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Bures Distance Function and a Generalization
of Sakai’s Non-commutative
Radon-Nikodym Theorem

By

Huzihiro ARakr*

Abstract

For normal positive linear functionals # and v of a W* algebra R,
the following extension of a noncommutative Radon-Nikodym theorem by
Sakai is given.

There exist decompositions g=y;-+ 42, v=v1-+v; such that vy, is
the smallest normal positive linear functional on R satisfying v >y, and
s(vy) Ls(u), where s(c) denotes the support projection of «, and x; is
the smallest normal positive linear functional on R satisfying #=>#, and
s(uz) Ls(v). Further, there exists a non-negative self-adjoint operator
Ay=A,(v/¢) (in general unbounded) such that 4,=fAdE} with its spec-

tral projections E} in R, lim El=1—s}, and
*i0

v(s(u1)Qs(u1)) = 11(A4.Q41) El,fr{l, ﬂ1(A1E>1vQA1E1')

for all Q€R, where s.=s(u1)—s(u) AN(1—s()). There also exists an-
other non-negative self-adjoint operator A,=A,(v/#) such that its spectral

projections EZ are in R, lim EZ=1—s* and, for all Q€ R,
* 10

Vl(SfQS':) = /l(AzQAz)-

They are related by A1(v/u)Ax(u/v)=A(u/v)A:(v/1)=s,.
The Bures distance function d(y, v) is given by
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d(, v)’= pQ)+r(1) —2u(41)
=p(1) +v(1) —24(42).

In any representation 7 of R, if two vectors ¥ and @ satisfy wzr= 4,
wp=v and || —0|=d(u,v), where wy denotes the vector state by ¥,
then there is a decomposition 7=7mP7r’, F=x%Px’', 0= yDy’, .=
Uz, Wy=Vz, x1 and y; are cyclic vectors of w1, m1(s(u1)y1=mn1(4)x1,
m1(st) y1=m1(A4z)x1, and such that triplet m;, x; and y; are unique up

to unitary equivalence for given x and y.

§1. Imtroduction

For two normal positive linear functionals # and y of a W *-algebra
R satisfying #=>v, Sakai [ 5] has shown the existence of a unique £, €R
such that 0="¢,<1 and

(1.1) (@)= u(24Qt0)

for all Q€R. We shall generalize this Radon-Nikodym theorem of Sakai
to the case where x>y does not necessarily hold.

Our investigation originally started from a search for a standard form
of vectors ¥ and @ such that their vector “states” are # and v and
| —®@| is minimal. The minimal value of || —®@]|| is defined to be
d(u, v) by Bures [27]. It is easily shown that, if #—>p holds, then @ is

uniquely given by

(1.2) O=r(t)¥
and hence
(1.3) d(u, v)*=u(1)+v(1) —24(t0).

We shall first show the existence of a pair & and @ giving the
mimimal distance for general # and y. An analysis of their mutual rela-
tion leads to a generalization of #3. The result reduces to the Radon-

Nikodym theorem by Sakai if u#=>v.
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Notations and Conventioms: All representations of R in the pres-
ent work will be normal representations. We denote the set of all nor-
mal positive linear functionals on R by S(R). The expectation functional
on R by a vector x in a representation space O of R is denoted by w;.
The support s(x#) of € S(R) is the smallest projection operator E€R
satisfying #(E)=u(1). The support s(x) of a vector x in § relative to
a representation 7 of R on O is the smallest projection E € w(R) satisfy-
ing Ex=x. E9 is the closure of 7(R)'x and s(x)=n(s(w,)). The sup-
port s(w) of a representation 7 is the smallest central projection E &R
satisfying w(E)=1. 7 is faithful on Rs(x). The support s(Q) of an
operator Q is the smallest projection E such that EQ=QE=Q. s(Q)=
s(Q*Q)Vs(QQ*) and it belongs to N if QeR.

Our main results are following theorems:

Theorem 1. Let u, vy e S(R).

