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Introduction

In the theory of systems of partial differential equations, problems of
integration of a given system have long occupied an important position.

Such are the problem of deciding whether integration of a given sys-
tem could be reduced to those of several systems of ordinary differential
equations or not and the problem of achieving integration of a given sys-
tem, provided that the above reduction is possible.

S. Lie studied such a system of partial differential equations that a
general solution of the system depends on a finite number of constant
parameters. He reduced there the problem to the case of an involutive
distribution. But his explanation of the method of the reduction is quite
ambiguous (p.115 in [27]). He carried out further reduction of integra-
tion of the involutive distribution to that of a 1-dimensional distribution
according to Mayer’s method.

Regarding these reductions as a fait accompli, he studied in [2]
mainly integration of a 1-dimensioal distribution, which contains the study
of integration of a non-linear ordinary differential equation of any order.
From a standpoint of the theory of integration, he tried to classify ordina-
ry differential equations in another paper. In [2] he studied the case
that a 1-dimensional distribution has some connection with a continuous
transformation group of finite type. The case that a group is simple and,
in particular, isomorphic to the projective transformation group was inves-
tigated in detail by him. In the case that a group is solvable, integration

of the distribution is deeply connected with quadrature, as is suggested by
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E. Cartan in [17].

On the other hand, E. Vessiot studies the method of finding out in-
tegral curves of a given 1-dimensional distribution (which is, in a sense,
equivalent to finding out first integrals of a given 1l-dimensional distribu-
tion) in [4]. In other words, with respect to a certain kind of systems
of ordinary differential equations of 1-st order, he attempted to develop
the theory analogous to Galois theory of algebraic equations. Vessiot con-
sidered transformation groups which, roughly speaking, act on unknown
functions of a given system of differential equations.

Now we shall go back to such a system of partial differential equa-
tions of any order that a general solution depends on a finite number of
constant parameters.

Considering a continuous group of finite type acting on unknown
functions of a given system and strengthening the condition that a gene-
ral solution depends on a finite number of constant parameters, we put
the assumption that, by the action of the group on a special solution, we
can obtain a general solution of a given system of partial differential equ-
ations, which Vessiot called an autmorphic system with respect to the
group.

Our main purpose is first to make clear the obscure point in the
treatment in [27] of reducing integration of a given autmorphic system to
that of an involutive distribution and secondly to give, in a form of a
necessary and sufficient condition, an interpretation of the solvability of G
by properties of integration of an automorphic system with respect to G.

In §1 we give the definition of a Lie-Vessiot system D on a princi-
pal fiber bundle P(M, G, w) (Definition 1.1) and then we prove, in a
strict form, the theorem stated in [ 17, which means that, if a Lie-Vessiot
system is solvable, then it is integrated by quadratures (Theorem 1.1).

In §2 we define at first a G-autmorphic system (Definition 2.3).
Under some general conditions we can induce a G-automorphic system
with desirable properties from the given G-automorphic system such that
the former is equivalent to the latter (Proposition 2.1, Proposition 2.4).
We define the solvability of such a G-autmorphic system from a standpoint
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of integration (Definition 2.8). For such a G-automorphic system (A4), on
J'(N, Q), we give a reduction theorem which reduce the integration of
(A); to that of a Lie-Vessiot system D on P(N, G, ) (Theorem 2.1).
Using this theorem, we obtain the main theorem (Theorem 2.2) which
gives an interpretation of the solvability of G by that of a G-autmorphic
system.

As for integration problems, not the existence or the property of
solutions but the method of obtaining a solution is a question, though of
course we need to certify the existence of a solution. S. Lie fixed his
eyes upon a continuous transformation group as one of languages which
express the necessary method to obtain a solution. It is also the origin
of the notion of a Lie group. This language is very much available in
some cases and express the properties of integration briefly. But of course
this language is not all mighty.

We have written this note, taking his great thought as a starting
point of our studies.

Finally, we should like to thank Professor N. Tanaka for his many

valuable suggestions by reading our manuscript carefully.

§1. Lie-Vessiot Systems

We assume that the differentiability is the class C= and “a Lie group”
always means “a connected Lie group” through this paper unless other-
wise stated.

We denote by P(M, G, ) a principal fiber bundle over the base space
M, with the total space P, the structure group G and the projection 7.

Let P(M,G, ) be a principal fiber bundle and let g be the Lie alge-
bra of G. Then for each X €g, exptX induces a vector field X* on P.
We set g*={X*|X €g}. Clearly g* is a Lie algebra isomorphic to g.

Definition 1.1. Let P(M, G, ) be a principal fiber bundle. A dis-
tribution D defined on a neighbourhood of p€&€P is called a Lie-Vessiot
system at p on P(M, G, w) if it satisfies the following conditions;

(1) D is an m-dimensional involutive distribution, m=dim M.
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(2) 7wyDy=Tpp(M)
(38) [X, Y] is a cross-section of D for any cross-section X of D
and any Y € g*.
Note that, for any Lie-Vessiot system D at p on P(M, G, m), there
exists a local basis {Xj, ---, X,} of D at p such that [ X;, X;]=0 (i, j=
1...m) and [X;, ¢¥]=0(j=1, ..., m).

Definition 1.2. A Lie-Vessiot system D at p on P(M,G, r) is said

to be simple (resp. solvable) if G is simple (resp. solvable).

Definition 1.3. Let D be any distribution on a manifold S. A func-
tion ¢ locally defined at p€ S is called a first integral of D at p if, for

any local cross-section X of D at p, we have X-¢=0.

Definition 1.4. Let D be a distribution on S. By the integration
of D at p€ S we mean to find all first integrals of D at p.

Definition 1.5. Let D be an m-dimensional involutive distribution
on S. A family {¢’}7_; of first integrals of D at p is called a funda-
mental system of solutions of D at p if dg¢', ..., d¢p’ are linearly inde-
pendent at p and r=dim S—m.

Let {a;}%! be a family of real numbers. If we are given a family
of real-valued functions {f}}-, defined on an open set U of a manifold,
we set f=(f1, -, fa), Ubl={q€ U | fillg)=a;} and fi=fi"1|U} (=
0, .-, k—1) where U%=U and fI=f;.

