A Remark on an Infinite Tensor Product of von Neumann Algebras

By

Huzihiro Araki and Yoshiomi Nakagami*

Abstract

Let $H_{\mathfrak{c}}$ be the incomplete infinite tensor product of Hilbert spaces $H_{\mathfrak{c}}$ containing a product vector $\otimes x_{\mathfrak{c}}$, where \mathfrak{c} denotes the equivalence class of the \mathfrak{C}_0 -sequence $\{x_{\mathfrak{c}}\}$. Let $E_{\mathfrak{c}}$ be the projection on $H_{\mathfrak{c}}$ in the complete infinite tensor product H of $H_{\mathfrak{c}}$. Let \mathfrak{R} be the von Neumann algebra on H generated by von Neumann algebra $\mathfrak{R}_{\mathfrak{c}}$ on $H_{\mathfrak{c}}$ and $E(\mathfrak{c})$ be the central support of $E_{\mathfrak{c}}$ in \mathfrak{R}' . Two \mathfrak{C}_0 -sequences $\{x_{\mathfrak{c}}\}$ and $\{y_{\mathfrak{c}}\}$, and their equivalence classes \mathfrak{c} and \mathfrak{c}' , are defined to be p-equivalent if there exist partial isometries $p_{\mathfrak{c}} \in \mathfrak{R}'_{\mathfrak{c}}$ such that $\{x_{\mathfrak{c}}\}$ and $\{p, y_{\mathfrak{c}}\}$ are equivalent and $p_{\mathfrak{c}}^* p_{\mathfrak{c}} y_{\mathfrak{c}} = y_{\mathfrak{c}}$. They are defined to be u-equivalent if $p_{\mathfrak{c}}$ can be chosen unitary. We prove that $E(\mathfrak{c})$ is the sum of $E_{\mathfrak{c}'}$ with \mathfrak{c}' , pequivalent to \mathfrak{c} . If the index set is countable, p-equivalence and u-equivalence coincide.

§1. Introduction

According to von Neumann [8], the complete infinite tensor product $H = \bigotimes H_{\iota}$ of Hilbert spaces H_{ι} , $\iota \in I$, is the (linear topological) span of all product vectors $\bigotimes x_{\iota}$ (multilinear in x_{ι}) such that $x_{\iota} \neq 0$ and

(1.1) $\sum |1-||x_{\iota}||| < \infty.$

(We have substituted "tensor" into von Neumann's "direct".) Let S denote the set of all $\{x_i\}$ satisfying (1.1) and S_0 denote the set of all $\{x_i\} \in S$ such that $x_i \neq 0$. $\{x_i\}$ and $\{y_i\}$ are called (strongly) equivalent if

Received June 20, 1972.

^{*} Department of Mathematics, Tokyo Institute of Technology, Tokyo, Japan.

H. Araki and Y. Nakagami

(1.2)
$$\sum |1-(x_i, y_i)| < \infty$$

Notation: $\{x_i\} \sim \{y_i\}$. It defines equivalence relations in S and S_0 . Let \mathfrak{C} and \mathfrak{C}_0 denote the set of equivalence classes $c(\{x_i\})$ of $\{x_i\}$ in S and S_0 , respectively. The subspace of H spanned by $\otimes x_i$ with a fixed $c(\{x_i\}) = c \in \mathfrak{C}_0$ is called the incomplete infinite tensor product and is denoted by $H_c = \bigotimes^c H_i$. Let E_c denote the projection on H_c in H.

Let \Re_{ι} be a von Neumann algebra on H_{ι} , π be its natural representation on H (namely $\pi(Q)(\bigotimes x_{\iota}) = \bigotimes x'_{\iota}$, with $x'_{\iota} = x_{\iota}$ for $\iota \neq \iota_0$ and $x'_{\iota} = Qx_{\iota}$ for $\iota = \iota_0$, if $Q \in \Re_{\iota_0}$). Let $\Re = \bigotimes \Re_{\iota}$ be the von Neumann algebra generated by the union of all $\pi(\Re_{\iota})$. Since H_{ι} is invariant under each $\pi(\Re_{\iota})$, E_{ι} is in \Re' . Let $E(\mathfrak{c})$ be the central support of E_{ι} in \Re' .

Definition. Let $\{x_i\}, \{y_i\} \in S$ and $c = c(\{x_i\}), c' = c(\{y_i\}).$

(1) $\{x_i\}$ and c are u-equivalent to $\{y_i\}$ and c', respectively if $\{x_i\} \sim \{u_i, y_i\}$ for some unitary $u_i \in \Re'_i$. Notation: $\{x_i\} \sim \{y_i\}$, $c \sim c'$.

(2) $\{x_i\}$ and c are p-equivalent to $\{y_i\}$ and c', respectively, if $\{x_i\} \sim \{p_i, y_i\}$ for some partial isometry $p_i \in \Re'_i$ such that $p_i^* p_i y_i = y_i$. Notation: $\{x_i\} \sim \{y_i\}, c \sim c'.$

(3) $\{x_i\}$ and c are v-equivalent to $\{y_i\}$ and c', respectively, if $\{x_i\} \sim \{v_i, y_i\}$ for some $v_i \in \Re'_i$ such that $||v_i|| \leq 1$. Notation: $\{x_i\} \sim \{y\}$, $c \sim c'$.

