L^2 -well-posedness for Hyperbolic Mixed Problems

By

Reiko SAKAMOTO*

Introduction

Strongly hyperbolic differential equations become L^2 -well-posed mixed problems under suitable boundary conditions. A concept of uniform Lopatinski's condition, given by S. Agmon $\left[1\right]$, gives a sufficient condition for L^2 -well-posedness. Moreover, it is known that some types of mixed problems become L^2 -well-posed, which do not satisfy uniform Lopatinski's condition (cf. $\lceil 2 \rceil$, $\lceil 3 \rceil$, $\lceil 4 \rceil$). On the other hand, in the case of constant coefficients and half-space, a necessary and sufficient condition for L^2 -well-posedness is given by R. Agemi & T. Shirota $\lceil 5 \rceil$ by the words of uniform L^2 -well-posedness for boundary value problems of ordinary differential equations with parameters. But it is not so concrete to clear the role of uniform Lopatinski's condition. This paper is a trial of more concrete characterizations of L^2 -well-posedness for strongly hyperbolic mixed problems.

We consider the problem

$$
(P)
$$
\n
$$
\begin{cases}\nA(D_t, D_y, D_x)u = \sum_{i+|v|+k \leq m} a_{i\nu k} D_t^i D_y^{\nu} D_x^k u = f \\
\text{in } t > 0, y \in R^{u-1}, x > 0, \\
B_j(D_t, D_y, D_x)u = \sum_{i+|v|+k \leq r_j} b_{j\omega k} D_t^i D_y^{\nu} D_x^k u = 0 \\
\text{on } t > 0, y \in R^{u-1}, x = 0 \\
(j=1, 2, ..., \mu, 0 \leq r_j \leq m-1), \\
D_t^j u = 0 \text{ on } t = 0, y \in R^{u-1}, x > 0 \quad (j=0, 1, ..., m-1).\n\end{cases}
$$

Received May 10, 1972.

Communicated by S. Matsuura.

* Department of Mathematics, Nara Women's University, Kara, Japan.

The problem (P) is said to be L^2 -well-posed if there exists $C_T > 0$ for any $T>0$ such that $C_T\rightarrow +0$ as $T\rightarrow +0$ and

$$
\sum_{i+|\nu|+k \leq m-1} \int_0^T dt \int_{R_+^n} |D_1^i D_y^{\nu} D_x^k u(t, y, x)|^2 dy dx
$$

$$
\leq C_T \int_0^T dt \int_{R_+^n} |f(t, y, x)|^2 dy dx.
$$

It is obvious that L^2 -well-posedness is characterized only by the principal parts of $\{A, B_j\}$. Therefore, hereafter, we consider the case when $\{A, B_j\}$ are homogeneous. Assumptions are as follows:

- i) A is strongly hyperbolic with respect to t -axis,
- ii) $x = 0$ is non-characteristic of A ,
- iii) $\{A, B_j\}$ satisfy Lopatinski's condition, that is,

$$
R(\tau, \eta) = \det \left(\frac{1}{2\pi i} \int \frac{B_j(\tau, \eta; \xi) \xi^{k-1}}{A_+(\tau, \eta; \xi)} d\xi \right)_{\substack{i=1,\dots,\mu \\ k=1,\dots,\mu}} \neq 0
$$

for Im $\tau < 0, \eta \in R^{n-1}$,

where

$$
A(\tau, \eta; \xi) = c \prod_{j=1}^{\mu} (\xi - \xi_j^+(\tau, \eta)) \prod_{j=\mu+1}^{\mu} (\xi - \xi_j^-(\tau, \eta))
$$

\n
$$
(\operatorname{Im} \xi_j^{\pm}(\tau, \eta) \ge 0 \quad \text{for } \operatorname{Im} \tau < 0, \quad \eta \in R^{n-1}),
$$

\n
$$
A_+(\tau, \eta; \xi) = \prod_{j=1}^{\mu} (\xi - \xi_j^+(\tau, \eta)).
$$

Here we remark that iii) is a necessary condition for
$$
L^2
$$
-well-posedness for (P) under the assumptions i) and ii).

By Laplace-Fourier transform with respect to (t, y) , the problem (P) becomes to

$$
\hat{\text{(P)}}\n\begin{cases}\nA(\tau,\,\eta\,;\,D_x)\hat{u}(x) = \hat{f}(x) & \text{for } x > 0, \\
B_j(\tau,\,\eta\,;\,D_x)\hat{u}(x)|_{x=0} = 0 & (j=1,\,2,\,\cdots,\,\mu).\n\end{cases}
$$

Let $G(\tau, \eta; x, y)$ be Green's function of (P), that is, the solution $\hat{u} \in L^2$

of (P) for $f \in L^2$ is represented by

$$
\hat{u}(x) = \int_0^\infty G(\tau, \eta; x, y) \hat{f}(y) dy.
$$

Then we have from the results of R. Agemi and T. Shirota.

Lemma. *In order that* (P) *is L² -well -posed, it is necessary and sufficient that*

$$
\sum_{k=0}^{m-1} \left\| \left(\frac{\partial}{\partial x} \right)^k G(\tau, \, \eta; \, x, \, y) \right\|_{\mathscr{L}(L^2, L^2)} \leq \frac{C}{|\operatorname{Im} \tau|}
$$

for $\tau \in C^1$, Im $\tau < 0$, $\eta \in R^{n-1}$, $|\tau|^2 + |\eta|^2 = 1$, where C is independent of (τ, η) .

Remark, Let

$$
G_0(\tau, \eta; x - y) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{e^{i(x-y)\xi}}{A(\tau, \eta; \xi)} d\xi,
$$

$$
G(\tau, \eta; x, y) = G_0(\tau, \eta; x - y) - G_c(\tau, \eta; x, y),
$$

then G in Lemma may be replaced by G_c .

§1. Necessary Conditions

1.1. Preliminary. Let (σ_0, η_0) be a real fixed point and let $\{\xi_i =$ $\{\xi_i(\sigma_0, \eta_0)\}_{i=1,\dots,N}(N=N(\sigma_0, \eta_0))$ be real distinct roots of $A(\sigma_0, \eta_0, \xi) = 0$ with multiplicities $\{m_i = m_i(\sigma_0, \eta_0)\}_{i=1,\dots,N}$. Then there exists a complex neighbourhood U of (σ_0, η_0) such that

$$
A(\tau, \eta; \xi) = \prod_{i=1}^{N} H_i(\tau, \eta; \xi) E(\tau, \eta; \xi) = H(\tau, \eta; \xi) E(\tau, \eta; \xi),
$$

$$
H_i(\tau, \eta; \xi) = (\xi - \xi_i)^{m_i} + a_{i1}(\tau, \eta) (\xi - \xi_i)^{m_{i-1}} + \dots + a_{im_i}(\tau, \eta)
$$

in U, where $a_{ij}(\sigma_0, \eta_0) = 0$ and $a_{ij}(\tau, \eta)$ are holomorphic. Moreover from the assumption i), $a_{ij}(\sigma, \eta)$ ($(\sigma, \eta) \in R^n \cap U$) are real valued and $\frac{\partial}{\partial \sigma} a_{im_i}(\tau, \eta)$ η) \neq 0.

Now we denote

$$
\alpha_i = \frac{\partial a_{im_i}}{\partial \tau}(\sigma_0, \ \eta_0), \qquad \beta_i = \frac{\partial a_{im_i}}{\partial \eta}(\sigma_0, \ \eta_0),
$$

and we denote

$$
\begin{cases}\n d_{i\delta} = \{(\tau, \eta) \in V_{\delta}; \ |\alpha_i(\tau - \sigma_0) + \beta_i \cdot (\eta - \eta_0)| \\
\geq \cos \theta_0 (\|\alpha_i\|^2 + \|\beta_i\|^2)^{\frac{1}{2}} d(\tau, \eta) \quad \text{if } m_i \geq 2, \\
 d_{i\delta} = V_{\delta} \quad \text{if } m_i = 1,\n\end{cases}
$$

and

$$
\mathcal{A}_{\delta}=\bigcap_{i} \mathcal{A}_{i\delta},
$$

where

$$
d = d(\tau, \eta) = \text{dis}\left\{(\tau, \eta), (\sigma_0, \eta_0)\right\},
$$

$$
V_{\delta} = \{\tau, \eta\}; \text{ Im }\tau < 0, \eta \in R^{n-1}, d < \delta\},
$$

and $\theta_0(0 \le \theta_0 < \pi)$ is an arbitrarily fixed number. Let $\{\xi_{ij}^{\pm}(\tau, \eta)\}_{j=1,\dots,m}$ $(\text{Im } \xi_{ij}^{\pm} \ge 0)$ be roots of $H_i(\tau, \eta; \xi) = 0$, and $\{\xi_{ij}^{\pm 0}(\tau, \eta)\}_{j=1,\dots,m_i^{\pm}} (\text{Im } \xi_{ij}^{\pm 0} \ge 0)$ be roots of

$$
(\xi - \xi_i)^{m_i} + \alpha_i(\tau - \sigma_0) + \beta_i(\eta - \eta_0) = 0.
$$

Then we have

Lemma 1.1. There exists $\delta > 0$ such that

$$
\begin{aligned}\n\xi_{ij}^{\pm}(\tau,\,\eta) &= \xi_{ij}^{\pm 0}(\tau,\,\eta) + 0(d^{\frac{2}{m_i}}) & \text{in} \ \mathcal{A}_{i\delta}, \\
\frac{\partial \xi_{ij}^{\pm 1}}{\partial \tau}(\tau,\,\eta) &= \frac{\partial \xi_{ij}^{\pm 0}}{\partial \tau}(\tau,\,\eta) + 0(d^{-1 + \frac{2}{m_i}}) & \text{in} \ \mathcal{A}_{i\delta}.\n\end{aligned}
$$

Corollary 1.

$$
c_1 d^{\frac{1}{m_i}} \leq |\xi_{ij}^{\pm}(\tau, \eta) - \xi_i| \leq c_2 d^{\frac{1}{m_i}} \quad in \quad d_{i\delta},
$$

$$
c_1 d^{\frac{1}{m_i}} \leq |\xi_{ij}^{\pm}(\tau, \eta) - \xi_{ik}^{\pm}(\tau, \eta)| \leq c_2 d^{\frac{1}{m_i}}(j \neq k) \quad in \quad d_{i\delta}.
$$

