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Abstract

Let Hc be the incomplete infinite tensor product of Hilbert spaces H{ con-
taining a product vector (x)#£, where c denotes the equivalence class of the
(£0-sequence { x ( } . Let EC be the projection on He in the complete infinite ten-
sor product H of Ht. Let Sft be the von Neumann algebra on H generated by
von Neumann algebra 3ft, on Hc and E(c) be the central support of Ef in 3ft'.
Two (£0-sequences { x t } and {ye}, and their equivalence classes c and c', are
defined to be p-equivalent if there exist partial isometries p,e3ft' such that { x , }
and {peye} are equivalent and p*pcyc = yc- They are defined to be u-equivalent
if pc can be chosen unitary. We prove that E(c) is the sum of Ec* with c', p-
equivalent to c. If the index set is countable, p-equivalence and &-equivalence
coincide.

§ I. Introduction

According to von Neumann ^8], the complete infinite tensor product

H= &)Ht of Hilbert spaces Ht, c € /, is the (linear topological) span of

all product vectors (g)xt (multilinear in x,} such that xt^Q and

(i.i) S i-!l*.il|<oo.

(We have substituted "tensor" into von Neumann's "direct".) Let S

denote the set of all {x} satisfying (1.1) and 50 denote the set of all

{XL} G 5 such that xt^=-Q. {x} and {y} are called (strongly) equivalent

if
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(1.2) Z|i-(*,,y,)l<°°.

Notation: {x,}^^{yt}. It defines equivalence relations in S and S0. Let

£ and E0 denote the set of equivalence classes e({#t}) of {xt} in S and

S0, respectively. The subspace of H spanned by ®xt with a fixed c({#t})

= c E (£o is called the incomplete infinite tensor product and is denoted by

Ht = ££)cHt. Let J?c denote the projection on Hc in H.

Let 9tt be a von Neumann algebra on Ht, n be its natural represen-

tation on H (namely Tt(ff)(§§x^ = ®xr
t, with xi = xt for £^£0 and x( =

Qxt for £ = £o5 if (?G$tto). Let 3t=(g)3tt be the von Neumann algebra

generated by the union of all 7r(3tt). Since Hc is invariant under each

7r(2t,), £c is in 3T. Let £(c) be the central support of £c in 3V.

Definition. Let {x}, { y,} G S

(1) {^J <2^J c 6;rg u-equivalent to {y} and c'5 respectively if {oc}

tyj /or somg unitary ut^Wt. Notation: {xl}^^{yt}^ c^c'.
u u

(2) {xt} and c «rg p-equivalent to {y} and c', respectively, if {xt}

for some partial isometry p^^fii such that /??j0tyt = y,. Notation:

(3) {A;,} cwf/ c 0r0 v -equivalent to {y} and c', respectively, if {x}

{vtyt} for some vt€. Sft. s^c/2 ^^ | |v»!^l. Notation: {x}^>{y}, c^-cx.

Our main result is the following:

Theorem. (1) £(0) s's ̂  s^m o/ EC' with c'

(2) //" ̂ g W^JK: 5^ / is countable, c'^c «^J c/^>^c are equivalent.
p u

Remark. If ?fiL = ̂ (Ht), the set of all bounded linear operators on

HL, then ~5 ^ and ~ all coincide with the weak equivalence introduced
u p v

by von Neumann.

§2a Equivalence Relations

The u -equivalence is clearly an equivalence relation. In this section,

we shall show that p- and z; -equivalence are also equivalence relations and
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are the same. In the definition of i; -equivalence, we have not stated the

condition {vLy} € S. This is actually a consequence of {oc} €E S, { yt} € S

and {xt}^{vtyt}, as is shown in the next Lemma.

Lemma 1. // {%} 6 S, { y} G 5, |K||<Sl flwc? {xt}~~{vtyt},

J e s.

Proof. Since { jj e S and |Ki|<il3

If IkjJI^l, then O^l-ll^jJl^l-iljJ.I and hence

This inequality obviously holds for I^||v4j,||. Now assume that {vtyt}

£ S. Then

= +00

which contradicts with {xt}~~{vtyt}. Q.E.D.