Theorem 1.1. Let D be a solvable Lie-Vessiot system at p on P(M,
G, n), dim G=r. Then there exist a fundamental system of solutions
{¢i}i-1 of D at p defined on U and a basis {Vi}i-1 of g% such that we
have

Visroa=1
Vieer@is1=0 C=sk=r-1I)

for 01 r—1,
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Proof. Since g* is solvable, we have a sequence of subalgebras g*=
GEDgFD g, DgF={0} where dim g¥—dim g¥,,=1 and g¥,, is an ideal
of gf. Let {V;}}-; be a basis of g* such that {V,};—; is a basis of
gf-;. Let {¢p}5-; be a fundamental system of solutions of D at p de-
fined on U such that X,¢;=V;.p¢;=0 AI=j=r, 1=k=r—j) where
{X4}7-, is any local basis of D at p. The existence of such {¢;}}-; is
assured, for Xy, ..., X, Vji1, ---, ¥, generate an (m-r— j)-dimensional
involutive distribution defined on a neighbourhood U of p. Using the
existence of such {¢;}%-,, we shall show that there exists a fundamental

system of solutions {¢;}5-; of D at p defined on U such that we have
{ X ori1=Vi9r1=0 I=h=m,2=k=r—1)
Vierrora=1
for 0<I<r—1. Since ¢; satisfies X} 1=V ¢p1=0 AZh<m, 2k
=r) and g¥ is an ideal of g*, V;-¢; also satisfies X,(Vi:¢01)=Vi(Vi:¢1)
=0 1Zh<m,2<k<r). Therefore we have a function K(z) of one
t
variable such that Vi-¢1=K(¢;). We set H(t)———SOK(t)‘ldt. Then
H(¢1) also satisfies X, (H(p1)=V,(H({Y1)=0 A=h=m, 2=<k<r).

Moreover we have Vi (H(¢,))= (‘fff) « V1(¢1)=1. Therefore we see

that the system of partial differential equations
{X,,f Vief=0 (Q=h=m,2=k=r)
V]_‘f :1

has a solution on U. We may assume that 7 '(J)=U~JXx W and let
{xn}P(resp.{ws}}-1) be a coordinate system on J (resp.’”’/) Then {xi,

-y Xmy W1, -+, Wytis a coordinate system on U. By using this coordinate

()%

system, the above (x)? is expressed as

f+23h f =0 AZh<Em)

o zril <o (e<k<n

wj

ZTI f
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Since {Xi, - -, Xm, V1, -+, V,} are linearly independent on U, we can solve
(%)% with respect to af,aaf AZhEm, 1<k<r). We have

Xp OWg

ﬁng(xla sty Xmy Wiy oy wr) (lghgm)
axh

()3

fzdg(xla crey Xmy Wiy ooy wr) <1§k§r)

8wk

Now we assume that we have linearly independent functions ¢i, -, ¢;
on U such that

{ Xpgi=Viugi=0 (I=h=m,1<k=r—))
Viepi=1

for 1< j <I. Then we shall show that we can find a function ¢;.; on
U which is independent of ¢, ---, ¢, and satisfies

{ Xirgin1=Vipon=0 (1=h=m,2=k=r—1)
Vicvora=1

Since ¢;(1=j=1) satisfies X;-0;=V; 40;=0 (A1=h<m,1=k<r—j),
we can restrict X;(1<h<m) (resp. V; . ,(1<Ek<r—1)) to U} which we
denote by X} (resp. V},,). By the same reason as for the case (), we
can induce a function ¢}.; on U} from the function ¢}, (=¢;.1|UL)
such that we have X}-@i =V -0}, 1=0 (1IZh<m,2=<k<r—I) and

Viii-pt,=1, that is to say, we can see that the system of partial differ-

ential equations
Xpf=Viaf=0 (1<h<m,2<k<r-1)

V€+1'f=1

()1

has a solution on Ul
Now we may consider {x1, - -, Xmy W1, -+ Wy_s, @1, -+, @1} @S @ COOL-
dinate system on U. Then {xi, ---, Xm, w1, ---, wy_;} is a coordinate sys-

tem on U}. By using the coordinate system on U!, we have
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mo L Of & i 0
Zawgi+2%ﬁ”§§=0 (I=sh=m)
=

i=1 Xi i

20 gre<k<n
1 Ow;

i Of _

M=~

()3

I

j

M=

Ti%1
i=1 0w;

Since X!, Vi, (1<h<m,1<k<r—I) are linearly independent on U’,

we can solve (%)} with respect to 6’_f’ ﬂ(l <hEm, 1ZEZr—1). We
axh W,

have then,

0

59;—=0;’,(x1, cery Xy Wiy ooy Wyropy P15 700y (01> (1§h§m)
h

0
a_tf;zo'lla(xla crey Xy Wiy ooy Wy P15 000y gpl) (lgkér—“l);

()3

ol and o} are differentiable with respect t0 %1, - -y XTmy Wiy -y Wr_ty @1y -y
@;. For any family of real numbers {a;}!_;, (*)} has a solution on U}.

Therefore (%)} has a solution ¢;.; on U. Clearly ¢;,; satisfies
{ X ori1=Vip¢r1=0 (I=sh=m,2=<k<r—1)
Vl+1'¢1+1=1-

Thus we get a fundamental system of solutions {¢;}7-; of D at p such

that we have
{ Vierrgia=1
Vieeewi1=0 QCZEZr—10).

This completes the proof of Theorem 1.1.

Corollary 1.1. Let D be a solvable Lie-Vessiot system at p on P(M,

G, ). Then we can find a fundamental system of solutions {@g}h-1 of

D at p by quadratures.

Proof. By the proof of Theorem 1.1, there exists a fundamental sys-
tem of solutions {¢,};-; of D at p such that we have
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0
'_g%:_lzp}lt(xls vty Xmy Wiy ooy Wr—gy P1y -0y (01) (1._£_h§m)
QF 5
__g[:}_—;l____o-é(xl’ vrry Xmg Wiy -y Wr—gy P15 -y ¢l) (1§k§r_l)

for 0<1<r—1, which we can integrate by quadratures according to the

method due to Lagrange and Charpit.

