Bures Distance Function and a Generalization of Sakai's Non-commutative Radon-Nikodym Theorem

By

Huzihiro Araki*

Abstract

For normal positive linear functionals μ and ν of a W^* algebra \Re , the following extension of a noncommutative Radon-Nikodym theorem by Sakai is given.

There exist decompositions $\mu = \mu_1 + \mu_2$, $\nu = \nu_1 + \nu_2$ such that ν_2 is the smallest normal positive linear functional on \Re satisfying $\nu \ge \nu_2$ and $s(\nu_2) \perp s(\mu)$, where $s(\alpha)$ denotes the support projection of α , and μ_2 is the smallest normal positive linear functional on \Re satisfying $\mu \ge \mu_2$ and $s(\mu_2) \perp s(\nu)$. Further, there exists a non-negative self-adjoint operator $A_1 = A_1(\nu/\mu)$ (in general unbounded) such that $A_1 = \int \lambda dE_{\lambda}^1$ with its spectral projections E_{λ}^1 in \Re , $\lim_{\lambda \downarrow 0} E_{\lambda}^1 = 1 - s_{\mu}^{\nu}$ and

$$\nu(s(\mu_1)Qs(\mu_1)) = \mu_1(A_1QA_1) \equiv \lim_{\lambda,\lambda'} \mu_1(A_1E_{\lambda}^1QA_1E_{\lambda'}^{1})$$

for all $Q \in \Re$, where $s_{\mu}^{\nu} = s(\mu_1) - s(\mu_1) \wedge (1 - s(\nu))$. There also exists another non-negative self-adjoint operator $A_2 = A_2(\nu/\mu)$ such that its spectral projections E_{λ}^2 are in \Re , $\lim_{\lambda \downarrow 0} E_{\lambda}^2 = 1 - s_{\nu}^{\mu}$ and, for all $Q \in \Re$,

$$\nu_1(s^{\mu}_{\nu}Qs^{\mu}_{\nu}) = \mu(A_2QA_2).$$

They are related by $A_1(\nu/\mu)A_2(\mu/\nu) = A_2(\mu/\nu)A_1(\nu/\mu) = s_{\mu}^{\nu}$.

The Bures distance function $d(\mu, \nu)$ is given by

Received June 12, 1972.

^{*} On leave from Research Institute for Mathematical Sciences, Kyoto Univ., Kyoto, Japan.

$$d(\mu, \nu)^2 = \mu(1) + \nu(1) - 2\mu_1(A_1)$$

= $\mu(1) + \nu(1) - 2\mu(A_2).$

In any representation π of \Re , if two vectors Ψ and $\boldsymbol{0}$ satisfy $\omega_{\overline{r}} = \mu$, $\omega_{\overline{\theta}} = \nu$ and $||\Psi - \boldsymbol{0}|| = d(\mu, \nu)$, where $\omega_{\overline{r}}$ denotes the vector state by Ψ , then there is a decomposition $\pi = \pi_1 \oplus \pi'$, $\Psi = x_1 \oplus x'$, $\boldsymbol{0} = y_1 \oplus y'$, $\omega_{x'} = \mu_2$, $\omega_{y'} = \nu_2$, x_1 and y_1 are cyclic vectors of π_1 , $\pi_1(s(\mu_1))y_1 = \pi_1(A_1)x_1$, $\pi_1(s_{\nu}^{\mu})y_1 = \pi_1(A_2)x_1$, and such that triplet π_1 , x_1 and y_1 are unique up to unitary equivalence for given μ and ν .

§1. Introduction

For two normal positive linear functionals μ and ν of a W^* -algebra \Re satisfying $\mu \geq \nu$, Sakai [5] has shown the existence of a unique $t_0 \in \Re$ such that $0 \leq t_0 \leq 1$ and

(1.1)
$$\nu(Q) = \mu(t_0 Q t_0)$$

for all $Q \in \Re$. We shall generalize this Radon-Nikodym theorem of Sakai to the case where $\mu \geq \nu$ does not necessarily hold.

Our investigation originally started from a search for a standard form of vectors Ψ and Φ such that their vector "states" are μ and ν and $\|\Psi - \Phi\|$ is minimal. The minimal value of $\|\Psi - \Phi\|$ is defined to be $d(\mu, \nu)$ by Bures [2]. It is easily shown that, if $\mu \geq \nu$ holds, then Φ is uniquely given by

and hence

(1.3)
$$d(\mu, \nu)^2 = \mu(1) + \nu(1) - 2\mu(t_0).$$

We shall first show the existence of a pair Ψ and Φ giving the minimal distance for general μ and ν . An analysis of their mutual relation leads to a generalization of t_0 . The result reduces to the Radon-Nikodym theorem by Sakai if $\mu \geq \nu$.

Notations and Conventions: All representations of \Re in the present work will be normal representations. We denote the set of all normal positive linear functionals on \Re by $S(\Re)$. The expectation functional on \Re by a vector x in a representation space \mathfrak{H} of \mathfrak{R} is denoted by ω_x . The support $s(\mu)$ of $\mu \in S(\Re)$ is the smallest projection operator $E \in \Re$ satisfying $\mu(E) = \mu(1)$. The support s(x) of a vector x in \mathfrak{H} relative to a representation π of \mathfrak{R} on \mathfrak{H} is the smallest projection $E \in \pi(\mathfrak{R})$ satisfying Ex = x. $E\mathfrak{H}$ is the closure of $\pi(\mathfrak{R})'x$ and $s(x) = \pi(s(\omega_x))$. The support $s(\pi)$ of a representation π is the smallest central projection $E \in \mathfrak{R}$ satisfying $\pi(E)=1$. π is faithful on $\mathfrak{R}s(\pi)$. The support s(Q) of an operator Q is the smallest projection E such that EQ = QE = Q. s(Q) = $s(Q^*Q) \lor s(QQ^*)$ and it belongs to \mathfrak{R} if $Q \in \mathfrak{R}$.

Our main results are following theorems:

Theorem 1. Let $\mu, \nu \in S(\Re)$.

(1) There exists a unique decomposition $\mu = \mu_1 + \mu_2$, $\nu = \nu_1 + \nu_2$ such that ν_2 is the largest $\rho \in S(\Re)$ satisfying $\nu \ge \rho$ and $s(\mu) \perp s(\rho)$, and μ_2 is the largest $\rho \in S(\Re)$ satisfying $\mu \ge \rho$ and $s(\nu) \perp s(\rho)$.

(2) There exists a non-negative self-adjoint operator

(1.4)
$$A_1 = A_1(\nu/\mu) = \int \lambda dE_{\lambda}^1$$

such that $E^1_{\lambda} \in \Re$, $\lim_{\lambda \downarrow 0} E^1_{\lambda} = 1 - s^{\nu}_{\mu}$ and

(1.5)
$$\nu(s(\mu_1)Qs(\mu_1)) = \nu(s_{\mu}^{\nu}Qs_{\mu}^{\nu})$$
$$= \mu_1(A_1QA_1) \equiv \lim_{\lambda,\lambda' \to +\infty} \mu_1(A_1E_{\lambda}^1QA_1E_{\lambda'}^1),$$

where

(1.6)
$$s_{\mu}^{\nu} = s(\mu_1) - s(\mu_1) \wedge (1 - s(\nu)).$$

(3) There exists a non-negative self-adjoint operator

(1.7)
$$A_2 = A_2(\nu/\mu) \equiv \int \lambda dE_{\lambda}^2$$

such that $E_{\lambda}^2 \in \Re$, $\lim_{\lambda \downarrow 0} E_{\lambda}^2 = 1 - s_{\nu}^{\mu}$, $A_1(\mu/\nu)A_2(\nu/\mu) = s_{\nu}^{\mu}$, and

(1.8)
$$\nu_1(s^{\mu}_{\nu}Qs^{\mu}_{\nu}) = \mu(A_2QA_2).$$

(4) In a representation π_1 of \Re with a cyclic vector x_1 satisfying $\omega_{x_1} = \mu_1$, there exists a unique vector y_1 such that $\omega_{y_1} = \nu_1$ and

(1.9)
$$s(x_1)y_1 = \pi_1(A_1)x_1 \equiv \lim_{\lambda \to +\infty} \pi_1(A_1E_{\lambda}^1)x_1.$$

It satisfies

(1.10)
$$\{s(y_1) - s(y_1) \land (1 - s(x_1))\} y_1 = \pi_1(A_2) x_1.$$

Theorem 2. For any μ , $\nu \in S(\Re)$,

$$d(\mu, \nu)^2 = \mu(1) + \nu(1) - 2\mu_1(A_1)$$
$$= \mu(1) + \nu(1) - 2\mu(A_2)$$

where A_1 and A_2 are as in Theorem 1 and $\mu_1(A_1) = \lim_{\lambda \to +\infty} \mu_1(A_1E_{\lambda}^1)$.

