, 1)3

t=0

(oY
x1=0_ a—t> Ws

where c is a positive constant such that ¢ NM/ <l—t+px1><l —

xz+-~+xn>
0

is a common majorant of A; and %g;, and we have w;, (=1, 2, 3) so

that w; is a majorant of v;, wp is a majorant of v;, (j=2, ...,r) and ws
is a majorant of v;, (j=r-+1, ..., N), respectively.

It is obvious that the formal solution of (6.15)-(6.16) is majorant of
that of (6.11)-(6.12) in view of the construction of the formal solution.

Now we note that (6.15)-(6.16) is a problem considered in Lemma
6.1 (see Remark 6.1), then there exists a unique solution of (6.15)-(6.16)
in a neighborhood of the origin. Thus we proved the lemma.

Q.E.D.

Proof of Theorem 4.2. We shall prove the theorem for the system
(3.6) replacing (1.1)-(1.2). We prove the sufficiency, since the necessity
is obvious. Let us consider the following Goursat-problem to (3.6):

Ui'x1=0: Vo, x,)+txi(t> x,)y @=2, .-, 71),
(6.17)
vilt=0 = Vi(x)s (7'=r+1> s N)’
where V(x)='(Vy(x), .-, V(%)) is the initial-data of (3.6) and x:(z, ")

are arbitrary analytic functions at ¢ and x’. Then there exists a unique
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solution v;(¢, x), (i=1, ..., N) in a neighborhood of the origin. We can
prove that this solution is also a solution of (3.6) with the initial-data
V(x). In fact, it suffices to show that v{9(x)=wv;(0, x)="Vi(x), (i=1,
...,r). We note that v;(0, x), (=1, ..., ) is a solution of the initial-
value problem (6.13).

On the other hand it is obvious that V;(x), (i=1, ..., r) is a solution
of the initial-value problem (6.13), since (6.13) is nothing but the com-
patibility condition (4.7) if we substitute v{9(x) by Vix), (=1, ..., 7).
Thus we have that v;(0, x)=V(x), (i=1, ...,7) in a neighborhood of
the origin (Cauchy-Kowalewski Theorem).

The non-uniqueness of the solution is obvious in view of the arbitra-
riness of x;(¢, x'), (i=2, ..., r) in (6.17). Q.E.D.

§7. Proof of Theorem 4.3

Let

b4 a
(7.1) wult, D= T o (DS (=1, V),

Xi
r ¢
be the formal solution of the problem (3.6)-(4.6).
At first, we prove the theorem in the case where a(0, x)=0, and

c(0,0)=0 and ¢(0, x)5%40. Let us construct the formal solution (7.1),
then we see that »{° 9(x’) should satisfy

C(Oa 0: x’)v(lo'm(x/)'l' 7 a Vr+1(x)]x =0
axl !
- ﬁzblj(o, 0, %'3 0, 0, 0)v;(0, x”)
i=

N
+ Z blj(oa 0: x,; O, O: ”a—/> Vj(x)|x1=0
j=r+1 0x

+ <Z)12(x), f(os x)> Ix1=0-

Thus we see that the Goursat-data (4.6) should satisfy some relation at
x'=0, since ¢(0, 0, 0)=0.
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Now we prove the theorem in the case where a(0, x)=0, ¢(0, x)==0.

Without loss of generality we may rewrite the system (3.6) as follows,

vl—{t alt, r) +thk(t £)2- }vl+d(x)éz—lv,+1

0 0 0
+Zb“<t’”a Loy ow) Y
i ., 0 0 0
t j=zr:+1b1j<t’ i ot’ Ox 0% vit g1t %),
(7.2)
a._N.( iii) . .
a—x_lvt'— jglbu ty, x5t ot ° taxla D% vl+gt(ta x)a (5—2, ) T),
5 9 N (om0 2,0 0,0
_0—t——'Ur+1‘—‘ %vl+j§167+1'] ty, x5 t—5— 51 ax ax 'U_1+gr+1,

a,_N”(,aaa .
BT BN E g g ST 8 (G E R W),

where d(0)=~0.

We give only a sketch of the proof, since an exact discription is
more complicated.

Our purpose is to construct a Goursat-data (4.6) so that the formal
solution (7.1) is not analytic in any neighborhood of the origin. We note
that the formal solution (7.1) can be constructed uniquely according to
the assumption.

Now let us consider the following Goursat-data,

'Uilx1=0=0: (i=2, -, 1),

2g+1
— p0:2¢+1)_F1~
(73) Orerlems P (2g+1)!

vil1=0=0, (i=r+2,...,N)

where v{%2¢*1) are defined later so that the formal solution (7.1) is not
analytic in any neighborhood of the origin.
Let
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PR
vty )= 5 OG- =1 N,
be the formal solution of the problem (7.2)-(7.3), and let
-(t x)= Z (_b,q)<x/)i_xi (i:]_ N)
8ill, 2520 &i P‘ q| ) ) 5 .

