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Automorphic Systems and Lie-Vessiot Systems
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Kazushige UENO

Introduction

In the theory of systems of partial differential equations, problems of

integration of a given system have long occupied an important position.

Such are the problem of deciding whether integration of a given sys-

tem could be reduced to those of several systems of ordinary differential

equations or not and the problem of achieving integration of a given sys-

tem, provided that the above reduction is possible.

S. Lie studied such a system of partial differential equations that a

general solution of the system depends on a finite number of constant

parameters. He reduced there the problem to the case of an involutive

distribution. But his explanation of the method of the reduction is quite

ambiguous (p. 115 in Q2]). He carried out further reduction of integra-

tion of the involutive distribution to that of a 1-dimensional distribution

according to Mayer's method.

Regarding these reductions as a fait accompli, he studied in [2T\

mainly integration of a 1-dimensioal distribution, which contains the study

of integration of a non-linear ordinary differential equation of any order.

From a standpoint of the theory of integration, he tried to classify ordina-

ry differential equations in another paper. In Q2] he studied the case

that a 1-dimensional distribution has some connection with a continuous

transformation group of finite type. The case that a group is simple and,

in particular, isomorphic to the projective transformation group was inves-

tigated in detail by him. In the case that a group is solvable, integration

of the distribution is deeply connected with quadrature, as is suggested by

Received June 7, 1972,



312 KAZUSHIGE UENO

E. Cartan in PQ.

On the other hand, E. Vessiot studies the method of finding out in-

tegral curves of a given 1-dimensional distribution (which is, in a sense,

equivalent to finding out first integrals of a given 1-dimensional distribu-

tion) in £4T]. In other words, with respect to a certain kind of systems

of ordinary differential equations of 1-st order, he attempted to develop

the theory analogous to Galois theory of algebraic equations. Vessiot con-

sidered transformation groups which, roughly speaking, act on unknown

functions of a given system of differential equations.

Now we shall go back to such a system of partial differential equa-

tions of any order that a general solution depends on a finite number of

constant parameters.

Considering a continuous group of finite type acting on unknown

functions of a given system and strengthening the condition that a gene-

ral solution depends on a finite number of constant parameters, we put

the assumption that, by the action of the group on a special solution, we

can obtain a general solution of a given system of partial differential equ-

ations, which Vessiot called an autmorphic system with respect to the

group.

Our main purpose is first to make clear the obscure point in the

treatment in [_2~] of reducing integration of a given autmorphic system to

that of an involutive distribution and secondly to give, in a form of a

necessary and sufficient condition, an interpretation of the solvability of G

by properties of integration of an automorphic system with respect to G.

In §1 we give the definition of a Lie-Vessiot system D on a princi-

pal fiber bundle P(M, G, TT) (Definition 1.1) and then we prove, in a

strict form, the theorem stated in pQ, which means that, if a Lie-Vessiot

system is solvable, then it is integrated by quadratures (Theorem 1.1).

In §2 we define at first a G-autmorphic system (Definition 2.3).

Under some general conditions we can induce a G-automorphic system

with desirable properties from the given G-automorphic system such that

the former is equivalent to the latter (Proposition 2.1, Proposition 2.4),

We define the solvability of such a G-autmorphic system from a standpoint
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of integration (Definition 2.8). For such a G-automorphic system (A\ on

Jl(Ny Q\ we give a reduction theorem which reduce the integration of

(A) i to that of a Lie-Vessiot system D on P(N9 G, TT) (Theorem 2.1).

Using this theorem, we obtain the main theorem (Theorem 2.2) which

gives an interpretation of the solvability of G by that of a G-autmorphic

system.

As for integration problems, not the existence or the property of

solutions but the method of obtaining a solution is a question, though of

course we need to certify the existence of a solution. S. Lie fixed his

eyes upon a continuous transformation group as one of languages which

express the necessary method to obtain a solution. It is also the origin

of the notion of a Lie group. This language is very much available in

some cases and express the properties of integration briefly. But of course

this language is not all mighty.

We have written this note, taking his great thought as a starting

point of our studies.

Finally, we should like to thank Professor N. Tanaka for his many

valuable suggestions by reading our manuscript carefully.

§ I. Lie-Vessiot Systems

We assume that the differentiability is the class C°° and "a Lie group"

always means "a connected Lie group" through this paper unless other-

wise stated.

We denote by P(M, G, TT) a principal fiber bundle over the base space

My with the total space P, the structure group G and the projection TT.

Let P(My G, TT) be a principal fiber bundle and let g be the Lie alge-

bra of G. Then for each XGg, exp t X induces a vector field X* on P.

We setg*={JT* X€Q}. Clearly g* is a Lie algebra isomorphic to g.

Definition 1.1. Let P(M, G, TT) be a principal fiber bundle. A dis-

tribution D defined on a neighbourhood of p£P is called a Lie-Vessiot

system at p on P(M, G, TT) if it satisfies the following conditions;

(1) D is an ^-dimensional involutive distribution, m = di
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(2) n*Dt=T

(3) [_X^ Y^\ is a cross-section of D for any cross-section X of D

and any Y €L g*.

Note that, for any Lie-Vessiot system D at /? on P(M3 G3 TT), there

exists a local basis {JT^ • - - , Xm} of D at p such that pT,3 Xj^ = Q (&, 7 =

1 ... in) and [JTy3 g*>0 (/=!, »., m).

Definition 1.2. A Lie-Vessiot system D at p on P(M3 G3 TT) is said

to be simple (resp. solvable) if G is simple (resp. solvable).

Definition I030 Let D be any distribution on a manifold S. A func-

tion (p locally denned at p £ S is called a first integral of D at p if, for

any local cross-section X of D at p, we have Jf-^ = 0.

Definition I04B Let D be a distribution on S. By the integration

of D at p 6 5 we mean to find all first integrals of D at p.

Definition I85e Let D be an m-dimensional involutive distribution

on 5. A family {^•7}y=i of first integrals of D at p is called a funda-

mental system of solutions of D at p if dy>l
9 • • • , d(pr are linearly inde-

pendent at p and r = dim S — m.

Let {a/2}|=i be a family of real numbers. If we are given a family

of real-valued functions {/*}*= i defined on an open set U of a manifold3

we set /=(/!,-.,/,), ^>={?€^-1|/i(?) = ai> and /j=/j-i| ffj (/ =

0, ...,&-!) where £/£=£/ and /J = /y.