For any vectors Ψ and Φ in a representation π of \Re satisfying $\omega_{\overline{w}} = \mu$, $\omega_{\Phi} = \nu$, and $d(\mu, \nu) = ||\Psi - \Phi||$, there exists a decomposition $\pi = \pi_1 \oplus \pi^1$, $\Psi = x_1 \oplus x^1$, $\Phi = y_1 \oplus y^1$, such that $\omega_{x^1} = \mu_2$, $\omega_{y^1} = \nu_2$, x_1 and y_1 are cyclic for $\pi_1(\Re)$, the triplet π_1 , x_1 and y_1 are unitarily equivalent to π_1 , x_1 and y_1 of Theorem 1 (4) and is unique up to unitary equivalence.

Takesaki ([8] §15) considers the case $s(\mu)=1$. His h_0 has the same matrix element as our A_2 on the dense domain $\pi_{\mu}(\Re)' \Psi$.

§2. Bures Distance Function

The Bures distance for $\mu, \nu \in S(\Re)$ is

(2.1)
$$d(\mu,\nu) = \inf\{\|x-y\|; \ \omega_x = \mu, \ \omega_y = \nu\}$$

where x and y can be in an arbitrary representation space of \Re . The following lemma shows that the infimum is actually reached.

Lemma 1. For $\mu \in S(\Re)$, there exist a representation π_{μ} of \Re on \mathfrak{H}_{μ} and a vector Ψ in \mathfrak{H}_{μ} such that $\mu = \omega_{\Psi}$ and for any $\nu \in S(\Re)$ there exists $\boldsymbol{\Phi} \in \mathfrak{H}_{\mu}$ satisfying $\omega_{\boldsymbol{\Phi}} = \nu$ and $||\Psi - \boldsymbol{\Phi}|| = d(\mu, \nu)$.

Proof. By Proposition 1.6 of Bures [2], there exists a representation π_B of \Re on \mathfrak{H}_B and a vector x_B in \mathfrak{H}_B such that $\omega_{x_B} = \mu$ and

$$d(\mu, \nu) = \inf\{||x_B - \gamma||; \ \gamma \in \mathfrak{Y}_B, \omega_y = \nu\},\$$

for any $\nu \in S(\Re)$.

Let y_n be such that $y_n \in \mathfrak{H}_B$, $\omega_{y_n} = \nu$ and

$$\lim_n ||x_B-y_n|| = d(\mu, \nu).$$

By weak sequential compactness, there exists a subsequence n(k) and $y \in \mathfrak{D}_B$ such that

w-lim
$$y_{n(k)} = y$$
.

Then

$$\nu - \omega_y = \lim_k \omega_{(y_{n(k)} - y)} \ge 0.$$

Therefore $\nu - \omega_y \in S(\Re)$ and there exists $y^1 \in \mathfrak{D}_B$ satisfying $\nu - \omega_y = \omega_{y^1}$. We also have

$$||x_B - y||^2 = ||x_B||^2 + ||y||^2 - 2\operatorname{Re} \lim (x_B, y_{n(k)})$$
$$= \lim ||x_B - y_{n(k)}||^2 - \lim ||y_{n(k)} - y||^2$$
$$= d(\mu, \nu)^2 - \omega_{\nu}(1).$$

Hence $\mathfrak{H}_{\mu} = \mathfrak{H}_{B} \oplus \mathfrak{H}_{B}$, $\pi_{\mu} = \pi_{B} \oplus \pi_{B}$, $\Psi = x_{B} \oplus 0$ and $\Phi = y \oplus y^{1}$ satisfy all the requirements. Q.E.D.

The next Lemma is not needed in the proof of the main Theorems and is a special case of Theorem 2. We present it here because it gives a motivation for the proof technique in the following sections.

Lemma 2. Let $\mu \in S(\Re)$, $t_0 \in \Re$, $t_0 \ge 0$, and $\nu(Q) = \mu(t_0Qt_0)$ for all $Q \in \Re$. Then

(2.2)
$$d(\mu, \nu)^2 = \mu(1) + \nu(1) - 2\mu(t_0).$$

Proof. Let $\mathfrak{H}_{\mu}, \pi_{\mu}, \Psi$ and Φ be as in Lemma 1. Let $\Phi' = \pi_{\mu}(t_0)\Psi$. Then $\omega_{\Phi}' = \nu$ and

$$d(\mu, \nu)^2 \leq ||\Psi - \Phi'||^2 = \mu(1) + \nu(1) - 2\mu(t_0).$$

Let α be defined on $\pi_{\mu}(\Re) \Phi'$ by

$$\alpha \pi_{\mu}(Q) \mathbf{\Phi}' = \pi_{\mu}(Q) \mathbf{\Phi}, \ Q \in \mathfrak{R}.$$

Then α is isometric on $\pi_{\mu}(\Re) \Phi'$:

$$\|\pi_{\mu}(Q)\boldsymbol{\varPhi}\|^{2} = \nu(Q^{*}Q) = \|\pi_{\mu}(Q)\boldsymbol{\varPhi}'\|^{2}.$$

Hence α is well-defined on $\pi_{\mu}(\Re) \boldsymbol{\emptyset}$, linear there and $\|\alpha\| \leq 1$. Let $s'(\boldsymbol{\emptyset})$ be the projection on the closure of $\pi_{\mu}(\Re) \boldsymbol{\emptyset}$. Then $s'(\boldsymbol{\emptyset}) \in \pi_{\mu}(\Re)'$ and $\hat{\alpha} \equiv \alpha s'(\boldsymbol{\emptyset}) \in \pi_{\mu}(\Re)'$. We have

$$egin{aligned} & \|(arphi, \, oldsymbol{arphi})| &= |(arphi, \, \hat{lpha} oldsymbol{arphi}')| \ &= |(\pi_{\mu}(t_0)^{1/2} arphi, \, \hat{lpha} \pi_{\mu}(t_0)^{1/2} arphi)| \ &\leq & \|\hat{lpha}\| \|\pi_{\mu}(t_0)^{1/2} arphi\|^2 \leq & \mu(t_0). \end{aligned}$$

Hence

$$d(\mu, \nu)^2 = \mu(1) + \nu(1) - 2 \operatorname{Re}(\Psi, \emptyset)$$
$$\geq \mu(1) + \nu(1) - 2\mu(t_0).$$

Q. E. D.

Remark. Lemma 2 gives the uniqueness of t_0 satisfying

- (i) $t_0 \in \Re, t_0 \geq 0$,
- (ii) $\mu(t_0Qt_0) = \nu(Q), Q \in \Re,$
- (iii) $s(t_0) \leq s(\mu)$,

for given μ and ν by the following argument.

Consider the representation π_{μ} of \Re on \mathfrak{H}_{μ} with a cyclic vector \mathcal{Q}_{μ} such that $\omega_{\mathfrak{Q}_{\mu}} = \mu$. Assume that t_0 and t'_0 satisfy (i)-(iii). From the proof of Corollary, which gives the uniqueness of γ satisfying $\omega_{\gamma} = \nu$,

$$\begin{split} \omega_x &= \mu, \ d(\mu, \nu) = 2 \left(1 - (x, y) \right) \quad (\text{for given } \mu, \nu, x), \quad \text{we obtain } \pi_\mu(t_0) \mathcal{Q}_\mu \\ &= \pi_\mu(t_0') \mathcal{Q}_\mu. \quad \text{Hence } \pi_\mu(t_0) Q' \mathcal{Q}_\mu = \pi_\mu(t_0') Q' \mathcal{Q}_\mu \text{ for any } Q' \in \pi_\mu(\mathfrak{R})'. \quad \text{There$$
 $fore } \pi_\mu(t_0 - t_0') s(\mathcal{Q}_\mu) = 0. \quad \text{Since } s(\mathcal{Q}_\mu) = \pi_\mu(s(\mu)) \text{ and the representation } \pi_\mu \\ \text{is faithful at least for } s(\mu) \Re s(\mu), \text{ we have } s(\mu)(t_0 - t_0') s(\mu) = 0. \quad \text{By (iii),} \\ \text{we have } t_0 = t_0'. \end{split}$

Corollary. Let μ, ν, t_0 be as in Lemma 2. Let π be a representation of \Re on \mathfrak{H} and $\Psi, \ \mathbf{0} \in \mathfrak{H}$ satisfy $\omega_{\Psi} = \mu, \ \omega_{\Phi} = \nu$ and $d(\mu, \nu)^2 = ||\Psi - \mathbf{0}||^2$. Then

$$(2.3) \qquad \qquad \varPhi = \pi(t_0) \Psi.$$

Proof. From the preceding proof, we have

$$\operatorname{Re}(\boldsymbol{\Psi}, \boldsymbol{\varPhi}) = \operatorname{Re}(\pi(t_0)^{1/2}\boldsymbol{\Psi}, \ \hat{\alpha}\pi(t_0)^{1/2}\boldsymbol{\Psi})$$
$$= ||\pi(t_0)^{1/2}\boldsymbol{\Psi}||^2.$$

Hence $|\hat{\alpha}| \leq 1$ implies

$$\hat{\alpha}\pi(t_0)^{1/2}\Psi=\pi(t_0)^{1/2}\Psi.$$

Since $\hat{\alpha} \in \pi(\Re)'$, we have

$$\boldsymbol{\varPhi} = \pi(t_0)^{1/2} \hat{\alpha} \pi(t_0)^{1/2} \boldsymbol{\varPsi} = \pi(t_0) \boldsymbol{\varPsi}.$$
Q.E.D.

