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Existence and Nonexistence of Global Solutions
for Nonlinear Parabolic Equations

By

Masayoshi TSUTSUMI*

1. Introduction

Let @ be a bounded domain in Rn with smooth boundary 9J2, p a

real number 2>2 and a a nonnegative real number. In this paper we

consider the initial-boundary value problems of the form

du * Q f\ du
dt -= z

p-z du
~dx~i

(1.2) u(x, 0) =

(1.3) u(x,t) = Q

In a recent work pQ, Fujita gave existence and nonexistence theo-

rems for global solutions of the equation

(1.4) ^=Au + ul+a, t>Q,Xeti,

with conditions (1.2), (1.3).

In this paper our purpose is to obtain analogous results for the prob-

lem (1. !)-(!. 3).1) Roughly speaking, our results are as follows:

1) if p>2 + a, the problem (Ll)-(1.3) has global (nonnegative)

solutions whenever initial functions UQ(X) (are nonnegative and) belong

to some Sobolev space.
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1) This problem was proposed by Lions in his book [2],
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2) if p<2 + a, for sufficiently small (nonnegative) initial function
UQ(X), the problem (1. !)-(!. 3) has a global (nonnegative) solution. If

UQ(X} is nonnegative and large enough, the solution blows up in a finite
time.

We shall solve the problem (1. !)-(!. 3) by considering the "truncated"
equation

u p~2 dudu

where ^(u)={0 if u<Q, ul+a if i^O}, with conditions (1.2) and (1.3),
and proving the maximum principle for the weak solution of the equation

(i.iO-
Below, §2 is devoted to preliminaries. Global existence and unique-

ness theorems of the case p>2 + a and p<2 + a are stated in §3 and
§4, respectively. In §5 blowing up of solutions is discussed. In the final

section we consider the equation

(1.5) » = £ -

with conditions (1.2) and (1.3).

2. Preliminaries

We shall use the notations employed in the book of Lions
The following lemmas are well known. The reader is referred to

Ladyzhenskaya, Solonnikov and Uralceva \j$] for proofs.

Lemma 1. For any function u(x)£ TFl'p(£), p^l and r^>l, the

inequality

(2.1)

is valid, where

v-l
(2.2)
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and".

1) for p^>n = l, r<^(jf<[oo;

2) for n >1 and p<n> r^q^np/(n—p} if r<Lnp/(n — p) and

np/(n—p)<:q<:r if r^>np/(n — p}\

3) for p=n>l, r<;<jr<oo;

4) for p>n>l, r<^<^°o.

The constant C\ depends only on n, p, q and r.

Lemma 2. For any function u^oi) € W\'p(@}> we have

(2.3) H

where 1^q^np/(n—p) if n>p and l^g<oo if n<^p. The constant

C2 depends only on $5 7^^ p and q. If n<p, the functions in W

are continuous and

(2-4)

where Cs depends only on J2, n and p.

Next lemmas will be used in §4.

Lemma 3. Suppose that u^.W\>p(^} where p<2 + a if n<,p and

p< 2 + a <i np/(n —p) if n >JD. Put

/n r\ Tf-..\ •*• „{-,,\V^Z.Oj J^U)^^ Ci\U) —

where

f \ ^ dua(u) = (zO=\ 0(u(xy)dx,Js

in which tf(a)={0 if ii<0, u2+a if tt^

T/^^^ z^^ /zcz;g

(2.6) d= inf sup
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Proof. Evidently we get

lp 2+<*/(*„)=—0(iO
P

Lemma 2 yields

Hence

sup \ T((a<(u}\ll(2+a-» \
zO = /((-77-f) u)\\b(u)/ /

(2+a)P \

Q.E.DO

We then introduce the stable set if (see Sattinger [4], Lions

(2.7) 1T={u\u€ 1Pl'*(a\ O^J(lu)<d, Ae[0? 1]}.

