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On the Initial-value Problems with Data on a
Characteristic Surface for Linear Systems

of First Order Equations
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Masatake Miyake*

§ I. Introduction and Definitions

We study in this paper the following initial -value problem

(1.1)

t=Q
(1.2)

where &t, x:- = EBk(t, x}-+C(t, x\ A, Bk and C are NxN-
\ ox/ k=i oxk

matrices, u and /are vectors with TV-components, i.e., u = t(ui, - . - 5 i^^) and

/='(/!>• ••>/")•

Throughout this paper we study the problem in the class of analytic

functions. More precisely we assume that the coefficients, initial-data

(1.2), / and solutions are analytic functions in a neighborhood of the

origin.

We assume that the initial surface £ = 0 is characteristic of the

system (1.1), namely

Definition 1.1. We say that the initial surface t = 0 is simple char-

Received May 10, 1972.
Communicated by S. Matsuura.
Department of Mathematics, Kanazawa University, Kanazawa, Japan,



232 MASATAKE MIYAKE

acteristic if for a positive integer r,

(1.3) rank ,4(0, *) = JV-r, Z \(-jf}* H(Q, *\ 1, 0)

where #(*, A;; r, f)
*=i

Now we remark that (1.3) is equivalent to that hr(Q, #; ?) is not

zero as a homogeneous polynomial in £ of degree r, where £T(0, #; r, £) =

rank .

(1.4)

Vo.

Definition 1.2. We say that the initial surface £ = 0 is double char-

acteristic if for a positive integer r3

=o,

This condition is equivalent to that hr(Q, x; f) is zero as a polyno-

mial in f and A r+i(03 A;; ̂ ) is not zero as a polynomial in f.

In section 23 we study the initial-value problem in the case of simple

characteristic. From section 3 on, we study the problem in the case of

double characteristic. In section 4 we state the main theorems under the

assumption (3. Ass.} when r^>2. In appendix we study the case with a

certain assumption other than (3. Ass.). In section 83 we give only the

results in the case where r = l.

The arguments in this paper may be used for the initial-value prob-

lems of higher order system.

Our method relies essentially on the paper of Y. Hasegawa Q6].

I. G. Petrowsky Hi2] and S. Mizohata Q8] had proved the existence

of null solutions and S. Matsuura [JL1] had proved the existence of null

solutions for overdetermined system with constant coefficients (see also L.

Hormander Q7]).

Similar problems were investigated by J. Vaillant pT], [JL(T| and Y.

Hasegawa Q6]. Especially Mrs. Hasegawa treated the initial-value prob-

lems for the single equations. In the case where r = l, our results are
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similar to those of [JTJ.

Finally, the author wishes to thank Professor Mizohata and Mrs.

Hasegawa for their valuable suggestions and constant encouragements.

§2. Simple Characteristic Initial- value Problem

In this section we review the reasoning given in the paper of G. F. D.

Duff pQ. Without loss of generality we may assume

(1.3)' rank^(0, *) = JV-r, (0, *; 1, 0)^0,
0>$l

Let F(x)(CCN) be the image of ^4(0, x) and K(x) be the kernel of

^4(0, x\ then we have dim V(x} = N— r and dim K(x} = r. Let

{^•(^)}f=r+i be a base of V{x) and a,-(#), (j = r+l, --,N) be an inverse

image of 1>i(x\ i- e.3

(2.1) ^(0, xfaW^fa), (£ = r+l, -., N).

Let {?i(x)}ri = i be a base of ^(^),1} then we have

(2.2)

0
\

"o

0
.

i1
0

\o
1 J

r

°'''i

I

0

*

where P(x) = (li(x), • • • , I r(x\ar+l(x\ •••,aN(x))2') and

_, -»
1) ^(x), bj,(x) and / t(^) are determined analytically at # in a neighborhood of the

origin.
2) (cj(#),. . . , c2V(^)) denotes the matrix with i-th column vector c1t(x).
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t^x)\ and 6j(a;) = *.Z?i(0, x}t i(x\ (& = 1, • • • 3 r ) : > since the assumption (1.3 )'

implies dim*£i(0, x}(K(x)}/V(x) = r,

Now we transform the unknown function u(t, x} to v(t, x) in a

neighborhood of the origin by

(2.3) v(t, x) = fQ(x)u(t, *).

We rewrite the system (1.1) in the following form

(1.1)'

t=i

Then we have the following system equivalent to (1.1);

(2.4)

where ^/ = (^25 • • • 3 A;W) G ^w~1 and 6y(^, #; ir, ff i , ?7)3 (^' — l ? " - 3 r ) are

polynomials in r, fi and ^ / = z ( f2 3 - - -3 f») of degree 1. < , > denotes the

scalar product.