Remark. If \Re is a type I factor, $\mu(Q) = \operatorname{tr}(\rho Q)$, $\nu(Q) = \operatorname{tr}(\sigma Q)$ for $Q \in \Re$, $\rho \ge \sigma$, $\rho > 0$, then

(2.4)
$$t_0 = (\rho^{-1/2} | \sigma^{1/2} \rho^{1/2} | \rho^{-1/2})^{-1/2}$$

and

(2.5)
$$\mu(t_0) = \operatorname{tr} |\sigma^{1/2} \rho^{1/2}|$$

where $|\beta|$ denotes $(\beta^*\beta)^{1/2}$.

§3. Construction of A

The following construction of A_0 is similar to the method of Takesaki [8]. \mathfrak{D}_0 is not assumed to be separable.

Lemma 3. Let x_0 be a cyclic and separating vectors for a von Neuman algebra \Re_0 on \mathfrak{D}_0 and z be a separating vector for \mathfrak{R}_0 satisfying

$$(3.1) (x_0, Qz) \ge 0$$

for all $Q \ge 0$, $Q \in \Re'_0$. Then there exists a positive self-adjoint operator

$$(3.2) A_0 = \int_0^\infty \lambda dE_\lambda^0$$

such that $E_{\lambda}^{0} \in \Re_{0}, z = A_{0}x_{0}, E_{+0}^{0} \equiv \lim_{\lambda \downarrow 0} E_{\lambda}^{0} = 0.$

Proof. Let S be defined on $\mathfrak{D}=\mathfrak{R}_0' x_0$ by

$$SQx_0 = Qz, \ Q \in \Re_0^{\prime}.$$

Since x_0 is cyclic for \Re_0 , $Qx_0=0$ for $Q \in \Re'_0$ implies Q=0 and hence Qz=0. Therefore S is well-defined, linear operator. Since x_0 is separating for \Re_0 , the domain $\mathfrak{D}=\Re'_0x_0$ of S is dense.

By assumption (3.1), $(x_0, (c-Q)^*(c-Q)z)$ is real for $Q \in \Re'_0$ and any complex number c. This implies that

$$(x_0, Qz) = (x_0, Q^*z)^* = (z, Qx_0).$$

Therefore for $Q_1, Q_2 \in \Re'_0$

$$(Q_2x_0, SQ_1x_0) = (x_0, Q_2^*Q_1z)$$

= $(z, Q_2^*Q_1x_0)$
= $(SQ_2x, Q_1x_0).$

Hence S is symmetric. S is non-negative on \mathfrak{D} by (3.1).

 \mathfrak{D} is obviously invariant under \mathfrak{R}'_0 . For $Q, Q_1, Q_2 \in \mathfrak{R}'_0$,

$$egin{aligned} &(Q_2x_0,\,SQQ_1x_0)\!=\!(Q_2x_0,\,QQ_1z)\ &=\!(Q^*Q_2x_0,\,Q_1z)\ &=\!(Q^*Q_2x_0,\,SQ_1x_0)\ &=\!(Q_2x_0,\,QSQ_1x_0). \end{aligned}$$

Hence S commutes with any Q in \mathfrak{R}'_0 .

We now consider the Friedrichs extension of S. Let

$$(3.4) \qquad \qquad (\varPsi_1, \varPsi_2)_{\Re} = (\varPsi_1, S \varPsi_2) + (\varPsi_1, \varPsi_2)$$

for all $\Psi_1, \Psi_2 \in \mathfrak{D}$. Since

$$(Qx_0, Qx_0)_{\Re} = (x_0, Q^*Qz) + ||Qx_0||^2 > 0$$

for non-zero $Q \in \Re'_0$, (Ψ_1, Ψ_2) is an inner product on \mathfrak{D} . Let \mathfrak{R} be its completion, which is a Hilbert space with $(\Psi_1, \Psi_2)_{\mathfrak{R}}$ as an inner product. Let α be the mapping from Qx_0 in \mathfrak{R} to Qx_0 in \mathfrak{H}_0 . It is densely defined, linear and $|\alpha| \leq 1$. Let $\bar{\alpha}$ be its closure.

Since $||Q|| - Q \ge 0$ for any self-adjoint Q, we have

$$(Q_1x_0, (||Q|| - Q)Q_1z) \ge 0$$

for any $Q_1 \in \mathfrak{R}'_0$. Replacing Q by Q^*Q , we obtain

$$||QQ_1x_0||_{\Re}^2 \leq ||Q^*Q|| ||Q_1x_0||_{\Re}^2 = ||Q||^2 ||Q_1x_0||_{\Re}^2.$$

Therefore $\alpha^{-1}Q\alpha$ is linear and bounded on $\alpha^{-1}\mathfrak{D}$. Let $\pi_{\mathfrak{R}}(Q)$ be its closure on \mathfrak{R} . $\alpha \pi_{\mathfrak{R}}(Q) = Q\alpha$ on \mathfrak{D} implies

(3.5)
$$\bar{\alpha}\pi_{\hat{\mathfrak{R}}}(Q) = Q\bar{\alpha}.$$

 π_{\Re} is clearly a * representation of \Re'_0 . If Q_{α} is a non-decreasing monotonous net in \Re'_0 with $\lim_{\alpha \uparrow} Q_{\alpha} = Q$, then $\lim_{\alpha \uparrow} ||\pi_{\Re}(Q - Q_{\alpha})\Psi||_{\Re}^2 = 0$ for $\Psi \in \alpha^{-1}\mathfrak{D}$ and hence for $\Psi \in \mathfrak{R}$. Therefore π_{\Re} is normal.

From the Schwarz inequality

$$|(\varPsi_1, S\varPsi_2)|^2 \leq (\varPsi_1, S\varPsi_1)(\varPsi_2, S\varPsi_2)$$

for $\Psi_1, \Psi_2 \in \mathfrak{D}$ and the majorization

$$(\alpha \Psi, S \alpha \Psi) \leq ||\Psi||_{\Re}^2,$$

we obtain the existence of a bounded non-negative self-adjoint T on \Re such that $1 \ge T$ and

(3.6)
$$(\bar{\alpha} \Psi_1, S \alpha \Psi_2) = (\Psi_1, T \Psi_2)_{\Re}$$

for all $\Psi_2 \in \alpha^{-1} \mathfrak{D}, \Psi_1 \in \mathfrak{R}$.

Since S commutes with $Q \in \Re'_0$, we have from (3.5) and (3.6)

$$(\Psi_1, T\pi_{\mathfrak{R}}(Q)\Psi_2)_{\mathfrak{R}} = (\Psi_1, \pi_{\mathfrak{R}}(Q)T\Psi_2)_{\mathfrak{R}}$$

for all $\Psi_1 \in \Re$ and $\Psi_2 \in \alpha^{-1}\mathfrak{D}$. Hence $T \in \pi_{\Re}(\mathfrak{R}'_0)'$.

According to Sakai ([6], 1.11.3), there exists a projection $e_{\lambda} \in \pi_{\Re}(\mathfrak{N}_{0})'$ for each real λ , having the following properties:

- (1) $e_{\lambda} \leq e_{\lambda'}$ if $\lambda \leq \lambda'$. (2) $\lim_{\lambda_n \uparrow \lambda} e_{\lambda_n} = e_{\lambda}$.
- (3) $e_{1+\varepsilon}=1$ for $\varepsilon > 0$ and $e_0=0$.
- (4) $T = \int_{0}^{\infty} \lambda de_{\lambda}$.