268

Next we consider of $\{\text{Im } \xi_{ij}^{\pm}(\tau, \eta)\}\$. Let us denote $i \in I$ if m_i is even, $i \in J$ if m_i is odd, and moreover $i \in J_{\pm}$ if $i \in J$ and $\alpha_i \geq 0$. Let

$$
\Delta_{\boldsymbol{i}\delta}^{\pm} = \Delta_{\boldsymbol{i}\delta} \cap \{ \alpha_{\boldsymbol{i}} (\operatorname{Re} \tau - \sigma_0) + \beta_{\boldsymbol{i}} \cdot (\eta - \eta_0) \leqq 0 \},
$$

and let

$$
*=(*_1,*_2,\ldots,*_N)\;(*_i=\pm),\qquad A^*_\delta=\bigcap_{i=1}^N A^*_{i\delta},
$$

then

$$
\mathcal{A}_{\delta} = \bigvee_{\ast} \mathcal{A}_{\delta}^{\ast}.
$$

Let $(\tau, \eta) \in \Lambda_{\delta}^*$ and Im $\tau \to 0$, we have the followings:

- i) if $i \in I$, $*_i = +$, then none of $\{\xi_{ij}^{\pm}(\tau, \eta)\}\$ has a real limit,
- ii) if $i \in I$, $*_i = -$, then only one of $\{\xi_{ij}^+(\tau, \eta)\}$ and only one of ${\{\hat{\xi}_{ij}^-(\tau,\eta)\}}$ have real limits, which we denote especially by ${\xi}_{ik}^{\pm}(\tau,\eta)$,
- iii) if $i \in J_+$, then only one of $\{\xi_{ij}^+(\tau, \eta)\}\$ has a real limit, which we denote by $\xi_{i*}^+(\tau, \eta)$,
- iv) if $i \in J_-$, then only one of $\{\xi_{ij}^-(\tau, \eta)\}\$ has a real limit, which we denote by $\hat{\xi}_{i*}^-(\tau,\eta)$.

Here we denote

$$
\delta_{ij\pm}^{*}(\tau, \eta) = \begin{cases} \left(\frac{\tau}{d}\right)^{m_i} d & \text{if } \xi_{ij}^{\pm} = \xi_{ik}^{\pm}, \\ d & \text{otherwise}, \end{cases}
$$

for $i=1, \dots, N, j=1, \dots, m_i^{\pm}$, where $\tau=-\text{Im }\tau$, then we have

Corollary 2.

$$
c_1(\delta_{ij\pm}^*)^{\frac{1}{m_i}} \leq |\operatorname{Im} \xi_{ij}^{\pm}(\tau, \eta)| \leq c_2(\delta_{ij\pm}^*)^{\frac{1}{m_i}} \quad in \quad J_{\delta}^*.
$$

Proof.

$$
\begin{split} \xi_{i*}^{\pm}(\tau,\,\eta) &= \xi_{i*}^{\pm}(\sigma,\,\eta) - i\gamma \, \frac{\partial \xi_{i*}^{\pm}}{\partial \tau}(\sigma - i\theta\tau,\,\eta) \qquad (0 < \theta < 1) \\ &= \xi_{i*}^{\pm}(\sigma,\,\eta) - i\gamma \left\{ \frac{\partial \xi_{i*}^{\pm}}{\partial \tau}(\sigma - i\theta\tau,\,\eta) + 0\left(d^{-1 + \frac{2}{m_i}}\right) \right\}, \end{split}
$$

REIKO SAKAMOTO

$$
\frac{\partial \xi_{i*}^{\pm 0}}{\partial \tau}(\sigma - i\theta \gamma, \eta) = -\frac{\alpha_i}{m_i(\xi_{i*}^{\pm 0}(\sigma - i\theta \gamma, \eta) - \xi_i)^{m_i - 1}}
$$
\n
$$
= -\frac{\alpha_i}{m_i(\xi_{i*}^{\pm 0}(\sigma, \eta) - \xi_i + 0(\gamma^{\frac{1}{m_i}}))^{m_i - 1}}
$$
\n
$$
= -\frac{\alpha_i}{m_i(\xi_{i*}^{\pm 0}(\sigma, \eta) - \xi_i)^{m_i - 1}} \cdot \left\{1 + 0\left(\left(\frac{\gamma}{d}\right)^{\frac{1}{m_i}}\right)\right\}.
$$

Therefore we have

$$
c_1 \frac{\gamma}{d^{1-\frac{1}{m_i}}} \leq |\operatorname{Im} \xi_{i1}^{\pm}(\tau, \, \eta)| \leq c_2 \, \frac{\gamma}{d^{1-\frac{1}{m_i}}} \qquad \text{in} \ \mathcal{A}_{\delta}^*
$$

for $\gamma \ll d$. In other cases, the required results follow from

$$
\xi_{ij}^{\pm}(\tau, \eta) = \xi_{ij}^{\pm 0}(\tau, \eta) + 0(d^{\frac{2}{m_i}}).
$$
 Q.E.D.

Let

$$
E(\tau, \eta; \xi) = E_+(\tau, \eta; \xi) E_-(\tau, \eta; \xi),
$$

where roots of $E_{\pm}(\tau, \eta; \xi) = 0$ are on the upper (resp. lower) half plane and M is the degree of E_{\pm} .

Corollary 3.

$$
k\begin{pmatrix}0\\ \vdots\\ 0\\ 1\\ \vdots\\ 0\end{pmatrix} = \sum_{i=1}^{N} \sum_{j=1}^{m_{i}^{\ddagger}} C_{i,j\pm}^{k}(\tau,\,\eta) d^{-1+\frac{1}{m_{i}}} \begin{pmatrix}B_{1}(\tau,\,\eta\,;\,\xi_{i,j}^{+}(\tau,\,\eta))\\ \vdots\\ \vdots\\ B_{\mu}(\tau,\,\eta\,;\,\xi_{i,j}^{+}(\tau,\,\eta))\end{pmatrix} + \sum_{j=1}^{M} C_{0j\pm}^{k}(\tau,\,\eta) \begin{pmatrix}\frac{1}{2\pi i}\oint \frac{B_{1}(\tau,\,\eta\,;\,\xi)\xi^{j-1}}{E_{\pm}(\tau,\,\eta\,;\,\xi)} d\xi\\ \vdots\\ \frac{1}{2\pi i}\oint \frac{B_{\mu}(\tau,\,\eta\,;\,\xi)\xi^{j-1}}{E_{\pm}(\tau,\,\eta\,;\,\xi)} d\xi\end{pmatrix},
$$

where $\{C_{i,j\pm}^k(\tau, \eta), C_{0,j\pm}^k(\tau, \eta)\}\$ are bounded in Δ_{δ} .

 $270\,$

Proof. Let us denote

$$
f_{(0)}(x) = f(x),
$$

$$
f_{(k)}(x_1, x_2, \ldots, x_{k+1}) = \frac{f_{(k-1)}(x_1, x_2, \ldots, x_k) - f_{(k-1)}(x_2, x_3, \ldots, x_{k+1})}{x_1 - x_{k+1}}
$$

(k=1, 2, 3, \ldots).

Then

Since

REIKO SAKAMOTO

rank
$$
\begin{pmatrix} B_1(\sigma_0, \eta_0; \xi_1) B'_{1\xi}(\sigma_0, \eta_0; \xi_1) \cdots (m_1-1)! B_0 \zeta^{m_1-1}(\sigma_0, \eta_1; \xi_1) \cdots \\ \vdots & \vdots & \vdots \\ B_\mu(\sigma_0, \eta_0; \xi_1) B'_{\mu\xi}(\sigma_0, \eta_0; \xi_1) \cdots (m_1-1)! B_{\mu\xi}^{m_1-1}(\sigma_0, \eta_0; \xi_1) \cdots \end{pmatrix} = \mu,
$$

we have

$$
k\left(\begin{array}{c}0\\0\\0\\1\\0\\0\end{array}\right)=\left(\begin{array}{c}B_{1(0)}(\tau,\eta;\xi_{11}^{+}(\tau,\eta))\cdots B_{1(m_{1}-1)}(\tau,\eta;\xi_{11}^{+}(\tau,\eta),\cdots,\xi_{1m_{1}}^{-}(\tau,\eta))\cdots\\ \vdots\\B_{\mu(0)}(\tau,\eta;\xi_{11}^{+}(\tau,\eta))\cdots B_{\mu(m_{1}-1)}(\tau,\eta;\xi_{11}^{+}(\tau,\eta),\cdots,\xi_{1m_{1}}^{-}(\tau,\eta))\cdots\\ \vdots\\B_{\mu(0)}(\tau,\eta;\xi_{11}^{+}(\tau,\eta))\cdots B_{\mu(m_{1}-1)}(\tau,\eta;\xi_{11}^{+}(\tau,\eta),\cdots,\xi_{1m_{1}}^{-}(\tau,\eta))\cdots\\ \vdots\\B_{m_{1}-1}^{k}(\tau,\eta)\\ \vdots\\B_{m_{1}-1}^{k}(\tau,\eta)\end{array}\right),
$$

where $\{\alpha_{ij}^k(\tau, \eta)\}\)$ are bounded.