Theorem 1.1. Le£ D be a solvable Lie-Vessiot system at p on

G3 ?r)3 dimG=r. Then there exist a fundamental system of solutions

{(Pk}k=i of D at p defined on U and a basis {Vk}k=i °f 9* such that we

have

for o<:z<;r-i,
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Proof. Since g* is solvable, we have a sequence of subalgebras g* =

9o 2 8* D"-a?-i^8?={°} where dim g^ — dim g*+i = l and g*+i is an ideal

of of. Let {Vk}l=i be a basis of g* such that {Vk}
r
k=j is a basis of

9*-i- Let {</>k}k=i be a fundamental system of solutions of D at p de-

nned on U such that Xis</>j=Vj+km</>j = Q (l^Ss/^r, l<JA;<Jr— y) where

{-X/i}/£=i is any local basis of D at p. The existence of such {0&}|=i is

assured, for Xi, . • • . , JTm, Fy+i, • ••, Vr generate an (/ra + r — y) -dimensional

involutive distribution defined on a neighbourhood U of p. Using the

existence of such {fik}l=i, we shall show that there exists a fundamental

system of solutions {(Pk}l=i of D at p defined on U such that we have

for 0<;/<Sr-l. Since 0i satisfies Xh^l=Fk°(pi =

^r) and gf is an ideal of g*3 Fr0i also satisfies Xh(

= Q (l^/i^^3 2<J&<>). Therefore we have a function J£(i) of one

variable such that F^01 = K((/}1). We set H(t)= (* K(t)-ldt. Then

also satisfies ^(^(00) = rA(JH
r(0i))=0 (l^A^wi, 2^A^r).

Moreover we have Vi(H(<I)i)} = ( - Fi(0i) = l. Therefore we see
\ a^ / t=$i

that the system of partial differential equations

has a solution on J7. We may assume that 7r~1(/)=£/^/x IF and let

{xh}f(resp.{wk}rk=i) be a coordinate system on / (resp. W) Then {#1,

• ••3 xm, Wi, • • • y w r } i s a coordinate system on U. By using this coordinate

system3 the above (*)? is expressed as

(*)S
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Since {Xi, ••-,Xm, V^ • • • . , Vr} are linearly independent on C/, we can solve

(*)! with respect to ^L, ^L (1 <;&<>, !<:&<>). We have
dxh dwk

-=

v-=ffl(xi, • -., #„, wi, • • - , i*;r)

Now we assume that we have linearly independent functions < j ? i 5 - - - 5

on U such that

for 15Sy"<^/. Then we shall show that we can find a function 0>/+i on

J7 which is independent of ^i, • • • , ^/ and satisfies

Since ^-(l^y^Z) satisfies Xh*<pj=Vj^k<pj = Q (l^A^/n, 1^ k<^r — y),

we can restrict Xh(l^h^m) (resp. F/+*(l<^ k<,r — Z)) to £/"| which we

denote by Z"| (resp. V\+^). By the same reason as for the case (*)J, we

can induce a function ^{+1 on C/J from the function 0J+1( = 0 /+1 C/J)

such that we have Xl
h'(pl+l= V\+k*(p\+l = Q (l^h^m, Z^k^r — I) and

F/ + 1
e^J+ 1 = l3 that is to say, we can see that the system of partial differ-

ential equations

f Xi-/=K{+»./=0 ( l^A^m,2^&^i— 0
(*){

has a solution on C/J.

Now we may consider {^i, • • - , A;W? w^ • • • , w r_/, ̂ i5 • • - , (pi} as a coor-

dinate system on U. Then {#1, • • - , xm^ w^ •••)wr-i} is a coordinate sys-

tem on C/J. By using the coordinate system on C7J5 we have
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(*)

Since X^3 V\+k(I^h<Lm^ l^k^r — l) are linearly independent on Ul,

we can solve (*)i with respect to -J—^-J—(\^h^m^ l<:k<^r — l). We
9^ 9wft

have then.

p| and o~!
k are differentiate with respect to # ! , - • • , xm, w^ • . - ,w; r _/ , #>i3 - . - 3

^/. For any family of real numbers {«y}j = l3 (*)| has a solution on E/J.

Therefore (*)J has a solution ^^i on U. Clearly (pi+\ satisfies

^A^WI, £<;&<>— z)

Thus we get a fundamental system of solutions {0>/}y = i of D at _p such

that we have

This completes the proof of Theorem 1.1.

Corollary 1.1. Le£ D be a solvable Lie-Vessiot system at p on P(M3

G3 TT). T/z^^ M;^ c«;n yzwJ a fundamental system of solutions {(pk}l=i of

D at p by quadratures.

Proof. By the proof of Theorem 1.1, there exists a fundamental sys-

tem of solutions {(Pk}l=i of D at p such that we have
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gpi+i -nl,

(*)!
jty»±i _, <;&<> —0

for 0 < J Z < ^ r — - 19 which we can integrate by quadratures according to the

method due to Lagrange and Charpit.

§2* Solvability of Automorphic Systems of Finite Type

Let N and Q be manifolds. We denote by Jl(N9 Q) the space of

Z-jets of local maps of N to Q. Let s be any map of a neighbourhood

UXQ of xQ€N to Q and set jl
x(s} = (x, s(x\ s(l}(x\ • • • , s(00*0) where s(k}

is the set of partial derivatives of s of order k. If p is in Jl(N, Q\ we

have p=jl
x(s), % (resp. s(#)) is called the source of p (resp. the target

of p). For a map s of UXQ X Ve(^NxG to ^ where Fg is a neighbour-

hood of the unit element e of a Lie group G3 we set sg(x)=s(x, g) and

define /(s) by /(s)(#5 g) = ji(sg)> Then /(s) is a map of U X Q X F e to

m «.
In this section we assume that N=Rn and Q=Rq. We denote by

#1, • • - , s;w the coordinate system of N, by zi, • • • , zq that of Q and by

*Ki^f^iO,*Xi^/^?),^^ i^*^0
that of /'(A; (?).

