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A Remark on an Infinite Tensor Product

of von Neumann Algebras

By

Huzihiro Araki and Yoshiomi Nakacamr*

Abstract

Let H: be the incomplete infinite tensor product of Hilbert spaces H, con-
taining a product vector ®x,, where ¢ denotes the equivalence class of the
@,-sequence {x,}. Let E. be the projection on H. in the complete infinite ten-
sor product H of H,. Let % be the von Neumann algebra on H generated by
von Neumann algebra %, on H, and E(c) be the central support of E; in $®’.
Two €,-sequences {x.,} and {y.}, and their equivalence classes ¢ and c’, are
defined to be p-equivalent if there exist partial isometries p, &%/ such that {x,}
and {p.y.} are equivalent and p¥p,y,=y,. They are defined to be u-equivalent
if p, can be chosen unitary. We prove that E(c) is the sum of E., with ¢/, p-
equivalent to c¢. If the index set is countable, p-equivalence and u-equivalence
coincide.

§1. Introduction

According to von Neumann [ 8], the complete infinite tensor product
H=®H, of Hilbert spaces H, ¢€ I, is the (linear topological) span of

all product vectors @z, (multilinear in x,) such that x,5=0 and
(1.1 21—l <oo.

(We have substituted ‘“‘tensor” into von Neumann’s “direct”.) Let S
denote the set of all {x,} satisfying (1.1) and S, denote the set of all
{x.} € S such that x,#0. {x,} and {y.} are called (strongly) equivalent
if
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(1'2) le—'(xn yz)l<°°'

Notation: {x,}~{y,}. It defines equivalence relations in S and Sp. Let
€ and €, denote the set of equivalence classes c¢({x,}) of {x,} in S and
Sy, respectively. The subspace of H spanned by Qx, with a fixed c¢({x,})
=c&€E, is called the incomplete infinite tensor product and is denoted by
H.=X‘'H, Let E. denote the projection on H, in H.

Let R, be a von Neumann algebra on H,, # be its natural represen-
tation on H (namely w(Q)(Q=x,)=Q=x., with x|=ux, for ¢7=¢; and x,=
Qx, for ¢=¢o, if Q€R,). Let R=QR, be the von Neumann algebra
generated by the union of all #(R,). Since H, is invariant under each
7(R), E. is in R'. Let E(c) be the central support of E, in R’

Definition. Let {x,}, {y.} €S and c=c({x.}), '=c({y.}).

(1) A{x.} and ¢ are u-equivalent to {y,} and ¢, respectively if {x.}
~A{u.y.} for some unitary u,€Ri. Notation: {x}~{y}, c~c.

U u

(2) {x.} and c are p-equivalent to {y} and ¢, respectively, if {x.}
~{p.y.} for some partial isometry p,€R| such that p¥p,y,=ry. Notation:
{xb};«{y,}, C';C'-

3) {=x.} and ¢ are v-equivalent to {y} and ¢, respectively, if {x.}
~{v,y.} for some v,€ER such that ||v,||<1. Notation: {x}~{y}, c~c.

v v

Our main result is the following:

Theorem. (1) E(c) is the sum of E. with c";fc.

(2) If the index set I is countable, ¢'~c and ¢'~c are equivalent.
p u

Remark. 1f R,=%R(H,), the set of all bounded linear operators on
H,, then ~, ~ and ~ all coincide with the weak equivalence introduced

122 P v
by von Neumann.

§2. Eguivalence Relations

The wu-equivalence is clearly an equivalence relation. In this section,

we shall show that p- and v-equivalence are also equivalence relations and
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are the same. In the definition of v-equivalence, we have not stated the
condition {v,y,} € S. This is actually a consequence of {x,} €S, {y}€S

and {x.,}~{v,y.}, as is shown in the next Lemma.

Lemma 1. If {x,}€S, {y.}€S, [[vl/[=Z1 and {x}~{v.y.}, then
{v.y.} €S.

Proof. Since {y} €S and ||v,[| =<1,
sup|[v, y.[| <sup|| y.[| <eo.
If |lv.y./[=1, then 0=1—]||v,y.]|=1—]|y.ll and hence
I=floyll= [1=llvylll =211 =iyl

This inequality obviously holds for 1=|jv,y,/. Now assume that {v,y.}
¢ S. Then

21—, vy) | 22 41— (%, vy [}
= 21—z dlllvy [y = ZA = vyl + Zllo.y A= l.0)
= 21 =llwylll =22 11—yl —supilv.y [ 211 =[x}
= + oo
which contradicts with {x,}~{v,7.}. Q.E.D.

