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On Cohomology Theories
of Infinite CW-complexes, I

By

Zen-ichi Yosimura*

In [2], §3, we discussed some convergence conditions of spectral
sequences associated with an additive cohomology theory A. In this note
we give a criterion for strong convergence of the spectral sequences
(Theorem 5) and prove that the spectral sequences are strongly convergent
under some finiteness assumption on A (Theorem 6).

In §1 we study some basic results (Theorems 1 and 2) on inverse
limit functor and its derived functor. In §2 we construct a certain five
term exact sequence (Theorem 3) and discuss convergence conditions of

the spectral sequences.

1. Inverse Limit Funcior

1.1. Let I be a partially ordered set. As in [2], we associate with
I a semi-simplicial complex [y={I,},-0 equipped with the following

structure: an n-simplex is a sequence
0= {“0; (25 PREEED an}a aOéalé gan;

i-th faces F;0 and i-th degeneracies D;0, 0<i<n, of n-simplex ¢ are
defined by

Fio':{QO: vy ai—l) ai+1) Tty an}
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and
Dio={cto, ---, s, Qi ---, A}
Let I, denote the set of all non-degenerate n-simplexes of I, i.e.,

Irl;:{o-: {afo, al) Tty an}: a{0<a1<"'>afn}-

1.2. Let 4 be a ring and &={4,, gi} an inverse system of
(left) A-modules and A-homomorphisms indexed by I.
We define n-cochain groups C*(I; &) for n=0 by

(1.1) C*(1; )=T1l.er; Ao

where A,=A,, and «, is the leading vertex of ¢ for each o={a, -,

a,} € I, and coboundary homomorphisms
0"t C*"Y(I; &) —> C*(1; ) for n>>1

by
i .
(1.2) pO" = _Zo(——l)‘sbf,pr.,
i= 1
for each g€ I, where ¢;,: Ar,—>A4,, 0=i<n, are defined by

(1.3) Yo,=g% and ¢;,=id for 1<i<n,

and p,: C"(I; &£)—> A, is the projection for each r€1I,. Then we
obtain a cochain complex {C*(I; &), 0*} and

lim & =lim 4,= H(C*(I: &), 6%).
a
The “n-th derived functor” lim", n=>1, of inverse limit functor lim are
defined by

(1°4) lim" &/ =lim" Aa:Hn(C*(I: L), 6*)

(see [77], [8] and also [2]).
Let &/={4,, gﬁ} be an inverse system indexed by I. For each
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a€ I A-modules A, and Al are defined by

(1.5) A,=T1 A, and A= TI 4,

rsa v'<a
and for each a<f A-homomorphisms
(1.6) g4: Ag—>A. and g'h: Ap— Al
by
pygi=p, for r<a<p
and
Prg'e=pr—gvpa  for y'<a<p

where p. is the projection onto the e-factor 4. for each eel. We can
easily prove that

oA={A4,, g&y and L'={4L, g'%}

are inverse systems indexed by I.

Moreover for each ¢ €I we define 4-homomorphisms
Ug: Ay— A, and v,: Ay— AL
by
Prlta=gy  for T=a
and
PrYa=Ppy— &7 Pa for 7'<a.
By a routine computation we see that
u={uy: &> and v={v,}: >’

are morphisms of inverse systems. Hence we get an exact sequence of

inverse systems
.7 0—>{4.,, gﬁ}#{z{ia, gg}g{A;, g’ﬁ}—»O.

The following proposition is essentially contained in Nobeling [7].
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Propesition 1. lim? 4,=0 for p=1.
Proof. For each y €I we define an inverse system .,of ={,Aq, 05}

as follows:

4, 1=« id r=a=<8
'yAaz

0 otherwise 0 otherwise .

Then we define a cochain contraction ,s*={,s": C*(I; ,)—> C"'(I; ,)

for each y€1I by

., { Pery T<Qo
Poeys"=
0 otherwise

where o(r)={r, &g, -, Au_1y €I, for each o={ag, -+, A1} € I,_;.