Theorem 2*1* Under the assumption (1.3), £/ae following conditions

are necessary and sufficient for the existence of a solution of the problem

(1.1) -(1.2) in a neighborhood of the origin'.

(2.5) <,00, J 2 f o , *; (*)-/(*)> =0, (i = l, ....r).

For the proof of Theorem 2.1 we use the following lemma.

Lemma 2.1. (Goursat-problem) Let us consider the following problem

to the system (2.4)3 then there exists a unique solution in a neighborhood

of the origin:
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For the proof of the lemma, see [I], Q2] and pTj. Or, we can

prove it in the same way as Proposition 5.1.

Proof of Theorem 2.1. Since the system (1.1) is equivalent to (2.4),

we prove the theorem for (2.4). Let V(x) = \V±(x}, • - • , VN(X)) be the

initial-data of (2.4), i.e., V(x)=-tQ(x}U(x}, then the condition (2.5) is

transformed into

(2.6) /-rM= 2 6f/o, x- o, o,/7)ryw+<r^), /(o, *)>,
o x\ y = i ^ ox/

Since the necessity is clear, we prove the sufficiency. Now let us

consider the following Goursat-problem to the system (2.4);

(2.7)

where %z-(^, ^0 are arbitrary analytic functions in t and x'. Then Lemma

2.1 asserts the existence of a unique solution Vi(t, x\ (i = !,-••, TV) in a

neighborhood of the origin. Let us show that this solution satisfies

^•(0, x)=Vi(x), (j' = !,••-, r) in a neighborhood of the origin. At first we

note that t7,-(0, #), (i = l,...3r) should be a solution of the following initial-

value problem;

jT-»*(0, *)= 2 6«(o, *; 0, O./yWo, *)+ <r,(*)> /(O, *)>
( j X i y = i \ o x /

(2.8)

where t;,<0, a;)= Vt(x\ (i = r+l,..., JV).

On the other hand, F,-(#)5 (^" — I r - j O is also a solution of (2.8) in

view of (2.6). Then we have v,-(0, ^)=F,-(A;)J (z = l , - . - 3 r ) in a neighbor-

hood of the origin.

Finally the non-uniqueness of the solution is obvious from the arbi-

trariness of *,-(*, x') in (2.7). Q.E.D,
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§3. Reduction to the Standard Form

To study the double characteristic case we reduce the system (1.1) to

the standard form as in §2. Without loss of generality we may assume

rank A(0, x)=N-r, £ hsr) H(°> x;l,0)

(L4)/

^•f (o, *; 1,0)^0.

The assumption (1.4)' implies immediately

(3.1)

where Ti2(x) (€K(x)) is a null vector of '-Si(0, x) modulo V(X\ i.e.,

We shall prove only that *-5i(03 x) ^12(^)^0, since the others are

proved by the same reasoning. It suffices to prove that *J5i(03 0)Ti2(0)=^=

0. We now assume that 'J?i(0, 0)Ti2(0) = 0. If we put P3 = (Ti2(0), T23,

..., Tr3, Sr-i-i(O), • • - , ojv(O)) and ^3 = (^i3, - - - j ^rs, ^r+i(0)3 • • - , ^(0)), where

we choose {Tf-3}J=2(C^(0)) and {^-3}/=i so that {Ti2(0)3 T 2 3 j - - - 3 Tr3} is a

base of Jf(0) and {£i3? - • - , ?r3, ?r+i(0), - - • , ^(0)}, is a base of CN. Then

we have

' 0

'o

0
I

0

l. 0

° ' ' l j
O"1 *7?ifO O^PQ —5 V3 -°1VU5 u / ^3

^0 1

*

v 0

We now define a modified characteristic polynomial ii(r, f) by

XO, 0)r+ E 'Bt(0,
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Then we have that the coefficient of f r+i r#-r-i of Li(r, ?) is zero. This

contradicts (1.4)'.

Then there exists a vector a r+i>2(A;) G {ar+i(#)9 • • - , a^(x)} such that

(3.2) '^(0, *)3r+i.2(*) = '#i(0, *)Ti2(*)>

where {ar+i3 • • - , a^v} denotes a vector subspace of CN spanned by o r+i, • • - ,

3>N-i and a^.

Now we choose some vectors {Tj2(^)}J=2 (C^(^)) and {ai2(A;)}f=r+2

so that {T,-2(a;)}j=1 is a base of JC(a;) and {ar+i,25 • • - , aN2} = {ar+i, • •• 5«]v}-

Let us define {^f2(^)}f=i as follows

(3.3)

Hereafter we assume

(3. Ass.) fBk(Oy ^

Then we have

Proposition 3.1.