 $Q.E.D.$

1.2. Representation of Green's function in A_{δ} . Let us denote

$$
\tilde{E}_{\pm}(\tau, \eta; \xi) = \left(\frac{1}{\xi - \xi \frac{1}{11}(\tau, \eta)}, \dots, \frac{1}{\xi - \xi \frac{1}{1m}\tau(\tau, \eta)}, \dots, \frac{1}{E_{\pm}(\tau, \eta; \xi)}, \dots, \frac{1}{E_{\pm}(\tau, \eta; \xi)}, \dots, \frac{\xi^{M-1}}{E_{\pm}(\tau, \eta; \xi)} \right),
$$
\n
$$
E_{+}(\tau, \eta; x) = \frac{1}{2\pi i} \int_{-\infty}^{\infty} e^{ix\xi} \tilde{E}_{+}(\tau, \eta; \xi) d\xi,
$$
\n
$$
E_{-}(\tau, \eta; x) = -\frac{1}{2\pi i} \int_{-\infty}^{\infty} e^{-ix\xi} \tilde{E}_{-}(\tau, \eta; \xi) d\xi,
$$
\n
$$
B_{\pm}(\tau, \eta) = \frac{1}{2\pi i} \oint \left(\frac{B_{1}(\tau, \eta; \xi)}{B_{\mu}(\tau, \eta; \xi)} \right) \tilde{E}_{\pm}(\tau, \eta; \xi) d\xi
$$

 $272\,$

$$
= \begin{pmatrix} B_{1}(\tau, \eta; \xi_{11}^{\pm}(\tau, \eta)) \cdots B_{1}(\tau, \eta; \xi_{1m_{1}^{\pm}}^{\pm}(\tau, \eta)) \cdots \frac{1}{2\pi i} \oint \frac{B_{1}(\tau, \eta; \xi)}{E_{\pm}(\tau, \eta; \xi)} d\xi \cdots \\ \vdots & \vdots & \vdots \\ B_{\mu}(\tau, \eta; \xi_{11}^{\pm}(\tau, \eta)) \cdots B_{\mu}(\tau, \eta; \xi_{1m_{1}^{\pm}}^{\pm}(\tau, \eta)) \cdots \frac{1}{2\pi i} \oint \frac{B_{\mu}(\tau, \eta; \xi)}{E_{\pm}(\tau, \eta; \xi)} d\xi \cdots \\ \frac{1}{2\pi i} \oint \frac{B_{1}(\tau, \eta; \xi) \xi^{M-1}}{E_{\pm}(\tau, \eta; \xi)} d\xi \\ \vdots & \vdots \\ \frac{1}{2\pi i} \oint \frac{B_{\mu}(\tau, \eta; \xi) \xi^{M-1}}{E_{\pm}(\tau, \eta; \xi)} d\xi \end{pmatrix}.
$$

Let Poisson's kernels $\{P_k(\tau, \, \eta\, ; \, x)\}_{k=1,\,\dots,\mu}$ be the L^2 -solutions of

$$
\begin{cases}\nA(\tau, \eta; D_x)P_k(\tau, \eta; x)=0 & \text{for } x > 0, \\
B_j(\tau, \eta; D_x)P_k(\tau, \eta; x)|_{x=0}=\delta_{jk} & (j=1, ..., \mu),\n\end{cases}
$$

that is,

$$
(P_1(\tau, \eta; x), \ldots, P_{\mu}(\tau, \eta; x)) = {}^{t}E_{\mu}(\tau, \eta; x) \{B_{\mu}(\tau, \eta)\}^{-1}.
$$

Then we have

$$
G_c(\tau, \eta; x, y) = (P_1(\tau, \eta; x), \dots, P_{\mu}(\tau, \eta; x)) \left\{ \begin{pmatrix} B_1(\tau, \eta; D_x) \\ \vdots \\ B_{\mu}(\tau, \eta; D_x) \end{pmatrix} \\ G_0(\tau, \eta; x - y) \right\}_{x = 0},
$$

where

$$
\begin{pmatrix} B_1(\tau, \eta; D_x) \\ \vdots \\ B_\mu(\tau, \eta; D_x) \end{pmatrix} G_0(\tau, \eta; x - y) \Big|_{x=0} = \frac{1}{2\pi} \int_{-\infty}^\infty \begin{pmatrix} B_1(\tau, \eta; \xi) \\ \vdots \\ B_\mu(\tau, \eta; \xi) \end{pmatrix} \frac{e^{-iy\xi}}{A(\tau, \eta; \xi)} d\xi.
$$

By the way, we have

$$
\frac{1}{iA(\tau, \eta; \xi)} \begin{pmatrix} B_1(\tau, \eta; \xi) \\ B_\mu(\tau, \eta; \xi) \end{pmatrix} = P_+(\tau, \eta) \tilde{E}_+(\tau, \eta; \xi) + P_-(\tau, \eta) \tilde{E}_-(\tau, \eta; \xi),
$$

where

274 REIKO SAKAMOTO

$$
B_{\pm}(\tau, \eta) = P_{\pm}(\tau, \eta) \cdot \frac{1}{2\pi} \oint \tilde{E}_{\pm}(\tau, \eta; \xi)^t \tilde{E}(\tau, \eta; \xi) A(\tau, \eta; \xi) d\xi
$$

= $P_{\pm}(\tau, \eta) \cdot Q_{\pm}(\tau, \eta),$

therefore we have

$$
\begin{pmatrix} B_1(\tau, \eta; D_x) \\ \vdots \\ B_\mu(\tau, \eta; D_x) \end{pmatrix} G_0(\tau, \eta; x - y)|_{x=0} = P_-(\tau, \eta) E_-(\tau, \eta; y)
$$

= $B_-(\tau, \eta) Q_-(\tau, \eta) E_-(\tau, \eta; y).$

Here we remark

$$
Q_{-}(\tau, \eta) = \begin{pmatrix} \frac{1}{iA_{\xi}^{\prime}(\tau, \eta; \xi_{11}^{-}(\tau, \eta))} & 1 \\ \frac{1}{iA_{\xi}^{\prime}(\tau, \eta; \xi_{12}^{-}(\tau, \eta))} & \ddots \\ \frac{1}{iA_{\xi}^{\prime}(\tau, \eta; \xi_{12}^{-}(\tau, \eta))} & \ddots \\ \frac{1}{2\pi} \int \frac{E_{+}(\tau, \eta; \xi)H(\tau, \eta; \xi)}{E_{-}(\tau, \eta; \xi)} d\xi \cdots \\ \vdots & \vdots \\ \frac{1}{2\pi} \int \frac{E_{+}(\tau, \eta; \xi)H(\tau, \eta; \xi)\xi^{M-1}}{E_{-}(\tau, \eta; \xi)} d\xi \cdots \\ \frac{1}{2\pi} \int \frac{E_{+}(\tau, \eta; \xi)H(\tau, \eta; \xi)\xi^{M-1}}{E_{-}(\tau, \eta; \xi)} d\xi \end{pmatrix}^{-1}
$$

Let us denote

$$
B(\tau, \eta) = (B_+(\tau, \eta))^{-1} B_-(\tau, \eta) Q_-(\tau, \eta) = \mathscr{B}(\tau, \eta) Q_-(\tau, \eta),
$$

then we have

Lemma 1.2.

$$
G_c(\tau, \eta; x, y) = {}^tE_+(\tau, \eta; x)B(\tau, \eta)E_-(\tau, \eta; y)
$$

$$
= {}^{t}E_{+}(\tau, \eta; x)\mathscr{B}(\tau, \eta)Q_{-}(\tau, \eta)E_{-}(\tau, \eta; y) \quad in \Delta_{\delta}.
$$

1.3. Estimates of Green's function in \mathcal{A}_{δ}^* . It is obvious that it holds

$$
\|G_{c}\|_{\mathscr{L}(L^{2}\times L^{2},\mathcal{C}^{1})}\hspace{-0.05cm}\leq\hspace{-0.05cm} \|G_{c}\|_{\mathscr{L}(L^{2},\,L^{2})}\hspace{-0.05cm}\leq\hspace{-0.05cm} \|G_{c}\|_{L^{2}\times L^{2}}
$$

in general. On the other hand, we show that it holds

$$
\|G_\varepsilon\|_{{\mathscr{L}}(L^2\times L^2, C^1)}\!\geqq\! c_1\|G_\varepsilon\|_{{\mathscr{L}}(L^2, L^2)}\!\geqq\! c_2\|G_\varepsilon\|_{L^2\times L^2}
$$

in Δ_{δ} , where c_1 , c_2 are positive constants independent of (τ, η) . Now let

1 "l

and

$$
\boldsymbol{F}_{\pm}(\tau, \eta; x) = N_{\pm}(\tau, \eta)^{-1} \boldsymbol{E}_{\pm}(\tau, \eta; x),
$$

then L^2 -norms of $\boldsymbol{F}_\pm(\tau, \eta; x)$ are bounded in $\boldsymbol{\varLambda}_\delta,$ therefore we have

$$
\left| \int \overline{F}_+(\tau, \eta; x) G_c(\tau, \eta; x, y)^t \overline{F}_-(\tau, \eta; y) dx dy \right|
$$

$$
\leq C ||G_c||_{\mathscr{L}(L^2 \times L^2, C^1)} \quad \text{in } \mathcal{A}_{\delta},
$$

where C is independent of (τ, η) . Let

$$
S_{\pm}(\tau, \eta) = \int_0^{\infty} \mathbf{F}_{\pm}(\tau, \eta; x)^t \overline{\mathbf{F}}_{\pm}(\tau, \eta; x) dx
$$

=\left(\int_0^{\infty} \overline{\mathbf{F}}_{\pm}(\tau, \eta; x)^t \mathbf{F}_{\pm}(\tau, \eta; x) dx\right),

then we have

276 REIKO SAKAMOTO

$$
\int \overline{F}_{\pm}(\tau, \eta; x) G_c(\tau, \eta; x, y)^t \overline{F}_{-}(\tau, \eta; y) dx dy
$$

= ${}^t S_+(\tau, \eta) N_+(\tau, \eta) B_+(\tau, \eta) N_-(\tau, \eta) S_-(\tau, \eta)$.

Lemma 1.3. $S_{\pm}(\tau, \eta)$ are positive hermitian matrices in Λ_{δ} and

$$
c_1 I \langle S_{\pm}(\tau, \eta) \langle c_2 I \rangle \qquad (I: identity \ matrix),
$$

where c_1 , c_2 are positive constants independent of (τ, η) .