§2. Solvability of Automorphic Systems of Finite Type

Let N and Q be manifolds. We denote by J'(IV, Q) the space of
l-jets of local maps of N to Q. Let s be any map of a neighbourhood
U,, of x0€N to Q and set ji(s)=(x, s(x), sqy(%x), ---, sp)(x)) where su)
is the set of partial derivatives of s of order k. If p is in J'(V, Q), we
have p=jl(s). x (resp. s(x)) is called the source of p (resp. the target
of p). For a map 5 of U, XxV,CNXG to Q where V, is a neighbour-
hood of the unit element e of a Lie group G, we set s,(x)=35(x, g) and
define j'(s) by j'(s)(x, g)=ji(s;). Then j'(5) is a map of U, xV, to
JI(N, Q).

In this section we assume that N=R” and (Q=R? We denote by
X1, -y X, the coordinate system of N, by zi, ..., z, that of Q and by
H(A<iZn), 50 S Q) Py QA 1< iy a S, 1<k < D)
that of J'(IV, Q).

Definition 2.1. Let {F;}j-; be a family of functions defined on a
neighbourhood of po€J*(V, Q). A system of equations

(A)y: F1=0,..., F,=0

is called a system of partial differential equations at po € J*(JV, Q).
We denote by I(A), the set of points in J*(IV, Q) satisfying (A).

Definition 2.2. Let x, be the source of po. Any local map s of a
neighbourhood Uy, of %, to Q is called a solution of (A4); if j(s)(U,,)=
{ji(s)|x€ U,,} is contained in I(A),.

Let (4),: F1=0,..., F,=0 be a system of partial differential equa-
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tions given on a neighbourhood U of po€ J*(N, Q). We denote by oKU)
the sheaf of all local functions on U and by (A4)F the sheaf of ideals of
Q*(U) generated by Fy, ---, F,. Moreover let pi™' be the projection of
JEYN, Q) onto J¥(IN, Q) and we denote by p(A)f the sheaf of ideals of
Q¥ (T), U=(pt" )Y (U), generated by (A)f and 0{F;(1<i<n,1<j<
a) where 0iF; is defined by

aF, aF,

SRR —_

by
Xjresi apjl...j,,

0iF; = +Z Plrminis

p(A)¥ is called the prolongation of (4)f. We set po(A)F=0Q"(U)Np(A)f
and (A)f =OP3(A)2<; Pa(A)i=po(pt~*(4)F). M. Matsuda called (A)¥ the
p-closure of”a{l)f.

Now let G be a Lie transformation group acting effectively on Q.
For any p=ji(s)€J*V, Q) and g €G, we set g-ji(s)=jk(g-s). Then
G acts on J*¥(N, Q) as an effective Lie transformation group.

Definition 2.3. Let G be a Lie transformation group acting effec-
tively on Q. A system of partial differential equations (A4), at po €
J*(N, Q) is said to be G-autmorphic if there exists a map 5 of Uz, %
V.CNxG to Q (xo= the source of po) satisfying the following condit-
ions;

(1) For any g€ V,, s, is a solution of (A).

(2) Any solution of (A4), is uniquely expressed as s, g€ V..

(3) We have 5(x, g)=g"5(x, e) for any g V..

We call such a map 5 a general solution of the G-autmorphic system
(D

Remark 2.1. We have g-j*(5)(x, e)=j*(5)(x, g) for any g€ V,.

We denote by Cl “) the pair of an integer A and a family of inte-
gers {jti-1. We set TO={C, ;) |1<1<q, 1<s<1, 1<j3<n} where
g=dim Q, n=dim N.

Definition 2.4. A system of partial differential equations (A4), at p
in J*(V, Q) is said to be of normal form if (A4), possesses the form p},.;,

N .
=Hj ; (%1, -, %ny 21, -+, Zg5 1y )y Groj)E I where I is a subset of
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I® satisfying the following conditions;
M) We set L,={(,.;)1<A<q, 1</u<n}.
Then we have IDI,.
(2) Hi,..;, is a function on J*'(WV, Q) for any (},.;)€ I
(3) For any (},.;) €1, H},.;, does not depend on pj,.;,.
In order to emphasize that (A4), is of normal form, we denote by

N(A), in place of (A),.

Proposition 2.1. Let (A), be a system of partial differential equa-
tions at po€J K(N, Q) satisfying the following conditions;

1) (A is G-automorphic.

(2) There exists a general solution 5 of (A), such that, for an inte-
ger L=k, j'(s) is an embedding of a neighbourhood U, XV, of (%o, e)€E
NxG into J'(N, Q).

Then there exists a system of partial differential equations (A);,1 at
po in JWUN, Q) with 0L (po)=po (05! is the projection of J'*'(N, Q)
onto JH(N, Q) satisfying the following conditions;

(1) (A1 is G-automorphic and has a general solution ®: Uy X
VDU, X V,—Q with d=s|U, x V.

(ii) There exists a neighbourhood W of po such that I((A)1)N
W=S8N\W where S=j () U, ,x V).

(iii) (A)is1 contains, as a subsystem, a system of partial differential

equations Y(B); of normal form.

Proof. We may consider that {xy, ---, %n, 21, -+ Zty W1y -+ Wy—t} IS
a local coordinate system at po in S=j(s)(Uy, % V), 05+(po)=po, Where
r=dim G and w; (1<j<r—¢) is some p},.;,. Since S is diffeomorphic
to S by the projection pi*! of J'*}(IV, Q) onto J'(IV, Q), we may also
consider {%i1, ---y Xny Z1, +-+y Zz, W1, ---y Wy_zy as a local coordinate sys-
tem at po in S. Let p},.;(1=<s<I+1) be any coordinate function on
JHYYN, Q) such that p},.;,<wi(j=1,...,r—¢). Then we have p}, ;=
HY, (%1, -y Zny 215 -++y Z2y W1, -+, Wy—y) ON a neighbourhood U, of po in

7
S. Similarly if z;5%z, (h=1, -..,t), then we have z;=H'(x1, -, Zn, 21,
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iy Zty W1y ooy Wy_t). We denote by (A);.1 the system of partial differen-
tial equations consisting of all such p},.;,=H},.;, and z;=H'. We de-
note also by (B);.; the system of partial differential equations consist-
ing of all such p},.;,=H7,..;,» Then (A); clearly satisfies (ii) and (iii).
We shall prove that (A);,; satisfies (i).

