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Bures Distance Function and a Generalization
of Sakai's Non-commutative

Radon-Nikodym Theorem

By

Huzihiro ARAKI*

Abstract

For normal positive linear functional /JL and v of a W* algebra 31,

the following extension of a noncommutative Radon-Nikodym theorem by

Sakai is given.

There exist decompositions ju = jUi-}-jU2, v = Vi + V2 such that i>2 is

the smallest normal positive linear functional on 91 satisfying v^^2 and

5(^2)-! s(/0, where s(a) denotes the support projection of a, and #2 is

the smallest normal positive linear functional on ?H satisfying A22A2 and

5(^2) JLs(v). Further, there exists a non-negative self -adjoint operator

AI = AI(V/{JL) (in general unbounded) such that Ai=\^dE\ with its spec-

tral projections EJ in 9t, lim _£"}:= 1 — s£ and
MO

for all ^63^, where 5^ = 5(^1) — 5(^1) A(l — s(v)). There also exists an-

other non-negative self -ad joint operator A2 = Ai(y / '/JL) such that its spectral

projections E? are in 91, limEx=l — s^ and, for all

They are related by Ai(v/ju)A2(jU/p)==A2(ju/v)Ai(v//i) =

The Bures distance function d(ju9 v) is given by
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In any representation re of 5t, if two vectors W and (P satisfy a)§p- = /*5

o)0= y and ||F — (0 || = d(/JL^ v)3 where co?r denotes the vector state by F,

then there is a decomposition n=UiQ)nr, ¥ = xi®x'9 ^=ji©j /, &V =

/*23 (Oy' = Vz, x\ and ji are cyclic vectors of TTi, it 1(5(^1)) Ji — ^iC^O^i,

TT 1(5?) JI = TT 1(^2)^13 and such that triplet 7Ti5 a;i and ji are unique up

to unitary equivalence for given ju and v.

§ 1. Introduction

For two normal positive linear functionals ju and v of a IF* -algebra

5ft satisfying /^S^v, Sakai [JS] has shown the existence of a unique £0£3i

such that 0<j£0^SIl and

(1-1) v(0) = X*oC*o)

for all ^3^91. We shall generalize this Radon-Nikodym theorem of Sakai

to the case where ;U^>v does not necessarily hold.

Our investigation originally started from a search for a standard form

of vectors ¥ and (D such that their vector "states" are ju and v and

\\¥ — 0 | is minimal. The minimal value of \\W — CP | | is defined to be

d(/i, v) by Bures Q2]. It is easily shown that, if li^LV holds, then 0 is

uniquely given by

(1.2) tf=7r(*o)y

and hence

(1.3) dC«, v)2 = #(!) + v(l)-2/<(*o).

We shall first show the existence of a pair W and 0 giving the

mimimal distance for general /J. and v. An analysis of their mutual rela-

tion leads to a generalization of tQ. The result reduces to the Radon-

Nikodym theorem by Sakai if /i> v.
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Notations and Conventions; All representations of 3t in the pres-

ent work will be normal representations. We denote the set of all nor-

mal positive linear functionals on 3t by 5(31). The expectation functional

on 31 by a vector x in a representation space § of 31 is denoted by a)x.

The support s(/t) of y G 5(31) is the smallest projection operator E € 3t

satisfying ju.(E) — /*(!). The support s(x) of a vector x in § relative to

a representation TT of 31 on § is the smallest projection E£n($K) satisfy-

ing Ex = x. E$Q is the closure of ii(^K)fx and s{x) = n (s(a)x)). The sup-

port 5(7:) of a representation it is the smallest central projection E 6 3t

satisfying TrCE1)^!. TT is faithful on 3ts(7r). The support s(ff) of an

operator Q is the smallest projection E such that EQ=QE = Q. s(Q) =

s «?*<?) V 5 (QQ*) and it belongs to 31 if Qe'Si.

Our main results are following theorems:

Theorem 1. Let li, v 6 5(31).

(1) There exists a unique decomposition jU = jUi + jU2, v = Vi + v2 such

that P2 is the largest p 6 5(31) satisfying vl>p and s(ju)±s(p), and /JLZ is

the largest p 6 5(31) satisfying ;U^>p and s(v)_Ls(p).