Lemma 2. {xb}';{yb} and {xb}:«{yﬁ} are equivalent.

Proof. Obviously {x,}~{y.} implies {x,}~{y.}. To prove the con-
verse, let {x,}~{v.y.} wiih lo]] <1.  Let :’(yb) denote the smallest
projection E=s'(y,) €R. such that Ey,=y, (EH, is the closure of R,y..)
Let p.g.=v.s'(;y.) be the polar decomposition with ¢,=]|v.s'(y.)|, p¥p.=
s'(q,.) (1 minus the spectral projection of g, for the eigenvalue 0).

Since ||¢.y.ll=llv.s'(y)yll=]lv.y.]| and {v,9.} €S by Lemma 1, we
have {¢,y.} € S. Since 0=<¢,<1, we have ¢?=<¢, and hence

21— (p.ys pg.y) | =2 11—y q. )]
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<21yl + 2, Q—g)y)
<X I1=lxlPl+ Xy, A—gHy)
<2 11—yl + X 11—=llg.yl?l.

Since {y.} € S, we have sup||y.,||<eo and hence
Z11—lig.yll? 1 Ssup(1+lg.y.ID 2 11— llg.p.ll | <eo.

Therefore {pty‘}’\«{ptq,y,}={vby,}’\'{xb}-
Let 5,=s(y.)—p¥p.. If s5,9,=0, then we have {x,}~{y.}. In gener-
»

al, s, is a projection in R. Since {p,y.} €S by Lemma 1, we have
sy llP=Zly P =llpyHD=ZI1=15l? 1+ Z 11—l p.y.l?|
SsupQ+{lyll+HpyIDZUT= 1yl + 1=l p.yll ) <ee.

Hence s,7,=0, possibly except for a countable number of ¢=¢(l), [=1,
2, ...

Let F, be the central projection in R, such that Ftp’,“pﬁ is finite and
(1—F,)p¥p. is properly infinite in R]. There exists a partial isometry
p. in R such that p*p/=F,(1—p¥p.), pip.*=F,(1—pp¥). There also
exist projections e,, in R, k=1, 2,-.- (countably infinite number) such
that each e, is equivalent to (1—F)p¥p, and ;ebk=(1—F,)pika. Since
Sllesyll?<|ly.ll% there exists k=4k(l) such that |le,y.][?°<27! for ¢=
ck(l). Then there exist a partial isometry pi(;, such that pi{{ipi(;=e.anq
+ QA —F.a) A= plop.w), pinpiss = Q—F.0) 1= puy A= o) PEn)-
Set p.=p, if ¢#c(l), I=1,2,..., and p,=F.(p.+p.)+1—F)p(1—e..qy)
+p.’ for ¢=¢(l).

We first see from the construction that p, is unitary for ¢=¢(l) and
hence p¥p.y.=y, for all ¢. For ¢~¢(l), p.y.=p.y. For ¢=¢(l), we
have

l(ptyu Pl-yn)'_ ||P¢yb|\2 |
= I(pn(sn—l_ ezk(l))yu Pbepk(l)ya)"‘ ”P;&k(l)}’z”zl

<(ls.yll+ ey yDlleswy vl + ey y.l?
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which is summable over [=1, 2, .... Therefore
Z11—=(p.ys py)|
<X 1-lpyl*l+ 2 (panyuws Payyan) = P y.aoll?]
< oo,
Hence {p,y.} €S by Lemma 1 and {p,y.}~{p.y.}~{x.}. Q.E.D.

Proof of Theorem (2). In the provious proof p, is unitary for ¢=
¢(l). Hence this construction (even if s,,=0 for all ¢) gives the equiva-

lence of ~ and ~ when the index set [ is countable. Q.E.D.
“ b

Lemma 3. ~ is an equivalence relation.
b

Proof. Obviously {x,}~{x,} because {x,}~{p.x.} with p=1. Sup-

»
pose {x}~{p.y.}. Since (y, p¥x.)=(x, p.y.)*, we have {y}~{p¥x}
and hence {y,}~{x,}. By Lemma 2, {y.}~{x.}.

»
Finally, suppose {x.}~{p.y.} and {y}~{piz} with p¥p.y,=y.