(1) There exists a unique decomposition = p1+ fz, V=v1-+vs such
that v, is the largest 0 € S(R) satisfying v =0 and s(u) Ls(0), and us is
the largest p € S(R) satisfying =0 and s(v)_Ls(p).

(2) There exists a non-negative self-adjoint operator
1.4 Ar=A4:,(v/p)=[2dE}

such that Ef €, lim El=1—s. and
1o

(1.5) v(s(u1)Qs(u1))=v(s,Qs}.)

= ﬂl(AlQAl)Eiigl . ﬂl(AlEiQAlE%')’

where
(1.6) sp=s(u1) —s(u) AL —s(»)).

(8) There exists a non-negalive self-adjoint operator
(1.7) Ay=A5(v/1)=[1dE?

such that E?€ R, 1)}m E2=1—sb Ai(u/v)A(v/0)=s", and
10



338 HuzinirRo ARAKI
(1.8) v1(stQst) = u(A2Q42).

(4) In a representation w of R with a cyclic vector x1 satisfying

Wz, = M1, there exists a unique vector vy, such that w, =y and
(1.9) s(xl)y1=nl(Al)xlsxl_i’erm(AlE{)xl.
It satisfies
(1.10) {s(yD)—s(yD AA=s(x1))} y1=m1(42)%1.
Theorem 2. For any u, v € S(R),
d(u, v)?=p(1)+v(1)—2u:(41)
=u(1)+v(1)—2u(4>)

where Ay and Ay are as in Theorem 1 and u1(A;)= lim u1(A4.EL).

For any vectors ¥ and @ in a representation 7w of )ﬁ?atisfying Wy = U,
we=v, and d(u, v)=|\T—0||, there exists a decomposition w=rn.Pr’,
T=x.Px", 0= y:Dy', such that wa= U, 0n=vy, x1 and y1 are cyclic
for mwi(N), the triplet w1, x1 and vy, ave umitarily equivalent to w1, %1
and yi of Theorem 1 (4) and is unique up to unitary equivalence.

Takesaki ([8] §15) considers the case s(#)=1. His hy has the same

matrix element as our A, on the dense domain 7z, (R)'¥.

§2. Bures Distance Function

The Bures distance for #, v € S(R) is
(2.1) d(, v)=inf{||lx — y||; w.=p#, 0,=v}

where x and y can be in an arbitrary representation space of R. The

following lemma shows that the infimum is actually reached.

Lemma 1. For u€ S(R), there exist a representation m, of R on
O, and a vector ¥ in 9, such that p=wy and for any v € S(R) there
exists O €9, satisfying we=y and ||¥—0|=d(u, v).
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Proof. By Proposition 1.6 of Bures [27], there exists a representation

7p of R on s and a vector xp in Pp such that w,,=x and
d(u, v)=inf{||lxz— yll; y€9Ds, w,=v},

for any y € S(R).
Let y, be such that y,€ 9s, w,,=v and

lim ||z g — yall= d(#, v).

By weak sequential compactness, there exists a subsequence n(k) and
y€9p such that

W-li,fn Yue)= Y -
Then

v——a)y=1i£n O3 -9 =0.

Therefore v —w,€ SR) and there exists y' € Dy satisfying v —w,=w,.
We also have

lxz— yll>=1l25|>+ |l y||*—2Re lim (5, yu))
=lim||xp — Yueay 1> —1m || yugey— y|I?
=d(u, v)* —wn(1).

Hence 9,=9s@ 95, m,=7D 75, ¥=23P0 and 0= yP y' satisfy all
the requirements. Q.E.D.

The next Lemma is not needed in the proof of the main Theorems
and is a special case of Theorem 2. We present it here because it gives

a motivation for the proof technique in the following sections.