Lemma 2. {xl}^{yl} and {xl}'*~{yl} are equivalent.
p v

Proof. Obviously {xt}^^{yL} implies {xt}^{yL}> To prove the con-
P v

verse, let {xt}~~{vtyt} with ||vt||^l. Let s'(yt) denote the smallest

projection j£=s'(y») G 5RI such that Eyt = yt (EHt is the closure of -Rty4.)

Let ptqt = vls
f(yl) be the polar decomposition with qt= \ v,sf(yt) \ , p!fpl =

s\q^) (1 minus the spectral projection of qt for the eigenvalue 0).

Since ||?,yj| = |ks'(y,)yj| = ||v,yj| and {vtyt}eS by Lemma 1, we
have {qt y} €E S. Since O^g.^l, we have q2

t^qt and hence
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Since { y} E 5, we have sup||yj|<oo and hence

Therefore {/?fyJ~{/V7t7t} = {i>4yJ~{#J.

Let sl = sf(yl)—p^pt. If 5,7, = 0, then we have {xt}^-{yt}. In gener-
/>

al, 5, is a projection in $tt'. Since {/>4 jt} € 5 by Lemma 13 we have

Hence styt = Q, possibly except for a countable number of c = c(l\ 1 = 1,

2,....

Let Ft be the central projection in 31 , such that Ftp*pt is finite and

(l—F^pfp, is properly infinite in 3tf. There exists a partial isometry

/?; in Wt such that p^p'^F^l-pfp^ P:P
r* = Ft(l-pp*). There also

exist projections e^ in 3^, A=l, 2 5 - - - (countably infinite number) such

that each etk is equivalent to (l—F^p'fp, and ^etk = (l — Ft)pfpl. Since

Zl|et£jti|
2<!||yt||

2, there exists k = k(l) such that ||c,*yj|2<2"/ for c =
k
c(l). Then there exist a partial isometry _ p * ( / > such that Pt(*Pt(i) = et(

Setpt-pt if ^^(Z)3 Z = l, 2,- . . , and p^F.^.+

+X7 for « = «(/).

We first see from the construction that pL is unitary for c = c(l) and

hence p^plyl = y, for all £. For c^t(l), plyt = plyc' For c = c(l), we

have
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which is summable over Z = 15 2, • • • . Therefore

^E 1 1 - \\p.y.\\2 1 + E I (AcoJxo, j>.c/>y.(/)) - ll^co^c

Hence {pt jt} 6 5 by Lemma 1 and {p,y}^{pLy}^{x}. Q.E.D.

Proof of Theorem (2). In the previous proof pt is unitary for c =

c(l). Hence this construction (even if styt = 0 for all t) gives the equiva-

lence of ~ and ~ when the index set / is countable. Q.E.D.
u p

Lemma 3. ~ is an equivalence relation.
P

Proof. Obviously {x,}^^{xt} because {xt}~^{ptxt} with pt=l. Sup-
p

pose {x}^{ply}. Since (jt, p^xt) = (xt, ptyt)^, we have {y}^{p*x}

and hence {y}~~{x}. By Lemma 2, {yt}~{#4}.
» />

Finally, suppose {xt}*~{pgyt} and {yJ^i^UJ with p*ptyt= yt.

Then (ptyt, ptp'tzt) = (p*ptyt, pizt) = (y>, pizt). Hence {*,}~{j0,y4}~

{_ptjDUt}. Therefore {^t}-^{-2:t} and by Lemma 2, {^t}^-{^4}.
v p

Q.E.D.

§3. Central Support E(t)

Lemma 4. For c, c' E E0, ^Aer E(c)E^ = E^ or £(c)£c/ = 0.

Proo/. Take any { yt} € 50. By Lemma 4.2 of [6J,

(3.1)

where /C C/ indicates that / is a finite subset of I and Ej is the small-

est projection in
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scuh that £/((g)A;t) = ®#t for a fixed {A;,} EC. Let c' = c({yt})- Since
HI* is invariant under 3O3t(/c)5 each £/(0yt) as well as its limit E(t)
((g)jt) is in He.