First of all we shall show that if s: Uy —Q is a solution of (A1
then s is a solution of (4);. Clearly j'(s) is a local cross-section of S.
For each x € U}, ji(s)€S. Therefore we have a solution sy, g(x) € V,,
of (4), such that ji(s)=ji(sgwy). In particular we have jL(s)=j%(syx)
for £<I. Therefore ji(s)€I(A);. Since x is any point in Uj,s is a
solution of (4);. Next assume that s is a solution of (4);. Then j(s)
is a local crosssection of S and therefore j'*'(s) is a local cross-section
of S. This implies that s is a solution of (A).1.

Therefore (A);.1 has a general solution §|U; x V,. It is now clear

that (A);,1 is G-automorphic. This completes the proof of Proposition 2.1.

Proposition 2.2. Let 91(A4), be a G-automorphic system at poE
JUN, Q). We denote by M(A)F the p-closure of N(AYE. We assume that
the point py€ INA)Y) is an ordinary integral point of Y(A)¥. Then
there exists a neighbourhood U, of po in J'(N, Q) such that N(A)¥ is
involutive at pcl (AN U, (As for the definition of “(quasi-) invo-
lutive” confer [ 37].)

Proof. Since, for a suitable Uj, peITAHN Uy, is an ordinary
integral point of N(A)F and N(A)F is compatible at p € I(R(A)F)N Uy,
we have only to show that C,(M(A)¥) is involutive and the dimension of
CoR(AF)?Y, the first prolongation of C,(N(A)F), is locally constant at
p- By definition we have C,NAF)={Xe T,(J' (N, Q)| (0}_)«X =0,
af0=0,f €T ={ % &L —|(| T Sssil—)

11 L P
»f=0,fe Cﬁ(A);“}. On the other hand N(A)F contains Pireiv—Hi..5,
any (},.;,)€IL. It follows immediately that C,(9(4)§¥)=0. Therefore, in
particular, dim C,(N(A)F)P= constant and C,(I(A4)¥) is involutive. This

completes the proof of Proposition 2.2.

for
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Let N(A), be a system at po€J'(NV, Q). For any Hj,.;  which
appears in N(4);, we define a function ;H},.;,,, on J'(IV, Q) given in a

2y
neighbourhood of po by the following way: For 0}Hj, ;.= 0Ha“ ot
Xi
oH” i
ZP: ,1 dset .. > J A i__—Jiisn1  replace the coefficients
Oz,‘ #h1 k-1 aP"}:l...hl_l

Phigi of 04H7 ;... (0<k<[—1) which appear in the left hand side of
N(A4), by the right hand side of it, which we denote by ;H}, ;... If
both (%;,.;,) and (kj,..;,) are in I, we consider the function oH}j;,.;,—
eH%;,.;, and if (j;..;) €I, and (%j,.;) ¢ I, we consider the function
aH%jyjo—P}jiag. We denote by FR(A), the sheaf of rings of all

such functions on a neighbourhood of py.

Proposition 2.3. Let N(A4), be a system at po€ J'(N,Q). We have,
then, I(FR(A)) D IR(AY).

Proof. By definition, J(A)f contains 05H%;,.;,, — 05 Haj,..;,., for
any (hgjpiiy) and p.;,—Hjy,..;, forany (,.;,) €1 Moreover if (5;,.;.)
€l and (%,.;)¢1, then 0fH; ; —p}.jas is contained in M(A)F.
Therefore we have FN(A), CR(A)¥, that is, we get I(FI(A)) D IRN(AF).

Proposition 2.4. Let N(A); be a G-automorphic system at py € J'(N, Q)
such that j'(s) is an embedding of U, xV, into JY(N, Q). We assume
that the differentiability is the class C® and the point poEI(—EI_E(A)T) is an
ordinary integral point of N(A)¥. Then there exists a neighbourhood Uy,
of po in JYIN, Q) such that we have IQUAHNU,=SNU,, where S=
J' Uy x V).

Proof. By Proposition 2.2, we can choose a neighbourhood U, of po
in J'V, Q) such that J(A)¥ is involutive at any peIT(AFINU,,.
Therefore we have a solution s: U'—Q of J(4)F such that j(s)(U’) con-
tains p. This implies IO A)F)NU, CSN\Uy. On the other hand we
have clearly SN\U, CI(AF)NU,,. Therefore we get IR(AF)N Up,=
SN Uy,

Therefore from now on we shall deal with a system of partial differ-
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ential equations (A4); at po€J'(N, Q) satisfying the following conditions;

Cai] (A); is G-automorphic and j'(5) is an embedding of U, XV, into
JUN, Q) where 5: Uy x V,—Q is a general solution of (A).

Cas] There exists a neighbourhood W of po such that SN\ W=I1(A),
NW where S=j(5)(U, % V).

Cas] (A); contains, as a subsystem, a system of partial differential

equations N(B), of normal form.

Moreover we set the following assumption;

[B] We know a diffeomorphism 4 of U, xV, onto S such that
gd(x, e)=4(x, g) for any g€V, and x € U,,

For such a system of partial differential equations, we have the fol-

lowing reduction theorem.

Theorem 2.1. Let (A); be a system of partial differential equations
at po satisfying [a;](i=1, 2, 3) and [B]. Then we can induce from (A),
a Lie-Vessiot system D at qo=A4"(po) on the trivial principal fiber bundle
(NXG)(N, G, ) such that, for any first integral ¢ of D at qo, pod™" is
constant on S,={jUw)|x€ U} for any solution w: U, —Q of (A),.