Hence we get
lim? ;7 =0 for p=>1.
On the other hand we see
/iazl;[ y A, and gg’}:l;l , 0%,
ie, o= 1;[ ,/. Therefore

lim? of = [[lim? ,&/ =0 for p=1. Q.E.D.
7
Combining Proposition 1 with (1.7) we obtain
Corollary 2. There are an exact sequence
0—lim A, —>lim A, —>lim Ay —>lim' 4, —0
a a a a

and isomovphisms

lim? A, = lim?*~* A} for p=2.
o

a

1.3. Let I and J be partially ordered sets and o« ={A4,, 5} an inverse
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system indexed by IXxJ. In the preceding subsection we defined the
cochain complex {C*(IxJ; o), 0*}. Here we construct another cochain
complex {C*(IxJ; ), d*} for the inverse system ./ over the double
index Ix/J.

Let C*Y(IxJ; ), p, =0, be A-modules defined by

(1.8) Cr(IxJ; )=T1loety ret; Aoy

where A,,,-——Aao,ﬁu and «y and B, are leading vertecies of ¢ and 7, and
di~ve: Cr LI J; L) > CrU(IX J; )

and
byl G Y(Ix J; L) > Cr(Ix J; )

be A-homomorphisms defined by

b .
PondiH = 2 (1 henpr,,

and

q

P T

j=

for 0 € I}, and v € J; where ¢} )2 4Aror Ao, a0d O} o)1 4o, re—> Ao,
are defined like (1.3). Then {C**(IxJ; &), d1, d;} is a double com-

plex and the associated cochain complex {C*(IxJ; &), d*} with the
total differential d* is given by

(1.9 C*"(IxJ; #)=oer)resipAe. and d*=d;+ds.
We have a cochain map 0={0"},~0 with
" C'(Ix J; £)—>C"(Ix J; )

defined by

n
_ .B3)
"= (g, B; r
Poxs j;'o 8(@0BYP,, | . F oo,y Fy
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for 0=(ao, ---, )€ I, and v=(By, ---, Bu) EJ, such that o xce(IxJ)..
In fact, putting F{=F,...F;_, and F,=F, ,...F, we have

FiF;=F; ;F},Fi_\F,=F, for 0<j<i<n
and
FiF,=F}*', Fi_|F;=F;Fi+ for 0Zi<j<n—1.
Using these relations we see easily that

n—-1

Pox:0" 0" =pou,0"d"

for each oxt€(IxJ).

Lemma 3. The cochain map 0 induces isomovphisms

H"(0): H(C*(IX J; o), d*)=1lim" o

for all n=0.

Proof. In Proposition 1 we proved

lim” o7 =0 for n>0.
Similarly we can show
H*(C*(Ix J; £))=0 for n>0.

Indeed we define a cochain contraction (y,&5%*={(,.&)5": C"(IXJ; (4,6))
—>C" M (IXJ; v.ey€)} for each (r,e)€IxJ by

J 2O <ay

PG,T-(%E)gnz{ .
0 otherwise

for c€ I, and t€J, ,,. Hence (1.7) induces a commutative diagram
HYC*(Ix J; £))—>H(C*(Ix J; &) —> H" " Y (C*(Ix J; £))—>0
v v v

li‘__m"j B l_l'l’_nn-ff/ N limm—lﬂ____)o

for n=>0 in which rows are exact. It is obvious that
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H(p): HY(C*(IXJ; )= lim .
Applying “five lemma” in the above diagram we obtain
HY(C*(Ix J; )= lim" o/ for n=>0
by an induction on n. Q.E.D.

By the above Lemma 3 and standard arguments about the spectral
sequence associated with a double complex we get the following Theorem,

which is originally given by Roos [87].

Theorem 1 (Roos). Let I and J be partially ordered sets and of =
{4, s} be an inverse system of A-modules indexed by Ix]J. There exist
two strongly convergent spectral sequences {E,} and {E,} associated with

1j_mﬁ* Ay, 5 by suitable filtrations such that
a,

B3 =lim? lim® Ao and Eé”q=li._glp lim? Ag, g-

1.4. Here we shall restrict our interest to the category of inverse
systems of compact Hausdorff abelian groups and continuous homomor-

phisms indexed by I. Further we suppose that the index set I is di-
rected.