Our main result is the following:

Theorem. (1) E(c) is the sum of $E_{c'}$ with $c' \sim c$. (2) If the index set I is countable, $c' \sim c$ and $c' \sim c$ are equivalent.

Remark. If $\Re_{\iota} = \mathscr{B}(H_{\iota})$, the set of all bounded linear operators on H_{ι} , then \sim_{μ} , \sim_{p} and \sim_{v} all coincide with the weak equivalence introduced by von Neumann.

§2. Equivalence Relations

The *u*-equivalence is clearly an equivalence relation. In this section, we shall show that p- and v-equivalence are also equivalence relations and

364

are the same. In the definition of v-equivalence, we have not stated the condition $\{v, y_i\} \in S$. This is actually a consequence of $\{x_i\} \in S$, $\{y_i\} \in S$ and $\{x_i\} \sim \{v, y_i\}$, as is shown in the next Lemma.

Lemma 1. If $\{x_i\} \in S$, $\{y_i\} \in S$, $\|v_i\| \leq 1$ and $\{x_i\} \sim \{v_i, y_i\}$, then $\{v_i, y_i\} \in S$.

Proof. Since $\{y_i\} \in S$ and $||v_i|| \leq 1$,

$$\sup ||v_{\iota}y_{\iota}|| \leq \sup ||y_{\iota}|| < \infty.$$

If $||v_{\iota}y_{\iota}|| \ge 1$, then $0 \ge 1 - ||v_{\iota}y_{\iota}|| \ge 1 - ||y_{\iota}||$ and hence

$$1 - ||v_{\iota}y_{\iota}|| \ge |1 - ||v_{\iota}y_{\iota}|| |-2|1 - ||y_{\iota}|||.$$

This inequality obviously holds for $1 \ge ||v_{\iota}y_{\iota}||$. Now assume that $\{v_{\iota}y_{\iota}\} \notin S$. Then

$$\begin{split} \sum |1 - (x_{\iota}, v_{\iota} y_{\iota})| &\geq \sum \{1 - |(x_{\iota}, v_{\iota} y_{\iota})|\} \\ &\geq \sum \{1 - ||x_{\iota}|| ||v_{\iota} y_{\iota}||\} = \sum (1 - ||v_{\iota} y_{\iota}||) + \sum ||v_{\iota} y_{\iota}||(1 - ||x_{\iota}||) \\ &\geq \sum |1 - ||v_{\iota} y_{\iota}|| |-2 \sum |1 - ||y_{\iota}|| |- \sup ||v_{\iota} y_{\iota}|| \sum |1 - ||x_{\iota}||| \\ &= +\infty \end{split}$$

which contradicts with $\{x_i\} \sim \{v_i, y_i\}$.

Q.E.D.

Lemma 2. $\{x_i\} \underset{p}{\sim} \{y_i\}$ and $\{x_i\} \underset{v}{\sim} \{y_i\}$ are equivalent.

Proof. Obviously $\{x_i\} \underset{p}{\sim} \{y_i\}$ implies $\{x_i\} \underset{v}{\sim} \{y_i\}$. To prove the converse, let $\{x_i\} \sim \{v_i, y_i\}$ with $||v_i|| \leq 1$. Let $s'(y_i)$ denote the smallest projection $E = s'(y_i) \in \mathfrak{R}'_i$ such that $Ey_i = y_i$ (*EH*_i is the closure of $R_i y_i$.) Let $p_i q_i = v_i s'(y_i)$ be the polar decomposition with $q_i = |v_i s'(y_i)|$, $p_i^* p_i = s'(q_i)$ (1 minus the spectral projection of q_i for the eigenvalue 0).

Since $||q_{\iota}y_{\iota}|| = ||v_{\iota}s'(y_{\iota})y_{\iota}|| = ||v_{\iota}y_{\iota}||$ and $\{v_{\iota}y_{\iota}\} \in S$ by Lemma 1, we have $\{q_{\iota}y_{\iota}\} \in S$. Since $0 \leq q_{\iota} \leq 1$, we have $q_{\iota}^{2} \leq q_{\iota}$ and hence

$$\sum |1-(p_{\iota}y_{\iota},p_{\iota}q_{\iota}y_{\iota})| = \sum |1-(y_{\iota},q_{\iota}y_{\iota})|$$

H. Araki and Y. Nakagami

$$\leq \sum |1 - ||y_i||^2 | + \sum (y_i, (1 - q_i)y_i)$$

$$\leq \sum |1 - ||y_i||^2 | + \sum (y_i, (1 - q_i^2)y_i)$$

$$\leq 2\sum |1 - ||y_i||^2 | + \sum |1 - ||q_iy_i||^2 |.$$

Since $\{y_i\} \in S$, we have $\sup ||y_i|| < \infty$ and hence

$$\sum |1 - ||q_{\iota}y_{\iota}||^{2} | \leq \sup (1 + ||q_{\iota}y_{\iota}||) \sum |1 - ||q_{\iota}y_{\iota}|| | < \infty.$$