(2) There exists a non-negative self -adjoint operator

(1.4) ^i =

s^/c/^ ^^ E\ 6 313 lim £" J — 1 — 5
\ J O

(1.5) v(s(Ai)^s(/ei))=v(

where

(1.6) «;=a(Ai)-*(

(3) There exists a non-negative self -adjoint operator

(1.7) ^2 = ̂ 2(v//0 = J^

that EleVi, limEl=l-s^ A1(Ju/^A2(v/y) = sft, and



338 HUZIHIRO ARAKI

(1.8) »i(sSQsfi = 0(A2QA2').

(4) In a representation KI of $1 with a cyclic vector x\ satisfying

u>Xl=JUi, there exists a unique vector ji such that coyi=i>i and

(1.9) 5(^i)y1=7Ti(^i)^i= lim
X— J. + 00

It satisfies

(1.10) {s(yi}-s(yl}/\(l-s(Xl

Theorem 2. For any ft, v € 5(31),

where A\ and A2 are as in Theorem 1 and jUi(Ai) = lim
X-» + 00

For any vectors W and 0 in a representation n of 3t satisfying a)¥ = /jt,

a)$=v, and d({JL, v)= \\W — (D\\, there exists a decomposition TT^TTi®^1,

W=xiQ)xl) ®=yi@y1, such that a)xi = /jt2, o)yi = Vz, x\ and y\ are cyclic

for 7Ti($t)? the triplet TTi, x\ and y\ are unitarily equivalent to ii\, x\

and y\ of Theorem 1 (4) and is unique up to unitary equivalence.

Takesaki (Q8] §15) considers the case s(ju)=l. His hQ has the same

matrix element as our A^ on the dense domain

§2. Bures Distance Function

The Bures distance for #, v G S(?K) is

(2.1) d(/i,v)='mf {\\x-y\\; a)x = ju, ti)y = v}

where x and y can be in an arbitrary representation space of 3t. The

following lemma shows that the infimum is actually reached.

Lemma 1. For ft £ 5(3$), there exist a representation Tt^ of 5R: on

^ and a vector W in ^ such that ti = &w and for any v € 5(31) there

exists $6^ satisfying a)0=v and \\W — ®\\ =
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Proof. By Proposition 1.6 of Bures £2], there exists a representation

of SR on £># and a vector x B in §# such that (J)XB=JU and

for any v 6 5(31).

Let yn be such that jw

By weak sequential compactness, there exists a subsequence n(k} and

such that

w-lim ynw=y.
k

Then

Therefore 1^ — ̂ 65(31) and there exists y1^^ satisfying y — 0)^ = 0)^1.

We also have

Hence §/4=€)5©§B? ^=^0^, r = ̂ 5©0 and (^=j© j1 satisfy all

the requirements. Q.E.D.

The next Lemma is not needed in the proof of the main Theorems

and is a special case of Theorem 2. We present it here because it gives

a motivation for the proof technique in the following sections.

Lemma 2. Let #GS(2t), £0£3t, *o2iO, and v(Q) = ft(toQto) for all

Then

(2.2) d(ju, v)2 - XI) + Kl) - 2X*o).
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Proof. Let ^, it^ W and 0 be as in Lemma 1. Let ®'=

Then ft)/=v and

Let a be defined on 7 (̂31)0' by

Then a is isometric on

Hence a is well-defined on 7 (̂31)0, linear there and ||a||<^l. Let s'(0)

be the projection on the closure of 7 (̂31)0. Then s'(0) 6 7TA4(9i)/ and

dsa/W 6 T r ^ t ) 7 - We have

Hence

Q.E.D.

Remark. Lemma 2 gives the uniqueness of ^0 satisfying

(i) *0<=9l, to^O,

(ii)

(iii)

for given /* and v by the following argument.

Consider the representation n^ of 91 on ^ with a cyclic vector Q^

such that (dQ^/JL. Assume that £0 and ^Q satisfy (i)-(iii). From the

proof of Corollary, which gives the uniqueness of y satisfying a)y = v,
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a)x = jU, d(/i, v) = 2(1 — (x9 j)) (forgiven #, v, x\ we obtain it^t^Q^

= 7T/4(*J)£/t. Hence nll,(t0)Q'Q/l = 7i:lt(t&Q'Qlt for any (X e Tr/Sl)'. There-

fore 7tp(tQ — to)s(Q^ = 0. Since s(^Q ̂  = n ̂ (s(ju)) and the representation TT^

is faithful at least for s(#y3ls(ju\ we have s(#)(£0 — ̂ o)5(/0 — 0- By (iii),

we have £0 — ^o-

CoroIIarjo Lg^ #, v, ?o ^ <25 in Lemma 2. Z,g£ TC be a representa-

tion of 3i on § fl«^ F9 ^G§ satisfy a)gr = jU, a)$ = v and d(jU,v)2 =

\\¥-®\\2. Then

(2.3) @ = n(t0)¥.