Let the closure of $\bar{\alpha}e_{\lambda}\Re$ be \mathfrak{H}_{λ} and the projection onto $\mathfrak{H}_{f(\lambda)}$ be E_{λ}^{0} where $f(\lambda)=(1+\lambda)^{-1}\lambda$. f is a monotonously increasing function on $[0,\infty)$ with the range [0, 1). From (1), we have

$$(3.7) E_{\lambda}^{0} \leq E_{\lambda'}^{0} \text{if } \lambda \leq \lambda'.$$

From (2), we have

(3.8)
$$\lim_{\lambda_n \uparrow \lambda} E^0_{\lambda_n} = E^0_{\lambda}.$$

From (3), we have

(3.9) $E_0^0 = 0.$

For $\Psi \in e_{\lambda} \Re$ and $Q \in \Re'_0$, we have

BURES DISTANCE AND RADON-NIKODYM THEOREM

$$Q\bar{\alpha}\Psi = \bar{\alpha}\pi_{\Re}(Q)\Psi \in \bar{\alpha}e_{\lambda}\Re \subset \mathfrak{H}_{\lambda}$$

due to (3.5) and $e_{\lambda} \in \pi_{\Re}(\Re'_0)'$. Hence $Q \Psi \in \mathfrak{H}_{\lambda}$ for any $\Psi \in \mathfrak{H}_{\lambda}, Q \in \mathfrak{H}'_0$ and hence

$$(3.10) E_{\lambda}^{0} \in \mathfrak{R}_{0}.$$

From the definition (3.4), we have for $\Psi_2 \in \alpha^{-1}\mathfrak{D}$,

(3.11)
$$(\Psi_1, \Psi_2)_{\Re} = (\bar{\alpha}\Psi_1, S\alpha\Psi_2) + (\bar{\alpha}\Psi_1, \alpha\Psi_2)$$

for all $\Psi_1 \in \alpha^{-1} \mathfrak{D}$ and hence for all $\Psi_1 \in \mathfrak{R}$ by continuity. If $\bar{\alpha} \Psi_1 = 0$, then $(\Psi_1, \Psi_2)_{\mathfrak{R}} = 0$ for all Ψ_2 in the dense subset $\alpha^{-1} \mathfrak{D}$ of \mathfrak{R} and hence $\Psi_1 = 0$. Namely the kernel of $\bar{\alpha}$ is 0.

From (3.11) and (3.6), we have

(3.12)
$$(\bar{\alpha} \Psi_1, \bar{\alpha} \Psi_2) = (\Psi_1, \Psi_2)_{\bar{\aleph}} - (\bar{\alpha} \Psi_1, S \bar{\alpha} \Psi_2)$$
$$= (\Psi_1, (1-T) \Psi_2)_{\bar{\aleph}}$$

for $\Psi_1, \Psi_2 \in \alpha^{-1} \mathfrak{D}$ and hence for all $\Psi_1, \Psi_2 \in \mathfrak{R}$ by continuity. From this equality, we obtain the following three conclusions.

(i) If $(1-T)\Psi=0$, then from (3.12) with $\Psi_1=\Psi_2=\Psi$, we obtain $\Psi=0$. Hence $e_1=1$ and

$$\lim_{\lambda \to +\infty} E_{\lambda}^{0} = 1.$$

(ii) Since e_{λ} commutes with T, we have

$$(\bar{\alpha}(1-e_{\lambda})\Psi_1, \bar{\alpha}e_{\lambda}\Psi_2)=0$$

for all $\Psi_1, \Psi_2 \in \Re$. Hence $\bar{\alpha}(1-e_{\lambda})\Psi \perp \mathfrak{H}_{\lambda}$ and

(3.14)
$$E^{0}_{\lambda}\bar{\alpha}\Psi = \bar{\alpha}e_{f(\lambda)}\Psi + E^{0}_{\lambda}\bar{\alpha}(1 - e_{f(\lambda)})\Psi$$

$$= \bar{\alpha} e_{f(\lambda)} \Psi.$$

(iii) For all $\Psi_1, \Psi_2 \in \Re$, we have

(3.15)
$$d(\bar{\alpha}\Psi_1, E^0_{\lambda}\bar{\alpha}\Psi_2) = d(\Psi_1, (1-T)e_{f(\lambda)}\Psi_2)_{\Re}$$
$$= (1+\lambda)^{-1}d(\Psi_1, e_{f(\lambda)}\Psi_2)_{\Re}.$$

This also implies that $\bar{\alpha}^{-1}e_{f(\lambda)}$ is bounded for finite λ and hence

(3.16)
$$\bar{\alpha}e_{\lambda}\Re=\mathfrak{H}_{\lambda}, \ \lambda<1.$$

From (3.7), (3.8), (3.9) and (3.13), we can define a non-negative selfadjoint operator associated with \Re_0 on \mathfrak{H}_0 by

$$(3.17) B = \int_0^\infty \lambda^{1/2} dE_{\lambda}^0.$$

Its domain D(B) is the set of all $\Psi \in \mathfrak{H}$ such that

$$(||B\Psi||^2=)\int_0^\infty \lambda d(\Psi, E_\lambda^0\Psi) < \infty.$$

By (3.15), we have

$$(3.18) \qquad (||B\bar{\alpha}\Psi||^{2} =) \int_{0}^{\infty} \lambda d(\bar{\alpha}\Psi, E_{\lambda}^{0}\bar{\alpha}\Psi)$$
$$= \int_{0}^{\infty} f(\lambda) d(\Psi, e_{f(\lambda)}\Psi)_{\Re} = (\Psi, T\Psi)_{\Re} < \infty$$

and hence $\bar{\alpha} \, \Re \subset D(B)$. Further, by (3.11), (3.6) and (3.18),

$$||\Psi||_{\mathfrak{R}}^2 = ||B\bar{\alpha}\Psi||^2 + ||\bar{\alpha}\Psi||^2.$$

Since the union of (3.16) is dense in D(B) relative to the metric $\{||B\Psi||^2 + ||\Psi||^2\}^{1/2}$ and since $\bar{\alpha}\Re$ is complete relative to the same metric due to (3.19), we have

$$(3.20) D(B) = \bar{\alpha} \Re.$$

By polarization, we obtain from (3.18),

$$(B\bar{\alpha}\Psi_1, B\bar{\alpha}\Psi_2) = (\Psi_1, T\Psi_2)_{\Re}.$$

Combining with (3.6), we obtain $\mathfrak{D}\subset D(B^2)$ and

$$(3.21) B^2 \Psi = S \Psi, \ \Psi \in \mathfrak{D}.$$

Hence

BURES DISTANCE AND RADON-NIKODYM THEOREM

$$A_0 = B^2 = \int_0^\infty \lambda \, dE_\lambda^0$$

satisfies $E_{\lambda}^{0} \in \Re_{0}$ and $z = A_{0}x_{0}$.

If
$$\lim_{\lambda \downarrow 0} E_{\lambda}^{0} \Psi = \Psi$$
, then

$$(Qz, \Psi) = (SQx_0, \Psi)$$

= $(Qx_0, A_0\Psi) = 0$

Since z is assumed to be separating for \Re_0 and hence is cyclic for \Re'_0 , we have $\Psi = 0$. Therefore

(3.22)
$$\lim_{\lambda \downarrow 0} E_{\lambda}^{0} = 0.$$
 Q.E.D.

Remark. A_0 satisfying $E_{\lambda}^0 \in \Re_0$ and $z = A_0 x_0$ can be constructed exactly in the same way even if z is not separating for \Re_0 , except that $\lim_{\lambda \to \infty} E_{\lambda}^0$ is in general a non-zero projection.

In the present case, $A_0 \ge 0$ and hence the equality in (3.1) holds only if $Qx_0=0$, namely Q=0. Therefore z is separating for \Re'_0 and hence is cyclic for \Re_0 .

§4. Proof of Main Theorems

The unique decompositions $\mu = \mu_1 + \mu_2$ and $\nu = \nu_1 + \nu_2$ are essentially given by the following lemma.

Lemma 4. Let \Re_2 be a von Neumann algebra on \mathfrak{G} and let Ψ and $\boldsymbol{0}$ be two vectors in \mathfrak{H} such that

$$(4.1) \qquad \qquad (\Psi, Q \boldsymbol{\varPhi}) \geq 0$$

for all non-negative self-adjoint Q in \Re'_2 . Then there exists the largest projection E in \Re'_2 such that

$$(4.2) (\Psi, E\boldsymbol{\theta}) = 0.$$

It satisfies

(4.3)
$$\omega_{\underline{w}} = \omega_{E\underline{w}} + \omega_{(1-E)\underline{w}}, \ \omega_{\underline{o}} = \omega_{E\underline{o}} + \omega_{(1-E)\underline{o}},$$

(4.4)
$$s(\omega_{E\Psi}) \perp s(\omega_{(1-E)\emptyset}), s(\omega_{(1-E)\Psi}) \perp s(\omega_{E\emptyset})$$

(4.5) $s(\omega_{E\Psi}) \perp s(\omega_{E\Phi}).$

 $\omega_{E\emptyset}$ is the largest $\rho \in S(\Re_2)$ such that $\omega_{\emptyset} \ge \rho$ and $s(\rho) \perp s(\omega_{\mathbb{F}})$. $\omega_{E\mathbb{F}}$ is the largest $\rho \in S(\Re_2)$ such that $\omega_{\mathbb{F}} \ge \rho$ and $s(\rho) \perp s(\omega_{\emptyset})$.