Therefore $\{p_i, y_i\} \sim \{p_i, q_i, y_i\} = \{v_i, y_i\} \sim \{x_i\}.$

Let $s_i = s'(y_i) - p_i^* p_i$. If $s_i y_i = 0$, then we have $\{x_i\} \sim \{y_i\}$. In general, s_i is a projection in \Re'_i . Since $\{p_i, y_i\} \in S$ by Lemma 1, we have

$$\begin{split} & \sum \|s_{\iota}y_{\iota}\|^{2} = \sum (\|y_{\iota}\|^{2} - \|p_{\iota}y_{\iota}\|^{2}) \leq \sum |1 - \|y_{\iota}\|^{2} |+ \sum |1 - \|p_{\iota}y_{\iota}\|^{2} |\\ & \leq \sup (1 + \|y_{\iota}\| + \|p_{\iota}y_{\iota}\|) \sum (|1 - \|y_{\iota}\|| + |1 - \|p_{\iota}y_{\iota}\||) < \infty. \end{split}$$

Hence $s_{\iota} y_{\iota} = 0$, possibly except for a countable number of $\iota = \iota(l), l = 1, 2, ...$

Let F_i be the central projection in \Re'_i such that $F_i p_i^* p_i$ is finite and $(1-F_i)p_i^* p_i$ is properly infinite in \Re'_i . There exists a partial isometry p'_i in \Re'_i such that $p'_i^* p'_i = F_i(1-p_i^* p_i)$, $p'_i p'_i^* = F_i(1-p_i p_i^*)$. There also exist projections e_{ik} in \Re'_i , k=1, 2, ... (countably infinite number) such that each e_{ik} is equivalent to $(1-F_i)p_i^* p_i$ and $\sum_k e_{ik} = (1-F_i)p_i^* p_i$. Since $\sum_k ||e_{ik} y_i||^2 \leq ||y_i||^2$, there exists k=k(l) such that $||e_{ik} y_i||^2 < 2^{-l}$ for $\ell = \ell(l)$. Then there exist a partial isometry $p'_i(l)$ such that $p'_i(l)p'_i(l) = e_i(l)k(l) + (1-F_{i(l)})(1-p_{i'(l)}^* p_{i'(l)})$, $p'_i(l)p'_i(l)^* = (1-F_{i(l)})(1-p_{i(l)}(1-e_{i(l)k(l)})p_{i'(l)}^*)$. Set $\bar{p}_i = p_i$ if $\ell \neq \ell(l)$, l=1, 2, ..., and $\bar{p}_i = F_i(p_i + p'_i) + (1-F_l)p_l(1-e_{ik(l)}) + p'_i'$ for $\ell = \ell(l)$.

We first see from the construction that \bar{p}_{ι} is unitary for $\iota = \iota(l)$ and hence $\bar{p}_{\iota}^* \bar{p}_{\iota} y_{\iota} = y_{\iota}$ for all ι . For $\iota \neq \iota(l)$, $\bar{p}_{\iota} y_{\iota} = p_{\iota} y_{\iota}$. For $\iota = \iota(l)$, we have

$$|(\bar{p}_{\iota}y_{\iota}, p_{\iota}y_{\iota}) - ||p_{\iota}y_{\iota}||^{2}|$$

$$= |(\bar{p}_{\iota}(s_{\iota} + e_{\iota k(l)})y_{\iota}, p_{\iota}e_{\iota k(l)}y_{\iota}) - ||p_{\iota}e_{\iota k(l)}y_{\iota}||^{2}|$$

$$\leq (||s_{\iota}y_{\iota}|| + ||e_{\iota k(l)}y_{\iota}||)||e_{\iota k(l)}y_{\iota}|| + ||e_{\iota k(l)}y_{\iota}||^{2}$$

366

which is summable over $l=1, 2, \cdots$. Therefore

$$\begin{split} & \sum |1 - (\bar{p}_{\iota} y_{\iota}, p_{\iota} y_{\iota})| \\ & \leq \sum |1 - || p_{\iota} y_{\iota} ||^{2} | + \sum_{l} |(\bar{p}_{\iota(l)} y_{\iota(l)}, p_{\iota(l)} y_{\iota(l)}) - || p_{\iota(l)} y_{\iota(l)} ||^{2} | \\ & < \infty. \end{split}$$

Hence $\{\bar{p}_{\iota}y_{\iota}\} \in S$ by Lemma 1 and $\{\bar{p}_{\iota}y_{\iota}\} \sim \{p_{\iota}y_{\iota}\} \sim \{x_{\iota}\}$. Q.E.D.

Proof of Theorem (2). In the provious proof \bar{p}_{ι} is unitary for $\ell = \ell(l)$. Hence this construction (even if $s_{\iota}y_{\iota}=0$ for all ℓ) gives the equivalence of \sim_{u} and \sim_{p} when the index set I is countable. Q.E.D.

Lemma 3. \sim_{p} is an equivalence relation.