Definition 2.1. Let {Fy}"=1 be a family of functions defined on a

neighbourhood of />0 £ /^(^V, 0- A system of equations

is called a system of partial differential equations at p0 6 Jk(N,

We denote by I(A\ the set of points in Jk(N, (?) satisfying

Definition 2.20 Let x0 be the source of pQ. Any local map s of a

neighbourhood UXQ of x0 to ^ is called a solution of (^4)^ if /(s)( £/*„) =

{ji(5)l^^^0} is contained in I(A)k-

Let (A)k: Fi = Q, • • - , Fa = Q be a system of partial differential equa-
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tions given on a neighbourhood U of po£jk(N, Q). We denote by Qk(U)

the sheaf of all local functions on U and by (A)f the sheaf of ideals of

Qk(U) generated by FI, "-^Fa. Moreover let p|+1 be the projection of

Jk+l(N, Q) onto J*(N9 Q} and we denote by p(A)f the sheaf of ideals of

Qk+\U\ U=(pk
k^~l(U\ generated by (^)jf and di

a) where d^Fj is defined by

^ is called the prolongation of (A)%. We set

and (A)l - \J5(A)t, l(A)*k=,(l-\A)^. M. Matsuda called ( ) j f the

jo- closure of

Now let G be a Lie transformation group acting effectively on Q.

For any p= jk
x(s)€jk(N, Q) and g 6 G, we set g* jk

x(s) = jk
x(g*s). Then

G acts on Jk(N, Q) as an effective Lie transformation group.

Definition 2.3. Let G be a Lie transformation group acting effec-

tively on Q. A system of partial differential equations (A)k at pQ 6

Jk(N, Q) is said to be G-autmorphic if there exists a map s of UXQ X

Ve(^NxG to Q (XQ= the source of p0) satisfying the following condit-

ions;

(1) For any g E Ve, sg is a solution of (A)k.

(2) Any solution of (A)k is uniquely expressed as s .̂, g^Ve.

(3) We have s(x, g) = g'§(x, e) for any g^Ve.

We call such a map s a general solution of the G-autmorphic system

Remark 2.1. We have g-jk(s)(x, e~) = jk(s)(x, g) for any g£ V e.

We denote by ()j.../s) the pair of an integer X and a family of inte-

gers {/»}!_!. We set /(0 = {0,..y-s)|l^A^g, l^s^Z, l^/»^n} where

^r = dim Q, n — dim JV.

Definition 2.4. A system of partial differential equations (A)k at p

in /*(j/V, Q) is said to be of normal form if (A)k possesses the form pjlmmmjg

= H'ji»'j*(xi9 • • • 3 x»> zi> ' • • ? zQ>Pi> • • • ) » Oi-y.)^ -^ where I is a subset of
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satisfying the following conditions;

(1) We set Ik=iGlMjl)\l^^q9

Then we have -O/£.

(2) H$lmJ§ is a function on J*'l(N, (?) for any &.../.) 6 /.

(3) For any (^...y.) € I, fly^y, does not depend on p*jlmjt.

In order to emphasize that (A)k is of normal form, we denote by

in place of (A)k.

Proposition 2.1. Let (A)k be a system of partial differential equa-

tions at p0£jk(N, Q) satisfying the following conditions]

(1) (A)k is G-automorphic.

(2) There exists a general solution s of (A)k such that, for an inte-

ger l^>k, /(s) is an embedding of a neighbourhood UXQxVr
e of (#03 e)£

NxG into Jl(N,Q).

Then there exists a system of partial differential equations C4)/+i at

pQ in Jl+\N,Q) with pi+1(£o) = po (p|+1 is the projection of Jl+l(N,Q)

onto Jk(N, Q)) satisfying the following conditions ;

(i) (A)i+i is G-automorphic and has a general solution a): UXo X

Ve D U'XQ x V'.-*Q with cD = s\U'XQX Vf
e.

(ii) There exists a neighbourhood W of p0 such that I((A)i+i)C\

W=Sr\ W where S=/+1(s)(l7^x Fe).

(iii) (A)i+i contains^ as a subsystem, a system of partial differential

equations %l(B)i of normal form.

Proof. We may consider that {x^ • • • , xn, zi9 • • - , zt, wi? • • • , wr-t} is

a local coordinate system at p0 in S = jl(s)(UXQ X Ve\ pl
l
+l(pQ)=p0y where

r^dimG and W{ (l^y^r — t) is some /^...y,. Since S is diffeomorphic

to 5 by the projection p{+1 of Jl+l(N, 0 onto Jl(N, Q), we may also

consider {^i, • •-, ^W5 ^i, - - - 3 ^? w;i, • • • 3 w; r _ ? } as a local coordinate sys-

tem at pQ in S. Let jDy1...ys(1^5^Z + l) be any coordinate function on

Jl+l(N,Q) such that p$lm/g=£<u,j(j = l, ...,r-0- Then we have 7?)^.=

H^^J^XI, "'9 xn, zi, • - . , */, wi, .-., wr_/) on a neighbourhood C/"go of ^o in

S. Similarly if Zi=f=-Zh (/& = !, • • • 3 ^ ) 3 then we have Zi = H*(xi, • • - , A;M3 ̂ i3
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• ••, **, ti>i, .-,wr-t). We denote by (-4)/+i the system of partial differen-

tial equations consisting of all such pj1...jg = H^lm,.jt and zi = Ht. We de-

note also by %l(B)i+i the system of partial differential equations consist-

ing of all such j^y !.../, = #/!.../,• Then (A)i+i clearly satisfies (ii) and (iii).

We shall prove that (A)i+i satisfies (i).

First of all we shall show that if s: U'XQ-+Q is a solution of (A)i+i

then 5 is a solution of (A)k. Clearly jl(s) is a local cross-section of S.

For each x £ U'XQ, jl
x(s) 6 5. Therefore we have a solution sg(x^ g(x) 6 Ve,

of (A)k such that ]l
x(s)=jl

x(sg(x^. In particular we have jl
x(s)=jk

x(sg(x^)

for k<^L Therefore j%(s)£l(A)k. Since x is any point in E/£0, s is a

solution of (A)k. Next assume that s is a solution of (A)k. Then /(s)

is a local crosssection of S and therefore jl+l(s) is a local cross-section

of S. This implies that 5 is a solution of (A)i+i.

Therefore (A)i+i has a general solution s\U'XQxVr
e. It is now clear

that (A) 1^.1 is G-automorphic. This completes the proof of Proposition 2.1.