Proof. Let $(\Psi, Q\Phi) = 0$ for $Q \in \Re'_2$, $Q \ge 0$. Let $e_{\lambda} \in \Re'_2$ be the spectral projection of Q (Sakai [6]) and

$$e(n) = e_{1/(n-1)} - e_{1/n}$$

where $e_{\infty} = 1$ and $n = 1, 2, \dots$ Since

$$Q \ge Qe(n) \ge n^{-1}e(n),$$

we have

$$(\Psi, e(n)\Phi) = 0.$$

Hence $(\Psi, Q \Phi) = 0$ for $Q \in \Re_2'$ implies

(4.6)
$$(\Psi, s(Q)\Phi) = 0, s(Q) = \sum_{n} e(n).$$

For a finite number of projections $E_i \in \Re'_2$, satisfying $(\Psi, E_i \Phi) = 0$, we obtain from (4.6)

(4.7)
$$(\Psi, \bigvee_i E_i \emptyset) = (\Psi, s(\sum_i E_i) \emptyset) = 0.$$

From the normality, the same holds for any number of E_i . Let E be the supremum of $E_{\alpha} \in \Re'_2$ satisfying $(\Psi, E_{\alpha} \Phi) = 0$. Then, by (4.7), we have $(\Psi, E\Phi) = 0$, and by construction, E is the largest such projection in \Re'_2 .

From $E \in \Re'_2$, we have (4.3). From Schwarz inequality for positive linear functional $(\Psi, Q\Phi)$, we have

$$(Q_1 \Psi, Q_2 E \Phi) = 0$$

for any $Q_1, Q_2 \in \mathbb{R}'_2$. Setting $Q_1 = Q_3 E$ or $Q_1 = Q_3(1-E)$, we obtain $s(\omega_{E\emptyset}) \perp s(\omega_{E\emptyset}) \perp s(\omega_{(1-E)\Psi})$. Interchanging the role of Ψ and \emptyset , we obtain $s(\omega_{E\Psi}) \perp s(\omega_{(1-E)\emptyset})$.

Let $\rho \in S(\Re_2)$ be such that

$$(4.8) \qquad \qquad \rho \leq \omega_{\emptyset}, \ s(\rho) \perp s(\omega_{\Psi})$$

Then there exists $Q \in \Re_2'$, $1 \ge Q \ge 0$ satisfying

$$\rho = \omega_{Q} \sigma$$

due to $\rho \leq \omega_{\emptyset}$. Since $\rho(s(\omega_{\Psi}))=0$, we have $s(\Psi)Q\emptyset=0$. Hence $(\Psi, Q\emptyset)=0$, which implies by (4.6)

 $s(Q) \leq E$

and we have $Q \Phi = E Q \Phi = Q E \Phi$. Therefore

$$\rho = \omega_{Q} \sigma = \omega_{QE} \sigma \leq \omega_{E} \sigma.$$

This proves that ω_{E_0} is the largest ρ satisfying (4.8).

The same proof holds for $\omega_{E\Psi}$. Q.E.D.

Proof of Theorem 1 (1). By Lemma 1, there exists a representation π_{μ} of \Re on \mathfrak{H}_{μ} and vectors Ψ and $\varPhi \in \mathfrak{H}_{\mu}$ such that

$$\omega_{\mathbb{F}} = \mu, \ \omega_{\emptyset} = \nu, \ d(\mu, \nu) = ||\mathcal{F} - \emptyset||^2.$$

We shall show that for $Q \in \pi(\Re)'$, $Q \ge 0$

$$(4.9) (\Psi, Q\Phi) \ge 0.$$

This will prove Theorem 1 (1) due to Lemma 4, where $\Re_2 = \pi_{\mu}(\Re), \ \mathfrak{H} = \mathfrak{H}_{\mu}$.

Suppose E' is a projection in $\pi(\mathfrak{R})'$ and $(\Psi, E' \Phi)$ is not a non-negative real number. Then there exists real numbers θ_1 and θ_2 such that θ_1 is not an integer multiple of 2π and

$$\alpha = (\Psi, e^{i\theta_1} E' \varPhi) \ge 0, \ \beta = (\Psi, e^{i\theta_2} (1 - E') \varPhi) \ge 0.$$

Then

(4.10)
$$\operatorname{Re}(\Psi, \Phi) < \alpha + \beta.$$

Now consider the representation $\pi \oplus \pi$ of \Re on $\mathfrak{H} \oplus \mathfrak{H}$ and vectors

Ø.

$$\begin{split} & \varPsi' = E' \varPsi \bigoplus (1 - E') \varPsi, \\ & \varPhi' = e^{i\theta_1} E' \varPhi \bigoplus e^{i\theta_2} (1 - E') \end{split}$$

They satisfy $\omega_{\mathbf{F}'} = \omega_{\mathbf{F}} = \mu$, $\omega_{\mathbf{0}'} = \omega_{\mathbf{0}} = \nu$ and, by (4.10),

$$||\boldsymbol{\varPsi}'-\boldsymbol{\varPhi}'||^2 = \mu(1) + \nu(1) - 2(\alpha + \beta) < ||\boldsymbol{\varPsi}-\boldsymbol{\varPhi}||^2,$$

which is a contradiction with the minimality of $|| \boldsymbol{\varPsi} - \boldsymbol{\varPhi} ||^2$.

Therefore $(\Psi, E'\Phi) \ge 0$ for any projection E' in $\pi(\Re)'$ and hence (4.9) holds for any $Q \ge 0$, $Q \in \pi(\Re)'$. Q.E.D.

To apply Lemma 3, we need a further reduction:

Lemma 5. Let \Re_1 be a von Neumann algebra on \mathfrak{H}_1 and let x_1 and y_1 be vectors in \mathfrak{H}_1 . Let

$$(4.11) P \equiv s(s(x_1)s(y_1)).$$

Then

$$(4.12) \qquad P \equiv s(x_1) \bigvee s(y_1) - s(x_1) \land (1 - s(y_1)) - s(y_1) \land (1 - s(x_1)).$$

Let

(4.13)
$$x_0 \equiv P x_1 = x_1 - \{s(x_1) \land (1 - s(y_1))\} x_1,$$

(4.14)
$$y_0 \equiv P y_1 = y_1 - \{s(y_1) \land (1 - s(x_1))\} y_1$$

Then

(4.15)
$$s(x_0) = s(x_1) - s(x_1) \wedge (1 - s(y_1)),$$

(4.16)
$$s(y_0) = s(y_1) - s(y_1) / (1 - s(x_1)),$$

$$(4.17) s(x_0) \bigvee s(y_0) = P,$$

Bures Distance and Radon-Nikodym Theorem

$$(4.18) s(x_0)/(1-s(y_0))=0, \ s(y_0)/(1-s(x_0))=0,$$

$$(4.19) (x_1, Qy_1) = (x_0, Qy_0)$$

for all $Q \in \Re_1'$. If

$$(4.20) (x_1, Qy_1) > 0$$

holds for all $Q \in \Re'_1$, $Q \ge 0$, $Q \ne 0$, then both x_0 and

$$(4.21) z=s(x_0)y_0=s(x_1)y_0=s(x_1)y_1$$

are cyclic and separating for the restriction

$$(4.22) s(x_0)\Re_1 s(x_0) \equiv \Re_0$$

of \Re_1 in $s(x_0)$ $\mathfrak{H}_1 = \mathfrak{H}_0$.

Proof. $s(x_1)s(y_1)\Psi = 0$ implies

$$s(\gamma_1)\Psi \in (1-s(x_1))\mathfrak{H}_1$$

and hence

$$\begin{aligned} \Psi = & (1-s(y_1))\Psi + s(y_1)\Psi \\ \in & (1-s(y_1))\mathfrak{H} + \{s(y_1)\mathfrak{H} \cap (1-s(x_1))\mathfrak{H}\}. \end{aligned}$$

The converse is also true. Therefore

$$\ker s(x_1) s(y_1) = (1 - s(y_1)) \mathfrak{H}_1 + \{s(y_1) \land (1 - s(x_1))\} \mathfrak{H}_1.$$

Similar formula holds for $s(y_1)s(x_1)$. Since

$$(1-P)$$
 $\mathfrak{H}_1 = \ker s(x_1)s(y_1) \cap \ker(s(x_1)s(y_1))^*$

by definition, we obtain (4.12). (4.13) and (4.14) then follow.