Then we have easily

T8 PO =(—d(0, #)Pd(0, &+ L%D; 9<2p)

’. 3) (07,2°)( ./
+2,(o'5 50 )& (),

where [, denotes a linear combination of v{%{, (¢<2p), and S’p(x’ ,—a—)

0x’
denotes a suitable differential operator.

Now we define v{%??*1 by
(7.5) V%P = — P+ le¥a(2p4-1)],

where 7= —d(0, 0)~}, and the argument 6, is defined by

(7.6) 6p=arg.<ll,(v(,°;‘{’; q <2p) ‘ ’A0+3p<0’ 5%)<g§_p’,q’))

1'=0>.

Then we have

[¢(0)] = (2p+ D).

This implies

$20 ' =z p

This completes the proof. Q.E.D.

§8. Statements of Theorems in the Case Where r=1

In this section we give only the results, since the proofs are similar

to those in the previous sections and in [ 6 ].
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Theorem 8.1. We assume (1.4) and
(8.1) a(0, x)=0, ¢(0, x)=0.

Then for the existence of a solution of the problem (1.1)-(1.2), the follow-

ing conditions are necessary and sufficient; the first compatibility condition
(8.2) <T1a2(x), .CZ(O, x; 0%) ﬁ(x)-—f(O, %)>=0,
and the second compatibility condition

(8.3) <T1a(x), (A(])(x)+$<0, x; %—))ﬂ,(l)(x)
+$(1)<x; %) ﬁ(x)——f(l)(x)> =0,

where 1Y (x) is a special solution of the equation
A0, x)ﬁ(l)(x)+$<0, x; _a@;) (%)= F(0, x).

In the above theorem the necessity follows immediately from the

construction of the formal solution of type
(8.4) u(t, x)=p2 zl(p)(x)tp/p! .
=0

Let us recall that we are assuming (1.4). Contrary to (8.1), we now

assume
(8.5) a(0, x)=0, ¢(0, x)=~0.

If the initial-value problem (1.1)-(1.2) admits an analytic solution #(%, x),
then the initial-data (1.2) should satisfy the following condition:

(8.6) <Tra(x), z(o, X %}ﬁ(x)—f(o, £)> =0.

Theorem 8.2. Under the assumptions (1.4) and (8.5), (8.6) is not
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always sufficient for the existence of solutions. Precisely we can find an
initial-data satisfying (8.6) such that there can not exist analytic solution

in any neighborhood of the origin.
Theorem 8.3. Under the assumptions (1.4) and
(8.7) a(0, 2)70,  pa(0, %)+ c(0, x) 0,

Sfor any p€{0,1,2,... }, (8.6) is mecessary and also sufficient in order
that there exists a solution of the problem (1.1)-(1.2). In this case the
solution is unique.

Theorem 8.4. We now assume (1.4) and

(8'8) a(os x)#O: POa(O’ x)+c(0) x)EO’

for some po€40,1,2,...}. If the case where po=0, (8.6) is necessary
and also sufficient in order that there exists a solution of the problem (1.1)-
(1.2) in a neighborhood of the ovigin. In this case the solution is unique.

If the case wheve p,=1, (8.6) and the following compatibility condi-
tions are mecessary and sufficient in order to exist at least ome solution of
the problem (1.1)-(1.2) in a neighborhood of the origin. In this case the
solution is not unique;

(8.9) (%>po <T1a(x), {A(t, x)gz—-l-,?(t, x; %)} u(t, x)
— ft, %)> | 120=0,

) ~
where i(t, x)= Zo: #P(%)e?/pl is defined followingly; i (x)=U(x), 1‘?(x),
$=0
(A=p=po—1) are uniquely detemined step by step by the construction of

the formal solution of type (8.4) and ©@®(x) is a special solution of the
equation

A0, x)——— A(t, x)u(t x)+ZL(t, % F
( 8t a

wehre &(t, x)= Y D u“’)(x)t”/p
ﬂ:
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Remark 8.1. In Theorem 8.3 and Theorem 8.4, we need not assume
that the initial surface ¢=( is double characteristic. @~More precisely it

suffices to assume the following;

(8.10) rank 40, x)=N—1, 51 |22 (0, x; 1, 0)| =0.
=108,

Appendix

In the previous sections we assumed (3. Ass.), we study in this sec-
tion the case where we do not assume (3. Ass.) but the following assump-

tion
(A. ASS.) <T;2(x), Bk(O, x)?(x)> =0, (z:l’ N k=1, ..., n).

Then we have

r
e N
0
r 0
0
‘P, A0, x)'Q3'= 1 ’
. 0
0 .
01
01 1
r 0
t tH-1_ 1
(A.1) P, B,(0, x)'Qz' = 10 ceclreees 0’
* *
0
r{|: * *
‘PBy(0, x)Q7 = [ . (k=2 n).
[ * *

(See the notation in §3.)

Remark A.l. In the case where r=2, we easily see that the assump-
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tion (1.4)" implies (3. Ass.) or (A. Ass.).