Proof. Let

$$
S_{i\pm}(\tau, \eta) = \begin{pmatrix} \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{|\operatorname{Im} \xi_{1}^{+}(\tau, \eta)|^{2}}{|\xi - \xi_{1}^{+}(\tau, \eta)|^{2}} d\xi \\ \vdots \\ \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{|\operatorname{Im} \xi_{1}^{+}(\tau, \eta)|^{\frac{1}{2}} |\operatorname{Im} \xi_{1}^{+}(\tau, \eta)|^{\frac{1}{2}}}{|\xi - \xi_{1}^{+}(\tau, \eta)|\xi - \xi_{1}^{+}(\tau, \eta)|} d\xi \\ \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{|\operatorname{Im} \xi_{1}^{+}(\tau, \eta)|^{\frac{1}{2}} |\operatorname{Im} \xi_{1}^{+}(\tau, \eta)|^{\frac{1}{2}}}{|\xi - \xi_{1}^{+}(\tau, \eta)|\xi - \xi_{1}^{+}(\tau, \eta)|} d\xi \cdots \\ \vdots \\ \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{|\operatorname{Im} \xi_{1}^{+}(\tau, \eta)|^{\frac{1}{2}} |\operatorname{Im} \xi_{1}^{+}(\tau, \eta)|^{\frac{1}{2}}}{|\xi - \xi_{1}^{+}(\tau, \eta)|} d\xi \\ \vdots \\ \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{|\operatorname{Im} \xi_{1}^{+}(\tau, \eta)|^{\frac{1}{2}} |\operatorname{Im} \xi_{1}^{+}(\tau, \eta)|^{\frac{1}{2}}}{|\xi - \xi_{1}^{+}(\tau, \eta)|} d\xi \\ \vdots \\ \frac{|\operatorname{Im} \xi_{1}^{+}(\tau, \eta) - \xi_{1}^{+}(\tau, \eta)|}{|\xi - \xi_{1}^{+}(\tau, \eta)|} \frac{|\operatorname{Im} \xi_{1}^{+}(\tau, \eta)|^{\frac{1}{2}} |\operatorname{Im} \xi_{1}^{+}(\tau, \eta)|^{\frac{1}{2}}}{|\xi - \xi_{1}^{+}(\tau, \eta)|} d\xi \\ \frac{|\operatorname{Im} \xi_{1}^{+}(\tau, \eta)|^{\frac{1}{2}} |\operatorname{Im} \xi_{1}^{+}(\tau, \eta)|^{\frac{1}{2}}}{|\xi - \
$$

$$
S_{0\pm}(\tau, \eta) = \begin{pmatrix} \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{1}{|E_{\pm}(\tau, \eta; \xi)|^2} d\xi & \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{\xi}{|E_{\pm}(\tau, \eta; \xi)|^2} d\xi \cdot \cdot \cdot \\ \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{\xi^{M-1}}{|E_{\pm}(\tau, \eta; \xi)|^2} d\xi & \vdots \end{pmatrix}
$$

$$
\frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{\xi^{M-1}}{|E_{\pm}(\tau, \eta; \xi)|^2} d\xi
$$

$$
\vdots
$$

then we have

$$
\det S_{\pm}(\tau, \eta) = \prod_{i=1}^{N} \det S_{i\pm}(\tau, \eta) \cdot \det S_{0\pm}(\tau, \eta) + 0(1)
$$

as $d \rightarrow 0$. From Lemma 1.1, we have

$$
|\det S_{i\pm}(\tau,\,\eta\,)| = \frac{1}{2^{m_i^{\pm}}} \left| \prod_{j < k} \frac{\xi_{ij}^{\pm}(\tau,\,\eta) - \xi_{ik}^{\pm}(\tau,\,\eta)}{\xi_{ij}^{\pm}(\tau,\,\eta) - \xi_{ik}^{\pm}(\tau,\,\eta)} \right| > c > 0
$$

in Δ_{δ} , where c is independent of (τ, η) . Obviously since

$$
|\det S_{0\pm}(\tau,\,\eta)|\,\rangle c\!>\!0,
$$

we have

$$
|\det S_{\pm}(\tau,\,\eta)|\!>\!c\!>\!0\qquad\text{in}\;\;d_{\delta}.
$$

On the other hand, we have easily that $S_{\pm}(\tau, \eta)$ are positive, hermitian and bounded in Δ_{δ} . Therefore we have $S_{\pm}(\tau, \eta) > c$. /. Q.E.D.

It follows from Lemma 1.3

$$
c_1|N_+(\tau, \eta)B(\tau, \eta)N_-(\tau, \eta)|
$$

\n
$$
\leq \left| \int \overline{F}_+(\tau, \eta; x)G_c(\tau, \eta; x, y)F_-(\tau, \eta; y)dx dy \right|
$$

\n
$$
\leq c_2|N_+(\tau, \eta)B(\tau, \eta)N_-(\tau, \eta)| \quad \text{in } \Delta_{\delta}.
$$

On the other hand, we have

278 REIKO SAKAMOTO

$$
||G_{\epsilon}||_{L^2 \times L^2} = ||^t \mathbf{E}_+(\tau, \eta; x) B(\tau, \eta) \mathbf{E}_-(\tau, \eta; y)||_{L^2 \times L^2}
$$

$$
\leq C|N_+(\tau, \eta) B(\tau, \eta) N_-(\tau, \eta)|
$$

in \mathcal{A}_{δ} , and moreover

$$
\left\|\left(\frac{\partial}{\partial x}\right)^{k}G_{c}\right\|_{L^{2}\times L^{2}} \leq C_{k}|N_{+}(\tau,\,\eta)B(\tau,\,\eta)N_{-}(\tau,\,\eta)|
$$

in \mathcal{A}_{δ} . Hence we have

Lemma 1.4.

$$
\sum_{k=0}^{m-1} \left\| \left(\frac{\partial}{\partial x} \right)^k G_c \right\|_{L^2 \times L^2} \leq C |N_+(\tau, \eta) B(\tau, \eta) N_-(\tau, \eta)|
$$

$$
\leq C' ||G_c||_{\mathscr{L}(L^2 \times L^2, C^1)} \quad in \quad \mathcal{A}_\delta.
$$

Let us denote

$$
D_{\pm}^{*}(\tau, \eta) = \begin{pmatrix} \{\delta_{11\pm}^{*}(\tau, \eta)\}^{-\frac{1}{2m_{1}}} & & \\ & \ddots & \\ & & \{\delta_{1m_{1}^{\pm}\pm}^{*}(\tau, \eta)\}^{-\frac{1}{2m_{1}}} \\ & & \ddots \\ & & & 1 \\ & & & & 1 \end{pmatrix}
$$

in \mathcal{A}_{δ}^* , then we have

Proposition 1.

$$
c_1|D^*_{+}(\tau,\,\eta)B(\tau,\,\eta)D^*_{-}(\tau,\,\eta)| \leq ||G_{c}||_{\mathscr{L}(L^2,H^{m-1})}
$$

$$
\leq c_2|D^*_{+}(\tau,\,\eta)B(\tau,\,\eta)D^*_{-}(\tau,\,\eta)| \quad in \, \Delta^*_{\delta}.
$$

Let us denote

$$
\mathscr{D}_{-}(\tau,\,\eta)=\left(\begin{array}{c}\overbrace{\{d(\tau,\,\eta)\}}^{m_1^-}\\\overbrace{\cdot}^{m_1^-
$$

then we have

Proposition 1'.

$$
c_1|D^*_{+}(\tau,\eta)\mathscr{B}(\tau,\eta)\mathscr{D}_{-}(\tau,\eta)D^*_{-}(\tau,\eta)| \leq ||G_c||_{\mathscr{L}(L^2,H^{m-1})}
$$

$$
\leq c_2|D^*_{+}(\tau,\eta)\mathscr{B}(\tau,\eta)\mathscr{D}_{-}(\tau,\eta)D^*_{-}(\tau,\eta)| \quad in \quad d^*_{\delta}.
$$

Here we have

Theorem I. Let (P) be L²-well-posed. Then, at any real point (σ_0, η_0) , there exists $\delta > 0$ such that

$$
|D^*_{+}(\tau,\,\eta)\mathscr{B}(\tau,\,\eta)\mathscr{D}_{-}(\tau,\,\eta)D^*_{-}(\tau,\,\eta)|<\frac{C}{\tau}
$$

in Δ^*_s , where C is a positive constant independent of (τ, η) .

Let us denote

$$
\mathscr{B}(\tau,\,\eta)=\left(\begin{array}{cccc}\n\beta_{11,11}(\tau,\,\eta) & \cdots & \beta_{11,1m_1}(\tau,\,\eta) & \cdots & \cdots & \cdots & \cdots \\
\beta_{1m_1^+,11}(\tau,\,\eta) & \cdots & \beta_{1m_1^+,1m_1^+}(\tau,\,\eta) & \cdots & \cdots & \cdots & \cdots \\
\vdots & \vdots & \ddots & \ddots & \vdots & \vdots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \vdots & \vdots \\
\beta_{0M,01}(\tau,\,\eta) & \cdots & \beta_{0M,0M}(\tau,\,\eta)\end{array}\right),
$$

then Theorem I says that a necessary condition for L^2 -well-posedness is

$$
\begin{cases}\n|\beta_{ij,1h}(\tau,\eta)|\delta_{ij}^{*}-\frac{1}{2m_{i}}d^{-1+\frac{1}{m_{i}}}\delta_{ih}^{*}-\frac{1}{2m_{i}}<\frac{C}{\gamma} \quad \binom{i=1,\dots,N, \quad l=1,\dots,N}{j=1,\dots,m_{i}^{+}, \quad h=1,\dots,m_{l}^{-}}, \\
|\beta_{0j,1h}(\tau,\eta)|d^{-1+\frac{1}{m_{i}}}\delta_{In}^{*}-\frac{1}{2m_{i}}<\frac{C}{\gamma} \quad \binom{i=1,\dots,M, \quad l=1,\dots,N}{h=1,\dots,m_{l}^{-}}, \\
|\beta_{ij,0h}(\tau,\eta)|\delta_{ij}^{*}-\frac{1}{2m_{i}}<\frac{C}{\gamma} \quad \binom{i=1,\dots,N, \quad h=1,\dots,M}{j=1,\dots,m_{i}^{+}}, \\
|\beta_{0j,0h}(\tau,\eta)|<\frac{C}{\gamma} \quad (j=1,\dots,M, \quad h=1,\dots,M)\n\end{cases}
$$

Since $\delta_{ij\pm}^* \leq d$, we have

Corollary 1. If (P) is L^2 -well-posed, then there exists $\delta > 0$ at every *real point* (σ_0, η_0) *such that*

$$
\begin{cases}\n|\beta_{ij,1h}(\tau,\,\eta)|\,d^{-\frac{1}{2m_i}-(1-\frac{1}{2m_i})}<\frac{C}{\gamma} \qquad (i \neq 0,\,\,l \neq 0), \\
|\beta_{0j,1h}(\tau,\,\eta)|\,d^{-(1-\frac{1}{2m_i})}<\frac{C}{\gamma} \qquad (l \neq 0), \\
|\beta_{ij,0h}(\tau,\,\eta)|\,d^{-\frac{1}{2m_i}}<\frac{C}{\gamma} \qquad (i \neq 0), \\
|\beta_{0j,0h}(\tau,\,\eta)|<\frac{C}{\gamma}\n\end{cases}
$$

in Δ_{δ} .