Proposition 2.2. Le£ %l(A)i be a G-automorphic system at

Jl(N, Q). We denote by %l(A)f the p-closure of 5Ji(^)?. We assume that

the point pQ£zI(yi(A)*) is an ordinary integral point of ^Jl^A)*. Then

there exists a neighbourhood UPa of pQ in Jl(N, Q) such that yi(A)* is

involutive at p£ /(5R(^4)f)A UPo. (As for the definition of "(quasi-) invo-

lutive" confer

Proof. Since, for a suitable Up^ p € 1(3^(^4)^) A UpQ is an ordinary

integral point of m(A)f and 91(^)f is compatible at p el(l(^)f)n^0,

we have only to show that Cp(%l(A)f) is involutive and the dimension of

Cp($l(A)fyl\ the first prolongation of C/SR(^)f), is locally constant at

p. By definition we have Cp(Wl(A)*) = {X<= TP(J'(N, ®)| (pj-O+X - 05

On the other hand l(^)f contains pj^-Hj^ for

any (^...y,)^!/. It follows immediately that C^(fi(^)f) = 0. Therefore, in

particular dim C p($i(Aff)(^ = constant and Cp(^l(A)f) is involutive. This

completes the proof of Proposition 2.2.
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Let yi(A)i be a system at pQ e Jl(N, ()). For any H^,,.js+1 which

appears in 3l(A)h we define a function iff^...;,^ on Jl(N, Q) given in a
O TJ-X

neighbourhood of JDO by the following way: For d$Ifj „,- = _ Ji-J*+i _[_

+••-+ S fa HI i* dHjl~Js+1 , replace the coefficients

of dj-ffy^y,^ (0<J&<SZ — 1) which appear in the left hand side of

by the right hand side of it, which we denote by ffi"y1...y,+1- If

both (ay !.„/,) and (^...y^) are in I, we consider the function a-ff^yi-/."""

0H'aj1...js and if (^yi-y.) ̂  -^ and («yi.»y«) ^ ^> we consider the function

*H*kii~i*—pM*"f*- We denote by gK(^)/ the sheaf of rings of all

such functions on a neighbourhood of PQ.

Proposition 2e3e Let ^l(A)i be a system at pQ €E Jl(N, (/). We have^

then.

Proof. By definition9 31(4)? contains d^H^j^j^-d^H^^j^ for

any ( .̂.̂ J and ̂ ...y.-ffy,.../. for any (^..y.)^/. Moreover if ftylWi)

€/ and («yi...yf) ^ /, then Q^Hj^^-p}^^ is contained in

Therefore we have gSRC^C^)?, that is3 we get

Proposition 204e Let %l(A)i be a G-automorphic system at pQ G J\Nj Q)

such that jl(s) is an embedding of UXQ x Ve into Jl(N, Q). We assume

that the differentiability is the class C01 and the point pQ G I(%l(A)f ) is an

ordinary integral point of yt(A)f. Then there exists a neighbourhood UPo

of pQ in Jl(N,Q) such that we have I($l(A)f)rMJpQ= S r\Up^ where S=

Proof. By Proposition 2.2, we can choose a neighbourhood UPo of pQ

in Jl(N,Q) such that $l(A)f is involutive at any peI($l(A)f)rMIpQ.

Therefore we have a solution 5: U'-*Q of %l(A)f such that /(sXU') con-

tains p. This implies I(yt(A)f)r\UpQCSrMfpQ. On the other hand we

have clearly Sr\ UPo C I(^(^)?)A U^. Therefore we get I(^(^)J) A UPo =

Therefore from now on we shall deal with a system of partial differ-
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ential equations (A)t at p0eJl(N,Q) satisfying the following conditions;

{_a J (A)i is G-automorphic and f(s) is an embedding of UXQ X Ve into

Jl(N, ()) where s: UXQX Ve-*Q is a general solution of (A)i.

\J%2^ There exists a neighbourhood W of p0 such that Sr\W=I(A)i

r\ W where S=/(s)(£7*0 x Ve\

\j%z~] (A} i contains, as a subsystem, a system of partial differential

equations 5R(5)/ of normal form.

Moreover we set the following assumption;

We know a diffeomorphism A of UXQ x Ve onto S such that

= JO, g) for any g€Ve and x£ UXQ.

For such a system of partial differential equations, we have the fol-

lowing reduction theorem.

Theorem 2.1. Let (A)i be a system of partial differential equations

at PQ satisfying \jxi~\ (& = 1, 2, 3) and [jS], Then we can induce from (A)i

a Lie-Vessiot system D at qQ = J~1(p0) on the trivial principal fiber bundle

(NxG)(N) G, TT) such that, for any first integral cp of D at q$, (p°A~l is

constant on Sa}={jl
x(a)')\x€:UXQ} for any solution o)i UXQ-*Q of (A)h

Proof. We set Et = -^— -

Then Ei is a vector field on Jl(N, Q}. We replace the coefficients pjlm..jki

of Ei which appear in the left hand side of 5JJ(5)/ by the right hand side

of it. Then we obtain a new vector field AI on //~1(7V3 Q) which can

be regarded naturally as a vector field on Jl(N, ()), for we have the as-

sumption N=Rn and Q=Rq. Moreover AI, • • - , An are linearly indepen-

dent at any point in Jl(N, Q). Therefore they generate an 72-( = dim N)-

dimensional distribution D on J(N, ()). Let s: UXQ X Ve—>Q be a general

solution of (A)i and set Sg={jl
x(sg)\xUXo}9 g^Ve- By the construction

of Ah for a map a); UXQ-*Q, AI is tangent to S0={jl
x{ai)\xUx^ if CD

is a solution of (A);. Therefore AI is tangent to Sg. Since we have S =

\J Sg, D is tangent to S at any point. By calculating [_A^ A^ it fol-
g^ve
lows that [_Ah Aj1P = 0 if and only if p e 7(g5K(5)/). Therefore by Pro-
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position 2.3 and /(5JJ(.£)f) D 5 the restriction Ds of D to 5 is involutive

and 5^5 g^.Ve^ is a maximal integral manifold of Ds and vice versa.

We set (A~l)*Ds=D. Then D is an involutive distribution on UXQxFe.