0
0 '

\ 0

(3.4)

( 0
1

' 1
1 A

*

1

0

* ,
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0 - - - 0

where P2(x) = (Tl2(x\---,Tr2(x^ ar+li2(x\-.-,aN2(x}} and Q2(x) = (^12(x\

•••3^2(»).

Proof. It suffices to prove that {&i2W}?=i is a base of C^. It is

obvious that {&i2(x)}¥=2 are linearly independent according to (3.1). If

^12(0) £ {^22(0)5 • • - , ^2(0)}, we choose a vector 1)U so that {bu, 622(0), • • - ,

is a base of CN, then we have

(
r

f °\
*0

0

1
o

1
•.

0 'l,

f
r

-i * I
3 ¥4 IV 5 y 2 —

^ 0
1

°\
"l

1
0
: 0
0

0
* *

*
*

where (?4 = (^i4, ^22(0), - - - ,

Now we define a modified characteristic polynomial L2(T, f) by

i2(r, f)=det (^^(^(O, 0)r+

Then we have that the coefficient of f£+1r^~r-1 of L2(r, f) is zero. This

contradicts (1.4)7. Q.E.D.

Now we transform the unknown function u to v by

(3.5) t(t, a?) = ̂ 2(«)S(*, ^)3

then we have the following system equivalent to (1.1);
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d d d

(£ = 2, ...,r),

d

where 6 ,-/(«, ^c; £r, ^i, <fO denote polynomials in r, £1 and ?/=:(?25 • • • 3 ?»)
of degree 1.

Finally we note how to be deduced the functions a(t, x} and c(£, a;)

in the first equation of the above system from (1.1). Let N(x)(<CCN)

be the kernel of ^4(0, x) and W(x) be the image of ^4(0, ̂ ), then we

have dim #i(0, x)(N(x)}/W(x) = r — 1. Then there exists a vector ?(x)£

N(x) such that

It follows that <?f-2U), ^)>=0, (£ = 2, . . . ,JV) and <Ti2(»3

,^(*)>=0, (A-25 . . -5^).3>

Then we have

Proposition 3.2. LfoJer the assumption (1.4)' w

3) <llz(x), 5ft(0, a;)r(a;)>=0, (A;=2, ..., n) follows from the assumption (1.4):
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<r»(«), M**)
(3.7)

t=Q

Proof. It is obvious according to the above reasonings.

§4. Initial-value Problems in the Case Where

We now assume

(4.1) (0, *)ri2

where '.$?(*, *; -A-)?12= - 2 ^-C^Ti2) + 'CTi2. We note that the
\ </# / ^=10'^;^

assumption (4.1) implies

(4.1)'

for any yG{25 • • • , r} in the system (3.6). Then we have

Lemma 4.1. Under the assumption (4.1), the following boundary -

value problem to the system (3.6) has a unique solution in a neighborhood

of the origin'.

(4.2)

Theorem 4.1. (Initial-value problem) Under the assumptions in
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Lemma 4.1, the following conditions are necessary and also sufficient for

the existence of a solution in a neighborhood of the origin of the initial-

value problem (1.1)-(1.2):

(*)-(0, *)>=0,

(4.3) <T12(*),

f(p\x)tp/p\ and u(1\x) is a special solution of the equation

In Theorem 4.1, the necessity follows immediately from the construc-

tion of the formal solution of the problem (1. !)-(!. 2),

(4.4) u(t,x)=E&U\x)t*/p\.
P^o

Lemma 4.2. (Goursat-problem) Let us assume

(4.5) a(0, *)^0, jDa(0, ^) + c(0, ̂ )^0 for pE {0, 1, 2, ...}.

the following Goursat-problem to the system (3.6) has a unique solu-

tion in a neighborhood of the origin:

Vi \XI=Q= Vi(t, x'\ (i = 2, • • • , r),
(4.6)

Theorem 4.2- (Initial -value problem) Under the assumptions in

Lemma 4.2, the following compatibility conditions are necessary and suffici-

ent in order to exist at least one solution of the initial-value problem (1.1)

-(1.2) in a neighborhood of the origin:

(4.7) <T«(*)>
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In Lemma 4.2 we can not eliminate the condition a(03 #)^0. In

fact if we assume

(4.8) a(0, *) = 03 c(0, *)^0,

we have

Theorem 4»3o (Goursat-problem) Let us assume (4.8), then the

Goursat-problem (3.6)-(4.6) has not always an analytic solution in a neigh-

borhood of the origin. Precisely we can find such Gour sot-data that there

exists no analytic solution in any neighborhood of the origin.