Then (p.y,, p.piz) = (pip.y., piz.) = (¥, piz). Hence {x}~{p.y}~
{pp.z.}. Therefore {x,}~{z} and by Lemma 2, {x}~{z}.
» 4

Q.E.D.
§3. Central Suppert E(c)
Lemma 4. For ¢, €C,, either E(Q)E.=E, or E()E.=0.
Proof. Take any {y.} €S,. By Lemma 4.2 of [6],
(3.1) E0)(®y)= Jim E;(®y.)

where JC CI indicates that J is a finite subset of I and E; is the small-
est projection in

)=\ 7@
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scuh that E;(Qx,)=Q=x, for a fixed {x,} €c. Let ¢/=c({y}). Since
H,. is invariant under RDOR(J°), each E;(Qy.) as well as its limit E(c)

(®y.) is in H.
By Lemma 3.1 of [27], there exists J for any given &>0 such that

JC CI and
(3.2) IE@(®y)—2:Qy ()<

where z;€ (83_ H, and y(J°)= & y.. For the same ¢ and J, there exists
e L]
K> J, KC CI such that

(3.3) IE(®y)—Ex(Qy)ll <e.

Since Ex € R(K°)CR(J°), we can write Ex(Qy.)= y(J)Qz for some

z€ @ H,. From the two inequalities,
v

(3.4) 2, @y () —y () @zl <2

Since {y.} € So, az=|ly(J°)|| and b;=||y(J)|| are bounded away from
0 and co when J runs over all finite subsets of I. Let a=[E()(Qy.)l|
and assume that a==0. Then we have from (3.2) and (3.3), |a1—a/a:|
<g&/az and |by—a/b:| <e/b; for a;=||z;|| and by=]||z||. Therefore a;
and b, are also bounded away from 0 and oo for sufficiently small e.
From (3.4), we also have |aja;—b1bs| <2e.

We set 01=z;/a1, Or=y(J)/az, T1=y(J)/b1, ¥2=2/bs. They
are all unit vectors. From (3.4), we obtain, by using |ajaz—b1bs| <2¢

and separation of ajaz, b,b, from 0,
10: R0~ 1 Q|| <'(e)
where ¢'(§)—>0 as ¢—>0. Then
1—Re (@1, 1) (0;, ¥3)<e'(e)?/2.
Since (@1, )| <1 and (@, ¥2)| <1, we have
()’ /2>1— (01, 71)| [(@2, ¥2)|

Zmax(l_ I(mla yl)l: 1— ](QZ, qu)[)
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Hence choosing 6 and 6’ such that (@i, e”°%;) and (@, e’¥,) are both

non-negative, we have
[0, — "% 1| <&'(e), ||@:— e’ 5|l <& (E).

In particular, we use the first inequality and (3.2) to obtain
IE@(®y.)—2:(Qy)l| <e+aia'(e)

where 1.=e"%a;/b; is a complex number depending on e¢. We choose a
sequence &,— 0 such that 1, —4, which is possible because 4. is bounded.

Then, by using separation of aia; from oo,
(3.5) E@(®y)=4Ry.)-

In this derivation, we assumed ||[E(c)(®y.)||7=0. If this is not the
case (3.5) holds with 2=0. Since E(c)’=E(c), we have 1°=21 and hence
A=1 or 0.

If c({y.})=c({y!}), then by Lemma 3.1 of [ 2], there exists JC CI
such that

(3.6) &y —2'Qy(J)l<e.
By (3.1), E(c)(®y.)=24(&Qy.) with 2=1 or 0 implies

lim Ex(ZQ@y(T))=4zQy(J°))

and hence by (3.1) and (3.6), we have E(c)(®y)=2(Ry.) with the
same A. Hence E(¢)E.=21E., with 2=1 or 0. Q.E.D.

Let 7. denote the restriction of the representation 7 to E.H.

Lemma 5. Let ¢, ' €Sy. FEither E(c)=E() or E(c) LE("). Ac-

cordingly, m. and T arve either quasi-equivaleni or disjoint.

Proof. The first part follows from Lemma 4. It then implies the
second part. Q.E.D.

Proof of Theorem (1). First assume that ¢'~c. Let x, and y, in
b
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H, be such that c=c({x.}), '=c({y.}), [lx]l=|lyll=1, and {x.}~{p.y.}
for partial isometries p, with prL y.=9. Let w, generally denote the
vector state by z. Then wg. =Qw,, and vg,,=&uw,..