Proof. From the preceding proof, we have

Hence | a \ ̂  1 implies

Since a 6 ^(D^)7, we have

Q.E.D.

Remark. If 91 is a type I factor, #(Q) = tr(pQ\ v(Q) = tr(ffQ) for

^(T, P>0, then

(2.4)
and

(2.5)

where \$\ denotes
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§3. Construction of A

The following construction of AQ is similar to the method of Takesaki

Q8]. §o is not assumed to be separable.

Lemma 3. Let XQ be a cyclic and separating vectors for a von Neu-

man algebra 3lo on §o and z be a separating vector for 3to satisfying

(3.1) (*„, <?z)^0

for all Q^>Q, Q£$t'Q. Then there exists a positive self -adjoint operator

(3.2) AQ = MdEl

such that -EjE^lo, z = AQxQ, E+Q =Hm£'£ = 0.
MO

Proof, Let S be defined on ®=3loffo by

(3.3) SQxQ=Qz,

Since #o is cyclic for SR03 ^o = 0 for ^ES^o implies Q = Q and hence

^2r = 0. Therefore 5 is well-defined, linear operator. Since x0 is separat-

ing for 9^0, the domain 3) =^0^0 of S is dense.

By assumption (3.1), (#03 (c— (?)*(c— (?)*) is real for Q€$t'o and any

complex number c. This implies that

Therefore for

Hence 5 is symmetric. 5 is non-negative on SD by (3.1).

S is obviously invariant under WQ. For (?5 (?i, (?2
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Hence 5 commutes with any Q in 9to-

We now consider the Friedrichs extension of S.

Let

(3.4) (vl9 F2)^orl5 s

for all Fi, r2<E®. Since

for non-zero Q^^t^ (W^ ¥2) is an inner product on ®. Let fi be its

completion, which is a Hilbert space with (5Fi, 3F2)^ as an inner product.

Let a be the mapping from QxQ in $ to @A;O in §0- It is densely de-

fined, linear and |a| <Jl. Let a: be its closure.

Since \\Q\\— Q^>0 for any self -adjoint Q, we have

(Ci*o, ( i ie i i -
for any @i€5lo- Replacing () by <?*(2, we obtain

Therefore a~lQa is linear and bounded on a"1®. Let K®(Q) be its clo-

sure on $. a7T®(@)=(?a on S) implies

(3.5) an$(Q)=Qa.

ft® is clearly a * representation of D^ If (?<* is a non-decreasing mono-

tonous net in 3tjJ with limQa=Q, then lim \\7T®(Q-Qa)¥\\l = Q for
a t «T

or1® and hence for ¥£&. Therefore TT® is normal.

From the Schwarz inequality
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for SFi, 5F2 G ® and the majorization

we obtain the existence of a bounded non-negative self-adjoint T on

such that 1 :> T and

(3.6)

for all F2GGT1®, S
Since S commutes with Q£$IQ, we have from (3.5) and (3.6)

for all FiGJ? and ¥2ea~1^). Hence

According to Sakai ([6J, 1.11.3), there exists a projection

for each real ^3 having the following properties:

(1) ex^ex, if A^r.

(2) lim eX7? = ex.
^nt^

(3) ci+e = l for e>0 and e0 = 0.

(4) r-
Jo

Let the closure of aeffi be £>x and the projection onto §/(x) be jEJ

where /(/l) = (l + ^)~1A. f is a monotonously increasing function on
[J)3 CXD) with the range [J)3 1). From (1), we have

(3.7) El<*Ek if

From (2), we have

(3.8) lim £»„ =
X n | X

From (3), we have

(3.9) £g = 0.

For ^Sexl? and (?6^, we have
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due to (3.5) and e^Zx^WJ. Hence Q¥^^ for any V€&,,Q€W0 and

hence

(3.10)

From the definition (3.4), we have for

(3.11) (¥,, ¥2)®

for all FiGar1® and hence for all ¥le® by continuity. If

then (¥i, F2)t = 0 for all F* 2 in the dense subset a"1® of ^ and hence

SFi = 0. Namely the kernel of a is 0.