Proposition 4. The inverse limit functor on the category of inverse
systems of compact Hausdorff abelian groups and continuous homomor-
phisms indexed by a directed set I is an exact functor. (Cf., [37], p. 523).

Proof. Let 0 ——{A,, g8y 22 (B,, h8} L, {C,, 85— 0 be an

exact sequence of inverse systems. Since we have an exact sequence

0—1lim 4, % lim By 5 1im C,
a a a

it is sufficient to show that

¢: LimBa_—)liLn.Ca
@ a

is an epimorphism.
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Take any z={z,}Elim Cy, i.e., fAzp=2z,. Putting E,=¢z'z, for

a
each € I, E, is a nonvacuous compact Hausdorff subspace of B, and
h8EsCE, for f=a. Hence {E,, h5} is an inverse system of nonvacuous

compact Hausdorff spaces. According to [ 5], Theorem 3.6 of VIII, lim E,
a
is also nonvacuous. Thus there exists y=4{y,} €lim E,Clim B, such
a a

that ¢(y)=z. This implies that ¢ is an epimorphism. Q.E.D.

Theorem 2. Let o/={A,, g} be an inverse system of compact
Hausdorff abelian groups and continuous homomorphisms indexed by a di-
rected set 1. Then

lim? A,=0 for p=1.

Proof. In the exact sequence
0—>{da, g8} —{4a, g2} —> {4, g'a} >0

of inverse systems given in (1.7), 4,, A, and A% are compact Hausdorff
and g4, g4 and g4 are continuous. By Corollary 2 and Proposition 4

we see

lim! 4,=0 and lim?*! 4, =1lim? A, for p=1.
a

a a
Therefore we obtain

lim? A,=0 for p=1

by an induction on p. Q.E.D.
As an immediate corollary of the above Theorem we have

Corollary 5. Let o/=1{A,} be inverse system of finite abelian groups
indexed by a divected set I. Then

lim? A,=0  for p=1.

a
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2. Convergence Conditions of Speciral Sequences

2.1. Let A be a (general reduced) cohomology theory defined on the
category of based CW-complexes and X be a based CW-complex with an
increasing filtration {X,};20, X=X.=\UX,, by subcomplexes. We define
a decreasing filtration of A"(X) by

FPR (X )=Ker{h"(X)—h"(X,_1)} for p=0.

According to [4] we obtain the spectral sequence {E,},.1 of A associated
with the filtration {X,} of X such that

EPI=h*"(X,/X, 1) and EZ= FPR**4(X)/F**'h?**4(X)

(see [2], §3).

In this case there is an exact sequence

0—>EL! > EP—Z01/7%71 50

for each r>p as Bhf=---=B%% For each p, g this yields an exact
sequernce
@.1) 0—>EL > lim B} "> lim (Z1*/Z%%) 0

r>p 7

and an isomorphism
(2.2) %x:: Ebi~ H_rml (Z21/Z5:9).
We define groups W?2* by
(2.3) Wir=Im{h"(Xpsr1/Xp-1)—>h" X/ Xy r-1)}
for each r, 0=r<co. Obviously we have
(2.4) WenD Weibey ... phtre=y,

Consider the following commutative diagram
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hn(Xp+1—1/Xp)
P A4
h”(Xp+1—l/Xp—1) j" hn*l(X/XjHr—l)
— 2 T
B X/ Xp-1) 57> W(Xp/Xp-1) = B H(X/X,)

in which the bottom row and the right column are exact and Im ¢=
W Im ¢'=Weti? Imp=Z2""? and Imp’=Z%"»"?. By chasing the

above diagram we get
(25) Zymr[ 2 W WA,

2.2. Let h be a cohomology theory and X a based CW-complex
with a filtration {X,},50. We suppose that & is additive [6], i.e., A"

satisfies the wedge axiom for each degree n. Then Milnor [ 6] established

a short exact sequence

(2.6) 0 —>lim* h”'%X,,)—»h”(X)—»l%g h*(Xy)—0
b

for each n which is important in the present discussions.