Remark 4.1. In Theorem 4.1, if we only assume a(03 #) = c(03 x) =

03 we can not obtain necessary and sufficient conditions of type (4.3).

Moreover, without the condition (3. Ass.), we can not obtain the compati-

bility conditions of type (4.3) for the existence of solutions of problem

(1.1)-(1.2) (see Theorem A.I).

Remark 4.2. Under the assumptions in Theorem 4.33 we can not

decide whether the initial-value problem (1. !)-(!. 2) has a solution or not

in view of Theorem 4.3.

Remark 4.3. In the case where a(03 ̂ )^03 p0a(Q, #) + c(03 #) = 0

for some pQ G {03 13 2, ...}3 there can not exist a solution of the Goursat-

problem (3.6)-(4.6) without compatibility conditions between the Goursat-

data (4.6). Moreover even if there exists a solution, it is not unique in

general.

Remark 4.4. The following Goursat-problem to the system (3.6) has

a unique solution in a neighborhood of the origin;

The proof is similar to that of Lemma 4.23 or see Theoreme 3.1 in []2].

From this Goursat-problem we see that we can give data of vi9 (i=r +

23 ..., JV) at £ = 0 arbitrarily.
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§5. Proof of Theorem 4.1

Proposition 5.1.4) Let us consider the following Goursat-problem,

then there exists a unique solution in a neighborhood of the origin'.

|U= I! {««!/(*, x

, ,

+ ht(t, x\

(5.2)

where by and c^ are differential operators of the first order, and d\j are
d2 d2 d2

differential operators of the second order in which -^-, -=-^ - and
*

-^-, -=-^ - -^-^
at* atdxi ox{

do not appear.

Remark 5.1. The system (5.1) is obtained as follows; differentiating

the first equation in (3.6) with respect to t and substituting the term

-^— vr+i by the third equation in (3.6).
ot

Proof. Without loss of generality we may assume that the Goursat-

data are all zero. We can easily show that the formal solution of type

4) A more general Goursat-problem was treated by L. Garding ([2], Theoreme 3.2).
We here give a more elementary proof.
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(5.3) «,(*,*) = Z v<t-*\X')t*X{/p\q\, (i = l ,2, . . . ,JV)
p.q^Q

can be constructed uniquely.

In order to prove the convergence of the formal solution in a neigh-

borhood of the origin, we make a majorant system of (5.1).

Let

X= + #1, Y=x2~\ h xn<>

where a: is a sufficiently small positive constant defined later. Let M/

( X-\- Y\1_ J be a common majorant of a2-y(£, #), ••• and the coefficients

of du(t, x\ -^-9^-9^-r\ and let CMN/(l- X+Y\ be a majorant of
\ at axi ox / \ p /

hi(t,x),(i = l,-9N)-
Then we have the following majorant system of (5.1):

92 MN f / . 92 , . 92 , - 92

. 9 9

(5.4)

d—wz=- V" I V 1 ^-JX+ Y (j=
P

d MN
dt i X+Y

j_

where 5/y are differential operators with positive coefficients of the first

order, and d\j are differential operators with positive coefficients of the
92 92 92

second order which do not contain the terms -^-o-, -^-^ - and ̂ — , .

We shall prove the existence of a solution of (5.4) with non -negative

coefficients. Clearly if such a solution exists, it is a majorant of the for-

mal solution (5.3).

Now let us construct a solution of (5.4) depending on X and F.



INITIAL-VALUE PROBLEMS 245

Namely, let us consider the following initial-value problem:

x-- ,(5'5) 1

9 d dli\^dx' dx' 9
X+Y\ 9

ap

(5.6) y = 0, 1),

If we choose sufficiently small a, the formal solution of (5.5)-(5.6),

(5.7) Wi(X, Y)= 2 w

has non-negative coefficients. In fact it suffices to choose a so that 0<

a<I/MN.

In order to prove the convergence of (5.7) in a neighborhood of the

origin, we reduce the problem (5.5)-(5.6) to the equivalent problem as

follows; differentiating the second and the third equations with respect to

X, then we have a second order system. Now we give the following data

, (7 = 2,3);

dX x=v
(5.8)

"

dX X=Q \ a ap . X=Q

in a neighborhood of F=0.

It is obvious that the initial-value problem obtained by the above
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procedure has a unique solution in a neighborhood of the origin. This

completes the proof. Q.E.D.

Proof of Lemma 4.1. It is sufficient to prove that the problem (3.6)-

(4.2) can be reduced to the Goursat-problem considered in Proposition 5.1

under the assumption (4. 1)7.

We remark that under the assumption (4. 1)7 we can construct the

formal solution of the problem (3.6)-(4.2) of type

(5.9) vfa x)=Z v\*\x)t*/p\, (f = 1, - . . , N\
P^Q

instead of the formal solution of type (5.3).