For each g 6 Fej g transforms any maximal integral manifold 5/j of Ds

to another maximal integral manifold Sgh if gh^Ve^ which implies that,

for any cross-section X of Ds and any F€g*3 we have also a cross-sec-

tion QX3 F] of Ds where g* is the Lie algebra induced from the action

of G on S. Therefore by the property Q/9] of J3 we can also see that,

for any cross-section X of D and any F(Eg*3 we have a cross-section

[[X, F] of D where g* is a Lie algebra induced from the action of G on

NxG as a principal fiber bundle (NxG)(N,G, TT). We set qQ = A~l(po).

Then D is a Lie-Vessiot system at q0 on (NxG)(N, G3 ?r). Any first in-

tegral 0 of D at qQ induces a first integral (p = </jod~l of Ds at p0-

Since #? is constant on 5^ for any solution a): Uf
XQ-^Q of (A)i, this com-

pletes the proof of Theorem 2.1.

Definition 2.5. Let pl be the projection of Jl(N,Q) onto NxQ.

For a submanifold 5 of Jl(N, Q) we set pl
s = pl\S9 the restriction of p* to

S. A point pGS is said to be of maximal rank in S if (dpl
s)p is of

maximal rank. 5 is said to be of maximal rank if each point of 5 is of

maximal rank.

Corollary 2.1. Let (A)t be a system at pQ satisfying |jzj (&' = !, 2,

3) and [j3[]. We assume that S is of maximal rank. Then ive can induce

from (A)i a Lie-Vessiot system D at qQ = J~1(jp0) on the trivial principal

fiber bundle (NxG)(N, G, n) such that we can integrate (A)i at PQ by

seeking for an arbitrary fundamental system of solutions of D at qQ.

Proof. Let <p^ • • • , <pr be any fundamental system of solutions of Ds

at pQ. Then we have the functional determinant D(<pi, • • - , (pr)/D(z^ • • • 3

zq, Wi, • • - , Wr^q)^® on a neighbourhood UjQ of pQ where {^i3 - . - 3 xn, zi9

•••9zq,wi, --^Wr-q} is the coordinate system on UjQ given in the proof

of Proposition 2.1. We set x^ = Xf(

- ) a n d
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(1^/^r). Then by the implicit function theorem we have locally a

unique system of functions fz.(l^j^q},fWk(l<=k<,r — q) of xi, • • • , xn

such that y>j(xi, ~-9 xn, /^OX • ••, fZq(x\ fWl(x\ • ••, /»r_flOO) = c/l<^

j^r) and /,,(*") = *$(! ̂ /S?X /.fc(*°) - «tf(l^*^r-g). On the

other hand, since p0 £ 53 we have a solution s^3 g€ Fe, of (A\ such that

/><> =#„(*,)• Since *,(*,(*°)) =
and <£/Oi3---3 xn, zi(sg(x)\---, zq(sg(x)\

j^r), we have fZj = s^g( = zj(sg)). Thus from any fundamental system

of solutions of Ds at JDQ? we can obtain a solution of (^)/5 that is, we

can integrate (^4)/ at p0-

Corollary 2820 Lg^ (^4); fe a system at p$ satisfying \jx^\ (1 = ^ 2, 3)

and M. We set S° = pl(S)CNxQ and assume that S° is a submanifold

of NxQ defined by Zi = (pi(xh---,> xm, ^ i , - - - , zt}(t + \^i^q). Then we can

induce from (A)i a Lie-Vessiot system D at g0 — ̂ ~1(po) on the trivial

principal fiber bundle (NxG)(N3 G3 TT) such that we can integrate (A)t at

pQ by seeking for an arbitrary fundamental system of solutions of D at qQ.

Proof, By the same argument3 we can obtain fZj(x\<> • • • ? xn) (1 ^

/SSO from a fundamental system of solutions of D at qQ. For t + l<^

i<^q we set fZi = <pi(xi,---, xn, fZly, fz)> Therefore we can obtain a

solution of (A) i from a fundamental system of solutions of D at q0.

Let (A)i be a G-automorphic system satisfying [#,-] (t'^15 23 3). Let

ji, - . - 3 jr be linearly independent functions on an open subset U of S

where dimG = r. Let {ah}^=l be any family of real numbers. As before

we set y = (yl,...,yr\U
J
y={PeUJ

y-
1\yj(p} = aj} and y^^y^U^

where yj = yj9U^=U. We set g^j~l(p}= yj-l(g^p) and F^{#6

^y~l\gayj~1 = y j ~ l } > VQ
y=Ve. Clearly each # e F j operates on C/j if #

operates on C7".

Definition 2060 Let /; 5— > T be a map of a manifold S to a mani-

fold T. We set graph (/) = {(/?, /(p))|/?e S}C5x T. graph (/) is

called the graph of f.

Definition 2.7* Let D be an 7?i( = dim S) dimensional distribution on
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S X R defined on a neighbourhood of ( p, t) £ 5 X R. If there exists a local

coordinate system {a^ • •-, am9 x}, where {#1, • • - , <2W} (resp. {#}) is a

local coordinate system of 5 at p (resp. of R at t\ such that a local basis

{Xi, .--,Xm} of U at (p, t) is expressed as XJ=Q — + #/(tfi> '•

then D is said to be of quadrature type at (/?, t).

Definition 2.8. A system (A)i of partial differential equations at

p0eJl(N, (?) satisfying [>/] (f = 1, 2, 3) and [£] is said to be solvable if

there exists a family of linearly independent functions {y/}y=i5 r = dimG,

on a neighbourhood U of JDO in 5 which satisfies, for a family of real

numbers {ah}k=l> the following conditions;

[1] We can induce from (A)i an m,/=dim J7j) dimensional distri-

bution DJ on UJ
yxR such that DJ is of quadrature type at any point in

UJ
yxR and for any g€.Vj

y the graph of g' yj+i is an integral manifold

of 0'(/ = 0, ...,r-l).

[]2]] There exists a solution o> of (A)i defined on U°Q C UXQ such

that, if we set Sco={jl
x(a))\x eU^Q}9 the function yj\Sa, the restriction

of jy to Sm, is constant for each j(j = l9-»9r — l') and <yy|5w = oy.

We shall call { yj}j=i satisfying Q], \jf]9 a fundamental family of

functions of

Theorem 2.2. Let (A)i be a system of partial differential equations

at pQ£jl(N, Q) satisfying QaJ (z" = l, 2,3) and £Q^\. Then the following

two statements are equivalent',

[Tj G is solvable. Qi] (A)i is solvable.