Lemma 2. Let p€SR), to€R, 1o =0, and v(Q)= u(¢:Qt0) for all
QeR. Then

(2.2) d(u, v)?= (1) +v(1)—24(to).
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Proof. Let ©,, m,, ¥ and @ be as in Lemma 1. Let @0'=m,(s,)¥.
Then w,/=y and

dps v)! S| —0'12= p(1) + (1) —24(20).
Let a be defined on 7, (R)0" by
ar Q)0 =r,(Q)0, QcR.
Then o is isometric on 7, (R)D":
|17 .(Q)0]|*=v(Q*Q)= |7 .(Q)0'||*.
Hence o is well-defined on 7,(R)®@, linear there and |la||<1. Let s'(@)
be the projection on the closure of 7, (R)@. Then s(@)€w,(R) and
a=as'(@)ern, (R). We have
(7, 0)| =, a0’)]|

= [(m, (), am,(10)"°7)]

< llallllm, () ?2]|* < pu(to).
Hence

d(u, v)*=u(1)+v(1)—2Re(¥, 0)

= u(1)+v(1)—2u(o).
Q.E.D.

Remark. Lemma 2 gives the uniqueness of &, satisfying
() teR, to=0,

(11) ﬂ(tOQtO):”(Q), QE ER’

(i)  s(20) =s(),

for given ¢ and v by the following argument.
Consider the representation 7, of R on ©, with a cyclic vector 2,

such that we,=px. Assume that ¢, and g satisfy (i)-(ili). From the
proof of Corollary, which gives the uniqueness of y satisfying w,=v,
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wx=4, d(t, v)=2(1—(x, y)) (for given g,v,x), we obtain w,(¢,)82,
=7,(20)R,. Hence 7,(40)Q'R,=n,(2)Q 2, for any Q'€ 7, (R). There-
fore w,(to—2¢)s(£,)=0. Since s(£,)=m.(s(#)) and the representation 7,
is faithful at least for s(x)Rs(x), we have s(u)(to—t5)s(#)=0. By (iii),

we have 1o=t.

Corollary. Let u,v,to be as in Lemma 2. Let m be a representa-
tion of R on O and T, O€D satisfy we=u, wg=v and d(u,v)?=
| —0|%. Then

(2.3) 0=r(t,)?.
Proof. From the preceding proof, we have
Re(¥, 0)=Re(n(to)' 2, an(to)M?¥)

=|lm(to)*¥|".

Hence |&| <1 implies
an(t)'?T =n(s,)' 7.

Since @ € #(R)’, we have

O=n(to) " 2an(to) 2T =n(t,)¥.

Q.E.D.

Remark. If R is a type I factor, #(Q)=tr(0Q), v(Q)=tr(6Q) for
QeR, p=0, >0, then

(2.4) to=(0" 12| g}I2p12| o 112)-
and
(2.5) 2(to)=tr|a1%pM2|

where |B| denotes (8*B)!Z,
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§3. Construction of 4

The following construction of A, is similar to the method of Takesaki

[8]. o is not assumed to be separable.

Lemma 3. Let x, be a cyclic and separating vectors for a von Neu-

man algebra Ry on o and z be a separating vector for Ry satisfying
(3.1) (%0, Q2)=0

for all Q=0, QER]. Then there exists a positive self-adjoint operator
3.2) Ay=[5AdE?

such that EQEER(), Z=.ono, E°+0 E}\’lfn E{=0.
0

Proof. Let S be defined on D=R{xo by
(3.3) SQxo=Qz, Q€ Ry.

Since x, is cyclic for Ry, Qxo=0 for QR implies Q=0 and hence
Qz=0. Therefore S is well-defined, linear operator. Since x, is separat-
ing for Ry, the domain D=NR{x, of S is dense.

By assumption (3.1), (%o, (c —Q)*(c—Q)z) is real for Q€ R} and any

complex number c¢. This implies that
(%0, Q)= (20, Q*2)* =(z, Qo).
Therefore for Q1, Q2 € R}
(Q2%0, SQ120)=(0, QFQ12)
=(z, Q§Q1%0)
=(SQ2%, Q1%).

Hence S is symmetric. S is non-negative on ® by (3.1).
® is obviously invariant under R}. For Q, Q1, Q2 €R{,
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(Qz2%05 SQQ1%0)=(Q2%0, QQ12)
=(Q*Q2x0, Q12)
=(Q*Q2%0, SQ120)
=(Q2%0, QSQ1%0).