Proof. Obviously $\{x_i\} \sim \{x_i\}$ because $\{x_i\} \sim \{p_i x_i\}$ with $p_i=1$. Suppose $\{x_i\} \sim \{p_i y_i\}$. Since $(y_i, p_i^* x_i) = (x_i, p_i y_i)^*$, we have $\{y_i\} \sim \{p_i^* x_i\}$ and hence $\{y_i\} \sim \{x_i\}$. By Lemma 2, $\{y_i\} \sim \{x_i\}$. Finally, suppose $\{x_i\} \sim \{p_i y_i\}$ and $\{y_i\} \sim \{p_i' z_i\}$ with $p_i^* p_i y_i = y_i$.

Finally, suppose $\{x_i\} \sim \{p_i, y_i\}$ and $\{y_i\} \sim \{p'_i z_i\}$ with $p_i^* p_i y_i = y_i$. Then $(p_i y_i, p_i p'_i z_i) = (p_i^* p_i y_i, p'_i z_i) = (y_i, p'_i z_i)$. Hence $\{x_i\} \sim \{p_i y_i\} \sim \{p_i p'_i z_i\}$. Therefore $\{x_i\} \sim \{z_i\}$ and by Lemma 2, $\{x_i\} \sim \{z_i\}$. Q.E.D.

§3. Central Support E(c)

Lemma 4. For $c, c' \in \mathbb{G}_0$, either $E(c)E_{c'} = E_{c'}$ or $E(c)E_{c'} = 0$.

Proof. Take any $\{y_i\} \in S_0$. By Lemma 4.2 of [6],

(3.1)
$$E(c)(\bigotimes y_i) = \lim_{J \subset CI} E_J(\bigotimes y_i)$$

where $J \subseteq \subset I$ indicates that J is a finite subset of I and E_J is the smallest projection in

$$\mathfrak{R}(J^c) = (\bigcup_{\iota \notin J} \pi(\mathfrak{R}_{\iota}))^{\prime\prime}$$

scuh that $E_J(\otimes x_i) = \otimes x_i$ for a fixed $\{x_i\} \in c$. Let $c' = c(\{y_i\})$. Since $H_{c'}$ is invariant under $\Re \supset \Re(J^c)$, each $E_J(\otimes y_i)$ as well as its limit E(c) $(\otimes y_i)$ is in $H_{c'}$.

By Lemma 3.1 of [2], there exists J for any given $\varepsilon > 0$ such that $J \subset \subset I$ and

$$||E(\mathfrak{c})(\otimes y_{\iota}) - z_{J} \otimes y(J^{c})|| < \varepsilon$$

where $z_J \in \bigotimes_{i \in J} H_i$ and $y(J^c) = \bigotimes_{i \notin J} y_i$. For the same ε and J, there exists $K \supset J$, $K \subset \subset I$ such that

$$||E(\mathfrak{c})(\otimes y_{\iota}) - E_{K}(\otimes y_{\iota})|| < \varepsilon.$$

Since $E_K \in \Re(K^c) \subset \Re(J^c)$, we can write $E_K(\otimes y_i) = y(J) \otimes z$ for some $z \in \bigotimes_{\substack{i \neq J \\ i \neq J}} H_i$. From the two inequalities,

$$||z_J \otimes y(J^{\epsilon}) - y(J) \otimes z|| < 2\epsilon.$$

Since $\{y_i\} \in S_0$, $a_2 = ||y(J^c)||$ and $b_1 = ||y(J)||$ are bounded away from 0 and ∞ when J runs over all finite subsets of I. Let $a = ||E(c)(\bigotimes y_i)||$ and assume that $a \neq 0$. Then we have from (3.2) and (3.3), $|a_1 - a/a_2| < \varepsilon/a_2$ and $|b_2 - a/b_1| < \varepsilon/b_1$ for $a_1 = ||z_j||$ and $b_2 = ||z||$. Therefore a_1 and b_2 are also bounded away from 0 and ∞ for sufficiently small ε . From (3.4), we also have $|a_1a_2 - b_1b_2| < 2\varepsilon$.

We set $\Phi_1 = z_J/a_1$, $\Phi_2 = y(J^c)/a_2$, $\Psi_1 = y(J)/b_1$, $\Psi_2 = z/b_2$. They are all unit vectors. From (3.4), we obtain, by using $|a_1a_2-b_1b_2| < 2\varepsilon$ and separation of a_1a_2 , b_1b_2 from 0,

$$\| \boldsymbol{\varrho}_1 \otimes \boldsymbol{\varrho}_2 - \boldsymbol{\varPsi}_1 \otimes \boldsymbol{\varPsi}_2 \| < \varepsilon'(\varepsilon)$$

where $\varepsilon'(\varepsilon) \rightarrow 0$ as $\varepsilon \rightarrow 0$. Then

$$1-\operatorname{Re}(\boldsymbol{\varPhi}_1,\boldsymbol{\varPsi}_1)(\boldsymbol{\varPhi}_2,\boldsymbol{\varPsi}_2) < \varepsilon'(\varepsilon)^2/2.$$

Since $|(\varPhi_1, \varPsi_1)| \leq 1$ and $|(\varPhi_2, \varPsi_2)| \leq 1$, we have

$$\begin{split} \varepsilon'(\varepsilon)^2/2 > & 1 - |(\boldsymbol{\mathscr{O}}_1, \boldsymbol{\mathscr{Y}}_1)| \, |(\boldsymbol{\mathscr{O}}_2, \boldsymbol{\mathscr{Y}}_2)| \\ \geq & \max(1 - |(\boldsymbol{\mathscr{O}}_1, \boldsymbol{\mathscr{Y}}_1)|, \, 1 - |(\boldsymbol{\mathscr{O}}_2, \boldsymbol{\mathscr{Y}}_2)|). \end{split}$$