From (4.13), the set of Qx_0 , $Q \in \Re'_1$ is the same as $s(x_1)-s(x_1)/((1-s(y_1)))$ times the set of Qx_1 , $Q \in \Re'_1$ and the set of Qx_1 , $Q \in \Re'_1$ spans $s(x_1) \otimes_1$. Hence we obtain (4.15). Similarly we have (4.16). (4.17) and (4.18) then follow.

Since $Q y_1 \in s(y_1) \mathfrak{H}_1$ for $Q \in \mathfrak{R}'_1$, we have

$$(x_1, Qy_1) = (x_0, Qy_1).$$

Since $Qx_0 \in s(x_0) \mathfrak{H}_1 \subset s(x_1) \mathfrak{H}_1$, we have

$$(x_0, Qy_1) = (Q^*x_0, y_1) = (Q^*x_0, y_0).$$

Therefore (4.19) holds.

If (4.20) holds, then for any $Q \in \Re_1'$, $Q \ge 0$, $Q \ne 0$, we have, by (4.19),

$$(x_0, Qy_0) = (x_0, Qs(x_0)y_0) > 0$$

and hence $Qx_0 \neq 0$, $Qs(x_0)y_0 \neq 0$. Therefore x_0 and $s(x_0)y_0$ are separating for \Re'_1 . $(Q \in \Re'_1$ and $Qx_0=0$ implies $Q^*Qx_0=0$, hence $Q^*Q=0$.) Therefore both x_0 and $s(x_0)y_0$ are cyclic for \Re_1 and hence cyclic for $s(x_0)\Re_1 s(x_0)$ on $s(x_0)\Im_1$. x_0 is obviously cyclic for $s(x_0)\Re'_1$ on $s(x_0)\Im_1$ and hence is separating for $s(x_0)\Re_1 s(x_0)$.

Suppose that $Q \in s(x_0)\Re_1 s(x_0)$ and

$$Qs(x_0)y_0=0.$$

Then $s(Q^*Q) \leq 1-s(y_0)$ because $Qy_0 = Qs(x_0)y_0 = 0$. Since $s(Q^*Q) \leq s(x_0)$, we have by (4.18)

$$s(Q^*Q) \leq s(x_0) \land (1-s(y_0)) = 0.$$

Therefore we have Q=0. Hence $z=s(x_0)y_0$ is separating for $s(x_0)\Re_1$ $s(x_0)$. Q.E.D.

Proof of Theorem 1 (2). In the proof of Theorem 1 (1), we set

$$\begin{split} & \mathfrak{H}_1 = (1-E)\mathfrak{H}_{\mu}, \ \mathfrak{R}_1 = \pi_{\mu}(\mathfrak{R})(1-E), \\ & x_1 = (1-E)\mathfrak{P}, \quad y_1 = (1-E)\mathfrak{O}, \end{split}$$

where E is taken from Lemma 4.

If $Q \in (1-E)\pi_{\mu}(\mathfrak{R})'(1-E)$, $Q \ge 0$, $Q \ne 0$, we have

$$(\Psi, Q \Phi) \neq 0$$

due to the maximality of E. Therefore we have (4.20).

We now apply Lemma 3 to \mathfrak{H}_0 , \mathfrak{R}_0 , x_0 and z of Lemma 4, and obtain a positive self-adjoint operator (3.2), where

$$E_{\lambda}^{0} \in \mathfrak{R}_{0} = s(x_{0})\mathfrak{R}_{1}s(x_{0}) \subset \mathfrak{R}_{1}.$$

By $\omega_{x_1} = \mu_1$, $\pi_{\mu}(Q)(1-E)$ is faithful certainly for

$$Q \in s(\mu_1) \Re s(\mu_1)$$

and

(4.23)
$$\pi_{\mu}(s(\mu_1))(1-E) = s(x_1)(1-E)$$

because x_1 is cyclic for \Re_1 on \mathfrak{H}_1 due to (4.20). Therefore there exists a unique E^1_{λ} such that for $\lambda > 0$ $(1-s(\mu_1)) \leq E^1_{\lambda}$ and

$$(1-E)\pi_{\mu}(E_{\lambda}^{1})=E_{\lambda}^{0}(1-E).$$

By the faithfulness of $(1-E)\pi_{\mu}$, we have

(1) $E_{\lambda}^{1} \ge E_{\lambda'}^{1}$ for $\lambda \ge \lambda'$, (2) $\lim_{\lambda_{n} \uparrow \lambda} E_{\lambda_{n}}^{1} = E_{\lambda}^{1}$, (3) $E_{0}^{1} = 0$, $\lim_{\lambda_{\uparrow \infty}} E_{\lambda}^{1} = 1$.

We now define $A_1(\nu/\mu)$ by (1.4). We have

(4.24)
$$\mu_1(A_1QA_1) = (\pi_{\mu}(A_1)x_1, \ \pi_{\mu}(Q)\pi_{\mu}(A_1)x_1), \ Q \in \Re.$$

Since $\pi_{\mu}(E_{\lambda}^{1})x_{1} = E_{\lambda}^{0}x_{1}$ with $E_{\lambda}^{0} \in s(x_{0})\Re_{1}s(x_{0})$, we have

$$\pi_{\mu}(A_1)x_1 = A_0x_0 = s(x_0)y_1 = s(x_1)y_1.$$

By $\omega_{y_1} = v_1$ and (4.23), we obtain

(4.25)
$$(s(x_1)y_1, \pi_{\mu}(Q)s(x_1)y_1) = \nu_1(s(\mu_1)Qs(\mu_1)).$$

By the same argument as for (4.23), we obtain

(4.26)
$$\pi_{\mu}(s(\nu_1))(1-E) = s(\gamma_1)(1-E).$$

From (4.15), (4.23) and (4.26), we have

(4.27)
$$\pi_{\mu}(s_{\mu}^{\nu})(1-E) = s(x_0)(1-E).$$

Therefore we also have

(4.28)
$$(s(x_0)y_1, \ \pi_{\mu}(Q)s(x_0)y_1) = \nu_1(s_{\mu}^{\nu}Qs_{\mu}^{\nu}).$$

By (4.24), (4.25), and (4.28), we obtain (1.5). From (4.27), we have

$$\lim_{\lambda\downarrow 0} E_{\lambda}^{1} = 1 - s_{\mu}^{\nu}.$$

Proof of Theorem 1 (3). Since the initial assumptions are symmetric in μ and ν , we define

(4.29)
$$A_2(\mu/\nu) \equiv \int_0^\infty \lambda^{-1} dE_{\lambda}^1 s(x_0)$$

and prove the corresponding properties. By definition of E_{λ}^{1} ,

$$\pi_{\mu}(A_2(\mu/\nu)A_1(\nu/\mu))^{-}(1-E) = s(x_0)(1-E),$$

where unbounded operators A_k are always defined as the limit of $A_k E_L^k$. By (4.27), we have

$$(A_2(\mu/\nu)A_1(\nu/\mu))^{-}s_{\mu}^{\nu}$$

Since $s(\nu_2) \perp s(\mu) \ge s_{\mu}^{\nu}$, we have $\pi_{\mu}(A_2(\mu/\nu)) E \varPhi = 0$. Hence, by using $\pi_{\mu}(s_{\mu}^{\nu})y_1 = s(x_0)y_1$ and $\pi_{\mu}(s_{\mu}^{\nu})x_1 = x_0$,

(4.30)
$$\pi_{\mu}(A_{2}(\mu/\nu))\mathbf{\Phi} = \pi_{\mu}(A_{2}(\mu/\nu))y_{1}$$
$$= \pi_{\mu}(A_{2}(\mu/\nu))s(x_{0})y_{1}$$
$$= x_{0} = \pi_{\mu}(s_{\mu}^{\nu})x_{1}.$$

Therefore we have

$$\nu(A_2(\mu/\nu)QA_2(\mu/\nu)) = \mu_1(s_{\mu}^{\nu}Qs_{\mu}^{\nu}).$$

Q.E.D.