From (3.11) and (3.6), we have

(3.12)

for 5Ti, F2ea"1® and hence for all Fl3 F2E^ by continuity. From this

equality, we obtain the following three conclusions.

(i) If (1-70^ = 0, then from (3.12) with ¥l = ¥2 = ¥, we obtain

¥ = Q. Hence ei = l and

(3.13) limJS:j = l.
X-» + 00

(ii) Since ex commutes with T, we have

for all ^i, ^2eS. Hence a(l-ex)r±§x and

(3.14)

(iii) For all 5F1} F2 6 ^, we have

(3.15) d(a¥,, Ei&W^ = d(Wlt (1-
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This also implies that a~lef^ is bounded for finite A and hence

(3.16) <*exffl = ©x, *<!.

From (3.7), (3.8), (3.9) and (3.13), we can define a non-negative self-

adjoint operator associated with ?HQ on £>0 by

(3.17) B

Its domain D(B) is the set of all ¥€$Q such that

By (3.15), we have

(3.18)

and hence a St<^D(B). Further, by (3.11), (3.6) and (3.18),

(3.19)

Since the union of (3.16) is dense in D(B) relative to the metric

+ ||F||2}1/2 and since a$ is complete relative to the same metric due to

(3.19), we have

(3.20) D(B)=aSt.

By polarization, we obtain from (3.18),

(B&W,, Ba¥ ,) = (¥,, T¥2)s.

Combining with (3.6), we obtain ®C-0(#2) and

(3.21) B2¥ = S¥

Hence
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A0 = B2 = \ UEl
Jo

satisfies .EjSESfto and z = A0xQ.

If \imE%P = V, then

Since z is assumed to be separating for $t0 and hence is cyclic for 310,

we have ¥ = Q. Therefore

(3.22) lim
MO

Q.E.D.

Remark. AQ satisfying E% £ S^o and z = AQxQ can be constructed

exactly in the same way even if z is not separating for $t03 except that

Hm E% is in general a non-zero projection.
M O

In the present case, A0^>Q and hence the equality in (3.1) holds

only if (^o^O, namely Q = Q. Therefore z is separating for 3to and hence

is cyclic for 3t0.

§4e Proof of Main Theorems

The unique decompositions /^^/^i + Az and v = Vi + v2 are essentially

given by the following lemma.

Lemma 4a Let 9^2 be a von Neumann algebra on § and let W and

0 be two vectors in § such that

(4.1) (y.w^o
for all non-negative self-adjoint Q in 3^2- Then there exists the largest

projection E in 3^2 such that

(4.2) (
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It satisfies

(4.3) C0p = C0EP + ti>(l-E)r9 CO 0 =

(4.4) s(o>£r)J

(4.5)

is the largest p €5(312) such that a)®^>p and s(p)_Ls(a)sr). MET is

the largest pE 5(3^2) such that a)y^>p and s(p)_Ls(a)0)-

Proof. Let (3T, @<0) = 0 for (?e3i£, (?^0. Let ex€^ be the spec-

tral projection of Q (Sakai Q6]) and

where e^^l and 7i = l , 2 , - - - . Since

we have

(F3 e(»)

Hence (¥,Q®) = 0 for ^6^2 implies

(4.6) (y,

For a finite number of projections ^-G^? satisfying (5T, £"/$) = 0, we

obtain from (4.6)

(4.7) (y, \/E^ = (W, 5(L£|.)«) = 0.
« t*

From the normality, the same holds for any number of £,-. Let £ be the

supremum of ^ 6 3^2 satisfying (f, Ea@) = Q. Then, by (4.7), we have

(*F, E$) = Q, and by construction, £ is the largest such projection in SR^-

From E € SR^ we have (4.3). From Schwarz inequality for positive

linear functional (§F, (?$), we have
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for any Ql9 Q2€3i'2. Setting Q1 = QSE or Ql = Q3(l— E\ we obtain s(a)E®}

±s(a)Ev) and s(fl>E0)_Ls(ft)(i_E)sO. Interchanging the role of W and 0,

we obtain s(a)£r)-Ls(^(i-£)0)-

Let peS(5R2) be such that

(4.8)

Then there exists QGSft^, 12S(?^0 satisfying

due to p<,a)0a Since p(s(o>sr)):=0, we have s(¥)Q0 = 0. Hence

= 0, which implies by (4.6)

and we have Q@ = EQ@=QE®. Therefore

This proves that O)E® is the largest p satisfying (4.8).