Now we transform the unknown function & to ¥ by ?='Q.#, then

we have the following system;

{tal(t, x)%——‘r kzltbl;,(t, 6’2- +c.(t, x)}vl_i_@ixlv”l
= 2

fpale s Yot <o

%1 {m,(; x) -+ z thia(2, x) e, x)}

L9 .0 0N .7 7
(A.z) + Zbu t X tat t——x—l, a—x,‘)vj—"<l;2,f>,

0

o & . .. 0 9 a)'
3 —"1—,-?315?”-1(" SR TR PR A

Vyp1t x
1

+ <‘_ir+1,2, f>a

0o _ . ., 0 0 5‘)
W’U, = j;lb” t, X, r—— at ax a 'U]+ <a12) f>
(i=r+2,...,N).

Let us show that we can not obtain a corresponding result to Theo-

rem 4.1 by a simple example.

Example. Let us consider the following system,

i11,3 0 uz+b us+Z1(uz, us),

0x1 a a
N
(E) 3—x1u2_caxzu2 { daxzus-i-o?z(uz, us),
0 0
TR u1-i-eaa u1+fa u2+gaa us+Ls(u1, us, us),
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where a(+0), b, ---, f and g are complex numbers and %;, (i=1, 2, 3)
denote linear combinations.

Now let us assume that there exists a solution of (E), ui(¢, x)=
; uP(x)e?/pl, (i=1,2,3). Then we easily see that we can not obtain
izgations between u{?(x), (i=1, 2, 3). On the other hand, we know that
we can not give a datum of u; at t=0.

‘We now assume
(a3) <Ta(), 2(0, 552 (> =0, (=1, -, 1),

which implies ¢;(0, x)=0, (i=1, ..., r) in the system (A.2).
Under the assumption (A.3), we shall consider the following initial-

value problem to (1.1);
(A4) <—I;i2(x)’ > lt=0=Vi<x)s <l=2, ) N)-

Theorem A.l. Under the assumptions (A. Ass.) and (A.3), the
following conditions are necessary and sufficient in order to exist at least
one solution of the problem (1.1)-(A.4) in a neighborhood of the origin;

(A-S) <Ti2(x): 3(05 x5 %)ﬁ(t: x)—f(t’ x)> It——~0:03 (Lz]-) ) T).

Theorem A.l follows immediately from the following lemma.

Lemma A.1. (Goursat-problem) Let us consider the following prob-
lem to the system (A.2), then there exists a unique solution in a neighbor-

hood of the origin;

'Uilx1=0= Vi, x'), (@=1, -, r+1),
(A.6)
Uilt=0=Vi(x)a G=r+2, ..., N).

We can prove the lemma as the same way as Lemma 4.2, or see
L. Garding ([ 2], Théoréme 3.1).

We now assume

(A-7) al<0, x)=/50, Pal((), x)+01(0, x)#o for PE {0: 1,2, }’
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then we have a corresponding result to Theorem 4.2.

Theorem A.2. Under the assumptions (A. Ass.) and (A.7), the fol-
lowing conditions are necessary and sufficient for the existence of a solution
of the problem (1.1)-(1.2) in a neighborhood of the origin;

A8 <T@, 2(0, 5 L)@ =0, )>=0,  (i=1, 7).

In order to prove the theorem, it suffices to prove the following
lemma (see §6).

Lemma A.2. Let us consider the following Goursal-problem, then

there exists a unique solution in a neighborhood of the origin;

(t%-kl)vl:Ml(x’)[{t(t-kxl) -I—Zt +t+x1}

+t53—102 v3+ Z( 6t 6 +1)v,}+F1(x’),
(A9) aat =M,y(x’ )Lxl vz—l—( -+ Z t )vl

i(‘%“ai 5 ai +1>U;]+Fz(x ),

X1 k=2
iv M(x’)[xl 0 vs+ Z 6‘ —+ Z )v-]—i—F (x")
or o or ° "or T & ! B
(A.10) V2| zm0=03]|1=0=0

Proof of Lemma A.2. Let v;= Z v#O(x")e?x/plg!, (=1, 2, 3) be
the formal solution of (A.9)-(A.10). Slnce My(x") and Fi(x"), (i=1, 2, 3)

are analytic functions at x’, we now assume

(A.11) K%)aM"(x/)l’ ‘(ai M )M (")} ‘(Sla)!“‘M

I(a )F( ')‘< I‘ﬂl; 4,  (G,j=1,2,3),
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for some positive constants M and 4 in |x'| <& (6>0).

Then we can prove the following estimates by induction on p and gq,

0N\ by, I @Cptg+1+lal)l Lrps00201a
K@x’> OISR e e ) 4
(A.12)

a 1
I(i/) 29 (") lg @2pt+g+a]) CTe+3arlal 4 (i=2, 3),
0x p

for some positive constant C in |x’| <0.

a
We must pay attention when we estimate (%) v{?, because of
x

the fact that —(,%—‘03 appear in the right hand side of the first equation in
1

the system (A.9). This completes the proof.
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