It is easy to see that vy+i(x) should be a solution of the following

initial-value problem;

(5.10) -vWi = 2 6

(5.11) f*0Ak-o=rr+1OrO,

where v^(x)=Fj(x\ (j=r + 2, ..., N).

Now let us consider the following Goursat-problem equivalent to the

problem (3.6)-(4.2); differentiating the first equation in (3.6) with respect

to t and substituting the terms -~— 0/5 (&'=r + l, • • - , N) by the third and
eft

the fourth equations in (3.6), then we have the following system

•
+ tdij(t, ^ ) 2

(5.12)
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where 5,7 are differential operators of the first order, and d\j are differ-

ential operators of the second order in which - 2 does not appear.

Goursat-data are given by

, *'), (;=o, i),
\vy j\j \_/

(5.13)

Clearly the problem (5.12)-(5.13) has the same formal solution with

that of (3.6)-(4.2). The problem (5.12)-(5.13) is a special case considered

in Proposition 5.1, then there exists a unique solution in a neighborhood

of the origin. This completes the proof.

Before we prove Theorem 4.1, we note that v(f\x\ (& = 1,..., r)

should be a solution of the initial -value problem

(5.14)

+ <t«, 7(0, ^)

0= , *, (;=o, D,
(5.15)

Proof of Theorem 4.1. We shall prove the theorem to the system

(3.6) instead of the problem (1. !)-(!. 2). Then the compatibility condition

(4.3) is transformed into (5.10) and (5.14).

Since the necessity is obvious, we prove the sufficiency. Now let us

consider the following Goursat-problem to (3.6);

*'), (7=0,1),
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(5.16) 1^-0=^(0, *') + **,<*, *0, (* = 2, . .- , r),

where FOO = f(FiCx;)3 ..., Fiv(#)) is the initial-data of (3.6), and %(y) and

%/ are arbitrary analytic functions in t and #'.

Then there exists a unique solution V{(t^ #), (i = l, 23 • ••, TV) of the

problem (3.6)-(5.16) in a neighborhood of the origin. This solution is

also a solution of the initial-value problem to the system (3.6). In fact,

it suffices to show v(?\x}= Vi(x\ (i = l, . . - , r+l) . It follows from the

construction of the Goursat-data (5.16) and the compatibility conditions

(5.10) and (5.14).

The non-uniqueness of the solution is obvious from the arbitrariness

of x(y) and %/ in (5.16). This completes the proof. Q.E.D.

§6, Proof of Theorem 4.2

Lemma 6.1L (Goursat-problem) Let us consider the following

Goursat-problem, then there exists a unique solution in a neighborhood of

the origin'.

2 9 9

+ Tt+
d \v

9TJ '

f + / = 2

/
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*2
 2 fd^v

is/as 9f2

(6.2) 9 V = 0, (; = 0, 1).
t=Q

Remark 6.1. For the simplicity, we assumed that the coefficients in

the right hand side are represented by Mi(x'\ although the lemma is true

if the coefficient of each differential appeared in the right hand side is a

function depending on x1'.

In generally the lemma is true for the higher order system (see the

proof in detail).

Proof. Let us construct the formal solution of type

A n

(6.3)

Substituting (6.3) into (6.1) and comparing the coefficients of tpx^ we

>2v(p-q} + (p+l)qv[p*l'9-l>+pv(f-q+»

(6.4)
l^j ^3
i+ 1=2
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1S/S3

+ S

where #£ and d% are Kronecker's 5.

Since M,-(A/) and Ffa') are analytic functions, we assume

(6.5)

in |A/| <<J, for some positive constants A, B, p and d.
Then we can prove the following estimates by induction on p and

(6.6)
P1'
pi

for some positive constant C depending on A, p and the number of terms

of summations in the right hand side of (6.1). It is easy to prove (6.6)

by the lemma due to S. Mizohata [jG:

Let a(#) and b (#) be analytic functions satisfying

where r and 5 are non-negative integers. Then we have

We omit to prove (6.6). (Similar estimates are given in

Then we have the following estimates for the formal solution

(6-7)
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(i=l, 2, 3), in t\ <r, |*i| <T, \x'\ <S for some positive constants D, E

and Y> Thus we proved the lemma. Q.E.D.

Proof of Lemma 4.2. Let us recall the assumption (4.5),

a(03 *) =£ 03 pa(03 #) + c(03 *) ̂  0,

for any p€ {03 13 2, ...}3 then we may assume a(t, ^)=1, p + c(03 #)=^=0.