Hence choosing θ and θ' such that $(\Phi_1, e^{i\theta}\Psi_1)$ and $(\Phi_2, e^{i\theta'}\Psi_2)$ are both non-negative, we have

$$|| \varPhi_1 - e^{i\theta} \varPsi_1 || \! < \! \varepsilon'(\varepsilon), \, || \varPhi_2 - e^{i\theta'} \varPsi_2 || \! < \! \varepsilon'(\varepsilon).$$

In particular, we use the first inequality and (3.2) to obtain

 $||E(\mathbf{c})(\otimes y_{\iota}) - \lambda_{\varepsilon}(\otimes y_{\iota})|| < \varepsilon + a_1 a_2 \varepsilon'(\varepsilon)$

where $\lambda_{\varepsilon} = e^{i\theta} a_1/b_1$ is a complex number depending on ε . We choose a sequence $\varepsilon_n \to 0$ such that $\lambda_{\varepsilon_n} \to \lambda$, which is possible because λ_{ε} is bounded. Then, by using separation of a_1a_2 from ∞ ,

$$(3.5) E(\mathfrak{c})(\otimes y_{\iota}) = \lambda(\otimes y_{\iota}).$$

In this derivation, we assumed $||E(\mathfrak{c})(\otimes y_{\iota})|| \neq 0$. If this is not the case (3.5) holds with $\lambda = 0$. Since $E(\mathfrak{c})^2 = E(\mathfrak{c})$, we have $\lambda^2 = \lambda$ and hence $\lambda = 1$ or 0.

If $c(\{y_i\}) = c(\{y'_i\})$, then by Lemma 3.1 of [2], there exists $J \subset \subset I$ such that

$$||\otimes y'_{\iota} - z' \otimes y(J^{c})|| < \varepsilon.$$

By (3.1), $E(c)(\otimes y_i) = \lambda(\otimes y_i)$ with $\lambda = 1$ or 0 implies

$$\lim_{K} E_{K}(z' \otimes y(J^{c})) = \lambda(z' \otimes y(J^{c}))$$

and hence by (3.1) and (3.6), we have $E(c)(\bigotimes y'_{\iota}) = \lambda(\bigotimes y'_{\iota})$ with the same λ . Hence $E(c)E_{c'} = \lambda E_{\iota'}$ with $\lambda = 1$ or 0. Q.E.D.

Let $\pi_{\mathfrak{c}}$ denote the restriction of the representation π to $E_{\mathfrak{c}}H$.

Lemma 5. Let c, $c' \in S_0$. Either E(c) = E(c') or $E(c) \perp E(c')$. Accordingly, π_c and $\pi_{c'}$ are either quasi-equivalent or disjoint.

Proof. The first part follows from Lemma 4. It then implies the second part. Q.E.D.

Proof of Theorem (1). First assume that $c' \sim c$. Let x_i and y_i in

 H_i be such that $c=c(\{x_i\})$, $c'=c(\{y_i\})$, $||x_i||=||y_i||=1$, and $\{x_i\}\sim\{p_iy_i\}$ for partial isometries p_i with $p_i^*p_iy_i=y_i$. Let ω_z generally denote the vector state by z. Then $\omega_{\otimes x_i}=\otimes \omega_{x_i}$ and $\omega_{\otimes y_i}=\otimes \omega_{y_i}$.

Let $\otimes p_\iota$ be the mapping from $H_{\mathfrak{c}'}$ to $H_{\mathfrak{c}}$ defined by

$$(3.7) \qquad (\otimes p_{\iota})(y(J^{c})\otimes z) = (py)(J^{c})\otimes p(J)z$$

where J is any finite index set, $y(J^c) = \bigotimes_{i \notin J} y_i$, $(py)(J^c) = \bigotimes_{i \notin J} p_i y_i$, $p(J) = \bigotimes_{i \notin J} p_i$ and $z \in \bigotimes_{i \in J} H_i$. If $\{p_i y_i\} \sim \{x_i\}$, then $p = \bigotimes p_i$ satisfies $pH_{c'} \subset H_c$ and $||p|| \leq 1$, $\pi_c(Q)p = p\pi_{c'}(Q)$ for $Q \in \Re_i$ and hence for $Q \in \Re$. Furthermore $p(\bigotimes y_i) = \bigotimes p_i y_i \neq 0$. Hence π_c and $\pi_{c'}$ have a nonzero intertwining operator p and hence are not disjoint. By Lemma 5, we have $E(c)E_{c'} = E_{c'}$.