Let us denote

$$
\{B_{+}(\tau,\,\eta)\}^{-1} = \begin{pmatrix} r_{11,1}(\tau,\,\eta) & \cdots r_{11,\mu}(\tau,\,\eta) \\ \vdots & \vdots & \vdots \\ r_{1m_{1}^{\dagger},1}(\tau,\,\eta) & \cdots r_{1m_{1}^{\dagger},\mu}(\tau,\,\eta) \\ \vdots & \vdots & \vdots \\ r_{01,1}(\tau,\,\eta) & \cdots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ r_{0M,1}(\tau,\,\eta) & \cdots & \end{pmatrix},
$$

then we have from the Corollary 3 of Lemma 1.1 and the Corollary 1 of Theorem I

Corollary 2. A necessary condition for L^2 -well-posedness is

$$
\begin{cases} |r_{ij,k}(\tau,\,\eta)| d^{-\frac{1}{2m_i}} < \frac{C}{\gamma} & (i \neq 0), \\ |r_{0j,k}(\tau,\,\eta)| < \frac{C}{\gamma} \end{cases}
$$

in Δ_{δ} .

Corollary 3. Let (P) be L^2 -well-posed, and let $A(\sigma_0, \eta_0; \xi)$ have not *real multiple roots.* Let us assume that $m_i^+ = 1(i=1, \dots, N_0)$, $m_i^- = 1(i=$

 $N_0 + 1, \ldots, N$, and $\frac{d^2z}{dx^2}$ $\int \frac{B_1(\sigma_0, \eta_0, \zeta)}{E_+(\sigma_0, \eta_0; \xi)} d\xi \cdots \frac{1}{2\pi i} \int \frac{B_1(\sigma_0, \eta_0, \zeta)}{E_+(\sigma_0, \eta_0; \xi)} d\xi$ *rank* $-\frac{1}{\sqrt{L^2-\frac{1}{2}} \left(\frac{D_\mu(0,0)}{2}, \frac{\sqrt{2}}{2}\right)} d\xi \cdots \frac{1}{2} \frac{D_\mu(0,0)}{L^2} \left(\frac{D_\mu(0,0)}{2}, \frac{\sqrt{2}}{2}\right)$

then we have

i)
$$
\left\{ \left(\begin{array}{c} B_1(\sigma_0, \eta_0; \xi_j) \\ \vdots \\ B_\mu(\sigma_0, \eta_0; \xi_j) \end{array} \right) \right\}_{j=1,\dots,N_0}
$$

are linearly independent modulo the space spanned by

$$
\left\{\left(\begin{array}{c} \frac{1}{2\pi i} \left\{\frac{B_1(\sigma_0, \eta_0; \xi) \xi^{j-1}}{E_+(\sigma_0, \eta_0; \xi)} d\xi\right\} \\ \vdots \\ \frac{1}{2\pi i} \left\{\frac{B_\mu(\sigma_0, \eta_0; \xi) \xi^{j-1}}{E_+(\sigma_0, \eta_0; \xi)} d\xi\right\} \right\}_{j=1,\ldots,M}
$$
ii)

$$
\left\{\left(\begin{array}{c} B_1(\sigma_0, \eta_0; \xi_j) \\ \vdots \\ B_\mu(\rho_0, \eta_0; \xi_j) \end{array}\right)\right\}_{j=N_0+1,\ldots,N}
$$

belong the space spanned by

$$
\left\{\left(\begin{array}{c} B_1(\sigma_0, \eta_0; \xi_j) \\ \vdots \\ B_\mu(\sigma_0, \eta_0; \xi_j) \end{array}\right)\right\}_{j=1,\dots,N_0} \quad \text{and} \quad \left\{\left(\begin{array}{c} \frac{1}{2\pi i} \left\{\frac{B_1(\sigma_0, \eta_0; \xi) \xi^{j-1}}{E_+(\sigma_0, \eta_0; \xi)} d\xi\right\} \\ \vdots \\ \frac{1}{2\pi i} \left\{\frac{B_\mu(\sigma_0, \eta_0; \xi) \xi^{j-1}}{B_\mu(\sigma_0, \eta_0; \xi)} d\xi\right\} \right)\right\}_{j=1,\dots,M}
$$

 $R(\sigma_0, \, \eta_0) = R'_\tau(\sigma_0, \, \eta_0) = \cdots = R_\tau^{(M_1)}$

where $M_1 = M - M_0$.

§2. Sufficient **Conditions**

2.1. Preliminary. Let us say that a real point (σ_0, η_0) is a regular point, when m_i -ple real root $\xi = \xi_i$ of $A(\sigma_0, \gamma_0; \xi) = 0$ may be m_i -ple or simple in a neighbourhood of (σ_0, η_0) . Let (σ_0, η_0) be a regular point, then $m_i \ (\geq 2)$ -ple real roots are just all over a real analytic surface S_i : $\sigma = \varphi_i(\eta)$.

Now let (σ_0, η_0) be a regular point. Already we have had a decomposition of \tilde{A} in U with center (σ_0, η_0) :

$$
A(\tau, \eta; \xi) = \prod_{i=1} H_i(\tau, \eta; \xi) E(\tau, \eta; \xi),
$$

where

$$
H_i(\tau, \eta; \xi) = (\xi - \xi_i)^{m_i} + a_{i1}(\tau, \eta)(\xi - \xi_i)^{m_i - 1} + \cdots + a_{im_i}(\tau, \eta),
$$

$$
a_{ij}(\sigma_0, \eta_0) = 0.
$$

Let $(\tilde{\sigma}_0, \tilde{\eta}_0) \in S_i \cap U$ and let $\tilde{\xi}_i$ be the m_i -ple root of $H_i(\tilde{\sigma}_0, \tilde{\eta}_0; \xi) = 0$, then we have

$$
H_i(\tau, \eta; \xi) = (\xi - \tilde{\xi}_i)^{m_i} + \tilde{a}_{i1}(\tau, \eta)(\xi - \tilde{\xi}_i)^{m_i - 1} + \cdots + \tilde{a}_{i m_i}(\tau, \eta),
$$

$$
\tilde{a}_{ij}(\tilde{\sigma}_0, \tilde{\eta}_0) = 0.
$$

Since

$$
\tilde{a}_{im_i-k}(\tau, \eta) = \frac{1}{k!} \frac{\partial^k H_i}{\partial \xi^k}(\tau, \eta; \tilde{\xi}_i),
$$

and ξ_i is a continuous function of $(\tilde{\sigma}_0, \tilde{\eta}_0)$, we have a neighbourhood $U^{\prime} \subset U$ such that

$$
\left|\frac{\tilde{a}_{im_i-k}(\tau,\,\eta)\right|_{\mathcal{L}^2(U')} < C, \\
\left|\frac{\partial \tilde{a}_{im_i}}{\partial \tau}(\tau,\,\eta)\right|_{\mathcal{L}^0(U')} > c > 0,
$$

where *C* and *c* are independent of $(\tilde{\sigma}_0, \tilde{\eta}_0)$.

Let us denote

HYPERBOLIC MIXED PROBLEMS 283

$$
\tilde{\alpha}_{i} = \frac{\partial \tilde{a}_{im_{i}}}{\partial \tau}(\tilde{\sigma}_{0}, \tilde{\eta}_{0}), \qquad \tilde{\beta}_{i} = \frac{\partial \tilde{a}_{im_{i}}}{\partial \eta}(\tilde{\sigma}_{0}, \tilde{\eta}_{0}),
$$
\n
$$
\begin{cases}\n\tilde{d}_{i s} = \{(\tau, \eta) \in V_{\delta}; \ |\tilde{\alpha}_{i}(\tau - \tilde{\sigma}_{0}) + \tilde{\beta}_{i} \cdot (\eta - \tilde{\eta})| \\
\geq \cos \theta_{0} (|\tilde{\alpha}_{i}|^{2} + |\tilde{\beta}_{i}|^{2})^{\frac{1}{2}} \cdot \tilde{d}\} & \text{if } m_{i} \geq 2, \\
\tilde{d}_{i s} = V_{\delta} & \text{if } m_{i} = 1,\n\end{cases}
$$

where

$$
\tilde{d}\!=\!{\rm dis}\, \{(\tau,\,\eta),\, (\tilde{\sigma}_0,\,\tilde{\eta}_0)\}.
$$

Moreover let $\{\xi_{ij}^{\pm 0}(\tau, \eta)\}\)$ be roots of

$$
(\xi-\tilde{\xi}_i)^{m_i}+\tilde{\alpha}_i(\tau-\tilde{\sigma}_0)+\tilde{\beta}_i\cdot(\eta-\tilde{\eta}_0)=0,
$$

then we have

Lemma 2.1. Let (σ_0, η_0) be a regular point, then there exist a *neighbourhood* U of (σ_0, η_0) and $\delta > 0$ ($V_s \subset U$) such that for any point $(\tilde{\sigma}_0, \tilde{\eta}_0) \in S_i \cap U$, we have

$$
\begin{aligned} \left| \xi_{ij}^{\pm}(\tau,\,\eta) - \xi_{ij}^{\pm 0}(\tau,\,\eta) \right| &< C \bar{d}^{\frac{2}{m_i}} \quad in \ \bar{d}_{i\delta}, \\ \left| \frac{\partial \xi_{ij}^{\pm}}{\partial \tau}(\tau,\,\eta) - \frac{\partial \xi_{ij}^{\pm 0}}{\partial \tau}(\tau,\,\eta) \right| &< C \bar{d}^{-1 + \frac{2}{m_i}} \quad in \ \bar{d}_{i\delta}, \end{aligned}
$$

where C is independent not only of (τ, η) *but also of* $(\tilde{\sigma}_0, \tilde{\eta}_0)$.