The same proof holds for O)E¥> Q. E.D.

Proof of Theorem 1 (1). By Lemma 1, there exists a representation

U of 31 on and vectors f and (5G§ such that

We shall show that for Q€n(?K)', Q^

(4.9) (

This will prove Theorem 1 (1) due to Lemma 43 where 5ft2 = TT

Suppose E"7 is a projection in 7r(3ty and (F3 £'0) is not a non-nega-

tive real number. Then there exists real numbers Oi and 02 such that

QI is not an integer multiple of 2n and
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Then

(4.10) Re(y, 0)<a+£.

Now consider the representation 7r©7T of 3t on £>©§ and vectors

They satisfy a)y = a)$r = /t, a)$' = a)0 = v and, by (4.10),

which is a contradiction with the minimality of \\W — 0\\2.

Therefore (¥, Ef®)^$ for any projection £" in 7r(2ty and hence

(4.9) holds for any £^0, Q67r(9ty. Q.E.D.

To apply Lemma 3, we need a further reduction:

Lemma 5. Let ?fci be a von Neumann algebra on £>i and let x\ and

yi be vectors in §1. Let

(4.11)

Then

(4.12) P

Let

(4.13)

(4.14)

T/zew

(4.15)

(4-16)

(4.17)
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(4.18)

(4.19)

for all

If

(4.20)

/zoWs /or all Q<=.$ti, (?;>0, <2=£0, */zera both x0 and

(4.21) « = s(«o)jo=s(^i)jo

are cyclic and separating for the restriction

(4.22)

Proof. s(xi)s(yi)¥ = Q implies

and hence

€ (1 - 5

The converse is also true. Therefore

Similar formula holds for S(JI)S(A;I). Since

by definition, we obtain (4.12). (4.13) and (4.14) then follow.

From (4.13), the set of QxQ, ()€3ti is the same as s(xi) — s(xi)/\

(I — s(yi)) times the set of Qxi, Qe^i{ and the set of Qxi9 QeSii spans

5(^1)^1- Hence we obtain (4.15). Similarly we have (4.16). (4.17) and

(4.18) then follow.
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Since Qyi£s(yi)tQi for 063l{, we have

(*i> Qyi)=(xo, Qyi)-

Since QxQ€zs(xo)!QiCs(xi)!Qi, we have

(*o30ji)=(0**o, yi)=(£**o, jo).

Therefore (4.19) holds.

If (4.20) holds, then for any 0e3ti, 02^0, 0^0, we have, by

(4.19),

and hence QxQ^Q, Qs( x o)yo=^=0- Therefore XQ and S(XQ) jo are separat-

ing for 3li. (QG Sfti and <?^0 = 0 implies Q*^0 = 0, hence 0*0 = 0.)

Therefore both #o and s(#o)yo are cyclic for 3ti and hence cyclic for

s(xoy3tis(x0) on 5(^o)^>i» ^o is obviously cyclic for s(#0)^i on s(#0)£>i

and hence is separating for 5(^0)^15(^0).

Suppose that 0G5(^o)3ti5(^0) and

Then 5(0*0)^l-5(y0) because 0y0-05(^0)jo = 0. Since 5(0*0)^

5(^0)3 we have by (4.18)

Therefore we have 0 — 0. Hence ^ = 5(^0)70 is separating for

Q.E.D

Proof of Theorem 1 (2). In the proof of Theorem 1 (1), we set

where E is taken from Lemma 4.

If Q£(l-E}n,l$ty(l-E\ Q^Q, Q^O, we have
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due to the maximality of E. Therefore we have (4.20).