Proof of Theorem 1 (4). We have already the existence because the vector y_1 in the proof of Theorem 1 (2) satisfies all requirements. To prove the uniqueness, suppose that $y' \in \mathfrak{F}_1$ satisfies $\omega_{y'} = \nu_1$ and $s(x_1)y' = z$. Then there exists a partial isometry $u \in \mathfrak{R}'_1$ such that $u^*u y_1 = y_1$ and $u y_1 = y'$ due to $\omega_{y'} = \omega_{y_1}$. We have

$$us(x_1)y_1 = s(x_1)uy_1 = s(x_1)y' = s(x_1)y_1$$

and hence u-1 is 0 on z. By applying $\pi_{\mu}(A_2(\mu/\nu))$, we have

$$(u-1)x_0=0.$$

Since x_0 is separating for \Re'_1 , we have u=1 and y'=y. Hence the uniqueness. Q.E.D.

Proof of Theorem 2. From the construction of A_1 and A_2 , we have

$$d(\mu, \nu)^2 = \mu(1) + \nu(1) - 2(x_1, y_1)$$

= $\mu(1) + \nu(1) - 2\mu_1(A_1)$
= $\mu(1) + \nu(1) - 2\mu(A_2).$

To prove the uniqueness, suppose Ψ_1 and Φ_1 be given, satisfying $\omega_{\Psi_1} = \mu$, $\omega_{\Phi_1} = \nu$ and $d(\mu, \nu) = ||\Psi_1 - \Phi_1||$. By expanding the representation, we can identify Ψ_1 with Ψ in the proof of Theorem 1 (2), where the representation contains π_{μ} and Φ_1 is not necessarily the same as Φ .

Since $\omega_{\varPhi} = \omega_{\varPhi_1} = \nu$, there exists a partial isometry $u \in \pi(\Re)'$, satisfying $u^* u \varPhi = \varPhi$ and $u \varPhi = \varPhi_1$. We also have

$$(\Psi, \mathbf{\Phi}) = d(\mu, \nu)^{1/2} = (\Psi, \mathbf{\Phi}_1).$$

Since

$$s(\Psi)uE\Phi = us(\Psi)E\Phi$$
$$= u\pi(s(\omega_{\Psi}))E\Phi$$
$$= u\pi_{\mu}(s(\mu))E\Phi = 0,$$

we have

$$(\Psi, \Phi_1) = (\Psi, u(1-E)\Phi) = (A_0^{1/2}x_1, uA_0^{1/2}x_1)$$

Equality of this expression with $(\Psi, \Phi) = ||A_0^{1/2}x_1||^2$ implies

$$(u-1)A_0^{1/2}x_1=0.$$

By multiplying $\pi(A_2(\mu/\nu))^{1/2}$, we obtain

$$(u-1)x_0=0$$

Since x_0 is cyclic in \mathfrak{H}_1 , we have u=1 on \mathfrak{H}_1 . Therefore

$$(1-E)\boldsymbol{\Phi}_1 = y_1 = (1-E)\boldsymbol{\Phi}.$$

Setting $E \Phi_1 = y'$, we obtain the statement of Theorem 2.

§5.
$$d_{\pi}(\mu, \nu)$$
 and $d(\mu, \nu)$

In [1], we have defined

(5.1)
$$d_{\pi}(\mu, \nu) = \inf\{ \| \Psi - \mathbf{\Phi} \|; \ \omega_{\Psi} = \mu, \ \omega_{\Phi} = \nu, \ \Psi \in \mathfrak{H}_{\pi}, \ \mathbf{\Phi} \in \mathfrak{H}_{\pi} \}$$

where π is a fixed representation on \mathfrak{G}_{π} . Obviously $d_{\pi}(\mu, \nu) \geq d(\mu, \nu)$. We shall now discuss when the equality holds.

We shall start by considering whether there exists $\mathbf{\Phi}$ giving $d(\mu, \nu) = ||\Psi - \mathbf{\Phi}||$ for the fixed representation π and a fixed vector Ψ . It already gives some cases where $d(\mu, \nu) = d_{\pi}(\mu, \nu)$.

Theorem 3. Let $\mu, \nu \in S(\Re)$ and π be a fixed representation of \Re on \mathfrak{H}_{π} . Let Ψ be a fixed vector in \mathfrak{H}_{π} satisfying $\omega_{\Psi} = \mu$.

(1) Let E_1 be the projection on the closure of

(5.2)
$$\pi(\mathfrak{R})\pi(A_2(\nu/\mu))\Psi.$$

Then there exists $\boldsymbol{\Phi} \in \mathfrak{D}_{\pi}$ satisfying

(5.3)
$$\omega_{\boldsymbol{\varrho}} = \boldsymbol{\nu}, \ \|\boldsymbol{\varPsi} - \boldsymbol{\varrho}\| = d(\boldsymbol{\mu}, \boldsymbol{\nu})$$

if and only if there exists a vector y' in $(1-E_1)H$ such that $\omega_{y'} = \nu_2$.

(2) If $s(\mu) \ge s(\nu)$, then there always exists $\Phi \in \mathfrak{H}_{\pi}$ satisfying (5.3).

(3) If Ψ is separating for $\pi(\Re)$, there always exists $\boldsymbol{\Phi} \in \mathfrak{D}_{\pi}$ satisfying (5.3).

Proof. We first extend π to sufficiently large representation $\hat{\pi}$ of \Re on $\hat{\mathfrak{H}} \in \mathfrak{H}_{\pi}$ such that $\boldsymbol{\varPhi}$ in Theorem 1 is in $\hat{\mathfrak{H}}$.

By (4.30) with μ and ν exchanged, we have

$$\pi(A_2(\mu/\nu))\Psi = \hat{\pi}(A_2(\mu/\nu))\Psi = y_0 \in \mathfrak{H}_{\pi}.$$

Since y_0 is cyclic for $\hat{\pi}(\Re)$ on \mathfrak{H}_1 , we have

$$E_1 \hat{\mathfrak{H}} = \mathfrak{H}_1 \subset \mathfrak{H}_{\pi}.$$

Therefore we have (1).

If $s(\mu) \ge s(\nu)$, then $\nu_2 = 0$ and (2) follows from (1).

If Ψ is separating for $\pi(\Re)$, then $s(\mu)=1$ and $s(\mu)\geq s(\nu)$ for any ν . Hence (3) follows from (2). Q.E.D.

Theorem 4. Let π be a fixed representation of \Re on \mathfrak{H}_{π} and $x, y \in \mathfrak{H}_{\pi}$. Then

(5.4)
$$d_{\pi}(\omega_x, \omega_y) = d(\omega_x, \omega_y)$$

and there exist Ψ and Φ in \mathfrak{H}_{π} such that

$$\omega_{\Psi} = \omega_x, \ \omega_{\Phi} = \omega_y, \ d(\omega_x, \omega_y) = ||\Psi - \Phi||.$$

Proof. Let $\mu = \omega_x$, $\nu = \omega_y$ and E_1 be the projection on the closure of

$$\pi(\Re)\pi(A_2(\mu/\nu))x$$

and E'_1 be the projection on the closure of

$$\pi(\Re)\pi(A_2(\nu/\mu))\gamma.$$

Since $\pi(\Re)$ on $E_1 \mathfrak{H}_{\pi}$ and $E'_1 \mathfrak{H}_{\pi}$ are unitarily equivalent by the uniqueness in Theorem 1 (4), there exists a partial isometry $u \in \pi(\Re)'$ such that

(5.5)
$$u^*u = E_1, uu^* = E'_1, uu^* = E'_1$$

(5.6)
$$(x, u^* y) = \omega_x (A_2(\nu/\mu))$$

There exist a central projection F and partial isometries $u_1, u_2 \in \pi(\Re)'$ such that

(5.7)
$$u_1^* u_1 = F(1-E_1), \quad u_1 u_1^* \leq F(1-E_1'),$$

(5.8)
$$u_2^* u_2 \leq (1-F)(1-E_1), \ u_2 u_2^* = (1-F)(1-E_1').$$

We set

$$\Psi = F(u_1 + u)x + (1 - F)x$$

$$\Phi = Fy + (1 - F)(u_2^* + u^*)y.$$

Since F is a central projection, we have

$$\omega_{\mathbf{F}} = \omega_{x_F} + \omega_{(1-F)x}, \ x_F \equiv F(u_1 + u)x.$$

Since $E'_1 u = u$, $(1 - E'_1)u_1 = u_1$, we have $u^*u_1 = u_1^*u = 0$. Therefore

$$F(u_1+u)^*(u_1+u) = F(u_1^*u_1+u^*u) = F.$$

Since $u_1 + u \in \pi(\Re)'$, we have

$$\omega_{x_F} = \omega_{Fx}, \ \omega_{\Psi} = \omega_{Fx} + \omega_{(1-F)x} = \omega_x.$$

Similarly, we have

$$\omega_{\phi} = \omega_{\gamma}$$

Since

$$\omega_{u_1x} = \omega_{F(1-E_1)x} \leq \omega_{(1-E_1)x} = \omega_x - \omega_{E_1x} = \mu_2(x),$$

we obtain

$$s(u_1x) \leq \pi(s(\mu_2)) \perp s(\nu).$$

Hence

BURES DISTANCE AND RADON-NIKODYM THEOREM

$$(Fu_1x, Fy) = (F\pi(s(\mu_2))u_1x, Fy) = (Fu_1x, F\pi(s(\mu_2))y)$$

= 0.