Proof. We set E,-=a%+ Xaa + - +MIZ p?l_,.jl_,i—W?"jl_l—.
Then E; is a vector field on JY(IV, Q). We replace the coefficients Phiizi
of E; which appear in the left hand side of J(B), by the right hand side
of it. Then we obtain a new vector field 4; on J'"}(N, Q) which can
be regarded naturally as a vector field on J!(IV, Q), for we have the as-
sumption N=R”"” and Q=R’ Moreover Ai, ---, A, are linearly indepen-
dent at any point in J'(IV, Q). Therefore they generate an n(=dim N)-
dimensional distribution D on J(N, Q). Let s: U,,x V,—Q be a general
solution of (A4); and set S,={ji(sp)|xU.,}, g€ V.. By the construction
of A4;, for a map w: Uy —Q, 4; is tangent to S,={ji(w)|xU,} if o
is a solution of (A4);. Therefore A4; is tangent to S,. Since we have S=
\J S,, D is tangent to S at any point. By calculating [ 4;, 4;], it fol-

g€Ve

lows that [4;, 4;],=0 if and only if p€I(FN(B);). Therefore by Pro-
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position 2.3 and I(JM(B)F)D S the restriction DS of D to S is involutive
and S, g€V,, is a maximal integral manifold of D® and vice versa.
We set (47 1)4D°=D. Then D is an involutive distribution on U, X V..
For each ge&V,, g transforms any maximal integral manifold S, of DS
to another maximal integral manifold S, if gh€V,, which implies that,
for any cross-section X of DS and any Y €&€g¥, we have also a cross-sec-
tion [X, Y] of DS where g* is the Lie algebra induced from the action
of G on S. Therefore by the property [ 8] of 4, we can also see that,
for any cross-section X of D and any Y €g*, we have a cross-section
[X, Y] of D where g* is a Lie algebra induced from the action of G on
NxG as a principal fiber bundle (NXG)(N, G, 7). We set go=4""(po).
Then D is a Lie-Vessiot system at go on (NxG)(N, G, @). Any first in-
tegral ¢ of D at ¢, induces a first integral gp=g¢od™! of D¥ at Po-
Since ¢ is constant on S, for any solution w: U —Q of (A4);, this com-

pletes the proof of Theorem 2.1.

Definition 2.5. Let o' be the projection of J'(IV, Q) onto NxQ.
For a submanifold S of J/(INV, Q) we set pk=p’|S, the restriction of o’ to
S. A point p&€ S is said to be of maximal rank in S if (dpk), is of
maximal rank. S is said to be of maximal rank if each point of S is of

maximal rank.

Corollary 2.1. Let (A), be a system at po satisfying [o;] (i=1,2,
3) and [B]. We assume that S is of maximal rank. Then we can induce
from (A), a Lie-Vessiot system D at qo=A4""(po) on the trivial principal
fiber bundle (NxG)(N, G, n) such that we can integrate (A); at po by
seeking for an arbitrary fundamental system of solutions of D at qo.

Proof. Let @i, ---, ¢, be any fundamental system of solutions of D%
at p,. Then we have the functional determinant D(gy, ---, ¢,)/D(z1, -,
Zgy Wi, -y Wr—g)7=0 on a neighbourhood Uj, of p, where {x1, -, %, 21,
“iey Zgy W1, -+, Wr—q} is the coordinate system on Uj given in the proof
of Proposition 2.1. We set x?=x;(po) 1=i=n), 2)=2z;(p,) 1=j<q),

w2=wk(P0) (lgkér“Q) and ¢; (23, -5 235 23, ooy Zg, wi, oy w2—4)=ci
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(1<j<r). Then by the implicit function theorem we have locally a
unique system of functions fzj(lgqu), fu,(A=SE<r—q) of x1, -, 2,
such that @;(%1, -, Zn fz,(%), -+, fzq(x), S, (%), ---,fwr_q(x))zcj(lg
j<r) and f (") =2z}(1=j=q), fu, () =wi(1<Ek<r—gq). On the
other hand, since po€ S, we have a solution sz, g€ V,, of (4), such that
Po=ji(sg) Since zj(s,(x°)=23(1=7=q), wal(s(xN=wp(1<k=<r—¢q)
and @;(x%1,-+5 Fny £1(5g(%))5e 5 24(8g(%)); WilSg(%))se -5 Wr—o(s55(x)))=c;(1 =
j=r), we have fzj=s’;,(=z,-(sg)). Thus from any fundamental system
of solutions of D° at p,, we can obtain a solution of (4),, that is, we

can integrate (A); at p,.

Corollary 2.2. Let (A), be a system at po satisfying [a;] (=1, 2, 3)
and [B). We set S°=0'(S)CNxQ and assume that S° is a submanifold
of NxQ defined by z;=¢1(%y--5 Zmy 215+, 20) 0 +1 =0 q).  Then we can
induce from (A); a Lie-Vessiot system D at qo=d4"*(po) on the trivial
principal fiber bundle (NXG)(N, G, &) such that we can integrate (A), at
Po by seeking for an arbitrary fundamental system of solutions of D at gqo.

Proof. By the same argument, we can obtain f, (%1, -, %,) (1=
j=t) from a fundamental system of solutions of D at ¢,. For :+1=
i=q we set f,,=¢ix1,--, %u, fz-- fz,)- Therefore we can obtain a
solution of (A); from a fundamental system of solutions of D at g.

Let (A); be a G-automorphic system satisfying [«; | (i=1, 2, 3). Let
Y1, --+y ¥, be linearly independent functions on an open subset U of S
where dim G=r. Let {a,};Z1 be any family of real numbers. As before
we set y=(y1, - y,), Uy={p € U |y,(p)=a;} and yi'=y; |UJ?
where yi=1y;, Ul=U. We set g-yi Y p)=y;"'g-p) and Vi={ge
Vicllg-yit=yi"1}, V9=V.. Clearly each g€V operates on U7 if g
operates on U.

Definition 2.6. Let f: S—T be a map of a manifold S to a mani-

fold T. We set graph (f)={(p, f(p)IpeSYTSxT. graph(f) is
called the graph of f.

Definition 2.7. Let D be an m(=dim S) dimensional distribution on
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Sx R defined on a neighbourhood of (p, t)€ SXxR. If there exists a local

coordinate system {a, ---, Am, x}, where {a1,---, &n} (resp. {x}) is a

local coordinate system of S at p (resp. of R at t), such that a local basis
0

. 0
{Xi, .-y Xm} of D at (p, ) is expressed as Xj=—a?j+¢j(a1, "-,Oﬁm)ﬁy

then D is said to be of quadrature type at (p, ?).