Proof. First of all, we shall prove CG^DC- By Theorem 2.1, we

can find a Lie-Vessiot system D at g0
==^~1(?o) on (NxG) (N, G, ?r).

Since we have a basis {X/i}f=1 of D at JDO such that QJ*, -3T/Q = 0 (1^

h<*m), for any ideal 1} of g, £=[5* VJ-DU (the distribution on UXQxVe

generated by ^* and D) is involutive. Since g is solvable, we have a

sequence of subalgebras g=g(OgO ••Ogr-iDgr={0} such that dimgy —

dimgy+i = l and gy+i is an ideal of g/0<J7"<> — 1). We set -By=C0*W
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Let *i, •••^^r be any fundamental system of solutions of

D = Er. We set y/ = */° ̂ ~l(l^j^r). Then by Theorem 2.1 for any

solution a) of (^4)/3 y/|So, is constant for each l<J/<ir. Therefore, if we

set yj\S(0 = aj (!<!/<> — 1), {y/}J=i satisfies [2]. We shall prove that

we can find a fundamental system of solutions {^-}^=1 of D such that Ql]

is also satisfied. We choose a basis FI, • •-, Fr such that {Vk}
r
k=j is a

basis of 9*_i- By Theorem 1.1, there exists a function *i on Ux^xVe

such that ffi-<n="-=JTOT-*i=f'ri-*i"- = F r _i -<n = 0 and Vr*a\ = \. By
using a local coordinate system {a^ '-^an+r} on UXoxVe, the system

/*\
v Jo

is expressed as

We have therefore ^ = ̂ (ai, - - - j a K + r ) (1^^re + r). Let

an+r, x} be accordinate system on UXQXVexR and we denote by Z>° the

— - —(7i + r)-dimensional distribution on SxR generated by -^(^ — + ^/-^ — )
\OOCj 0 X /

(l^/^^ + r) where J is the diffeomorphism of Ux^xVexR onto 5x11

defined by <J(#, g, ^) = (J(A;, ^), i). Clearly the graph of ^loj"1 is a

maximal integral manifold of D°.

We shall prove that, for any g£ Ve, the graph of ^"(^i0^"1) is also

an integral manifold of DQ. Since *i is a first integral of the involutive

distribution EI, and since we have Eg*, -EjC-Ei> ^ '^i is also a first in-

tegral of Ei9 gG Ve. On the other hand codim£'i = l. Therefore we

have a function Hg of one variable such that g^i = Hg(^. Since we

have dimg*/g* = l3 the local transformation group on R consisting of Hg,

g€Ve, is commutative. Hence we have Het(Hg(^i)) = Hg(Het(^i)) where

I. We have then Vi(u*i) = (Vi'*i). Therefore we have also
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and therefore we have

This implies that the graph of g^ioj"1) is also an integral manifold of

D\

Let *i, • • - , <*r be a fundamental system of solutions of D such that
we have

(*)/

on (E/* 0 xFg) j (0<5/<^r — 1). We choose a coordinate system

aj
n+r_j} on S£. Then we have from (*),/

±i = 0j[(a{, ..., «>+,_,)

for each 0<^/<^r — 1. Therefore by similar method we get an (n + r—j)-

dimensional distribution DJ on SJ^xR of quadrature type such that, if we

set V{= FgAexpgy, the graph of #•*/+]. is an integral manifold of Dy

for any g£.V{. Note that we have V{=Vi. This implies {*j°^~l}rj=i

is a fundamental family of functions of (A)i, This completes the proof

of [rHpa
Conversely we shall prove EiO^CC- We denote also by g* the Lie

algebra induced from the Lie algebra g of G by the action of G on Jl(N,

Q). We set gfo)^* and inductively we set 8*-)={^r^8*-i) %°yJj~l =

0}\Uj
y (/— 03 • . - 5 r — 1) where {y/}y=1 is a fundamental family of func-

tions of (A) i. Note that, since Ve acts freely on 5, the restriction

map\Uj
y: {Jf 6gjy_1) |^"-jy~1 = 0}-^8(ly) is an isomorphism. By pulling

back g^-} to a Lie subalgebra g* of g* through these restriction maps, we

get a sequence of Lie subalgebras g* ^) g* ^> • • O g* D • • • such that g* is
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isomorphic to gfA). Therefore we get also a chain of Lie subalgebras

gDgO "OgO "• such that Qk is isomorphic to gj. We have Vj
y=Ver\

exP9y ( /=l j 2
3 • • • ) • First of all we prove that ^° Jy + i = Jy + i + c^? #G

Fj, where cj
g is constant. By the assumption Qlj, the graph of geyj+l

is an integral manifold of DJ. Since D-7 is of quadrature type, there

exists a local basis {X{, • • - , -X^l such that, for a coordinate system {a{,

..., o£,} on Z7>, X{ is expressed as X{ = —. + <t>{(a{, •••>Q4)-^r ( l ^ k

^my). Therefore £-yj+1, ff€ F>, satisfies &Z^il=^ (a>, ..., o£ )
&*J

for each A;. Fix an integer &, l<^&<^7?iy. Considering aj
h (h=^k) as para-

meters of an ordinary differential equation _A^L_Z/±!i = <^ (a{, •••,aj
m.\

da{
we get g> y-j+l = jy'+1 + c^( . . -3 a{, ...)5 h^=k. Since A runs over the set

of integers {1,2, • • • , TTI/}, c^. must be constant. We shall next show that

g^+1 is an ideal of g^. Let <T (resp. g) be any element of Vj
y (resp. F^+1).

Then we have (ff~l - g-ff)- yj+l = (ff)~l - g-ff - yj+l = (ff)~l ^ g(yj+l + c^ =

(ff)~l(yj+1 + ca) = jy+i- This implies that g^+1 is an ideal of g*. By

Q2] we have a solution a) of (^4)/ such that yj\Sm = a,j (l^y'^r — 1).