Hence S commutes with any Q in JRg.
We now consider the Friedrichs extension of S.
Let

(3.4) W, ¥)e=T1, S¥)+ 1, 73)

for all ¥y, ¥, €D. Since

(Qx0, Qx0)e =20, Q*Q2)+||Q0|> >0

for non-zero Q€ R}, (¥, ¥,) is an inner product on D. Let & be its
completion, which is a Hilbert space with (¥, ¥2)e as an inner product.
Let o be the mapping from Qx, in & to Qx¢ in o. It is densely de-
fined, linear and |a| <1. Let & be its closure.

Since [|Q||—Q =0 for any self-adjoint Q, we have
(Q1%0, (lIQI —Q)Q12) =0
for any Q;€R{. Replacing Q by Q*Q, we obtain
100:2011% < [1Q*QII1Qu0l1% =11QlI*|Q10]I%-

Therefore @ 'Qa is linear and bounded on ™ '®. Let wg(Q) be its clo-
sure on &. ane(Q)=Q« on D implies

(3.5) arx(Q)=0a.

g is clearly a * representation of R}. If Q, is a non-decreasing mono-
tonous net in R{ with lim Q.=0, then lim |7e(Q—Q)¥||2=0 for ¥ €<
a D and hence for ¥ E.QT. Therefore 7g Tis normal.

From the Schwarz inequality



344 Huziairo ARAKI
|(@ 1, SU) |’ S (1, ST)F 3, ST2)
for ¥, ¥, €D and the majorization
(a¥, Sa?)< |7},

we obtain the existence of a bounded non-negative self-adjoint 7 on &
such that 1> T and
(3.6) (a¥1, Sa¥z)=T1, T¥2)e

for all @'ZEa“l@, 7169.
Since S commutes with Q€ R, we have from (3.5) and (3.6)

1, Tre(Q¥2)e=1, ma(Q)T¥2)s

for all 1€ R and ¥ 'D. Hence T€ma(Ry).
According to Sakai ([6], 1.11.3), there exists a projection e, € 7q(Mig)’

for each real 4, having the following properties:

(1) Cxée)h/ if lgl/-
(2) lim e, =e,.
Apth
(3) e1ye=1 for €>0 and e,=0.
) T:S Ades.
0
Let the closure of @e,& be . and the projection onto Dsny be EY

where f(A)=(1+2)7'A2. f is a monotonously increasing function on
[0, o) with the range [0, 1). From (1), we have

3.7 EV<E} if 227
From (2), we have

(3.8) lim E? =EY.

*m )
From (3), we have
(3.9) Ej=0.

For ¥ €e,8 and Q€ R}, we have
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Qa¥ =ana(Q)¥ € ae,RCHr

due to (3.5) and e, € mo(N]). Hence Q¥ €D, for any ¥ €9,, QR and
hence

(3.10) EXeR,.
From the definition (3.4), we have for ¥;€a™'D,
(311) (Wl, Wz)ﬁz(dyl, Saqu)—{-(dip'l, a?[’z)

for all ¥, €a D and hence for all ¥, € by continuity. If a¥,=0,
then (¥, ¥3)e=0 for all ¥, in the dense subset ™ '® of & and hence
¥,=0. Namely the kernel of & is 0.

From (3.11) and (3.6), we have

(3.12) (@, a¥ )=, Uy)e— (¥, Sa¥;)
z(iph (1‘“ T)WZ)R

for ¥, ¥;€a™'D and hence for all ¥, ¥, €K by continuity. From this
equality, we obtain the following three conclusions.

(i) I 1—T)¥=0, then from (3.12) with ¥,=¥,=¥, we obtain
¥=0. Hence e;=1 and

(3.13) lim E9=1.