By Lemma 3.1 of [J2], there exists / for any given £>0 such that

JCCI and

(3.2)

where 2/G (8) -fft and y(J°}= 0 %. For the same £ and /, there exists
*e/ *$/

, J£CC/ such that

(3.3)

Since EK^^(KC)C^(JC\ we can write JB^(® y,)= j(/)(g) z for some
2 G $$ Ht. From the two inequalities,

**/

(3.4)

Since { J4} € 50j a2= || j(/c)H and 61 = ||j(/)|| are bounded away from
0 and co when / runs over all finite subsets of /. Let a = \\E(c)(&)yl)\\
and assume that a^O. Then we have from (3.2) and (3.3), \ai — a/a2\

<e/a2 and \b2 — a/bi\<e/bi for ai = ||2r/|| and 6 2 = l k l l - Therefore ai
and b 2 are also bounded away from 0 and co for sufficiently small £.
From (3.4), we also have \aia2 — bib2 \ <2£.

We set tfi = z//ai, ®2 = y(Jc)/a2, Wl = y(J)/bl, ¥2 = z/b2. They
are all unit vectors. From (3.4), we obtain, by using \aia2 — bib2 \ <2£
and separation of aia2, 6162 from 0,

where s'(e)— >0 as £— >0. Then

Since | (<^i, ^i) | ̂  1 and | (02, ^2) I ̂  1, we have

£'(e)2/2>l- Kt f i .P -OIKt fa .yz ) |
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Hence choosing 0 and 0' such that ($l5 eie¥i} and ($2, eie'W2} are both

non- negative, we have

In particular, we use the first inequality and (3.2) to obtain

where ls = etdai/bi is a complex number depending on g. We choose a

sequence gw— >0 such that A £ B — >/l, which is possible because /U is bounded.

Then, by using separation of ai&2 from oo?

(3.5) £(c)((g)jt) = A((S}yt).

In this derivation, we assumed ||E(c)(® yt)|| ^0. If this is not the

case (3.5) holds with /l^O. Since E(c)2 = E(c), we have kz = l and hence

^ = 1 or 0.

If c({yt}}=c({yi}), then by Lemma 3.1 of [2], there exists /CC/

such that

(3.6)

By (3.1), .EOOOgJyJ^AC®/.) with A = l or 0 implies

lim
K

and hence by (3.1) and (3.6), we have £(c)((g)yO = A(<8)yO with the

same L Hence E(c)E^ = JiE^ with A = l or 0. Q.E.D.

Let TTC denote the restriction of the representation it to EeH.

Lemma 5. Let c, c' € 50. ^Y^r £(c) = £(c') or E

cordingly, nc and TTC/ cr^ either quasi-equivalent or disjoint,

Proof. The first part follows from Lemma 4. It then implies the

second part. Q.E.D.

Proof of Theorem (1). First assume that c'~c. Let xt and y, in
p
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Ht be such that c = c({*,}), c' = c({y.}), \\xt\\ = \\yt\\ = l, and {x}^{pty}

for partial isometries pt with pfplyl = yl- Let o)z generally denote the

vector state by z. Then (*)<%xt = §§<*>xt and ci)®yt = ®cDyt.

Let ®jot be the mapping from £TC/ to /fc defined by

(3.7)