Corollary 1. Let (σ_0, η_0) be a regular point, then for any $(\tilde{\sigma}_0, \tilde{\eta}_0)$ $\in S_i \cap U$

$$
c_1\overline{d}^{\frac{1}{m_i}} \leq |\xi_{ij}^{\pm}(\tau,\,\eta) - \xi_i| \leq c_2\overline{d}^{\frac{1}{m_i}} \quad in \ \tilde{d}_{i\delta},
$$

$$
c_1\overline{d}^{\frac{1}{m_i}} \leq |\xi_{ij}^{\pm}(\tau,\,\eta) - \xi_{ik}^{\pm}(\tau,\,\eta)| \leq c_2\overline{d}^{\frac{1}{m_i}} \quad (j \neq k) \ \ in \ \tilde{d}_{i\delta},
$$

where c_1 *and* c_2 *are independent of* (τ, η) *and* $(\tilde{\sigma}_0, \tilde{\eta}_0)$ *.*

We define $\tilde{\delta}^*_{i j \pm}$ in the same way as $\delta^*_{i j \pm}$, only replacing *d* by \tilde{d} , and $\tilde{A}^*_{\delta} = \bigcap \tilde{A}^{*}_{i\delta}$, then

Corollary 2. Let (σ_0, η_0) be a regular point, then for any $(\tilde{\sigma}_0, \tilde{\eta}_0)$ $\in S_i \cap U$

$$
c_1\tilde{\delta}_{ij\pm}^* \stackrel{1}{\leq} |\operatorname{Im} \xi_{ij}^{\pm}(\tau, \eta)| \leq c_2\tilde{\delta}_{ij\pm}^* \stackrel{1}{\leq} \ldots \stackrel{1}{\leq} \ldots
$$

where c_1 *and* c_2 *are independent of* (τ, η) *and* $(\tilde{\sigma}_0, \tilde{\eta}_0)$ *.*

Now let us denote

$$
V_{i\delta}^{\pm} = \bigcup_{(\tilde{\sigma}_0, \tilde{\eta}_0)} \tilde{A}_{i\delta}^{\pm}, \ \ V_{\delta}^{\ast} = \bigcap_{i=1}^N V_{i\delta}^{\ast},
$$

then we have

$$
\boldsymbol{V}_{\delta} = \bigvee_{\mathbf{X}} \boldsymbol{V}_{\delta}^*.
$$

Moreover we denote for $m_i\geq 2$

$$
d_i(\tau, \eta) = \text{dis } ((\tau, \eta), S_i),
$$

$$
\bar{\delta}_{i,j\pm}^*(\tau, \eta) = \begin{cases} \left(\frac{\gamma}{d_i}\right)^{m_i} d_i & \text{if } \xi_{i,j}^{\pm} = \xi_{i,*}^{\pm} \\ d_i & \text{otherwise,} \end{cases}
$$

and $\bar{\delta}_{i j \pm}^*(\tau, \eta) = \gamma$ for $m_i=1$, then we have

Corollary 1'. Let (σ_0, η_0) be a regular point, then we have

$$
c_1 d_i^{\frac{1}{m_i}} \leq |\xi_{ij}^{\pm}(\tau, \eta) - \xi_{ik}^{\pm}(\tau, \eta)| \leq c_2 d_i^{\frac{1}{m_i}} \qquad (j \neq k)
$$

in V_{δ} .

Corollary 2'. Let (σ_0, η_0) be a regular point, then we have

$$
c_1\bar{\delta}_{ij\pm}^* \stackrel{1}{\leq} |\operatorname{Im} \xi_{ij}^{\pm}(\tau,\,\eta)| \leq c_2\bar{\delta}_{ij\pm}^* \stackrel{1}{\leq}
$$

in V_{δ}^* .

Corollary 3. Let (σ_0, η_0) be regular, then we have

$$
k\left(\begin{array}{c}0\\ \vdots\\ 0\\ 1\\ \vdots\\ 0\end{array}\right)=\sum_{i=1}^{N}\sum_{i=1}^{m_{i}^{*}}C_{i}^{k}{}_{j\pm}(\tau,\,\eta) d_{i}^{-1+\frac{1}{m_{i}}}\left(\begin{array}{c}B_{1}(\tau,\,\eta\,;\,\xi_{i}^{\pm}(\tau,\,\eta))\\ \vdots\\ B_{\mu}(\tau,\,\eta\,;\,\xi_{i}^{\pm}(\tau,\,\eta))\end{array}\right)
$$

$$
+\sum_{j=1}^{M} C_{0,j\pm}^{k}(\tau,\eta) \begin{pmatrix} \frac{1}{2\pi i} \oint \frac{B_{1}(\tau,\eta;\xi) \xi^{j-1}}{E_{\pm}(\tau,\eta;\xi)} d\xi \\ \vdots \\ \frac{1}{2\pi i} \oint \frac{B_{\mu}(\tau,\eta;\xi) \xi^{j-1}}{E_{\pm}(\tau,\eta;\xi)} d\xi \end{pmatrix}
$$

in V_{δ} , where $\{C_{ij\pm}^k(\tau, \eta), C_{0j\pm}^k(\tau, \eta)\}$ are bounded in V_{δ} .

2.2. Estimates of Green's function in V_8^* . Let (σ_0, η_0) be a regular point, then it is shown that

$$
c_1 I \langle S_{\pm}(\tau, \eta) \langle c_2 I \quad \text{in} \quad V_{\delta},
$$

in the same way as the proof of Lemma 1.3, making use of Lemma 2.1. Hence we have

Lemma 2.2. Let (σ_0, η_0) be regular, then

$$
\sum_{k=0}^{m-1} \left\| \left(\frac{\partial}{\partial k} \right)^k G_c(\tau, \eta; x, y) \right\|_{L^2 \times L^2} \leq C |N_+(\tau, \eta) B(\tau, \eta) N_-(\tau, \eta)|
$$

$$
\leq C' ||G_c(\tau, \eta; x, y)||_{\mathscr{L}(L^2 \times L^2, C^1)} \quad in \ V_\delta.
$$

Let us denote

$$
\bar{D}_{\pm}^{*}(\tau,\,\eta) = \begin{pmatrix}\n\overbrace{(\bar{\delta}_{11\pm}^{*})}^{-\frac{1}{2m_{1}}}\n\overbrace{\cdot\cdot}_{\cdot}^{(\bar{\delta}_{1m_{1}^{\pm}\pm}^{*})}^{-\frac{1}{2m_{1}}}\n\overbrace{\cdot}_{\cdot}^{1}\n\end{pmatrix}
$$
 in V_{δ}^{*}

and

then we have

Proposition 2. Let (σ_0, η_0) be regular, then there exist positive *constants* δ , c_1 *and* c_2 *such that*

$$
\begin{aligned} &c_1|\bar{D}_+^*(\tau,\,\eta)\mathscr{B}(\tau,\,\eta)\bar{\mathscr{B}}_-(\tau,\,\eta)\bar{D}_-^*(\tau,\,\eta)\,|\leq&||G_c(\tau,\,\eta,\,x,\,\,y)||_{\mathscr{L}(L^2,H^{\,m-1})}\\ &\leq& c_2|\,\bar{D}_+^*(\tau,\,\eta)\mathscr{B}(\tau,\,\eta)\bar{\mathscr{B}}_-(\tau,\,\eta)\bar{D}_-^*(\tau,\,\eta)\,| \qquad in\;\; V^*_\delta. \end{aligned}
$$

Theorem II. *Let every real point be regular. In order that* (P) *is L 2 -well-posed, it is necessary and sufficient that there exist positive constants d and C for each real point such that it holds*

$$
|\bar{D}^*_{+}(\tau,\,\eta)\mathscr{B}(\tau,\,\eta)\bar{\mathscr{D}}_{-}(\eta,\,\eta)\bar{D}^*_{-}(\tau,\,\eta)|<\frac{C}{\gamma}\qquad\text{in}\quad V^*_s,
$$

that is,

$$
\begin{cases}\n|\beta_{ij,lh}(\tau,\,\eta)|\,\overline{\delta}_{ij}^{*}+\overline{\frac{1}{2m_1}}\,d_l^{-1+\frac{1}{m_l}}\,\overline{\delta}_{lh}^{*}-\overline{\frac{1}{2m_i}}<\frac{C}{\gamma} \qquad (i\neq 0,\,l\neq 0), \\
|\beta_{0j,lh}(\tau,\,\eta)|\,d_l^{-1+\frac{1}{m_l}}\,\overline{\delta}_{lh}^{*}-\overline{\frac{1}{2m_l}}<\frac{C}{\gamma} \qquad (l\neq 0), \\
|\beta_{ij,0h}(\tau,\,\eta)|\,\overline{\delta}_{ij}^{*}+\overline{\frac{1}{2m_i}}<\frac{C}{\gamma} \qquad (i\neq 0), \\
|\beta_{0j,0h}(\tau,\,\eta)|<\frac{C}{\gamma}\n\end{cases}
$$

in V_{δ}^* .

Since $\bar{\delta}_{i j \pm}^* \leq d_i$, we have

Corollary 1. Let every real point be regular. In order that (P) is

L 2 -wet I -posed, it is necessary that

$$
\begin{cases}\n|\beta_{ij,lh}(\tau,\,\eta)| d_i^{-\frac{1}{2m_i}} d_l^{-1+\frac{1}{2m_l}} < \frac{C}{\gamma} & (i \neq 0, \, l \neq 0), \\
|\beta_{0j,lh}(\tau,\,\eta)| d_l^{-1+\frac{1}{2m_l}} < \frac{C}{\gamma} & (l \neq 0), \\
|\beta_{ij,0h}(\tau,\,\eta)| d_i^{-\frac{1}{2m_i}} < \frac{C}{\gamma} & (i \neq 0), \\
|\beta_{0j,0h}(\tau,\,\eta)| < \frac{C}{\gamma}\n\end{cases}
$$

in V_{δ} .

Making use of Corollary 3 of Lemma 2.1, it follows from Corollary 1 of Theorem II:

Corollary 2, *Let every real point be regular. In order that* (P) *is L 2 -well-posed, it is necessary that*

$$
\begin{cases} |r_{ij,k}(\tau,\,\eta)|\,d_i^{-\frac{1}{2m_i}}\!\!<\!\!\frac{C}{\gamma} \qquad (i\!=\!0),\\ |r_{0j,k}(\tau,\,\eta)|\!<\!\!\frac{C}{\gamma} \end{cases}
$$

in V_{δ} .

On the other hand, since $\bar{\delta}_{i,j\pm}^{*} \geq \left(\frac{\gamma}{d_i}\right)^{m_i} d_i$, we have

Corollary 3- *Let every real point be regular. In order that* (P) *is L 2 -well-posed, it is sufficient that*

$$
\begin{cases}\n|\beta_{ij,lh}(\tau,\,\eta)|\,d_{l}^{-\frac{1}{2}-\frac{1}{2m_{i}}}d_{l}(\frac{1}{2}-\frac{1}{2m_{l}})<\,C & (i \neq 0,\,l \neq 0), \\
|\beta_{0j,lh}(\tau,\,\eta)|\,d_{l}^{-\left(\frac{1}{2}-\frac{1}{2m_{l}}\right)}<\frac{C}{\tau^{\frac{1}{2}}} & (l \neq 0), \\
|B_{ij,0h}(\tau,\,\eta)|\,d_{i}^{-\frac{1}{2}-\frac{1}{2m_{i}}}<\frac{C}{\tau^{\frac{1}{2}}} & (i \neq 0), \\
|\beta_{0j,0h}(\tau,\,\eta)|<\frac{C}{\tau}\n\end{cases}
$$

in V_{s} .