Especially,

(6.8) p+cCO, 0, «0¥=0 for pE {05 1, 2, ...}.

Thus we may rewrite the system (3.6) as follows;

c(0, 03 * o i > i =
=i

9 9
y . + 1 « ' "; '-gp 5S

(6.9)

vx

It is obvious that the formal solution of (6.9)-(4.6) of type

(6.10) *,(*,*)= Z ^'^0-^-4' (i = l ,2 , . . . , JV),
^«^o pi q\

can be constructed uniquely.

In order to prove the analyticity of (6.10) in a neighborhood of the

origin, we consider the following Goursat-problem equivalent to (6.9)-

(4.6); differentiating the first equation in (6.9) with respect to £3 and

substituting the terms -~— v» (z = r+l, ..., TV") by the third equations in
ot
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(6.9)5 we have

o, o,

(6.11)

d d 9

where diy, (j=l, 2, • • - , N) are differential operators of the second order,

and Jiy, (j = 2, . . . j T V ) do not involv

Goursat-data of (6.11) are given by

o2 o

and Ji, ( = 2, . . . j T V ) do not involve terms -- and

(6.12)

where V<-O)(A;), (i=l, • • • , r) and w^'Ca;), (i = r+l, ••-, N) are defined in a

neighborhood of the origin by

c(0, 0, x'}v^(K) = x^(Q, X)v{^+ 2 61;(0, x; 0, 0, 0)«J0)(«)
;-2

(6.13)

, *; 0, A,
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2

(6.14) ^'(A;) - Z!6,,o, *; 0, -, t>$0)(*

where vi0)W= F",-(^), (i = r + l, ..., .AT).

We note that t40)(#X (i = l, - - ^ r ) are defined uniquely by (6.13) in

a neighborhood of the origin. (Cauchy-Kowalewski Theorem).

Clearly (6.11)-(6.12) has the same formal solution with that of (6.9)

-(4.6) in view of the construction of the problem (6.11)-(6.12).

Without loss of generality we may assume that the Goursat-data (6.12)

are all zero.

Let

M

be a common major ant of the coefficients of differential appeared in the

right hand side of (6.11). And the assumption, p-\-c((), 0, #')=^0 for any

, 1, 2, . - •} , asserts the existence of a majorant A(x') such that

for any jD6{0, 1, 2, • • • } in a neighborhood of the origin. Thus we have

a majorant system of (6.11)

f 92 , d NMA(x/}
" dt

9 V/ 9
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d2 NM
_X2+--- + Xn\l

9 / 9 / 9

_ _
A t + Xl V1.._x2 + - + x.\L1

(6.16) = W2
t=Q XI=Q \ at / t=o

where c is a positive constant such that cNM/( 1— V 1—— '-

is a common majorant of hi and ——$7, and we have w^ (z = l, 2, 3) so
at

that wi is a majorant of vi, w2 is a majorant of Vj, (y = 2, ..., r) and w3

is a majorant of vy, (y = r+l3 • • - , TV), respectively.

It is obvious that the formal solution of (6.15)-(6.16) is majorant of

that of (6.11)-(6.12) in view of the construction of the formal solution.

Now we note that (6.15)-(6.16) is a problem considered in Lemma

6.1 (see Remark 6.1), then there exists a unique solution of (6.15)-(6.16)

in a neighborhood of the origin. Thus we proved the lemma.

Q.E.D.

Proof of Theorem 4.2. We shall prove the theorem for the system

(3.6) replacing (1.!)-(!.2). We prove the sufficiency, since the necessity

is obvious. Let us consider the following Goursat-problem to (3.6):

t, x'\ (i = 2, . . - , r),
(6.17)

Vi\M =Vi(x\ (i

where V(x) = \Vi(x\ • • • , VN(x)) is the initial-data of (3.6) and %,<£, xr)

are arbitrary analytic functions at t and x'. Then there exists a unique
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solution Vi(t, x), (i = l, • • - , N) in a neighborhood of the origin. We can

prove that this solution is also a solution of (3.6) with the initial-data

FO). In fact, it suffices to show that t40)(#) = *>,<(), *) = F*O), (£=1,

• • • 5 r ) . We note that ^-(0, #), (& = 1, - - ^ r ) is a solution of the initial-

value problem (6.13).

On the other hand it is obvious that F;(#), (i = l, • • - , r) is a solution

of the initial-value problem (6.13), since (6.13) is nothing but the com-

patibility condition (4.7) if we substitute v(^(x) by Vi(x\ (i = l, - - - j r ) .

Thus we have that 0f(0, #)= F,-(#)5 (i^l, - - - , r ) in a neighborhood of

the origin (Cauchy-Kowalewski Theorem).