By the definition (2.3) of 2" we have an exact sequence

0—> W 2" — "X/ Xpor1) > B X/ X 1)

> A" Xprr1/Xp1) > W2 10,
Since Milnor’s exact sequence implies
1i_fr£ Y X/ Xy r-1)=0,
and obviously 1i_r:11 h"(X/Xs-1)=0, we see
2.7 @?Wi;'"zo and uTmlWﬁ'"_:_n_fll W (Xpir—1/Xp-1)

(replacing n+1 by n in the above exact sequence). Then we obtain an

exact sequence

2.8) 0> Lim (W 27/ W221%) > lim® K*(X .1/ X,)
r 7
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—lim* h"(Xp.y -1/ Xp-1) = lim" (W2"/ W) =0

from the exact sequence
0> Wetbr > Wer b/ etlr (),

By the aid of (2.1), (2.2), (2.5) and (2.8) we get a five term exact

sequence as follows.

Theorem 3. Let h be an additive cohomology theory and X be a
based CW-complex with an increasing filtration {Xp}pz0, X=IX,, by
subcomplexes. Let {E,} be the spectral sequence of h associated with the

filtration {X,} of X. There exist exact sequences

0— E2¢—lim E29 > lim' B** (X, 1/ X,)
r>p r

—> lim* hp+q(Xp+r—1/Xp—1)—*1i.?m1 E?1—0
4 r>p

for all p and q.

Theorem 4. Under the same situations as in the above Theorvem we

fix an integer n. The following three conditions ave equivalent.

i) EZ"?~lim Et"?  for p=>0 and lim' A*(X,)=0,
r>p r

ii) H_ml hn(Xp+7/Xﬁ—-l)=0 Jor pZO,

iii) lim' E2"?=0  for p=0.
r>p

Proof. “ii)—1i)” and “ii) —iii)” follow immediately from the above
Theorem 3.
i)—ii): In [27] we defined groups C2#7”~? by

C»?=Im {A"(Xp,,-1) >h"(X,)}
for each r, 1<Xr<oco. We have an exact sequence

0> CEm P> (Xy) > K Xy yo1/ Xp) > B (K1) — CEP 4150,
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By the assumption that lim! 2"(X,)=0 we get
r

*) lim! C27~2=( for p=>0

r

(replacing n+1 by n in the above exact sequence).

Here we have the following commutative diagram

0 0
' l
lim' B*( Xy r-1/Xp) = lim* B"(Xpir-1)
i l
0->CoP0 —> B%(X,) —> KHX/X,) —> BHX)

¥ I \ v

0> lim €272 B*(X,) > lim K (Xpry 1/ X,) > lim B3 (X, )
r r ‘L 7 i
0 0

involving Milnor’s exact sequences (two columns). The upper row is
obviously exact and the lower row is also exact because of (*). The

assumptions that EZ"?~1lim E?"~? for p=>0 and lim' A"(X;:,_1)=0 yield
r>p 7

that in the above diagram

CL7~1m C27?  for p=0

r
and

R X)) 2 lim B (X -1,
7

using Lemma 7, iii) of [2]. With an application of “four lemma” we see

KX/ Xy) = lim b (Xy,,_1/X,)  for p=0,

ie.,

l_i_ml hn<Xp+r._1/Xp)=0 for PZO.

iii)—ii): We put
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A=W/ WEpn.