Therefore we have Sar\U<^U^ (O^y^r — 1). Since any g^.Vj
y leaves

ji, • • - , jy invariant, that is ^- ji=ji (l^&SS/X we have SlC\U(^U^

ge¥J
y, where S5=g"5B. Therefore we get U^ \J S*nU. On the

other hand if gG ^j"1? ^ ^^j then we have g* Jy"1^//"1 and therefore

This implies that jj-1 1 S^U=^yJj~l | 5.HC/. Therefore 5fA

We get, therefore, S*r\UCUj
y if and only if ^e V'r We shall

show that Uj
y is a union of some S£r\U, g£ Ve. Since we have g*yi =

yi + cl
g for any g£.Ve, yi is constant on each S%r\U, g^Ve. On the

other hand, since (A)i is G-automorphic, we have U= \J S%r\U (disjoint
g^ve

union). This implies that Ul
y is a (disjoint) union of some Sf At/, g£

Ve. Therefore we get Ul= \J S*r\U. Since g-yl=yl + C2
g, g^V],

g^vi

yl is constant on each SfA^/C^J- This implies U2
y is also a (disjoint)

union of some SfnIT, g£Ve which implies Ul= \J S^r^U. Similarly
*s7!

C/J is a union of some S^C\U^ g^.Ve (0<^/<Jr — 1). This implies that
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U*y= \J S*rM7. Now we have dim E/*-dim UJ
y
+l = l and since (A\ is

G-automorphic, we have dim \J Sf Af7 = dim S^H-dim g*. Therefore we

get dim g* — dimg^+1 = l. This proves that g is solvable. This complete

the proof of Theorem 2.2.

Corollary 2030 Let (A)t be a system at pQ 6 Jl(N, Q) satisfying \J%^\

(& = 15 2, 3) and [jSH. Then (A)i is solvable if and only if there exists a

family of linearly independent functions {yy}J=i, r = dimG, on a neighbour-

hood U of PQ in S which satisfies, for a family of real numbers {a/jjii,

the following conditions;

Ql] We have g'yi+i = HJ
g(yj+i), g^V^ for a function Hj

g of one

variable depending on g and j(j=Q,--9 r —1).

[2J There exists a solution a) of (A)f such that jj S0) = aj (y = l, • • - ,

r —1) and such that if, g£ Vj
y, g'yj+i^yj+i, then we have yj+i Smr\

Proof. We already showed in the proof of Theorem 2.2. that if

is solvable, then any fundamental family of functions {j/}y=1 of

satisfied ^1]3 pQ. Conversely let {jy}J=1 be a family of linearly inde-

pendent functions on U satisfying Ql] and Q2]. We have only to show

that G is solvable. First of all we shall prove that Wy is a disjoint union

of some SfnC/, g€Fe. Since we have g-yi = Hl
g(yi) for any g£.Ve,

yi is constant on each StnJ7, g€.Ve- Since (A)i is G-automorphic, we

have U= \J S^C\U (disjoint union). Therefore U\ is a disjoint union
g^Ve

of some Sir\U, g£Ve. We have clearly [7p \J S*rM7. If g € Veg*viv

and ^ FJ, then geyi¥^yi- Therefore by the assumption £2], ji 15Jn

f/^jil^^nt/. Hence we get StAf/C^ if and only if g G FJ. This

implies Ul= \J S£r\U. By similar considerations we have U{= \J
s^\ s^viy

SlC\U for 0<i;<:r-l. We have dim E^-dim UJ
y
+1 = l and since (A)i

is G-automorphic, we have dim \J S£ n?7 = dim 5^ + dim g^. Therefore
g^Vy

we get dimg* — dimg|"+1 — 1. Let (T(resp. g) be any element of F"j (resp.

F+1). Then ((T-1 • -ff^+^W-1
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= Jy+i- This implies that gjVi is an ideal of gf. Therefore g is solvable.

By Theorem 2.2, (A)i is solvable. This completes the proof of Corollary 2.3.

Corollary 2.4. Let (A)i be a system at p0 G Jl(N, Q) satisfying [jz,-]

(z = l3 2, 3) and C/?]. Let D be the Lie-Vessiot system at qQ = J~1(p0) o^

(NxG) (N, G, TT) induced from (A)l by Theorem 2.1. // (A)i is solvable,

then there exists a fundamental family of functions of (A)i on a neighbour-

hood U of PQ in S which satisfies the following conditions :

There exists a basis {Vk}
r
k=l of g* such that we have

for 0<^A^r-l .

{yk°d}r
k=i is a fundamental system of solutions of D at qQ.

Proof. By Theorem 2.2, G is solvable. Then the Lie-Vessiot system

D at 90 on (NxG) (N9 G, n) is solvable. By Theorem 1.1, there exist a

fundamental system of solutions {*k}l=i °f ® a^ ?o and a basis {Vk}
r
k=l

of g* such that we have

for O^A^r — 1. We put jj—^A~^ (/=!, 2,.. .5 r). Since g* is solva-

ble, we have a sequence of subalgebras 9* = 0 * ̂  9* ̂  • • O 9?-i D 9* = {0}

such that dimg^ — dim9y+1 = l and g^+1 is an ideal of g^. Note that, in

Theorem 1.1, we chose a basis {Vk}
T

k=l of g* such that {Vk}
r
k=j is a

basis of g^_ l3 from which, as is proved in Theorem 2.2, it follows that

{yj}j=i is a fundamental family of functions of (A)i.

Corollary 285o Let (A)t be a system satisfying [_a^\ (& = 1, 2, 3) and

\i@T\. Moreover we assume that S is of maximal rank. If (A)t is solva-

ble, then we can induce a fundamental family of functions {jy}J=1 of (A)i

by quadratures such that we can obtain a general solution of (A)i by ap-

plying to {y/}J=i the implicit function theorem.
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Proof. By Corollary 2.4, there exists a fundamental family of func-

tions {jy}y=1 such that {yy°J}J=1 satisfies [1] and [2] in Corollary 2.4,

which implies, by Corollary 1=1, that {y/°^}/=i is obtained by quadrature.

By Corollary 2.13 we can obtain a general solution of (A)i by applying to

y = 1 the implicit function theorem.

Corollary 2e6a Let (A)i be a system satisfying [_a^\ (i = l, 2, 3)

[JT]. We set SQ = pl(S) and assume that S° is a submanifold of N X G

defined by Zi=y>i(xiy--i %n> Z)~-> *t) (t + \^i^q). If (A)i is solvable^

then we can induce a fundamental family of functions {y/}J=i of (A)i by

quadratures such that we can obtain a general solution of (A)i by applying

to {y?}j=i the implicit function theorem.