We now apply Lemma 3 to §o, 9t05 XQ and z of Lemma 43 and ob-

tain a positive self-adjoint operator (3.2), where

By a)Xl = /ii, n^Q^l — E) is faithful certainly for

and

(4.23) 7T/s(

because #1 is cyclic for 91 1 on §1 due to (4.20). Therefore there exists

a unique £J such that for A>0 (1 — 5(^1)) ̂ J?J and

By the faithfulness of (1— E)K^ we have

(1) Ei^Ei' for A^A',

(2) lim E{n = El
*"n T^-

(3) ^J = 0, lim£J = l.
X f o o

We now define A\(yf IJL) by (1.4). We have

(4.24) M^QAl) = (7i,(Al}xl, 7t,(Q)n,(

Since 7t/Ji(El)xi = E^xi with £"^6 s(^o)9tis(%0)3 we have

By (oyi=vi and (4.23), we obtain

(4.25) (s (x 0 Jl5 TT^> (^ i) Ji) = J>i(* (A

By the same argument as for (4.23), we obtain

(4.26) ^
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From (4.15), (4.23) and (4.26), we have

(4.27) ^«)(1 - E) =

Therefore we also have

(4.28)

By (4.24), (4.25), and (4.28), we obtain (1.5).

From (4.27), we have

MO

o/ Theorem 1 (3). Since the initial assumptions are symmetric

in /* and v, we define

(4.29)

and prove the corresponding properties. By definition of E^,

where unbounded operators Ak are always defined as the limit of AkE
k
L*

By (4.27), we have

Since 5(1^2) J- 5(^)^5^, we have 7r/,(A2(^/^))E0 = 0. Hence, by using

'di = s(xo)i and (51 = ̂ 0,

(4.30) 7rX^2(^A))«= 7T/l(^2(/«/v)) J

Therefore we have

Q.E.D.
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Proof of Theorem 1 (4). We have already the existence because the

vector yi in the proof of Theorem 1 (2) satisfies all requirements. To

prove the uniqueness, suppose that y'6§i satisfies a)y' = Vi and s(xi)y' =

z. Then there exists a partial isometry uE3t( such that u*uyi=yi and

uyi— y' due to (Dy' = (Dyi. We have

and hence u — 1 is 0 on z. By applying ^(^(^AOX we have

Since #0 is separating for Sftf, we have u = l and yf=y. Hence the

uniqueness . Q . E . D .

Proof of Theorem 2. From the construction of A\ and A^ we have

To prove the uniqueness, suppose W\ and @i be given, satisfying o)ri

= /«, o)tfl = v and d(/«, v)=||?ri — (Z>i| | . By expanding the representation,

we can identify W\ with 5T in the proof of Theorem 1 (2), where the

representation contains n^ and @i is not necessarily the same as 0.

Since ft)tf = ft)tfl = v, there exists a partial isometry & 6 7r(3ty, satisfy-

ing u*u® = @ and u0 = 0i. We also have

Since
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we have

(F, tfOKF, u(l-EW = (Ay*Xl

Equality of this expression with (¥, @)=\\All2xi\\2 implies

By multiplying 7r(^2(AA))1/2
5 we obtain

Since XQ is cyclic in §1, we have u = 1 on §1. Therefore

Setting #0!=^', we obtain the statement of Theorem 2.

§5. cL(A, v) and d(#, v)

In PQ, we have defined

(5.1) ^U v)

where TT is a fixed representation on §w. Obviously dn(^ v) ^

We shall now discuss when the equality holds.

We shall start by considering whether there exists 0 giving d(jU, v)

= 113?" — (0 1 1 for the fixed representation TT and a fixed vector W. It al-

ready gives some cases where d(#, v}=dn([j., v).

Theorem 3. Let ju, v € 5(91) fl^d n be a fixed representation of "Si

on §„.. Lef W be a fixed vector in $„ satisfying && = &.

(1) L^ EI be the projection on the closure of

(5.2)

Then there exists 0G&, satisfying

(5.3) a>f = v, HF-tfl^dCA v)
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if and only if there exists a vector y' in (l—Ei)H such that Q)y' = v2-

(2) // 5(^)^5(^)5 then there always exists 0€&r satisfying (5.3).

(3) If ¥ is separating for Tr(Sfl), there always exists $6^ satisfying

(5.3).

Proof. We first extend n to sufficiently large representation ft of 5ft
*. *•

on §€&. such that 0 in Theorem 1 is in §.

By (4.30) with p. and v exchanged, we have

Since j0 is cyclic for 7r(5ft) on §l5 we have

Therefore we have (1).

If 5(A)^5(v), then v2 = 0 and (2) follows from (1).

If W is separating for ^(Jft), then s(#)=l and 5(^)^5(v) for any y.

Hence (3) follows from (2). Q.E.D.