Let ®p, be the mapping from H. to H, defined by

(3.7 (Qp)y(T)®2)=(py)J I p(J)z

where J is any finite index set, y(J°)= L(?be, (py)(]°)=‘(§,p,y., p()=
;@P‘ and z € ‘(§1HL. If {p.y.}~1=.}, then p=Qp, satisfies pH. CH,
and ||p||=<1, 7(Q)p=prnAQ) for Q€R, and hence for Q€R. Further-
more p(Qy.)=Q&p.y.70. Hence 7. and 7. have a nonzero intertwining
operator p and hence are not disjoint. By Lemma 5, we have E(c)E.=
E..

Conversely, assume FE(c)E.=E.. Then w, and 7. are quasi-equiva-
lent by Lemma 5. If x, satisfies ||x,||=1, ¢({x.})=c, then there exist a
countable number of vectors & in H, such that a)®x‘=Za);l. Since pro-

duct vectors are total in H., there exists y, € H, such that [|y,|/=1,
c({y.})=¢ and (¢1, ®y.)5=0. Then

(3.8) H(1’®x,_‘a’®y,” < 11;:1”51”2"" [|C051—"w®w”<2-

Let |[wgz,—wgy,|l; denote the norm of the restricition of wg., —0gy,
to R(J)=(\J (R.))". By proposition 1.12 and Corollary 2.6 of [5], we
ey

have

(3.9) ‘IE—I] p(a)x‘, wy,)gz—l(z—”a’®x,'—“)®y,||l)

=27Y(2— “w®x,"w®y,”)> 0

where o(#, v)=2"1(u(1)+v(1)—d(y, v))=2"1(2—d(u, v)?) for states u
and y. Since each p(w,, w,,) is in the interval [0, 1], (3.9) for arbitrary

J implies the absolute convergence of ITo(w., w,) and hence
(3.10) 2 d(0,s 05,)*=2F (1 — (s, 0y,)) < o0.

By Theorem 4 of [1], there exist x/ and y/ in H, such that
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(3.11) sl =Wz, Oy, =0y, |2 —yl||=d(w,, 0y),
(%2, y)>0.

Since w,, =x, p.s'(x,)=p, and pQx,=Qx. for all Q€R, defines (by
continuity) a partial isometry p, € R/, which satisfies p¥p,x,.=x, x.=p.x..
Similarly there exists a partial isometry p/ €N/ such that pi*ply.=y.

and y/=ply,. From (3.10) and (3.11),
Zll—=(xl, yD=27"Zllxl— yil[*<oeo

and hence {x,}~{p.x.}~{ply}~{y}. Therefore {x,}~{y.} by Lemma
» » »
3. Q.E.D.

§4. Discussions

If {x}~1{y.}, then x,=p,y, for a partially isometric p, € R{ for all ¢
except for .'f countable number of ¢, where p, satisfies pfp,y,=7y. (Note
that ||x./l=|ly.ll=1, (%, y)=1 imply ||x,—9.,]®*=0 and hence x,=y,.)
Then s'(x,) and s'(;y,) are equivalent in R{. p, can be extended to a
unitary in R{ if and only if 1—s'(x,) and 1—s'(y,) are equivalent in RI.

If {x,}’;«{y,}, then x,=u,y, for a unitary u,€R/ for all ¢ except
for a countable number of ¢. Therefore both s(x,) and 1—s'(x,) are
equivalent to s'(y,) and 1—s'(y,) respectively, with a countable exception.

Due to Theorem (2) and its proof, the above argument gives the fol-

lowing :

Theorem (3). {x.}~{y.} if and only if {x}~{y.} and 1—s(x,)

u »
is equivalent to 1—s'(y,) in Ri for all ¢ except for a countable many ¢,
where s'(x,) is the support projection of =z, in Ri. c({x})~c({y.}) i

and only if {x}~{y.}.

Proof. The first half is already shown. By definition, if {x,}~{y.},
u
then c({x.})~c({y.}). Therefore it remains to show that ¢({x,})~c({y.})
u u
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implies {x.,}~{y.}, which is rather trivial consequence of Definition:
By deﬁnz;tion, c({x.})~c({y.}) implies the existence of x/ and y| €&
H, such that {x}~{x!}, {y}~{y!} and {x}~{y/}. Since {x}~{xl}
and {yl}':{y{} trivially, it follows that {xL}'v{uyt}. Q.E.D.
"

Example. Suppose x, are cyclic for R, and p, are isometric operators
in R/, which are not unitaries. (This can happen for non-finite R..)
Then 1—s'(x,)=0 because s'(«x,)H is the closure of R,x, and %, is cyclic.
For y,=p.x, 1—s'(y)=1—p,pf+0. Hence, if the index set is non-
countable, then {xt}';«{y,} but {x,} is not u-equivalent to {y.}.