Definition 2.8. A system (A);, of partial differential equations at
poE€J'(N, Q) satisfying [a;] (i=1, 2, 3) and [ 5] is said to be solvable if
there exists a family of linearly independent functions {y;}7-;, r=dimG,
on a neighbourhood U of p, in S which satisfies, for a family of real
numbers {a;};Z}, the following conditions;

[1] We can induce from (4); an my(=dimU?) dimensional distri-
bution D’ on U} xR such that D’ is of quadrature type at any point in
UjxR and for any g€V the graph of g-y%,; is an integral manifold
of DY (j=0, ..., r—1).

[2]] There exists a solution o of (4), defined on Uz CU,, such
that, if we set S,={jl(w)|x€ U}, the function y;|S,, the restriction
of y; to S,, is constant for each j(j=1,...,r—1) and y;|S,=aj;.

We shall call {y;}5_, satisfying [1], [2], a fundamental family of
functions of (A),.

Theorem 2.2, Let (A); be a system of partial differential equations
at po€ J'(N, Q) satisfying [a;] (i=1,2,3) and [B]. Then the following
two statements are equivalent;

[i] G is solvable. [ii] (A); is solvable.

Proof. First of all, we shall prove [i |=[ii]. By Theorem 2.1, we
can find a Lie-Vessiot system D at go=47'(qo) on (NxG)(,G, ).
Since we have a basis {X;}7.; of D at p, such that [g*, X;]=0 (1=
h<m), for any ideal § of g, E=[9*\UD] (the distribution on U, XV,
generated by 9* and D) is involutive. Since g is solvable, we have a
sequence of subalgebras g=go g1 - Dgr-18,=10} such that dimg;—
dimg;,;=1 and g;,1 is an ideal of g;(0<j<r—1). We set E;=[gf\U
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DJ0<j<r). Let 4, ---, s, be any fundamental system of solutions of
D=E,. We set y;j=4;047'(1<j<r). Then by Theorem 2.1 for any
solution @ of (A4);, y;|S, is constant for each 1<j<r. Therefore, if we
set yi|So=0a; A1<j<r—1), {y;}7-, satisfies [2]. We shall prove that
we can find a fundamental system of solutions {s;}7_; of D such that [1]
is also satisfied. @~We choose a basis Vi, ..., ¥, such that {V,};-; is a
basis of gf_;. By Theorem 1.1, there exists a function s; on U, XV,
such that xi91==Xpo1=Vi+e1--=V,_1°4;=0 and V,-.1=1. By
using a local coordinate system {ai, ---, Quy,} on U, X V,, the system
Xio1=Vya1=0 (QAZhEIm,2ZEkZr)
(*o
Vieai=1

is expressed as

fgré_iao‘l’:o (lékén_i_r_l)

i=1 aa,
ntr | 641

J =
j; $n+r a

We have therefore ai=¢,~(a€1, oy Opiy) (I=Zj<n-+r). Let {ai, -

604,- i

Qy.r, x} be accordinate system on U, XV, ,xR and we denote by D° the

(n+r)-dimensional distribution on SxR generated by J*<5%+ ¢ja—a->
7 X

(1<j<n-+r) where 4 is the diffeomorphism of U, x ¥, xR onto SXR
defined by 4(x, g, t)=(d(x, g),t). Clearly the graph of 047! is a
maximal integral manifold of D°.

We shall prove that, for any g€ V., the graph of g-(s1047") is also
an integral manifold of D° Since 4; is a first integral of the involutive
distribution Ej, and since we have [g*, E;JCE;, g-s is also a first in-
tegral of E;, g€V,. On the other hand codim E;=1. Therefore we
have a function H; of one variable such that g-s1=Hy(s1). Since we
have dim g*/g¥=1, the local transformation group on R consisting of H,,
g€ V., is commutative. Hence we have H, (Hy(s1))= H,(H, (s1)) where
e;=expt V1. We have then Vi(g+s1)=g(V1+s1). Therefore we have also
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Xi(gs1)=Vi(gs1)=0 (1I=h=m,2=k=r)
V1(g°41)=1

and therefore we have

o(g- .
ig——a:l) :¢f(a13 Tty afn+r) (1§]_§n+r)
7
This implies that the graph of g(s;047') is also an integral manifold of
DO,
Let 41, ---, 4, be a fundamental system of solutions of I} such that

we have

Xieojn=Viadn=0  (A=h=m, j+2<k<r)
(*);

i i
Vj+1“4j+1——1

on (U, x V)i (0=<j<r—1). We choose a coordinate system {&,-,

a.,—;} on Si Then we have from (x);

i .. .
Ossr_giad, oy ads,) (=k=Zn+r—))
o,

for each 0<j<r—1. Therefore by similar method we get an (n-+r—j)-
dimensional distribution D’ on Si xR of quadrature type such that, if we
set Vi=V,Nexpgqj, the graph of g-4§+1 is an integral manifold of D;
for any g€ Vi. Note that we have Vi=Vj. This implies {s047'}7_;
is a fundamental family of functions of (A4);. This completes the proof
of [i]=[ii].

Conversely we shall prove [ii |[=[i]. We denote also by g* the Lie
algebra induced from the Lie algebra g of G by the action of G on J!(N,
Q). We set gf,=g* and inductively we set gf,={Xe€gf_,|X-yi 1=
0y|Uj (j=0,...,r—1) where {y}7-; is a fundamental family of func-
tions of (A4),, Note that, since V, acts freely on S, the restriction
map | U7J: {XEg?}_l)IX-yj:‘1=0}—>g?}, is an isomorphism. By pulling
back g, to a Lie subalgebra g} of g* through these restriction maps, we

get a sequence of Lie subalgebras g*DgF>---Dgf D+ such that gF is
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isomorphic to gf, Therefore we get also a chain of Lie subalgebras
a>giD - D@gsD -+ such that g, is isomorphic to gf. We have Vi=V N
expg; (j=1,2, ...). First of all we prove that g:yi,;=yl.1+ci, g€
Vi, where c¢j is constant. By the assumption [1], the graph of g- yig
is an integral manifold of D’. Since D’ is of quadrature type, there