Lemma 4. We have

where

Proof. 1) Suppose that u^H^^ u^Q. Then we have

sup J(lu) = J(( \}u{ )
x^o \ \ b ( u ) /

and hence
/-(zoy /^2+fl-«>1

which implies u 6 T^V

2) Reciprocally, let w 6 7^"^. Then we have
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sup J(Au) = J(

Q.E.D.

since -y /UzO>0 for 0<A<;i and J(Hu) \ = 0.
(/A \=0

Remark 1. Sattinger [Jf] introduced the stable set (potential well) in

order to prove the global existence of solutions for semilinear hyperbolic

equations which have not necessarily positive definite energy. We shall

show below that analogous method is also applicable for the problem (1.1)-

(1.3) when

Remark 2. The constant d may be infinite. Sattinger supposed and

used the finiteness of d in his proofs. However our method does not

require the finiteness of d.

The following lemma concerns the finiteness of d.

Lemma 5. Consider the following nonlinear positive eigenvalue prob-

lem:

, 9 Qx $ d du(2.8) 2 -=
« = 1 V

where p<2-{-a if n<=p and p<2 + a<np/(n—p) if n>p.

If the problem (2.8) has an eigenfunction ux for some ^>03 then the

constant d is finite and the stable set *W is bounded in W

Proof. We have

On the other hand, from (2.8), we get

Hence
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from which it follows that d is finite.

Let u^'W and u=^Q. Then from Lemma 4, we have

Hence

2+a— .

which implies

Thus the stable set O^ is contained in the sphere:

3. Global Existence and Uniqueness When p>2 + «

Theorem 1. Suppose that u^x}^. W\tp(Q\ p>2 + a. Then there

exists a function u(x, t) such that

(3.1) ueL~(Q, T;

(3.2)

and which satisfies (l.l7) in a generalized sense.

If ra</?5 the function u(x, t) is uniquely determined by the initial

function UQ(X).

If iio(^)^0 a.e. in J23 the function u(x, 0^0 &•&• ^n @ f°r any

fixed t^>Q and is a solution of the problem (1. !)-(!. 3).
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Remark 3. After eventual modification on a set of measure zero u

is continuous from [J), r]-»L2(J2).

Proof of Theorem 1. Put

dv p-2 dv
doc

We easily see that A is a strictly monotone hemicontinuous bounded and

coercive operator from Wl'p(Q)-+ W~l'pl(p~l\Q).

We shall employ the Galerkin's method. Let {«;,-},•= 1,2,... be a com-

plete system of functions in Wl'p(@\ We look for an approximate solu-

tion um(x, t) in the form

(3.3) Um(t)= Jc gim(t}wi9 gim(t) e cl(To, r])

where the unknown functions gim are determined by the following system

of ordinary differential equations:

(3.4) «(0, Wj) + a(um(t\ Wj) = (v(um(t)\ wj), l^j^m^

with initial condition

(3.5) Mw(0)=H0m, uQm=^aimtUi - >u0 in W
i = l

strongly as TTI->OO.

Here

(u v}= y (^ ' ' i=i)i
p~2 du dv 7a:*;.

Then we obtain the following a priori estimates:

(3.6) IkmlU^o.r^J^u))^ c,

(3-7) IKiU2(0,

2) For the sake of simplicity, by the symbol ' we denote the differentiation with
respect to t.
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where c is a constant independent of m,^

Indeed, multiplying the i-th equation in (3.4) by gf
imJ summing over

i from 1 to m and integrating with respect to £, we get

0.8) .co
1 »

-2^rJ
Using Lemma 2 and Young's inequality, we have

d
i = l

( w
E
*=i

= 2p \i=

from which it follows that

and

L d P

5-c

<c
« = i

which imply (3.6) and (3.7).