The non-uniqueness of the solution is obvious in view of the arbitra-

riness of xfc, x'\ (i = 2, . . . ,r) in (6.17). Q.E.D.

§7. Proof of Theorem 4.3

Let

(7.1) *,<*,*)= E v^W-^-Zl-, (i = l, -..,^),
^,«^o pi ql

be the formal solution of the problem (3.6)-(4.6).

At first, we prove the theorem in the case where a(0, #) = 0, and

c(0, 0) = 0 and c(0, ^)^0. Let us construct the formal solution (7.1),

then we see that v^' O)(A/) should satisfy

c(0, 0, *0<'° .-^ / i o ' r+JLV"/ \ Xi = vaxi 1

, 0, *';0, 0, 0>/0, xr)

Thus we see that the Goursat-data (4.6) should satisfy some relation at

#'=0, since c(0, 0, 0) = 0.
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Now we prove the theorem in the case where a(0, #)^0, c(0, #

Without loss of generality we may rewrite the system (3.6) as follows,

a(t, #W— + S tbh(t, oc}- — \vl + d(x)w— vr+i
dt k=i dxk) axi

(7.2)

9xi ' y=i "\ ' ' dt ' 9#i' 9;

d 9 . , £ i /. ... . 9 9
"9T^

9
9*

= r + 2t -, TV),

where

We give only a sketch of the proof, since an exact discription is

more complicated.

Our purpose is to construct a Goursat-data (4.6) so that the formal

solution (7.1) is not analytic in any neighborhood of the origin. We note

that the formal solution (7.1) can be constructed uniquely according to

the assumption.

Now let us consider the following Goursat-data,

Vi 1^=0 = 0, (i = 2, • • •, r),

(7.3) f

Vi\M = 0, (i = r + 2, ..., JV)

where v(
r°^iq+1} are defined later so that the formal solution (7.1) is not

analytic in any neighborhood of the origin.

Let
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be the formal solution of the problem (7.2)-(7.3), and let

Then we have easily

(7.4) <//•<»(*')=

where Z^, denotes a linear combination of v(
r°+i\ (g<2p), and

denotes a suitable differential operator.

Now we define v^f +1) by

(7.5) t;(

where y=—d(Q, O)"1, and the argument #^ is defined by

(7.6) ep=arg.(lp(v^;q <2p)

Then we have

This implies

This completes the proof. Q.E.D.

§8. Statements of Theorems in the Case Where r=l

In this section we give only the results, since the proofs are similar

to those in the previous sections and in
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Theorem 8.1. We assume (1.4) and

(8.1) a(0, *) = 0, c(0, *) = 0.

Then for the existence of a solution of the problem (1.1)-(1.2)3 the follow-

ing conditions are necessary and sufficient', the first compatibility condition

(8.2) <T12(*), -S fo , *; ff(*)-/(0, *)>=0,

and the second compatibility condition

(8.3) <T12(*), (>>(*) + .5? (0, *; -

where z2(1)(#) is a special solution of the equation

A(0, *)fi(1)

In the above theorem the necessity follows immediately from the

construction of the formal solution of type

(8.4) u(t, *)= 2 aC*>(*)*Vp! •
/>^0

Let us recall that we are assuming (1.4). Contrary to (8.1), we now

assume

(8.5) a(0, *) = (), c(0, *)^0.

If the initial-value problem (1.1)-(1.2) admits an analytic solution u(t, x\

then the initial-data (1.2) should satisfy the following condition:

(8.6) <?i2(*),.

Theorem 8.2. Under the assumptions (1.4) and (8.5), (8.6) is not
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always sufficient for the existence of solutions. Precisely we can find an

initial-data satisfying (8.6) such that there can not exist analytic solution

in any neighborhood of the origin.

Theorem 8.3. Under the assumptions (1.4) and

(8.7) a(0, *)=£ 0, pa(09 x) + c(0, *) =£ 0,

for any j0E{0, 1, 2, ••• }, (8.6) is necessary and also sufficient in order

that there exists a solution of the problem (1. !)-(!. 2). In this case the

solution is unique.

Theorem 8.4. We now assume (1.4) and

(8.8) a(0,

for some po 6 {0, 1, 2, •••}. If the case where pQ = Q, (8.6) is necessary

and also sufficient in order that there exists a solution of the problem (1.1)-

(1.2) in a neighborhood of the origin. In this case the solution is unique.