Conversely, assume $E(c)E_{c'}=E_{c'}$. Then π_c and $\pi_{c'}$ are quasi-equivalent by Lemma 5. If x_i satisfies $||x_i||=1$, $c(\{x_i\})=c$, then there exist a countable number of vectors ξ_i in $H_{c'}$ such that $\omega_{\otimes x_i}=\sum_{l}\omega_{\xi_l}$. Since product vectors are total in $H_{c'}$, there exists $y_i \in H_i$ such that $||y_i||=1$, $c(\{y_i\})=c'$ and $(\xi_1, \otimes y_i)\neq 0$. Then

$$(3.8) ||\omega_{\otimes x_{\iota}} - \omega_{\otimes y_{\iota}}|| \leq \sum_{l \neq 1} ||\xi_l||^2 + ||\omega_{\xi_1} - \omega_{\otimes y_{\iota}}|| < 2.$$

Let $\|\omega_{\otimes x_{\iota}} - \omega_{\otimes y_{\iota}}\|_{J}$ denote the norm of the restricition of $\omega_{\otimes x_{\iota}} - \omega_{\otimes y_{\iota}}$ to $\Re(J) = (\bigcup_{\iota \in J} (\Re_{\iota}))''$. By proposition 1.12 and Corollary 2.6 of [5], we have

(3.9)
$$\prod_{\iota \in J} \rho(\omega_{x_{\iota}}, \omega_{y_{\iota}}) \geq 2^{-1} (2 - ||\omega_{\otimes x_{\iota}} - \omega_{\otimes y_{\iota}}||_{J})$$
$$\geq 2^{-1} (2 - ||\omega_{\otimes x_{\iota}} - \omega_{\otimes y_{\iota}}||) > 0$$

where $\rho(\mu, \nu) = 2^{-1}(\mu(1) + \nu(1) - d(\mu, \nu)^2) = 2^{-1}(2 - d(\mu, \nu)^2)$ for states μ and ν . Since each $\rho(\omega_{x_i}, \omega_{y_i})$ is in the interval [0, 1], (3.9) for arbitrary J implies the absolute convergence of $\prod \rho(\omega_{x_i}, \omega_{y_i})$ and hence

(3.10)
$$\sum d(\omega_{x_i}, \omega_{y_i})^2 = 2 \sum (1 - \rho(\omega_{x_i}, \omega_{y_i})) < \infty.$$

By Theorem 4 of [1], there exist x'_{ι} and y'_{ι} in H_{ι} such that

INFINITE TENSOR PRODUCT

(3.11)
$$\omega_{x_{i}} = \omega_{x_{i}}, \ \omega_{y_{i}} = \omega_{y_{i}}, \ ||x_{i}' - y_{i}'|| = d(\omega_{x_{i}}, \omega_{y_{i}}),$$
$$(x_{i}', y_{i}') > 0.$$

Since $\omega_{x_i} = \omega_{x_i}$, $p_i s'(x_i) = p_i$ and $p_i Q x_i = Q x'_i$ for all $Q \in \Re_i$ defines (by continuity) a partial isometry $p_i \in \Re'_i$, which satisfies $p_i^* p_i x_i = x_i$, $x'_i = p_i x_i$. Similarly there exists a partial isometry $p'_i \in \Re'_i$ such that $p'_i * p'_i y_i = y_i$ and $y'_i = p'_i y_i$. From (3.10) and (3.11),

$$\sum |1-(x'_{\iota}, y'_{\iota})| = 2^{-1} \sum ||x'_{\iota}-y'_{\iota}||^{2} < \infty$$

and hence $\{x_i\} \underset{p}{\sim} \{p_i x_i\} \underset{p}{\sim} \{p'_i y_i\} \underset{p}{\sim} \{y_i\}$. Therefore $\{x_i\} \underset{p}{\sim} \{y_i\}$ by Lemma 3. Q.E.D.

§4. Discussions

If $\{x_i\} \sim_p \{y_i\}$, then $x_i = p_i y_i$ for a partially isometric $p_i \in \Re'_i$ for all ι except for a countable number of ι , where p_i satisfies $p_i^* p_i y_i = y_i$. (Note that $||x_i|| = ||y_i|| = 1$, $(x_i, y_i) = 1$ imply $||x_i - y_i||^2 = 0$ and hence $x_i = y_i$.) Then $s'(x_i)$ and $s'(y_i)$ are equivalent in \Re'_i . p_i can be extended to a unitary in \Re'_i if and only if $1 - s'(x_i)$ and $1 - s'(y_i)$ are equivalent in \Re'_i .

If $\{x_i\}_{u} \{y_i\}$, then $x_i = u_i y_i$ for a unitary $u_i \in \Re'_i$ for all ι except for a countable number of ι . Therefore both $s'(x_i)$ and $1 - s'(x_i)$ are equivalent to $s'(y_i)$ and $1 - s'(y_i)$ respectively, with a countable exception.

Due to Theorem (2) and its proof, the above argument gives the following:

Theorem (3). $\{x_i\}_{u}^{\sim}\{y_i\}$ if and only if $\{x_i\}_{p}^{\sim}\{y_i\}$ and $1-s'(x_i)$ is equivalent to $1-s'(y_i)$ in \Re'_i for all \mathfrak{c} except for a countable many \mathfrak{c} , where $s'(x_i)$ is the support projection of x_i in \Re'_i . $\mathfrak{c}(\{x_i\})_{u}^{\sim}\mathfrak{c}(\{y_i\})$ if and only if $\{x_i\}_{u}^{\sim}\{y_i\}$.