where / is any finite index set, y(/c)— ® Jo CpjX/O — 0 j°* Jo p(J) =

i&J 4£7
(g)pf and *€ ® /£. If {/^jJ'M^}, then p = (g)pL satisfies pHC'CHc

«e/ «e/

and Hjo l l^ l , Ttt(Q)p = pnt'(Q) for QeSft, and hence for ^eSft. Further-

more p(®yt) = ®ptyl=j£zQ* Hence TTC and TTC/ have a nonzero intertwining

operator p and hence are not disjoint. By Lemma 5, we have E(c)EC' =

Conversely, assume E(t)E^ = E^. Then TTC and it^ are quasi-equiva-

lent by Lemma 5. If xt satisfies ||^t|| = l, c({^t}) = c3 then there exist a

countable number of vectors f/ in H^ such that fl)®xf = ZI^rzo Since pro-

duct vectors are total in J?c/? there exists yt€Ht such that ||yt||=l,

c({y.}) = c/ and (fx, (g)jt)^0. Then

(3.8) lk®rf-^,J|

Let litt)^^^ — a)®^! |/ denote the norm of the restricition of ti>®xt — ti>g>ye

to Sft(/) = (\J(Slt))/l. By proposition 1.12 and Corollary 2.6 of [5], we
«e/

have

(3.9) n p(fl),f,

where p(^3 y) = 2-1(Xl) + Kl)-^(^ v)2) = 2-x(2-rf(A, ^)2) for states /^

and v. Since each p(a)Xe, a)yt) is in the interval QO, 1], (3.9) for arbitrary

/ implies the absolute convergence of Hp(a)Xi, d)y) and hence

(3.10)

By Theorem 4 of Ql], there exist x( and j^ in Ht such that
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(3.11) C0s't=0xl9 o)y:=(DycJ \\ x ( — y( \\ = d(u)Xe, a)y),

(*:, yO>o.

Since a)/, = (tiX[, pts'(xt)=pt and plQxl=Qx( for all QGz$tt defines (by

continuity) a partial isometry pt 631,, which satisfies p*ptxt = xt, x(=pllxL.

Similarly there exists a partial isometry j0jG3t( such that pr*p(yt = yt

and y(=p'*y>. From (3.10) and (3.11),

and hence {xl}~~{plxl}~~{pi yt}~{yt}. Therefore {#4}~{y,} by Lemma
P P P

3. Q.E.D.

§ 4. Discussions

If {#t}~{y,}, then xt=ptyt for a partially isometric p tE3tl for all c
P

except for a countable number of £, where pt satisfies Jpf/?ty* = yt- (Note

that 11^,11 = 11^11 = 1, (^, y,) = l imply |^,-yJ!2 = 0 and hence xt=yt.)

Then 5r(^t) and s'(yt) are equivalent in 3t^. pt can be extended to a

unitary in 3t£ if and only if 1 — s'(#t) and 1— s'(jt) are equivalent in 31,.

If {^t}^/{yt}3 then A;t = M t r t for a unitary z^GSJti for all c except
u

for a countable number of c. Therefore both sf(xt) and 1 — sf(xt) are

equivalent to s'(yt) and 1 — s'(yt) respectively, with a countable exception.

Due to Theorem (2) and its proof, the above argument gives the fol-

lowing :

Theorem (3). {#*}~{yt} if and only if {xt}^^{yt} and 1— s'(#»)
* *

z's equivalent to l — sf(y,) in 3^ /or «// ^ except for a countable many c,

where sf(x^) is the support projection of xt in yti. c({^;t})^'C({yt}) if
u

and only if {xl}

Proof. The first half is already shown. By definition, if

then c({#t})~c({yj). Therefore it remains to show that c({#
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implies {#t}~{y4}, which is rather trivial consequence of Definition:
u

By definition, c({#4})~c({yt}) implies the existence of x( and y(

Ht such that {*,}~{*JK {y}^{y(} and {^I}~{^}. Since {x}^{x
u u

and {y,}~{yl} trivially, it follows that {x}^{y}. Q.E.D.

Example. Suppose xt are cyclic for 91, and _pt are isometric operators

in 91', which are not unitaries. (This can happen for non-finite $t'.)

Then 1— s'(x^ = Q because s'(xt)H is the closure of 3lt#, and xt is cyclic.

For yl=plxiy l — sf(yt)=l—ptp*=^Q. Hence, if the index set is non-

countable, then {#»}~{y,} but {xt} is not &-equivalent to {yt}.

In this example, the representation of 91 in Hc and Hc^ c = c({xt}\

c' = c({jj), are not unitarily equivalent as is seen by the following argu-

ment:

Let ytX, ^£A be an orthonormal basis for Ht such that yto = yt.