2.3. **Semi-uniform Lopatinski's condition.** Let us denote in V_{δ}

$$
\tilde{R}(\tau, \eta) = \frac{1}{\prod_{i=1}^{N} \prod_{j < k} (\hat{\xi}_{ij}^+(\tau, \eta) - \hat{\xi}_{ik}^+(\tau, \eta))}
$$
\n
$$
\times \det \begin{pmatrix}\nB_1(\tau, \eta; \hat{\xi}_{11}^+(\tau, \eta)) \cdots & \frac{1}{2\pi i} \oint_{-\infty} B_1(\tau, \eta; \hat{\xi}) \hat{\xi}^{M-1} d\xi \\
\vdots & \vdots \\
B_\mu(\tau, \eta; \hat{\xi}_{11}^+(\tau, \eta)) \cdots & \frac{1}{2\pi i} \oint_{-\infty} B_\mu(\tau, \eta; \hat{\xi}) \hat{\xi}^{M-1} d\xi \\
B_\mu(\tau, \eta; \hat{\xi}_{11}^+(\tau, \eta)) \cdots & \frac{1}{2\pi i} \oint_{-\infty} B_\mu(\tau, \eta; \hat{\xi}) \hat{\xi}^{M-1} d\xi\n\end{pmatrix},
$$

$$
{\tilde R}_{i_0i_0,l_0h_0}(\tau,\,\eta)
$$

$$
=\frac{1}{\prod\limits_{i\neq i_0}\prod\limits_{j\leq k}(\xi_{ij}^+(\tau,\,\eta)-\xi_{ik}^+(\tau,\,\eta))\prod\limits_{\substack{j,k\neq j_0\\j\leq k}}(\xi_{i_0j}^+(\tau,\,\eta)-\xi_{i_0k}^+(\tau,\,\eta))}\times\frac{1}{\prod\limits_{j}(\xi_{i_0j}^+(\tau,\,\eta)-\xi_{i_0k_0}^-(\tau,\,\eta))}
$$

$$
\times \det \left(\begin{array}{c} B_1(\tau, \, \eta\,;\, \xi_{11}^+(\tau, \, \eta))\cdots B_1(\tau, \, \eta\,;\, \xi_{i_0j_0-1}^+(\tau, \, \eta)) \\ \vdots \\ B_\mu(\tau, \, \eta\,;\, \xi_{11}^-(\tau, \, \eta))\cdots B_\mu(\tau, \, \eta\,;\, \xi_{i_0j_0-1}^+(\tau, \, \eta)) \\ B_1(\tau, \, \eta\,;\, \xi_{I_0h_0}^-(\tau, \, \eta))B_1(\tau, \, \eta\,;\, \xi_{i_0j_0+1}^+(\tau, \, \eta))\cdots \\ \vdots \\ B_\mu(\tau, \, \eta\,;\, \xi_{I_0h_0}^-(\tau, \, \eta))B_\mu(\tau, \, \eta\,;\, \xi_{i_0j_0+1}^+(\tau, \, \eta))\cdots \end{array} \right)
$$

 $(i_0 \neq 0, \, l_0 \neq 0),$

$$
\tilde{R}_{0j_0,l_0h_0}(\tau,\,\eta) = \frac{1}{\prod_{i} \prod_{j < k} (\xi^+_{ij}(\tau,\,\eta) - \xi^+_{ik}(\tau,\,\eta)) \prod_{j} (\xi^+_{l_0j}(\tau,\,\eta) - \xi^-_{l_0h_0}(\tau,\,\eta))}
$$
\n
$$
\times \det \left(\begin{array}{c} \cdots \frac{1}{2\pi i} \oint \frac{B_1(\tau,\,\eta\,;\,\xi) \xi^{j_0-2}}{E_+(\tau,\,\eta\,;\,\xi)} d\xi & B_1(\tau,\,\eta\,;\,\xi^-_{l_0h_0}(\tau,\,\eta)) \\ \vdots & \vdots \\ \frac{1}{2\pi i} \oint \frac{B_1(\tau,\,\eta\,;\,\xi) \xi^{j_0}}{E_+(\tau,\,\eta\,;\,\xi)} d\xi \cdots \end{array} \right)
$$

$$
\frac{1}{2\pi i}\oint \frac{B_1(\tau, \eta; \xi)\xi^{j_0}}{E_+(\tau, \eta; \xi)}d\xi\cdots \\
\vdots\n\qquad (l_0\neq 0),
$$

$$
\tilde{R}_{i_0i_0,0h_0}(\tau,\eta) = \frac{1}{\prod\limits_{i\neq i_0}\prod\limits_{j\leq k}(\hat{\xi}_{ij}^+(\tau,\eta)-\hat{\xi}_{ik}^+(\tau,\eta))\prod\limits_{j\neq k}(\hat{\xi}_{i_0j}^+(\tau,\eta)-\hat{\xi}_{i_0k}^+(\tau,\eta))} \times \det\left(\begin{array}{c} \cdots B_1(\tau,\eta;\hat{\xi}_{i_0j_0-1}^+(\tau,\eta))\frac{1}{2\pi i}\oint\frac{B_1(\tau,\eta;\hat{\xi})\xi^{h_0-1}}{E_-(\tau,\eta;\hat{\xi})}d\hat{\xi} \\ \vdots \\ B_1(\tau,\eta;\hat{\xi}_{i_0j_0-1}^+(\tau,\eta))\cdots \\ \vdots \end{array}\right) \begin{array}{c} \vdots \\ \vdots \\ \vdots \\ (i_0\neq 0), \\ \vdots \end{array}
$$
\n
$$
\tilde{R}_{0j_0,0h_0}(\tau,\eta) = \frac{1}{\prod\limits_{i\neq k}(\hat{\xi}_{ij}^+(\tau,\eta)-\hat{\xi}_{ik}^+(\tau,\eta))} \qquad (i_0\neq 0),
$$
\n
$$
\times \det\left(\begin{array}{c} \cdots \frac{1}{2\pi i}\oint\frac{B_1(\tau,\eta;\hat{\xi})\xi^{j_0-2}}{E_+(\tau,\eta;\hat{\xi})}\,d\hat{\xi} & \frac{1}{2\pi i}\oint\frac{B_1(\tau,\eta;\hat{\xi})\xi^{h_0-1}}{E_-(\tau,\eta;\hat{\xi})}\,d\hat{\xi} \\ \vdots \\ \vdots \\ \frac{1}{2\pi i}\oint\frac{B_1(\tau,\eta;\hat{\xi})\xi^{j_0}}{E_+(\tau,\eta;\hat{\xi})}\,d\hat{\xi}\cdots \\ \vdots \end{array}\right),
$$

then these are all bounded in V_{δ} .

Lemma 2.3. Let (σ_0, η_0) be regular, then there exist positive constants δ , c_1 and c_2 such that

$$
\begin{aligned}\n\left| c_{1} | \beta_{ij,th}(\tau, \eta) | d_{i} \frac{\pi_{i}^{t-1}}{\pi_{i}} d_{l} \frac{\pi_{i}^{t}}{\pi_{i}} \leq & \left| \frac{\tilde{R}_{ij,th}(\tau, \eta)}{\tilde{R}(\tau, \eta)} \right| \\
&\leq c_{2} | \beta_{ij,th}(\tau, \eta) | d_{i} \frac{\pi_{i}^{t-1}}{\pi_{i}} d_{l} \frac{\pi_{i}^{t}}{\pi_{i}} \qquad (i \neq 0, l \neq 0), \\
c_{1} | \beta_{0j,th}(\tau, \eta) | d_{i} \frac{\pi_{i}^{t}}{\pi_{i}} \leq & \left| \frac{\tilde{R}_{0j,th}(\tau, \eta)}{\tilde{R}(\tau, \eta)} \right| \leq c_{2} | \beta_{0j,th}(\tau, \eta) | d_{i} \frac{\pi_{i}^{t}}{\pi_{i}} \qquad (l \neq 0), \\
c_{1} | \beta_{ij,0h}(\tau, \eta) | d_{i} \frac{\pi_{i}^{t-1}}{\pi_{i}} \leq & \left| \frac{\tilde{R}_{ij,0h}(\tau, \eta)}{\tilde{R}(\tau, \eta)} \right| \leq c_{2} | \beta_{ij,0h}(\tau, \eta) | d_{i} \frac{\pi_{i}^{t-1}}{\pi_{i}} \qquad (i \neq 0), \\
c_{1} | \beta_{0j,0h}(\tau, \eta) | \leq & \left| \frac{\tilde{R}_{0j,0h}(\tau, \eta)}{\tilde{R}(\tau, \eta)} \right| \leq c_{2} | \beta_{0j,0h}(\tau, \eta) |\n\end{aligned}
$$

in Vs-

From Lemma 2.3, we have

Theorem II'. *Let every real point be regular. In order that* (P) *is L 2 -well-posed, it is necessary and sufficient that*

$$
\left| \frac{\tilde{R}_{ij,lh}(\tau, \eta)}{\tilde{R}(\tau, \eta)} \right| d_i^{-\frac{m_i^+-1}{m_i}} \bar{\delta}_{ij}^* + \frac{1}{2m_i} d_i^{-\frac{m_i^--1}{m_i}} \bar{\delta}_{lh}^* - \frac{1}{2m_i} \langle \frac{C}{\tau} \quad (i \neq 0, l \neq 0),
$$

$$
\left| \frac{\tilde{R}_{0j,lh}(\tau, \eta)}{\tilde{R}(\tau, \eta)} \right| d_i^{-\frac{m_i^--1}{m_i}} \bar{\delta}_{lh}^* - \frac{1}{2m_i} \langle \frac{C}{\tau} \quad (l \neq 0),
$$

$$
\left| \frac{\tilde{R}_{ij,0h}(\tau, \eta)}{\tilde{R}(\tau, \eta)} \right| d_i^{-\frac{m_i^+-1}{m_i}} \bar{\delta}_{ij}^* - \frac{1}{2m_i} \langle \frac{C}{\tau} \quad (i \neq 0),
$$

$$
\left| \frac{\tilde{R}_{0j,0h}(\tau, \eta)}{\tilde{R}(\tau, \eta)} \right| \langle \frac{C}{\tau} \rangle
$$

in V_{δ}^* .