exists a local basis {X7, ..., X},} such that, for a coordinate system {ad,

wy Ay} on U, X} is expressed as {zza——l—m(aﬁl, . -,od;,j)a@x— ALk

=m;). Therefore g'y§+1a gE V], satisfies (;3’89’7{'*1_):% (e, -, “f;zj)
ap

for each k. Fix an integer k, 1 <<k <"m;. Considering a (hk) as para-
meters of an ordinary differential equation ﬂgéyj_ﬂ):qﬁi (o, -, ac{;,j),
o
we get gyl =yi+ci(.,a, ), hok SirI:ce k runs over the set
of integers {1, 2, ..., m;}, ¢i must be constant. We shall next show that
aF.1 is an ideal of g¥. Let 0 (resp. g) be any element of ¥V (resp. VJ*1).
Then we have (071 g+0)+ yiyy=(0)"'-g-0-yi,,=(0)"" g(yite)=
)yl +ec)=7yl,. This implies that gF,, is an ideal of gf. By
[2] we have a solution ® of (A4); such that y;|S,=a; (1<j<r—1).
Therefore we have S,NUCU} (0= ]<r—1) Since any g€ Vi leaves
y’, o y, invariant, thatis g- yk—yk (1<k<})), we have SENUC U},
g€V, where Sf=g-S,. Therefore we get U;D\/ SENU. On the

g€y
other hand if g€ Vi, &V, then we have gy '5~yI ! and therefore
¢i715~0. This implies that y7*|SENU=£yi"1|S,N\U. Therefore SEN
UQUj. We get, therefore, SENUCUJ if and only if g& V. We shall
show that UJ is a union of some SENU, g€V,. Since we have g-y;=
y1+cl for any g€V,, y1 is constant on each SENU, g€V,. On the

other hand, since (A4); is G-automorphic, we have U= \J SENU (disjoint
g€V,

union). This implies that U} is a (disjoint) union of some SZNU, g€
V.. Therefore we get U= \/ SENU. Since g-y;=y3;+C3% geV],

g'EV1
¥3 is constant on each SENUCU}. This implies U3 is also a (disjoint)
union of some SENU, g€V, which implies U= \/ SENU. Similarly

eV
& v

Uj is a union of some SENU, g€V, (0=j=<r—1). This implies that
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Uj= \J) S4nU. Now we have dim Uj—dim Uj*'=1 and since (4), is
gEVgl

G-automorphic, we have dim \/ S§N\U=dim S,+dim gf. Therefore we
gEV-ifl

get dim gf —dim g¥,;=1. This proves that g is solvable. This complete

the proof of Theorem 2.2.

Corollary 2.3. Let (A), be a system at po€ J'(N, Q) satisfying [a;]
(i=1,2,3) and [ B]. Then (A), is solvable if and only if there exists a
Samily of linearly independent functions {y;}5-,, r=dimG, on a neighbour-
hood U of po in S which satisfies, for a family of real numbers {ax}i=i,
the following conditions;

[1] We have g+yi,,=Hi(yi1), g€V, for a function Hi of one
variable depending on g and j(j=0,...,r—1).

[2] There exists a solution » of (A); such that y;|S,=a; (j=1, -,
r—1) and such that if, g€V, gyl yis, then we have yi.;|S,N
Us yia|SENTU (j=0, ..., r—1).

Proof. We already showed in the proof of Theorem 2.2. that if (4),
is solvable, then any fundamental family of functions {y;}5-; of (A
satisfied [1], [2]. Conversely let {y;}5-; be a family of linearly inde-
pendent functions on U satisfying [1]| and [2]. We have only to show
that G is solvable. First of all we shall prove that Uj is a disjoint union
of some SENU, g€V,. Since we have g-y;=HL(y,) for any g€V,
y1 is constant on each SENU, g€V, Since (4); is G-automorphic, we

have U= \/ S§NU (disjoint union). Therefore U} is a disjoint union
g€V,

of some S4NU, g€V, We have clearly U}D \J SENU. If g€V,

1
gEVy

and &V}, then g-y17y:. Therefore by the assumption [2], y:|SEN
U y1|S.NU. Hence we get SENU CUj if and only if g€ V. This

implies U}= \54,155 NU. By similar considerations we have Uj= g:’
g€V &Y

SENU for 0<j<r—1. We have dim Uj—dim U}**=1 and since (4),

is G-automorphic, we have dim \/ S§NU=dim S,+dimgf. Therefore
gEV{I

we get dimgf—dimg},;=1. Let 0(resp. g) be any element of V' (resp.
Vith). Then (071« g+0): yin=(0)"1 g(HI* (y]e1))=(0) " Hi* (y}s1)
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= yj:+1. This implies that g¥.; is an ideal of gf. Therefore g is solvable.

By Theorem 2.2, (A); is solvable. This completes the proof of Corollary 2.3.

Corollary 2.4. Let (A), be a system at po€ J'(N, Q) satisfying [a;]
(i=1,2,3) and [f]. Let D be the Lie-Vessiot system at go=A4""(po) on
(NxG) (N, G, @) induced from (A); by Theorem 2.1. If (A); is solvable,
then there exisis a fundamental family of functions of (A); on a neighbour-
hood U of po in S which satisfies the following conditions:

(1] There exists a basis {Vy}i-q of g* such that we have

Vi (yk+104)=1
Viei*(Yrsr0d)=0 @e=sj=r—k)

for 0<k<r-—1.
(2] {ywod}3-1 is a fundamental system of solutions of D at gqq.

Proof. By Theorem 2.2, G is solvable. Then the Lie-Vessiot system
D at gy on (NxG) (N, G, m) is solvable. By Theorem 1.1, there exist a
fundamental system of solutions {s;}%-; of D at gqo and a basis {V,}5-;

of g* such that we have

Vierrap1=1

Vivitor1=0 @C=sj=r—k)

for 0Xk<r—1. We put y;=g4047" (j=1,2,...,7). Since g* is solva-
ble, we have a sequence of subalgebras g*=g¥>g%>...Dg¥ , Da¥={0}
such that dimg¥—dimg},;=1 and g}, is an ideal of g¥. Note that, in
Theorem 1.1, we chose a basis {V,};-1 of g* such that {V,};_; is a
basis of g¥_;, from which, as is proved in Theorem 2.2, it follows that

{yi}7-1 is a fundamental family of functions of (A4),.