For each p=0 {42} becomes an inverse system indexed by pairs (r, k).
By Theorem 1 there exist two spectral sequences {E,} and {E,} asso-
ciated with lLim* A2, such that

7,k

Eg' =lim*® li_k{ntA‘r’,k and Eé”=li_k{ns lim" 42,
r r

Here we calculate the F,- and E’g-terms. Remark that

lim' A2, =lim" (W2"/WEiPm) > lim' E2"~2=0  for p=0,
r r r>p

by (2.2), (2.5) and our assumption iii). From the exact sequence
0> A3t > A2, > A2, —0
we obtain an epimorphism lim 4?,—1lim 42, ; and an isomorphism
7 r

lim* 42 ,~1im® A2, ,. Then by an induction on . we can show that
r r

lim' 42,=0 for k=1

r
and in addition

lim" lim® A7,,=0
r

(see [27], (2.6)). Therefore
Eyt=0 unless (p, ¢)=(0, 0)

as Eyt=0 for s>1 or t>1 (see [2], (2.4)). Thus

lim

i
7.k

m” A2 ,=0 for m=>1.
On the other hand, lim A2 ,~=W#” by (2.4). Hence we get
k
lim' W2~ E}°=FEL° ~1im® 42,=0.
7 7.k

Then (2.7) implies
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lim' A" Xy r_1/X,-1)=0  for p=0. Q.E.D.

As a corollary of the above Theorem we obtain

Theorem 5. Let h be an additive cohomology theory and X be a
based CW-complex with an increasing filtration {X,};20, X=\UX,, by
subcomplexes. The spectral sequence {E,} of h associated with the filtra-
tion {X,} of X is strongly convergent if and only if lirgl W' (Xpir/Xp-1)=0

Sfor all p and n.

2.3. A topological abelian group is said to be profinite if it is an
inverse limit of finite abelian groups with the inverse limit topology [3].

It is a trivial cosequence that
(2.9) a profinite abelian group is compact Hausdorff.

We call a cohomology theory A is (F)-cohomology theory when A"(S?)
is a finite abelian group for each degree n. Then A"(X) is a finite abelian
group for any based finite CW-complex.

Let & be an additive (F)-cohomology theory, X a based CW-complex
and W(X)={X"} be the set of all finite subcomplexes of X ordered by

inclusions. U(X) is a directed set. Since Corollary 5 implies lim? A"(X™)
A

=0 for p=1 we see that

(X)) = lim A*(X™) for each n,

using Corollary 12 of [2]. Thus A"(X) is a profinite abelian group for
each n and hence compact Hausdorff.

Let f: X—Y be a continuous map of based CW-complexes. Since
f induces a morphism U(f): W(X)—>U(Y) of partially ordered sets,

(2.10) fRh(Y)—>h"(X) is a continuous homomorphism of compact
Hausdorff abelian groups.

Proposition 6. Let h be an additive (F)-cohomology theory and X
a based CW-complex. Let €={X,} be a direct system of subcomplexes
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of X (by inclusions) with X=\UX, over a directed set I. Then

BY(X) 2 lim B"(X,) and lm’h"(X,)=0  for p=1.

Proof. According to [2] we have a spectral sequence associated with
h*(X) such that

ES =lim® h*(X,).

Using Theorem 2 and (2.10) we get

lim? B%(X,)=0  for p=1.

Hence our spectral sequence collapses, and then it is strongly convergent
by Proposition 9 of [27]. Therefore

lim A"(X,)=E}*=E%"~ h"(X). Q.E.D.
a
Putting Theorem 5 and Proposition 6 together we obtain the following

Theorem 6. Let h be an additive (F)-cohomology theory and X be
a based CW-complex with an increasing filtration {X,};20, X=\UX,, by
subcomplexes. The spectral sequence {E,} of h associated with the filira-

tion {X,} is strongly convergent.

Let A( ; Z,;) be the mod ¢ cohomology theory [17] defined by
W(X; Z)=h"* (X AM,)

where M, is a co-Moore space of type (Z, 2). If h is additive and of
finite type, i.e., A"(S°) is a finitely generated abelian group for each
degree n, then A( ; Z,) is an additive (F)-cohomology theory.

Corollary 7. Let h be an additive cohomology theory of finite type
and X be as in the above Theorem. The spectral sequence {E,} of
h( 3 Z,) associated with the filtration {X,} is strongly convergent.
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