Remark. The conditions stated in Theorem II' are satisfied if uniform $m_i^{\pm} - \frac{1}{2}$ 1 Lopatinski's condition is satisfied, remarking that $\frac{2}{s} \leq \frac{1}{2}$.

Now we consider a sufficient condition for L^2 -well-posedness, which is stated only by the word of Lopatinski's determinant $R(\tau, \eta)$. Let us denote

$$
\mathcal{Q} = \{(\sigma,\eta) \in R^1 \times R^{n-1}; \sigma^2 + |\eta|^2 = 1, A(\sigma,\eta;\xi) \neq 0 \text{ for any } \xi \in R^1\}.
$$

We say that semi-uniform Lopatinski's condition is satisfied for (P), when the following conditions are satisfied:

- i) let $(\sigma_0, \, \eta_0) \in (\bar{B})^C$, then $R(\sigma_0, \, \eta_0) \Bigleftharpoons 0,$
- ii) let $(\sigma_0, \eta_0) \in \Omega$, then $R(\sigma_0, \eta_0)\neq 0$ or
- iii) let $(\sigma_0, \eta_0){\in}\partial\varOmega$, then there exists ${V}_\delta$ such that

$$
|R(\tau, \eta)| \geq c \frac{\gamma}{d_0^{1-\frac{1}{m}}}
$$
 if $(\text{Re }\tau, \eta) \in \mathcal{Q} \cap \overline{V}_\delta$,

$$
|R(\tau, \eta)| \geq c d_0^{\frac{1}{m}}
$$
 if $(\text{Re}\tau, \eta) \in (\overline{\mathcal{Q}})^c \cap \overline{V}_\delta$,

where

$$
\overline{m} = \max_i \{m_i(\sigma_0, \eta_0)\}, \qquad d_0 = \text{dis}((\tau, \eta), \partial \Omega).
$$

Theorem III. Let every point of $\partial\Omega$ be regular. Then semiuniform L opatinski's condition is a sufficient condition for L^2 -well-posedness for (P) .

Proof. Let $(\sigma_0, \eta_0) \in \partial \Omega(\neq \phi)$, then all the indexes $\{m_i(\sigma_0, \eta_0)\}$ are even, that is, $m_i^+(\sigma_0, \eta_0) = m_i^-(\sigma_0, \eta_0)$. Since

$$
\begin{cases} d_0 \leq d_i & \text{if } (\text{Re } \tau, \eta) \in \Omega, \\ d_0 \geq d_i & \text{if } (\text{Re } \tau, \eta) \in (\bar{\Omega})^C, \end{cases}
$$

and

$$
\bar{\delta}_{ij\pm}^* = d_i (\geq d_0) \quad \text{if } (\text{Re } \tau, \eta) \in \Omega,
$$

$$
\bar{\delta}_{ij\pm}^* \geq \left(\frac{\tau}{d_i}\right)^{m_i} d_i \quad \text{if } (\text{Re } \tau, \eta) \in (\bar{\Omega})^c,
$$

we have

$$
\begin{cases} d_i^{-\frac{1}{2} + \frac{1}{m_i}} \overline{\delta}_{i j \pm}^* - \frac{1}{2m_i} = d_i^{-\frac{1}{2} + \frac{1}{2m_i}} \leq d_i^{-\frac{1}{2} + \frac{1}{2m}} & \text{if } (\text{Re } \tau, \eta) \in \Omega, \\ d_i^{-\frac{1}{2} + \frac{1}{m_i}} \overline{\delta}_{i j \pm}^* - \frac{1}{2m_i} \leq d_i^{-\frac{1}{2m_i}} \leq \tau^{-\frac{1}{2}} d_0^{-\frac{1}{2m}} & \text{if } (\text{Re } \tau, \eta) \in (\overline{\Omega})^c, \\ \end{cases}
$$

therefore we have

$$
\left| \frac{\tilde{R}_{ij,1h}(\tau,\,\eta)}{\tilde{R}(\tau,\,\eta)} \right| d_i^{-\frac{1}{2} + \frac{1}{m_i}} \bar{\delta}_{ij}^* - \frac{1}{2m_i} d_i^{-\frac{1}{2} + \frac{1}{m_i}} \bar{\delta}_{ih}^* - \frac{1}{2m_i}
$$
\n
$$
\leq \frac{C d_0^{-1 + \frac{1}{m}}}{|R(\tau,\,\eta)|} \leq \frac{C'}{T} \qquad \text{if } (\text{Re }\tau,\,\eta) \in \Omega,
$$
\n
$$
\left| \frac{\tilde{R}_{ij,1h}(\tau,\,\eta)}{\tilde{R}(\tau,\,\eta)} \right| d_i^{-\frac{1}{2} + \frac{1}{m_i}} \bar{\delta}_{ij}^* - \frac{1}{2m_i} d_i^{-\frac{1}{2} + \frac{1}{m_i}} \bar{\delta}_{ih}^* - \frac{1}{2m_i}
$$
\n
$$
\leq \frac{C\tau^{-1} d_0^{\frac{1}{m}}}{|R(\tau,\,\eta)|} \leq \frac{C'}{\tau} \qquad \text{if } (\text{Re }\tau,\,\eta) \in (\bar{\Omega})^C,
$$

and so on. $Q.E.D.$

Example. Let (P) be defined by

$$
\begin{cases}\nA = (\xi^2 + |\eta|^2 - \alpha^2 \tau^2)(\xi^2 + |\eta|^2 - \beta^2 \tau^2) & (\alpha > \beta > 0), \\
B_1 = \xi^2 + |\eta|^2 - \alpha^2 \tau^2, \\
B_2 = \xi - i(\alpha \tau + b\eta) & (a, b: \text{ real}).\n\end{cases}
$$

Then uniform Lopatinski's condition is never satisfied, but Lopatinski's condition is satisfied if and only if

$$
|\,b\,|^{\,2}\!-\!\frac{a^2}{\alpha^2}\!\leq\!1.
$$

If $b^2 - \frac{a^2}{a^2} = 1$, then (P) is not L^2 -well-posed. In fact, let $\{\xi_1^{\pm}(\tau,\,\eta)\}$ be roots of $\xi^2 + |\eta|^2 - \alpha^2 \tau^2 = 0$, let $\{\xi_2^{\pm}(\tau, \eta)\}$ be roots of $\xi^2 + |\eta|^2 - \beta^2 \tau^2 =$ 0, then

$$
R(\tau, \eta) = \frac{1}{\xi_2^+(\tau, \eta) - \xi_1^+(\tau, \eta)} \det \begin{pmatrix} B_1(\tau, \eta; \xi_1^+(\tau, \eta)) & B_1(\tau, \eta; \xi_2^+(\tau, \eta)) \\ B_2(\tau, \eta; \xi_1^+(\tau, \eta)) & B_2(\tau, \eta; \xi_2^+(\tau, \eta)) \end{pmatrix}.
$$

Let
$$
\sigma_0 = -\frac{a}{\alpha^2}
$$
, $\eta_0 = b$, then $R(\sigma_0, \eta_0) = R'_\tau(\sigma_0, \eta_0) = 0$, and
\n
$$
\det \begin{pmatrix} B_1(\sigma_0, \eta_0; \xi_1^-(\sigma_0, \eta_0)) & B_1(\sigma_0, \eta_0; \xi_2^+(\sigma_0, \eta_0)) \\ B_2(\sigma_0, \eta_0; \xi_1^-(\sigma_0, \eta_0)) & B_2(\sigma_0, \eta_0; \xi_2^+(\sigma_0, \eta_0)) \end{pmatrix} \neq 0
$$

therefore

$$
\frac{\det\left(\begin{array}{cc} B_1(\sigma_0 - i\gamma,\ \eta_0;\ \hat{\xi}_1^-(\sigma_0 - i\gamma,\ \eta_0)) & B_1(\sigma_0 - i\gamma,\ \eta_0;\ \hat{\xi}_2^+(\sigma_0 - i\gamma,\ \eta_0)) \\ B_2(\sigma_0 - i\gamma,\ \eta_0;\ \hat{\xi}_1^-(\sigma_0 - i\gamma,\ \eta_0)) & B_2(\sigma_0 - i\gamma,\ \eta_0;\ \hat{\xi}_2^+(\sigma_0 - i\gamma,\ \eta_0)) \end{array}\right)}{\det\left(\begin{array}{cc} B_1(\sigma_0 - i\gamma,\ \eta_0;\ \hat{\xi}_1^+(\sigma_0 - i\gamma,\ \eta_0)) & B_1(\sigma_0 - i\gamma,\ \eta_0;\ \hat{\xi}_2^+(\sigma_0 - i\gamma,\ \eta_0)) \\ B_2(\sigma_0 - i\gamma,\ \eta_0;\ \hat{\xi}_1^+(\sigma_0 - i\gamma,\ \eta_0)) & B_2(\sigma_0 - i\gamma,\ \eta_0;\ \hat{\xi}_2^+(\sigma_0 - i\gamma,\ \eta_0)) \end{array}\right)}\right)}{\geq \frac{c}{\gamma^2}} \qquad (0 < \gamma < \gamma_0),
$$

which contradict to the necessary condition for L^2 -well-posedness. If $b^2 - \frac{a^2}{\alpha^2}$ < 1, then semi-uniform Lopatinski's condition is satisfied, therefore (P) is L^2 -well-posed.

References

- [1] Agmon, S., Problèmes mixtes pour les équations hyperboliques d'ordre supérieur, *Collogue Internationaux du C.N.R.S.* (1962), 13-18.
- [2] Mizohata, S., *Quelques Problemes au Bord, du Type Mixte, pour des Equations Hyperboliques,* College de France (1966-1967), 23-60.
- [3] Ikawa, M., Mixed problems for hyperbolic equations of second order, /. *Math. Soc. Japan,* **20** (1968), 580-608.
- [4] Miyatake, S., A remark on singular integral operators and reflection principle for some mixed problems, *Proc. Japan Acad.* **45** (1969), 547-551.
- [5] Agemi, R. and T. Shirota, On the necessary and sufficient conditions for L²-well-posedness of mixed problems for hyperbolic equations, *J. Fac. Sci. Hokkaido Univ. Ser.* /, 21 (1970), 133-151.