In this example, the representation of R in H, and H., c=c({x.}),
¢’=c¢({y.}), are not unitarily equivalent as is seen by the following argu-
ment:

Let y., A€4, be an orthonormal basis for H, such that y,,=y..
Then @ ¥.u) With £(¢)=0 except for a finite number of ¢, is an ortho-
normal basis for H+.. Any z€ H, has only a countable number of non-
zero components on this basis and hence z=(l§Ay,)®z’, z’E‘(ES;1 H, for
some countable index set 4. Since R=(\JR,)” and ¢y, is not cyclic for
R, z can not be cyclic for R in H,.. On the other hand, QRx, € H, is
cyclic for R in H. Hence R|H, and R|H,, can not be unitarily equiva-

lent.

Theorem (4). 7. is quasi-equivalent to 7. if and only if c~c. 7.
»
is unitarily equivalent to m. if ¢~¢. If the index set is countable, then

u
7. 1S unitarily equivalent to m. if and only if w. is quasi-equivalent to 7.

Proof. The first part is obvious by Lemma 5 and Theorem (1). To
see the second part, assume c=c({x,}), ¢'=c({y.}) and {x.}~{u,y.}, where
u, €N, is unitary. Then Qu, defined by the same equation as &p, in
the proof of Lemma 5 is obviously isometric and its range contains all
(wy)J)Qu(J)H(J) where H(J)=§]H,. Since u(J) is unitary u(J)H
(J)=H(J) and since Q(u,y,)€ H,, the image of Qu, is the whole H.
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Hence @u, is a unitary intertwining operator for 7. and 7., which proves
the unitary equivalence of 7, and m.. The last part follows then from
Theorem (2). Q.E.D.

Remark. The unitary equivalence of mw, and 7. does not necessarily
imply ¢~¢/. For example, consider R,=2(H,)R1" on H,QH,' = H, with
u

all real r==0 as index set and x,= ), 2 %¢,Res, y,= X 27 e,Rep1 for
E=1 k=1

r>0 and x,= i 2%, Reni1, Yr= i 27%¢,Qe;, for r<0, where all H.
and H,’ are idgx_ltiﬁed with a singlekillilbert space H and {e,} is its or-
thonormal basis. Then obviously {x,}~{y,} does not hold but 7z, is uni-
tarily equivalent to 7. for c=c¢({x,}) ;nd ¢ =c({y.}).

For Q,€ #(H,) with TI||Q.!|<+ oo, there exists a unique bounded
linear operator @Q, on Q@ H,= H satisfying (KQ)(R=x,)=&Q,x, for all
{x}€ S, by Theorem 3.1 in [6], where ®Q,x,=0 if {Qx} ¢S, If
Q.eR, and I1i|Q/||<+ o, ®Q! can be defined in exactly the same
manner and ®Q, <R’ by Theorem 3.2 in [6].

&®p. in the proof of Theorem (1) is this @p, with its domain re-
stricted to H. .

Theorem (5). R’ is generated by the set of all E, c€Cy and Qp,
with partial isometries p,€R.. If the index sct is countable, p, can be

vestricted to unitaries.

Proof. Let N be the set of all E, c€€, and Qp, with partial iso-
metries p,€R{. Since NCHR/, it is enough to prove that Q€I implies
QeNR. Let QeW.

Since isometries p, € R/ generates R,
(EcmEc),Ec = (®§R{)/Ec = (®§RL>Ec =RE,

by Lemma 6.10 of [3]. Since QF, belongs to this set, there exists Q; € R
such that QE.=Q:.E.. Let Qy,€ E(c)H. By Theorem (1) and Lemma 3,
there exist partial isometries p, € R] such that c¢({p,y.})=c and p¥p,y.=
¥.. Then Q&p.y.=0:1KXp.y.. Hence



374 H. Araxr anp Y. NARAGAMI

0Ry.=Q0(RpHRp.y.=(RpF)ORp.y.
= (®PT)Q].®PI}/L =Ql(®P>&k>®ply‘ =Ql®yt'

This shows that QE(¢)=0Q:;E(c)eR. Hence Q= QE(c)eR where the
sum is over distinct E(c).

If the index set is countable, then p, in the above argument can be
taken to be unitaries by Theorem (2) and the latter half of Theorem (5)
is obtained. Q.E.D.
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