From a priori estimates (3.6), (3.7) and Aubin's compactness theorem,4)

we see that there exist a function u and a subsequence {u^} of {um} such

that

(3.9) Up > u in Z,°°(0, T; BTj-^fi)) weakly star,

3) In the sequel of this note, c denote various positive constants independent of m,
4) See [7],
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(3.10) < - > u' in £2(0, T; £2(£)) weakly,

(3.11) u^(T) - >u(T) in rj'%0) weakly,

(3.12) Up - > u in L2+a(Q, T; L2+a(®)) strongly,

and

(3.13) AU, - >x in i-(0, T; jr-1'*'**-1^))

weakly star.

Then well known arguments of the theory of monotone operators

yields

(3.14) x = Au

which implies the function u is a desired solution of the problem (l.l7)-

(1.3).

Uniqueness part of Theorem 1 is easily proved as follows:

Let HI and uz be two solutions of the problem (I.!7)? (1.2), (1.3)

satisfying the same initial condition. Then the difference w=z£i — w2

satisfies

(3.15) w'-\r Aui — Au2=

o du

w(x, 0) = 0.

Taking the scalar product of (3.15) with w and using the monoto-

nicity property of A and Lemma 2, we have

i w; ̂  sup
Li Lib

<J constant ||w;|

which implies

We now prove the last assertion of Theorem 1.
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Let FXO, T\ W\\8)} be the space of all the functions v(t) such that

i;(0€L2(0, T\ JFJ'W) with t/(0€i2(0, T;

Multiplying (3.4) by an arbitrary Cl -function f(t) and integrating

over [J), r], we have

Taking the limit of both sides with m = ju, j fixed, we get

for vy

which implies

for VW

In particular, setting ^(s) = v(s)—u(s) where v(s)= sup {^(5), 0},5) we

have

(3.18) ^), v(s)-u(sy)ds+a(u(s)9 v(s)-u(s))ds
Jo Jo

<p(u(s)\ v(s)—u(sy)ds.

From the definition of #(s)3 we immediately get

rt
\ (v'(s), v(s)—u(s))ds = Q,
Jo

rt
\ a(v(5), 17(5)— 1^(5)) c?5 = 0
Jo

and

5) Note that i;(s)eF(0, T\ W\-*(Q)).
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rt
\ (#?(u(s)), v(s)—u(s))ds = Q.
Jo

Hence, from (3.18), we obtain

f (tt'GO-VOO, v(s)-u(s))ds
Jo

rt rt
= \ a(v(s\ v(s)—u(s))ds—\ a(u(s}, v(s) — u(sy)ds

Jo Jo

which implies

Hence we have

u x , = ^ a-e- m

if w0(^)^0 a.e. in J2.

Thus we have the theorem.

Remark 4. When n<p, in addition to the hypotheses of Theorem 1,

we suppose A(UQ) 6 .L2($). Then we have (see Lions T2])

Remark^. When p = 2 + a, so long as C2<1, i.e., domain is suffi-

ciently small, we easily see that the assertions of Theorem 1 also hold.

4. Global Existence and Uniqueness When jj<2 + a

Theorem 2. Suppose that p<2 + a if n<^p and

(n—p) if n^>p. For every initial function z^o(^) contained in the stable

set if* the initial-boundary value problem (l.l/)3 (1-2), (1.3) has a solution

u(x, t) contained in -^"6) such that

6) We denote by iff the closure of if in W\'P(Q).
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(4.1) «SL-(0, T;

and

(4.2)

Furthermore we have £>03

(4.3) lk(OIU'(Q)^lk(*)IU-(Q) if t^

If 7&<jD3 £/z£ solution is uniquely determined by the initial function,

If uQ(x)^>Q a.e. in £, the solution u(x, £)2SO a.e. in £ for any

fixed £>0, hence u(x, t) is a solution of the problem (1. !)-(!. 3).

Proof. The Galerkin's method is again employed. Let {w,-}«-=i,2 •••

and an approximate solution um be the same as those stated in the proof

of Theorem 1. Let {u0m} be a sequence such that

(4.4) u0meif, u0m=XaimWi >UQ in r
f = i

strongly as TTI > oo.