Corollary 2.5. Let (A4), be a system satisfying [« (i=1, 2, 3) and
[B]. Moreover we assume that S is of maximal rank. If (A), is solva-
ble, then we can induce a fundamental family of functions {y;}5-1 of (A)
by quadratures such that we can obtain a general solution of (A); by ap-

plying to {y;}i-, the implicit function theorem.
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Proof. By Corollary 2.4, there exists a fundamental famliy of func-
tions {y;}7-, such that {yjod}’_; satisfies [1] and [2] in Corollary 2.4,
which implies, by Corollary 1.1, that {y;o4}7_; is obtained by quadrature.
By Corollary 2.1, we can obtain a general solution of (A); by applying to

{yi}7-; the implicit function theorem.

Corollary 2.6. Let (A), be a system satisfying [a;] (i=1, 2, 3) and
[B]. We set S°=0'(S) and assume that S° is a submanifold of N x G
defined by z;i=q@i(%1y -5 %ny 24y 21) GH1Zi=q). If (A); is solvable,
then we can induce a fundamental family of functions {y;}5-1 of (A by
quadraiures such that we can obtain a general solution of (A), by applying

to {y;}i-1 the implicit function theorem.

Proof. Using Corollary 2.2 in place of Corollary 2.1, Corollary 2.6

follows immediately.

§3. Examples
Example 1. We shall consider Riccati’s differential equation %=

71(%) 28+ 92(x)z+73(x). We set Xlzzz—d—, Xz=z-d— and X;= d.
dz dz dz

3

Then g={2,c;X;|c;€ER} is a Lie algebra. Note that g is the Lie al-
i=1

gebra of the projective transformatiton group on the 1-dimensional projec-

tive space and therefore simple. We set X*=%+771°X1+772-X2+773'X3

and denote by G a connected Lie group with the Lie algebra g. Then, by
considering X; (=1, 2, 3) as a right invariant vector field on G, X, is a
vector field on RxG. We can make G a Lie transformation group on G
by gra=a-g' (resp goa=ga) a€G, g€G which we denote by G*
(resp. Gy). Let m be the projection of RxG onto R. Then (RxG) (R,
G*, ) (resp. (RXG) (R, Gy, m)) is a principal fiber bundle. We denote
by g* (resp. gs«) the Lie algebra induced from the action of G* (resp. G4)
on RxG. Then any element of G* commutes with all elements of Gy

as a transformation on RxG. Therefore we get [g* g4 ]=0. This im-
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plies that we have [ X, g*|=0, for any right invariant vector field on G
is naturally considered as an element of g*.

We denote by D the distribution on RXG generated by X,. Then
D is a Lie-Vessiot system at any point p on (RxG) (R, G*, m).

Let po=(to, go) be any point € RxG and let

dz
dx

=F(x, z1, 22, 23)
. dzy_
ER(!‘Dl- —;—Fz(xa 21y &2y z3)

d_=F3(x: 21, %2, 23)
X

be the system of ordinary differential equations at %o €JYR, G), o=
05(po), such that we have (dz;~Fjdx) (X,)=0 at any point of a neigh-
bourhood of po, where {x} (resp. {zi1, z2, z3}) is a local coordinate sys-
tem at ¢ (resp. go). We shall show that 9(4), satisfies [a;] (i=1, 2,
3); Let (29, 29, z3) be a solution of 9(A4); defined on U;. We set s=
(29, 29,2%). Then s is a map of U, —»G. We set 5(x, g) = g*s(x). Since
D is a Lie-Vessiot system at p, on (RxG)(R, G*, m), both s(U;) and
g*s(Uy,) are integral manifolds of D, that is, g*s is also a solution of
N(4), if gis in a neighbourhood ¥, of the unit of G. Since any integ-
ral manifold of D contained in a neighbourhood of p, is uniquely expres-
sed as g*s(Uy), g € V., N(A), is G*-automorphic. Since 1xs is a local
cross-section of (RXG) (R, G*, w) where 1 is the identity of R, j'(5):
Uy, xV,~J'(R,G) is an embedding. Moreover S=j'(s)(U;,x V,) is of

maximal rank.

Example 2. Let G be a Lie transformation group acting effectively
on a manifold M. Then G acts on the space of I-jets J'(M, M) natural-
ly. Then, for a sufficiently large I, G acts freely on J'(M, M), or more
precisely, there exists a neighbourhood ¥, of the unit element of G such
that each element of ¥, acts freely on J'(M, M). We choose and fix an
element go€G. We set 5(x, g)=g-go(x). Then 5 is a map of MXG
to M. Since V, acts freely on J'(M, M), j'(s) is an embedding of M x
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V, into J/(M, M). If G acts transitively on M, S=j'(s) (MxV,) is of
maximal rank. Let (A4), be the system of defining equations at PoE
J'(M, M) of the Lie transformation group G acting on J/(M, M). Then
(A4), is G-automorphic.

Example 3. Let (P;, M;, {e}) be an {e}-structure on M; and o; be
the basic form of (P;, M;, {e}) (i=1, 2). We assume that (P;, My, {e})
is locally isomorphic to (Pz, M;, {e}) at any point (x1, x2) € M1 X M,.
We denote by I” (resp. I') the set of all local isomorphisms of (P;, My,
{e}) to (P, M;, {e}) (resp. the set of all local diffeomorphisms ¢ of P
to P; with ¢*ws=w;). Then it is well-known that the natural lifting of
an element of I" gives a 1-1 correspondence between I and I’ (cf. Singer,
I. M. and S. Sternberg, The infinite groups of Lie and Cartan, J. Analyse
Math. 15 (1965), 1-114).

Let G be the automorphism group of (Ps, M,, {e}) and assume that
any local automorphism of (Pj, M,, {e}) is a restriction of an element of
G. We denote by (A); the system of partial differential equations at
poEJ(Py, P;) given by ¢*wp=wi. Let ¢ be any local diffeomorphism
of a neighbourhood U, of p; € P; to a neighbourhood U, of p;€ P; with
P*wz=w;, and ¢(p)=p.. We set 5(p, g)=g d(p), (p, g)€Up X V..
Then (A4), is G-automorphic and j'(5) is an embedding of U, xV, into
J'(P1, P;). Moreover if G acts transitively on Py, S=j'(5) (U, x V,) is

of maximal rank.
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