Theorem 4e Let n be a fixed representation of 5ft on §

(5.4) ^(fl),, fl),)= d(a)x, (Dy}

and there exist W and 0 in $&„ such that

a)v = 0)x, a)® = a)y, d(a)x, o)y)= \\¥ — <D\\.

Proof. Let /t = a)x, v = a)y and E\ be the projection on the closure of

and E{ be the projection on the closure of

Since 7r(5ft) on E-^w and ^(^ are unitarily equivalent by the uniqueness

in Theorem 1 (4), there exists a partial isometry w 6 7r(5ft)7 such that
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(5.5) u*u = Ei, uu* =

(5.6) (*, U*y)=o)x(A2(

There exist a central projection F and partial isometries in,

such that

(5.7) ufu^Fd-EJ, ulU^<,F(l-E(\

(5.8) uf

We set

Since F is a central projection, we have

Since E(u = u, (l — Ei)ui=ui, we have 1^*^1=1^*^ = 0. Therefore

Since U I + Z ^ G it^K)'^ we have

Similarly, we have

Since

we obtain

Hence
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= 0.

Similarly

((l-F)*, (l-

Therefore

(F, $) = (Fux, Fy) + ((l-F)x, (l-F)u*y) = (x, u* y)

Q.E.D.

Remark. By [2], d(a), a/)2£S \\(0 — fl>'||. Using (5.4), we then have

— o ) \ \ .

The remark at the end of ^1] is thus incorrect. The counterexample

mentioned there was a counter-example only to the method of

§ 6. Discussions

=5^5 then we can obtain J I^I ISSl as follows. From /^^y, we

have

and hence s(/0^s(v). Thus j^ — 0, 5y = 5(v) and

(6.1)

Let 6>1. Then

Therefore v(l-£|) = 0 and hence #(1-ED = Q. This implies

Since 5^2 = ^2 and 5(^)^5^, we have (l—E2
b)A2 = Q and hence

From (6.1), we see that A2 is the same as Sakai's £0.
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As for AI, we have for @i, (?2

Therefore we have, from

and hence

In particular ||^i

If 31 is commutative, /*, v €E 5(91) are measures on the spectrum of

9t and Ai^=A2 is the square root of the Radon-Nikodym derivative. The

decomposition v = yi + y2 is the decomposition of the measure v into abso-

lutely continuous and singular parts relative to the measure ju.

From proof of Theorem 1, it is seen that n^Ai) is unique on (1 —

S(A;O))€)I + ®. We would obtain the uniqueness of AI if 2) is the core of

A0 in Lemma 3.

As for the appearance of two operators AI and A2, we have the fol-

lowing result.

Theorem 5. AI and A2 coincide if and only if s(/ti) commutes with

. // s(#i) and s(vi) commute, then 5^=5^=

Proof. From the construction of AI and A2 in the proof of Theo-

rem 1, it is clear that Ai = A2 if and only if 5^=s£.

If sCtfi) and 5(^1) commute, then obviously 5^=5^=5(^1)5(1^1). If

s(/*i) does not commute with 5(^1) then Qs£, 5(/^i)] = 0 while [X/*iX 5Q

= [5(^1), 5(^1)] =£0 and hence s^s*. [Note that 5^=5(^1) — «(vi)A(l —

Q.E.D.

If ^Sjv, then [5(^)5 5(v)] = 0. The following example gives the
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case where /*I>v and [X#i)> s(

Example. Let 3t = ^(§) and p and gr be mutually orthogonal unit

vectors in §. Let

(6.2) jU = (j)p + a)p+q, v = —a)q.

First we prove /*^>v. For (?^03

Since

we obtain

="«?)•

Next, we see that any p satisfying ju^p and s(p)_Ls(v) must be

proportional to o)p because ju^>p implies s(p) ^ s(p) -\- s(q) and (1— s(v))

/\(s(p) + s(qy) = s(p) due to sOO = s(y). Since fi^&p and jt(Q) = (Op(Q)

if Q=s(p — q), we see that jU2 = u)p and hence fJti = ti)p+q. Therefore

) — 5(p + ?) does not commute with s(vi) = s(v) = s(9).

In this example s£=s(gr)3 sv
fJL=s(p + q) and ^i = 2"3/
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Note Added in Proof. Professor J. Dixmier has pointed out that 1—E

in Lemma 4 is the support of the normal state (3F3 Q@) and hence its

existence is well-known.