We have local existence of um(t) i-e. in f^O, ̂ J5 tm>Q and in this

interval (c.f. (3.8)):

(4.5)

We will show that

(4.6)

Suppose that (4.6) does not hold and let t* be the smallest time for

which ww(z*)$^*. Then in virtue of the continuity of um(t) we see

that um(t*)£dW. Hence, from Lemma 4 we have

(4.7) J(um(t*»=d

or

(4.8) a(um(t*)) — b(um(t*)) = 0
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which contradicts the equality (4.5) and the fact that the initial function

u0m is contained in ^. Indeed, when (4.7) holds, the assertion is obvious

and when (4.8) holds, we have

T(u ff*»-J(um(t ))-

which also implies the contradiction.

Then from the equality (4.5) and Lemma 4, we get

(4.9)

which implies

(4.10)

and

From Aubin's compactness theorem and well known arguments of the

theory of monotone operators, we see that there exist a function u and a

subsequence {u^} of {um} such that (3.9)-(3.13) are fulfilled and u is a

solution of the equation (1.1') with conditions (1.2), (1.3).

We now prove (4.3).

Since u is contained in ^ from Lemma 4, we see that

(4.12) a(u(0)- 6(^(0)^0.

On the other hand, setting i/r(s) =u(s) in (3.17) with some modifications,

we easily obtain

(4.13) -kutolli'(fl) = -|-|k(*)lli'u»- f a(«
Z Z Js

Hence, the inequality (4.3) immediately follows from (4.12) and (4.13).

Proofs of the last two assertions of Theorem 2 are easily obtained by

a repetition of the arguments in the proof of Theorem 1.

Remark 6. When n<p, in addition to the hypotheses of Theorem 2,
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we assume that A(uQ) E Z2(J?). Then we have

5. Nonexistence of Global Solutions

Theorem 38 (local existence) Suppose that p<2 + a<2p/n+p and

&oOO £ JFo'^(J2). Then there exists a positive constant TQ such that in

the interval 0<^t<^T0 the problem (I.I/), (1.2), (1.3) has a solution

u(x, t) such that

U<=L~(O, ro; ri-
du/dt€L2(Q, r0;

and satisfying

(5.1) --| |u(Olli 'w)

and

(5.2) /<XO)^/("o), a. a.

If uQ(x)^Q a.e. in G, u(x9 0^0 <*•*• ™ ® for any fixed ^G[03 TQ~]

and u(x, t) is a solution of problem (1. !)-(!. 3).

Theorem 4B Suppose that all the conditions of Theorem 3 are ful-

filled. Furthemore we assume that uQ(x)^>Q a.e. in J?5

(5.3)

and

(5.4)

T/^g^ ^e /oc<2/ solution of the problem (1. !)-(!. 3) corresponding to this

initial function is not continued globally, i.e., blows up in a finite time

Proof of Theorem 3. The Galerkin's method is employed. Let
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{M>i}j=i f2 f • • - , {um} and {uQm} be the same as those stated in the proof

of Theorem 1.

Multiplication of the i-ih equation in (3.4) by gim and summation

over i from 1 to m give

2 dt"":

In virtue of Lemma 1 we have

<5-6> IL
where

and

Young's inequality gives

(5.7) K *(um(x, ty)dx
\ J Q

where d"=d'/2(l-d)>l.

Hence, from (5.5) and (5.7) we get

(5.8)

Lp(S

It follows immediately that the solution ||ttOT|||2(fi) of this differential

inequality can be majorized by the solution of the initial value problem;

(5-9) =c^"'

The solution y of (5.9) is finite only if

(5.10)
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Hence, in the interval 0^t^TQ = t00/2y we have an estimate

From (3.8), (5.7) and (5.11) we immediately get

(5.12) ll^£~(o,rXo'

and

(5-13) H"mlU»(0.r0;Z»(fi

from which, by a repetition of the arguments in the proof of Theorem 1,

we see that the problem (1.10-(1.3) has a solution u in the interval

We now show that the solution u satisfies (5.1) and (5.2).