A oo
(ii) Since e, commutes with 7, we have
(a(1—e)¥ 1, ae,¥2)=0
for all #,,%7,€R. Hence a(l—e,)¥ 1D, and
(3.14) Ea¥ =ae;o)¥ + EJa(l—esn)¥
=aeson¥.
(iii) For all &, ¥, € R, we have
(3.15) d(a¥, E3a¥,)=d@ 1, A1—Te;n¥2)e

=1+ )7 T, eso)2)s
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This also implies that @& 'esn) is bounded for finite 2 and hence
(3.16) a‘fC)\‘R:%)‘,, l<1.

From (3.7), (3.8), (3.9) and (3.13), we can define a non-negative self-

adjoint operator associated with $y on O, by

(3.17) B=("1aEy,

Its domain D(B) is the set of all ¥ €9 such that
(U1BY|P =) 2d(@, B)< co.

By (3.15), we have

(3.18) (IIBdWHZ:)S:M(de, E%a?)

= F AW, ero)a=(T, TP)< 0

and hence @ RCD(B). Further, by (3.11), (3.6) and (3.18),
(3.19) %1% =|Ba¥||*+ ||a?||*.

Since the union of (3.16) is dense in D(B) relative to the metric {||B¥||?
+]|Z]|?}"? and since af is complete relative to the same metric due to
(3.19), we have

(3.20) D(B)=af.
By polarization, we obtain from (3.18),
(Ba¥,, Ba¥,)=(¥1, TV )s.
Combining with (3.6), we obtain D D(B?) and
(3.21) BT =S¥, ¥ D,

Hence
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A0=B2=S AdE?
0

satisfies EQ € Ry and z= Ayxo.
If lim E =%, then
20

(Qz, ¥)=(5Qx0, ¥)

=(Qw0, AT)=0.

Since z is assumed to be separating for M, and hence is cyclic for Ry,
we have ¥=0. Therefore

(3.22) lim E9=0.

A0

Q.E.D.

Remark. A, satisfying E$€ R, and z=Adyx, can be constructed
exactly in the same way even if z is not separating for ,, except that
lim E¢ is in general a non-zero projection.

e In the present case, A,—=>0 and hence the equality in (3.1) holds

only if Qxo=0, namely Q=0. Therefore z is separating for R§ and hence
is cyclic for R,.
§4. Proof of Main Theorems

The unique decompositions g#=4;+ 4, and yv=y;+y, are essentially

given by the following lemma.

Lemma 4. Let Ry be a von Newmann algebra on O and let & and

D be two vectors in O such that
(4.1) ¥, Q0)=0

for all mom-negative self-adjoint Q in Rj;. Then there exists the largest
projection E in R} such that

(4.2) (¥, E0)=0.
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It satisfies

(4.3) Wy =gy +Oa-Ey, Wo=0Fs+ O1_E)o,
(4.4) s(wrr) Ls(wa-£ye), s(oa-gw) L s(wrs)
(4.5) s(wey) Ls(0ro).

Wgo 15 the largest p € S(Ry) such that wo=0 and s(p) Ls(wy). 0w is
the largest 0 € S(Ry) such that wy=0 and s(0)_Ls(we).

Proof. Let (¥, Q0)=0 for Q€R;, Q=0. Let e, €R; be the spec-
tral projection of Q (Sakai [6]) and

3(77'):61/(7:—1)—31/n
where e.=1 and n=1, 2,.... Since
Q=Qe(n)=n""e(n),
we have
(%, e(n)0)=0.
Hence (¥, Q@)=0 for Q € R; implies

(4.6) &, s(Q)2)=0, (@)= Lie(n).

For a finite number of projections E; € R}, satisfying (¥, E:0)=0, we
obtain from (4.6)

4.7 @, VEO)=(¥, s(LE)D)=0.

From the normality, the same holds for any number of E;. Let E be the
supremum of E, €N, satisfying (¥, E,0)=0. Then, by (4.7), we have
(¥, E®)=0, and by construction, E is the largest such projection in Rj.