Proof. The first half is already shown. By definition, if $\{x_i\} \sim \{y_i\}$, then $c(\{x_i\}) \sim c(\{y_i\})$. Therefore it remains to show that $c(\{x_i\}) \sim c(\{y_i\})$.

implies $\{x_i\} \underset{u}{\sim} \{y_i\}$, which is rather trivial consequence of Definition:

By definition, $c(\lbrace x_i \rbrace) \sim c(\lbrace y_i \rbrace)$ implies the existence of x'_i and $y'_i \in H_i$ such that $\lbrace x_i \rbrace \sim \lbrace x'_i \rbrace$, $\lbrace y_i \rbrace \sim \lbrace y'_i \rbrace$ and $\lbrace x'_i \rbrace \sim \lbrace y'_i \rbrace$. Since $\lbrace x_i \rbrace \sim \lbrace x'_i \rbrace$ and $\lbrace y_i \rbrace \sim \lbrace y'_i \rbrace$ trivially, it follows that $\lbrace x_i \rbrace \sim \lbrace y_i \rbrace$. Q.E.D.

Example. Suppose x_i are cyclic for \Re_i and p_i are isometric operators in \Re'_i , which are not unitaries. (This can happen for non-finite \Re'_i .) Then $1-s'(x_i)=0$ because $s'(x_i)H$ is the closure of $\Re_i x_i$ and x_i is cyclic. For $y_i=p_i x_i$, $1-s'(y_i)=1-p_i p_i^*\neq 0$. Hence, if the index set is noncountable, then $\{x_i\} \sim \{y_i\}$ but $\{x_i\}$ is not *u*-equivalent to $\{y_i\}$.

In this example, the representation of \Re in H_c and $H_{c'}$, $c=c(\{x_i\})$, $c'=c(\{y_i\})$, are not unitarily equivalent as is seen by the following argument:

Let $y_{\iota\lambda}$, $\lambda \in A_{\iota}$ be an orthonormal basis for H_{ι} such that $y_{\iota0} = y_{\iota}$. Then $\bigotimes y_{\iota\kappa(\iota)}$, with $\kappa(t) = 0$ except for a finite number of t, is an orthonormal basis for $H_{t'}$. Any $z \in H_{t'}$ has only a countable number of nonzero components on this basis and hence $z = (\bigotimes_{\iota \notin A} y_{\iota}) \bigotimes z', z' \in \bigotimes_{\iota \in A} H_{\iota}$ for some countable index set A. Since $R = (\bigcup R_{\iota})''$ and y_{ι} is not cyclic for \Re_{ι} , z can not be cyclic for \Re in $H_{t'}$. On the other hand, $\bigotimes x_{\iota} \in H_{t}$ is cyclic for \Re in H_{c} . Hence $\Re | H_{c}$ and $\Re | H_{t'}$ can not be unitarily equivalent.

Theorem (4). π_c is quasi-equivalent to $\pi_{c'}$ if and only if $c \sim c'$. π_c is unitarily equivalent to $\pi_{c'}$ if $c \sim c_c$. If the index set is countable, then π_c is unitarily equivalent to $\pi_{c'}$ if and only if π_c is quasi-equivalent to $\pi_{c'}$.

Proof. The first part is obvious by Lemma 5 and Theorem (1). To see the second part, assume $c=c(\{x_i\}), c'=c(\{y_i\})$ and $\{x_i\}\sim\{u_iy_i\}$, where $u_i\in\Re'_i$ is unitary. Then $\otimes u_i$ defined by the same equation as $\otimes p_i$ in the proof of Lemma 5 is obviously isometric and its range contains all $(uy)(J^c)\otimes u(J)H(J)$ where $H(J)=\bigotimes_{i\in J}H_i$. Since u(J) is unitary u(J)H(J)=H(J) and since $\otimes (u_iy_i)\in H_i$, the image of $\otimes u_i$ is the whole H_i .

Hence $\bigotimes u_{\iota}$ is a unitary intertwining operator for π_{c} and $\pi_{c'}$, which proves the unitary equivalence of π_{c} and $\pi_{c'}$. The last part follows then from Theorem (2). Q.E.D.

Remark. The unitary equivalence of $\pi_{\mathfrak{c}}$ and $\pi_{\mathfrak{c}'}$ does not necessarily imply $\mathfrak{c}_{\mathbf{u}}\mathfrak{c}'$. For example, consider $\mathfrak{R}_r = \mathscr{B}(H'_r) \otimes \mathbb{I}''$ on $H'_r \otimes H'_r' = H_r$ with all real $r \neq 0$ as index set and $x_r = \sum_{k=1}^{\infty} 2^{-k} e_k \otimes e_k$, $y_r = \sum_{k=1}^{\infty} 2^{-k} e_k \otimes e_{k+1}$ for r > 0 and $x_r = \sum_{k=1}^{\infty} 2^{-k} e_k \otimes e_{k+1}$, $y_r = \sum_{k=1}^{\infty} 2^{-k} e_k \otimes e_k$ for r < 0, where all H'_r and H'_r' are identified with a single Hilbert space H and $\{e_k\}$ is its orthonormal basis. Then obviously $\{x_i\}_{u}^{\sim}\{y_i\}$ does not hold but $\pi_{\mathfrak{c}}$ is unitarily equivalent to $\pi_{\mathfrak{c}'}$ for $\mathfrak{c} = \mathfrak{c}(\{x_i\})$ and $\mathfrak{c}' = \mathfrak{c}(\{y_i\})$.