Similarly

$$((1-F)x, (1-F)u_2^*y)=0.$$

Therefore

$$(\Psi, \Phi) = (Fux, Fy) + ((1-F)x, (1-F)u^*y) = (x, u^*y)$$

= $\omega_x (A_2(\nu/\mu)).$ Q.E.D.

Remark. By [2], $d(\omega, \omega')^2 \leq ||\omega - \omega'||$. Using (5.4), we then have $d_{\pi}(\omega_x, \omega_y)^2 \leq ||\omega_x - \omega_y||$.

The remark at the end of [1] is thus incorrect. The counterexample mentioned there was a counter-example only to the method of [1].

§6. Discussions

If $\mu \ge \nu$, then we can obtain $||A_2|| \le 1$ as follows. From $\mu \ge \nu$, we have

$$0 = \mu(1 - s(\mu)) \ge \nu(1 - s(\mu))$$

and hence $s(\mu) \ge s(\nu)$. Thus $\nu_2 = 0$, $s^{\mu}_{\nu} = s(\nu)$ and

(6.1)
$$\nu_1(Q) = \nu(Q) = \mu(A_2QA_2).$$

Let b > 1. Then

$$\nu(1-E_b^2) = \mu((1-E_b^2)A_2^2) \ge b^2 \mu(1-E_b^2).$$
$$\ge b^2 \nu(1-E_b^2).$$

Therefore $\nu(1-E_b^2)=0$ and hence $\mu(1-E_b^2)=0$. This implies $E_b^2 \ge s(\mu)$. Since $s_{\nu}^{\mu}A_2 = A_2$ and $s(\mu) \ge s_{\nu}^{\mu}$, we have $(1-E_b^2)A_2 = 0$ and hence $||A_2||=1$. From (6.1), we see that A_2 is the same as Sakai's t_0 .

As for A_1 , we have for $Q_1, Q_2 \in \pi_1(\mathfrak{R})'$

$$(Q_1x_0, \pi_1(A_2)Q_2x_0) = (Q_1x_0, Q_2\pi_1(A_2)\pi_1(s_{\nu}^{\mu})x_0)$$
$$= (Q_1x_0, Q_2y_0) = (Q_1x_0, Q_2s(x_0)y_0)$$
$$= (Q_1x_0, Q_2z) = (Q_1x_0, \pi_1(A_1)Q_2x_0)$$

Therefore we have, from $s(x_0)\pi_1(A_1) = \pi_1(A_1)$,

$$\pi_1(A_1) = s(x_0)\pi_1(A_2)s(x_0) = \pi_1(s_{\mu}^{\nu}A_2s_{\mu}^{\nu})$$

and hence

$$A_1 = s^{\nu}_{\mu} A_2 s^{\nu}_{\mu}.$$

In particular $||A_1|| \leq 1$.

If \Re is commutative, $\mu, \nu \in S(\Re)$ are measures on the spectrum of \Re and $A_1 = A_2$ is the square root of the Radon-Nikodym derivative. The decomposition $\nu = \nu_1 + \nu_2$ is the decomposition of the measure ν into absolutely continuous and singular parts relative to the measure μ .

From proof of Theorem 1, it is seen that $\pi_{\mu}(A_1)$ is unique on $(1-s(x_0))\mathfrak{H}_1+\mathfrak{D}$. We would obtain the uniqueness of A_1 if \mathfrak{D} is the core of A_0 in Lemma 3.

As for the appearance of two operators A_1 and A_2 , we have the following result.

Theorem 5. A_1 and A_2 coincide if and only if $s(\mu_1)$ commutes with $s(\nu_1)$. If $s(\mu_1)$ and $s(\nu_1)$ commute, then $s^{\nu}_{\mu} = s^{\mu}_{\nu} = s(\mu_1)s(\nu_1)$.

Proof. From the construction of A_1 and A_2 in the proof of Theorem 1, it is clear that $A_1 = A_2$ if and only if $s^{\nu}_{\mu} = s^{\mu}_{\nu}$.

If $s(\mu_1)$ and $s(\nu_1)$ commute, then obviously $s_{\mu}^{\nu} = s_{\nu}^{\mu} = s(\mu_1)s(\nu_1)$. If $s(\mu_1)$ does not commute with $s(\nu_1)$ then $[s_{\mu}^{\nu}, s(\mu_1)] = 0$ while $[s(\mu_1), s_{\nu}^{\mu}] = [s(\mu_1), s(\nu_1)] \neq 0$ and hence $s_{\mu}^{\nu} \neq s_{\nu}^{\mu}$. [Note that $s_{\nu}^{\mu} = s(\nu_1) - s(\nu_1) \wedge (1 - s(\mu_1)) = s(\nu_1) - s(\nu_1) \wedge (1 - s(\mu_1))$.] Q.E.D.

If $\mu \ge \nu$, then $[s(\mu), s(\nu)] = 0$. The following example gives the

case where $\mu \geq \nu$ and $[s(\mu_1), s(\nu_1)] \neq 0$.

Example. Let $\Re = \mathscr{B}(\mathfrak{H})$ and p and q be mutually orthogonal unit vectors in \mathfrak{H} . Let

(6.2)
$$\mu = \omega_p + \omega_{p+q}, \quad \nu = \frac{1}{2} \omega_q.$$

First we prove $\mu \geq \nu$. For $Q \geq 0$, $Q \in \Re$,

$$\mu(Q) = (p, Qp) + (p+q, Q(p+q))$$

= 2(p, Qp) + (q, Qq) + 2Re(p, Qq).

Since

$$2|(p, Qq)| \leq 2(p, Qp)^{\frac{1}{2}}(q, Qq)^{\frac{1}{2}}$$
$$\leq 2(p, Qp) + \frac{1}{2}(q, Qq),$$

we obtain

$$\mu(Q) \geq \frac{1}{2}(q, Qq) = \nu(Q).$$

Next, we see that any ρ satisfying $\mu \geq \rho$ and $s(\rho) \perp s(\nu)$ must be proportional to ω_p because $\mu \geq \rho$ implies $s(\rho) \leq s(p) + s(q)$ and $(1-s(\nu))$ $\wedge (s(p)+s(q))=s(p)$ due to $s(\nu)=s(q)$. Since $\mu \geq \omega_p$ and $\mu(Q)=\omega_p(Q)$ $\neq 0$ if Q=s(p-q), we see that $\mu_2=\omega_p$ and hence $\mu_1=\omega_{p+q}$. Therefore $s(\mu_1)=s(p+q)$ does not commute with $s(\nu_1)=s(\nu)=s(q)$.

In this example $s_{\nu}^{\mu} = s(q)$, $s_{\mu}^{\nu} = s(p+q)$ and $A_1 = 2^{-3/2}s(p+q)$, $A_2 = 2^{-1/2}s(q)$.

Acknowledgement

This work is completed during the author's stay at the Dept. of Mathematics, Queen's University. The author would like to thank Professor Coleman and Professor Woods for their warm hospitality.

References

- [1] Araki, H., Publ. RIMS Kyoto Univ. 6 (1970/71), 477-487.
- [2] Bures, D.J.C., Trans. Amer. Math. Soc. 135 (1969), 199-212
- [3] Dixmier, J., Les Algèbres d'Opérateurs dans l'Espace Hilbertien, 2nd ed., Gauthier Villars, Paris, 1969.
- [4] Dye, H.A., Trans. Amer. Math. Soc. 70 (1952), 243-280.
- [5] Sakai, S., Bull. Amer. Math. Soc. 71 (1965), 149-151.
- [6] Sakai, S., C*-Algebras and W*-Algebras, Springer-Verlag, New York, Heidelberg, Berlin, 1971.
- [7] Segal, I.E., Ann. of Math. 57 (1953), 401-457.
- [8] Takesaki, M., Tomita's Theory of Modular Hilbert Algebras and Its Applications, Springer-Verlag, Berlin, Heidelberg, New York, 1970.

Note Added in Proof. Professor J. Dixmier has pointed out that 1-E in Lemma 4 is the support of the normal state $(\Psi, Q \Phi)$ and hence its existence is well-known.