Proof. Using Corollary 2.2 in place of Corollary 2.1, Corollary 2.6

follows immediately.

§ 3» Examples

Example !„ We shall consider Riccati's differential equation —=—•=

7 ] i ( x ) z 2 + 7}2(x)z + 7]3(x). We set Xi = z2—:— 3 X2 = z-T- and X^ = —-—.
dz dz dz

3

Then g= { 2 cfXi \ ct^R} is a Lie algebra. Note that g is the Lie al-

gebra of the projective transformation group on the 1-dimensional projec-
Q

tive space and therefore simple. We set X* = -=— + t]i °Xi + ^2
e^2 + ^3*^3

(J OC

and denote by G a connected Lie group with the Lie algebra g. Then, by

considering Xi (i=l, 23 3) as a right invariant vector field on G3 X* is a

vector field on RxG. We can make G a Lie transformation group on G

by g*a=a*g~1 (resp goa= g*ct) a^G, g^G which we denote by G*

(resp. G*). Let TT be the projection of It X G onto JR. Then (R x G) (12,

G*, TT) (resp. (RxG)(R,G*, TT)) is a principal fiber bundle. We denote

by g* (resp. g^) the Lie algebra induced from the action of G* (resp. G^)

on RxG. Then any element of G* commutes with all elements of G^

as a transformation on RxG. Therefore we get [j}*, gHJ] = 0. This im-
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plies that we have i_X^ g^^O, for any right invariant vector field on G

is naturally considered as an element of g*.

We denote by D the distribution on RxG generated by X*. Then

D is a Lie-Vessiot system at any point p on (R x G) (I?, G*3 TT).

Let po = (tQ, go) be any point £RxG and let

-r-ax

Z3 TT1 / \
-=—=l<3(X, Zi, *23 Z3)

be the system of ordinary differential equations at pQ£iJl(R,G), pQ =

Po(po\ such that we have (dzi-F^dx) (JC*) = 0 at any point of a neigh-

bourhood of PQ, where {x} (resp. {z^ z^ 2:3}) is a local coordinate sys-

tem at £0 (resp. g0). We shall show that %l(A)i satisfies []aj (1 = 1,2,

3); Let (zj, z°2, z°3) be a solution of $l(A)i defined on C/,0. We set 5 =

(2:?, ^23^3)- Then 5 is a map of UtQ-+G. We set S(A;, gr) = gr*5(a;). Since

D is a Lie-Vessiot system at pQ on (I? X G)(H, G*5 TT), both s(UtQ) and

g*s(Uto) are integral manifolds of D, that is, g*s is also a solution of

3l(A)i if g is in a neighbourhood V ̂  of the unit of G. Since any integ-

ral manifold of D contained in a neighbourhood of p0 is uniquely expres-

sed as #*s(C//0), g € Fe, 5R(^)i is G*-automorphic. Since 1X5 is a local

cross-section of (R X G) (R, G*3 TT) where 1 is the identity of R, jl(s):

UtQXFe-+Jl(R,G) is an embedding. Moreover S=j\sXUto X Fe) is of

maximal rank.

Example 2. Let G be a Lie transformation group acting effectively

on a manifold M. Then G acts on the space of Z-jets Jl(M, M) natural-

ly. Then, for a sufficiently large Z5 G acts freely on /'(Af, M), or more

precisely, there exists a neighbourhood Fe of the unit element of G such

that each element of Ve acts freely on Jl(M, M). We choose and fix an

element gQ€G. We set s(^3 g)= g'goW- Then s is a map of MxG

to M. Since Fe acts freely on Jl(M, Af), /^s) is an embedding of MX
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Ve into Jl(M, M). If G acts transitively on M, S=jl(s) (Mx Ve) is of

maximal rank. Let (A)i be the system of defining equations at pQ 6

/J(M, M) of the Lie transformation group G acting on Jl(M, M). Then

(A)i is G-automorphic.

Example 3- Let (Pz-, Af,-, {e}) be an {e}-structure on Mi and ft)/ be

the basic form of (P/, Mh {e}} (i = l, 2). We assume that (Pi, Ml3 {e})

is locally isomorphic to (P2, M2, {e}) at any point (#1, #2) 6 MI xM2.

We denote by 7"1 (resp. F) the set of all local isomorphisms of (Pi, MI,

{e}) to (P2, M2, {e}) (resp. the set of all local diffeomorphisms 0 of PI

to P2 with 0*0)2 = 0)1). Then it is well-known that the natural lifting of

an element of F gives a 1-1 correspondence between F and F (cf. Singer,

I. M. and S. Sternberg, The infinite groups of Lie and Cartan, /. Analyse

Math. 15(1965), 1-114).

Let G be the automorphism group of (P2, M2, {e}) and assume that

any local automorphism of (P2, M2, {e}) is a restriction of an element of

G. We denote by (A)i the system of partial differential equations at

p0^/1(Pi?P2) given by </}*a)2 = u)i. Let 0 be any local diffeomorphism

of a neighbourhood UPl of pi E PI to a neighbourhood t/£2 of p2 G P2 with

^0)2 = a)l and (f>(pi) = p2. We set s(p, g)= g-$(p\ (p, g)€ UPlX Ve.

Then (A)i is G-automorphic and jl(s) is an embedding of UPl x Ve into

Jl(Pi, P2). Moreover if G acts transitively on P2, S= jl(s) (UPl X Ve} is

of maximal rank.

References

[ 1 ] Cartan, E., Sur la reduction & sa forme canonique de la structure d'un groupe
de transformation fini et continu, Oeuvres Completes, Vol. 1, Part 1.

[ 2 ] Lie, S., Allgemeine Untersuchungen iiber Differentialgleichungen, die eine con-
tinuirliche endliche Gruppe gestaten, Christiania, 5, Juli 1884.

[ 3 ] Matsuda, M., Cartan-Kuranishi's prolongation of differential systems combined
with that of Lagrange and Jacobi, Publ. Res. Inst. Math. Sci. Kyoto Univ. Ser.
A, 3 (1967), 69-84.

[4] Vessiot, E., D'equations differentielles du premiere ordre qui ont des fondamen-
taux d'integrales, Ann. de Toulouse, 8, 1894.