Setting ty(s)=u(s) in (3.17) we immediately have the equality (5.1).

From (3.8) we get

(5.14) J(um(t»^J(uQm).

Let 6 be the function which lies in C(QO, T0]) and is nonnegative.

Then from (5.14) with m=ju we get

(5.15)

The second member tends to

rr

\
Jo

as #->oo.

The first member is lower semi-continuous with respect to the weak

topology of £2(0, r; IT J-'(fl)).

Hence

°J(u(t»d(t)dt^limmi(TQJ(u»(t))6(t)dt<,( °J(
o / » - » « Jo Jo

Since 0($) is arbitrary, we obtain
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/(z*(0)^/(Ko), a. a. *e[0, To].

This completes the proof of Theorem 3.

Proof of Theorem 4. Note that if uQ(x)^>Q a.e. in J2, the solution

u(x, £)=2^0 a.e. in £} for any zX).

Suppose that the assertion of Theorem 4 does not hold and let u(x, t)

be the global solution corresponding to the initial function UQ(X) satisfying

the assumptions stated in this Theorem. Then u(x, t) satisfies (5.1) and

(5.2) for v£>0.

Then from (5.2) and (5.3) we have

(5.16) —0(zj(£)) — -— 6(a(i))<0, a.a. zl>0.
p 2 -\-cc

Substituting (5.16) into (5.1) we get

1 ( P \(l 1(5.17) -^||w(£)IL2(0)2S( 1— 0 , _ )\ b(u(s))ds + —-\\u0\\
2

L2(s)

= (mes W)""72''"^!!^) ds

Here we have used the inequality

(5.18)

where

From (5.17) we immediately obtain

Hence ||zi(*)IU'(0) diverges to +^ as *->^-||M0 |L?tfl)< T. This contra-

dicts that u is a global solution. Thus we have the theorem.
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Remark 7. When p=2, local existence theorem of the classical solu-

tions of the problem (1.1)-(1.3) is of course established without any

restrictions upon the growth order a (see Friedman pT|). Theorem 4

gives another approach to "blowing up" of the solution of the equation

(1.4) with conditions (1.2), (1.3).

Remark 8. If we add the term Au to the second members of the

equation (1.1), for smooth initial data, the problem (1.!)-(!.3) has a

classical unique solution which may local in £, without any restrictions

upon the growth orders p and a (see Sobolevskii (JTJ). Then by the

analogous method to that stated in Theorem 4, we can prove the solution

blowing up in a finite time if the initial condition satisfies the assump-

tions stated in Theorem 4.

6. Final Remarks

In this section, as compared with the equation (1.1), we consider the

following equation

9 f\ du »-2 du \ l+a Q
I LI , fc/U, .a/tlw/iS,

dt 1=1 dx_

with conditions (1.2) and (1.3).

Then by the analogous methods to those stated in §3, we can easily

obtain:

Theorem 5. Let 2<^<oo and o^O. Suppose that UQ(X)£

W\'p(Q}r\L2+a(Q) and woWSjO a.e. in J2. Then there exists one and

only one function u such that

(6.2) u(x, 0^0 a-e- in

(6.3)

(6.4)

and which satisfies (6.1) in a generalized sense.
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Furthermore, if A(uo)£L2(@), then the solution u satisfies

(6.5) du/dt€L-(Q, T;L2C0))

Remark 9. The assertions of Theorem 5 are also valid if we replace

the term ul+a by more general nonlinear term f(u) satisfying /(&)>0

(for z*>0) and /(0) = 0.

Remark 10. When a is an odd integer, if we put off the positivity

property of u0, we must impose the condition that UQ is contained in the

stable set W analogously defined to the §2 in order to obtain global

existence theorems.
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