For $Q_i \in \mathscr{B}(H_i)$ with $\prod ||Q_i|| < +\infty$, there exists a unique bounded linear operator $\otimes Q_i$ on $\otimes H_i = H$ satisfying $(\otimes Q_i)(\otimes x_i) = \otimes Q_i x_i$ for all $\{x_i\} \in S_0$ by Theorem 3.1 in [6], where $\otimes Q_i x_i = 0$ if $\{Q_i x_i\} \notin S_0$. If $Q'_i \in \mathfrak{R}'_i$ and $\prod ||Q'_i|| < +\infty$, $\otimes Q'_i$ can be defined in exactly the same manner and $\otimes Q'_i \in \mathfrak{R}'$ by Theorem 3.2 in [6].

 $\otimes p_{\iota}$ in the proof of Theorem (1) is this $\otimes p_{\iota}$ with its domain restricted to H_{ι}' .

Theorem (5). \Re' is generated by the set of all E_c , $c \in \mathfrak{C}_0$ and $\otimes p_i$ with partial isometries $p_i \in \Re'_i$. If the index set is countable, p_i can be restricted to unitaries.

Proof. Let \mathfrak{N} be the set of all E_c , $c \in \mathfrak{C}_0$ and $\otimes p_i$ with partial isometries $p_i \in \mathfrak{R}'_i$. Since $\mathfrak{N} \subset \mathfrak{N}'$, it is enough to prove that $Q \in \mathfrak{N}'$ implies $Q \in \mathfrak{R}$. Let $Q \in \mathfrak{N}'$.

Since isometries $p_i \in \Re'_i$ generates \Re'_i ,

$$(E_{\mathfrak{c}}\mathfrak{N}E_{\mathfrak{c}})'E_{\mathfrak{c}} = (\otimes\mathfrak{R}'_{\iota})'E_{\mathfrak{c}} = (\otimes\mathfrak{R}_{\iota})E_{\mathfrak{c}} = \mathfrak{R}E_{\mathfrak{c}}$$

by Lemma 6.10 of [3]. Since $QE_{\mathfrak{c}}$ belongs to this set, there exists $Q_1 \in \mathfrak{R}$ such that $QE_{\mathfrak{c}} = Q_1E_{\mathfrak{c}}$. Let $\bigotimes y_{\iota} \in E(\mathfrak{c})H$. By Theorem (1) and Lemma 3, there exist partial isometries $p_{\iota} \in \mathfrak{R}'_{\iota}$ such that $\mathfrak{c}(\{p_{\iota}y_{\iota}\}) = \mathfrak{c}$ and $p_{\iota}^*p_{\iota}y_{\iota} =$ y_{ι} . Then $Q \bigotimes p_{\iota}y_{\iota} = Q_1 \bigotimes p_{\iota}y_{\iota}$. Hence

$$Q \otimes y_{\iota} = Q(\otimes p_{\iota}^{*}) \otimes p_{\iota} y_{\iota} = (\otimes p_{\iota}^{*})Q \otimes p_{\iota} y_{\iota}$$
$$= (\otimes p_{\iota}^{*})Q_{1} \otimes p_{\iota} y_{\iota} = Q_{1}(\otimes p_{\iota}^{*}) \otimes p_{\iota} y_{\iota} = Q_{1} \otimes y_{\iota}$$

This shows that $QE(c) = Q_1E(c) \in \Re$. Hence $Q = \sum QE(c) \in \Re$ where the sum is over distinct E(c).

If the index set is countable, then p_i in the above argument can be taken to be unitaries by Theorem (2) and the latter half of Theorem (5) is obtained. Q.E.D.

Acknowledgement

This work was partially inspired by the talk of Professor D. Bures at First Canadian Annual Symposium on Operator Algebras and their Applications at University of Tronto on March 31 - April 2, 1972. One of the authors (H. A) would like to thank Professor I. Halperin for his kind invitation to the Symposium and Professor Bures for discussion. One of the authors (H. A) would also like to thank Professor A. J. Coleman and Professor E. J. Woods for their warm hospitality at Department of Mathematics, Queen's University.

References

- [1] Araki, H., Bures distance and a generalization of Sakai's non commutative Radon-Nikodym theorem.
- [2] Araki, H. and E.J. Woods, Publ. RIMS, Kyoto Univ. 2 (1966), 157-242.
- [3] Araki, H. and E.J. Woods, Publ. RIMS, Kyoto Univ. 4 (1968), 51-130.
- [4] Bures, D., Pacific J. Math. 27 (1968), 13-37.
- [5] Bures, D., Trans. Amer. Math. Soc. 135 (1969), 199-212.
- [6] Nakagami, Y., Kodai Math. Sem. Rep. 22 (1970), 341-354.
- [7] Nakagami, Y., Publ. RIMS, Kyoto Univ. 6 (1970), 257-292.
- [8] von Neumann, J., Compositio Math. 6 (1937), 1-77.