If the case where /^oS^l? (8.6) and the following compatibility condi-

tions are necessary and sufficient in order to exist at least one solution of

the problem (1. !)-(!. 2) in a neighborhood of the origin. In this case the

solution is not unique',

(8.9) <T12(*), A(t, ̂ -r+^t9 *; - » ( t > *)

-/(*,*)> U=o=o,
PQ

where u(t, x}= 2 u(p\x}tp/p\ is defined follow ingly ; u(Q\x}= U(x\ u(p\x\
P=Q

(l^jD^jDo~~l) are uniquely detemined step by step by the construction of

the formal solution of type (8.4) and U^PQ\X) is a special solution of the

equation

wehre u(t, x)= 2 u(p\x}tp/p\ .
p=o
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Remark 8.1. In Theorem 8.3 and Theorem 8.4, we need not assume

that the initial surface t = Q is double characteristic. More precisely it

suffices to assume the following;

(8.10) rank A(Q, x) =
k=i

(0, x't 1,0) = 0.

Appendix

In the previous sections we assumed (3. Ass.\ we study in this sec-

tion the case where we do not assume (3. Ass.) but the following assump-

tion

(A. Ass.) <ta(x\ Bk(Q, *)?(*)> =0, (i = l, . . - , r; A = l, »-, n).

Then we have

(A.I)

r
{

f

r
1

f

n1

1

u

0

0

'

roi
*•.
"i

1 n

*

'0
• *
6

*

0

\o
o "i ,

1 1
0

..... n

*

*

(See the notation in §3.)

Remark A.I. In the case where r = 2, we easily see that the assump-
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tion (1.4)' implies (3. Ass.) or (A. Ass.).

Now we transform the unknown function u to v by v = *Q2U, then

we have the following system;

d n d } d
tbik(t, xy?

(A.2)

_d_
dt 1+ JLVl= v b j (t x- t d t d d V-

+ <0r + l,2,/>,

9 9

(i = r + 2, - . . ,7V).

Let us show that we can not obtain a corresponding result to Theo-

rem 4.1 by a simple example.

Example. Let us consider the following system,

d d , , d
^ — - ^0x2 0x

(E) ^— u2 = c^ — u2+d^ —
OXi OX2 OX2

9 . 9
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where a(^0), 63 • • - , / and g are complex numbers and ^-3 (£ = 13 2, 3)

denote linear combinations.

Now let us assume that there exists a solution of (E)3 ui(t, oc} =

2 u(^{oc)tp/p\^ (i = l, 23 3). Then we easily see that we can not obtain
P^o
relations between z40)(#)3 (j = l3 2, 3). On the other hand, we know that

we can not give a datum of u\ at £ = 0.

We now assume

(A.3)

which implies c;(03 3;) = 03 (i^l, • • - , r) in the system (A.2).

Under the assumption (A.3)3 we shall consider the following initial-

value problem to (1.1);

(A.4) <Z«00, u>\M=Vi(x\ (i = 2, ...9N).

Theorem A.I. Under the assumptions (A. Ass.) <mJ (A. 3), the

following conditions are necessary and sufficient in order to exist at least

one solution of the problem (!.!)-( A 4) in a neighborhood of the origin ;

(A.5) <?«(*),

Theorem A.I follows immediately from the following lemma.

Lemma A.I. (Goursat-problem) Let us consider the following prob-

lem to the system (A.2)3 then there exists a unique solution in a neighbor-

hood of the origin ;

(A.6)

We can prove the lemma as the same way as Lemma 4.23 or see

L. Carding ([2]3 Theoreme 3.1).

We now assume

(A.7) fll(0, ^)^03 /wxCO, o?) + ci(0, A;)=^0 for p6 {03 1, 23 ...},
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then we have a corresponding result to Theorem 4.2.

Theorem A.2. Under the assumptions (A. Ass.) and (A.7), the fol-

lowing conditions are necessary and sufficient for the existence of a solution

of the problem (1.1)-(1.2) in a neighborhood of the origin',

(A.8) <r,.2(*),

In order to prove the theorem, it suffices to prove the following

lemma (see §6).

Lemma A.2. Let us consider the following Goursat-problem, then

there exists a unique solution in a neighborhood of the origin]

(A.9)

Proof of Lemma A.2. Let t>,-= 2 vf -''OO^i/p!?!, (i = l, 2, 3) be
P,9&0

the formal solution of (A.9)-(A.10). Since M{(x') and f,•(«'), (i = l, 2, 3)

are analytic functions at a;', we now assume

(A.11)
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for some positive constants M and A in |#'| <<J" ((J>0).

Then we can prove the following estimates by induction on p and

(/»+!)!
(A.12)

q+\a\ A / * o o\
t ^ A, (1 = *, o),

for some positive constant C in |# ' |<<y.

We must pay attention when we estimate (^—7) #(/'g)? because of

the fact that ^—1;3 appear in the right hand side of the first equation in

the system (A.9). This completes the proof.
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