Then ®j4«(t)3 with fc(c) = Q except for a finite number of £, is an ortho-

normal basis for H^. Any z 6E H^ has only a countable number of non-

zero components on this basis and hence * = ( ® y,)®*7, z'€. ® Ht for

some countable index set A. Since R = (\jRl)
f/ and y, is not cyclic for

9lt, 2 can not be cyclic for 91 in H^. On the other hand, &)xt 6 Ht is

cyclic for 91 in H,. Hence $t\Hc and 9l|fl"c/ can not be unitarily equiva-

lent.

Theorem (4). TTC /5 quasi-equivalent to nt' if and only if c^c7. TTC
^

zs unitarily equivalent to nc' if c~c/. -//" ^^ m^jic 5^ is countable, then
u

TTC is unitarily equivalent to nc' if and only if TTC is quasi-equivalent to TTC/.

Proof. The first part is obvious by Lemma 5 and Theorem (1). To

see the second part, assume e = c({#4}), C7 = c({j4}) and {xt}^{utyt}, where

M 4 G 9 t t is unitary. Then (g)&t defined by the same equation as (g)pt in

the proof of Lemma 5 is obviously isometric and its range contains all

(uy)(Jc}®u(J)H(J} where H(J)=<%>H>. Since u(J) is unitary u(J}H

and since (£)(utyt)€: Hc, the image of (g)u4 is the whole Hc.
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Hence ®z*t is a unitary intertwining operator for 7TC and TTC / , which proves

the unitary equivalence of TTC and TTC / . The last part follows then from

Theorem (2). Q.E.D.

Remark. The unitary equivalence of TTC and n^ does not necessarily

imply c~c'. For example, consider 3tr = &(H'r)®l" on H'r®H'r' = Hr with

all real r^O as index set and xr= S 2~kek^ek, yr— Z 2~*e£C§)e£+i for
*=i ft=i

oo oo

r>0 and #r = E 2"*e&(g)e^+i3 yr = S 2"*eft(g)e* for r<0, where all Ef
r

k=i k=i
and Hf

r
f are identified with a single Hilbert space H and {e&} is its or-

thonormal basis. Then obviously {#t}~{yt} does not hold but TTC is uni-
M

tarily equivalent to TTC/ for c=c({^t}) and c'=c({yt}).

For Q,€^(ff4) with n| |QJI< + 00
5 there exists a unique bounded

linear operator (g)Q4 on ^Ht = H satisfying ((8)Q*X®^t)=0Q»^t f°r all

{*t}eS0 by Theorem 3.1 in [6], where (g)^, = 0 if {Q,«,} ^ 50. If

()£€3ti and Jill ^*|l < + °°3 ®Q'i can De defined in exactly the same

manner and ®Ql£$t' by Theorem 3.2 in [JT].

$§pt in the proof of Theorem (1) is this (g)pt with its domain re-

stricted to Hc'.

Theorem (5), ?Rf is generated by the set of all Ec, c € E

with partial isometries pt 6 3tf. If the index set is countable^ pL can be

restricted to unitaries.

Proof. Let 5JJ be the set of all E^ c6E0 and ^pt with partial iso-

metries jD.GSft*. Since JlC^s it is enough to prove that Q£$l' implies

Let QeW.

Since isometries pt€$t't generates 3tf3

by Lemma 6.10 of Q3]. Since QEC belongs to this set, there exists

such that QEc=QiEc. Let §§yt£E(C)H. By Theorem (1) and Lemma 3,

there exist partial isometries j0 t €ESf t£ such that c({/?tjt}):=:c and p'fplyl> =

yt. ThenQ®/?4y,=^i(g)/?4yt. Hence
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This shows that ()£(e)=@i£(c)63t Hence (?=S ££(<:) 6 Sft where the

sum is over distinct £(c).

If the index set is countable, then pt in the above argument can be

taken to be unitaries by Theorem (2) and the latter half of Theorem (5)

is obtained. Q.E.D.
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