From E &R, we have (4.3). From Schwarz inequality for positive

linear functional (¥, Q@), we have

(Q\7, Q:E®)=0
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for any Q1, Q2€ RS, Setting Q1 =QzE or Q:=Q3(1—E), we obtain s(wgs)
Ls(wge) and s(wge) L s(wa-pyw). Interchanging the role of ¥ and @,
we obtain s(wgz) L s(®a-g)0)-

Let p€ S(R;) be such that

(4.8) 0=wo, 5(0)Ls(wr).
Then there exists Q€R;, 1 >0 =0 satisfying
0=wqo

due to p=<wg. Since p(s(wr))=0, we have s(¥)Q@=0. Hence (¥, Q0)
=0, which implies by (4.6)

sQ=E
and we have Q@=EQO@=QE®. Therefore
0=0qo =WgE0 = WEo.

This proves that wge is the largest p satisfying (4.8).
The same proof holds for wgw. Q.E.D.

Proof of Theorem 1 (1). By Lemma 1, there exists a representation
z, of R on O, and vectors ¥ and O €Y, such that

Wy =, 0=y, d(4, y)_—:HW——@HZ
We shall show that for Q€ z(R), Q=0
(4.9) ¥, Q0)=0.

This will prove Theorem 1 (1) due to Lemma 4, where R,=n,(R), D=
Suppose E’ is a projection in z(3) and (¥, E'®) is not a non-nega-
tive real number. Then there exists real numbers 6; and @, such that

0, is not an integer multiple of 27 and

a=({, e"E'9) >0, =T, ¢(1—E"ND®)=>0.
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Then
(4.10) Re(¥, 0)<a+86.
Now consider the representation 7nw of R on HEPOH and vectors
Y'=E'¥P1—EHY,
0'=e"E'0P e’’*(1—E') 0.
They satisfy wy-=wy=p#, wy=ws=y and, by (4.10),
17— 0> =2(1)+»(1) —2(a+B) <|[¥ -0,

which is a contradiction with the minimality of ||& —@||%
Therefore (¥, E‘®)=>0 for any projection E’ in 7(R)" and hence
(4.9) holds for any Q=0, Q€ n(R)'. Q.E.D.

To apply Lemma 3, we need a further reduction:

Lemma 5. Let R, be a von Neumann algebra on ©, and let x, and

y1 be vectors in 9. Let

(4.11) P=s(s(x1)s(y1))-

Then

(4.12)  P=s(x)Vs(y1)—s(x)/A\Q—s(y1)) —s(y1)/\A —s(x1)).
Let

(4.13) xo=Px1=2x1—{s(x1)/\A —s(y1))} %1,
(4.14) Yo=Py1=y1—{s(y1)/\A —5(x1))} 3.
Then

(4.15) s(x0) =s(x1) —s(x1)/ANA—s(y1)),
(4.16) s(y0)=s(y1)—s(y)/\A—s(x1)),

(4.17) s(xo)\/s(y0) =P,
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(4.18) 5(x0)/\(L—s(50)) =0, s(y0)/\(L—s(20))=0,
(4.19) (%1, Q1) =(%0, Qy0)
for all QeR].
If
(4.20) (21, Qy1) >0

holds for all QE€R;, Q==0, Q5=0, then both x, and
(4.21) z=5(x0) yo=s(x1) yo=5(x1) 31
ave cyclic and separating for the restriction
(4.22) s(x0)Rys(xe) =Ry
of Ry in s(x0)D1=9o-
Proof. s(x1)s(y1)¥=0 implies
s(yD¥ € 1—s(x1))91

and hence

T=1—s(y)¥+s(y)¥

€A —s(y))91+{s(y)D1N (A —5(x1))D1}.
The converse is also true. Therefore
ker s(x1) s(y1) =1 —s(y))O1+ {s(y)/\1L—s(x1))} 1.

Similar formula holds for s(y;)s(x1). Since

(1 —P)D1=ker s(x1)s(y1) Nker(s(x1) s(y1)*

by definition, we obtain (4.12). (4.13) and (4.14) then follow.

From (4.13), the set of Qxo, Q€ R] is the same as s(x1)—s(x1)/\
(1—s(y1)) times the set of Qx1, Q€ R] and the set of Qx1, QER] spans
s(x1)9:. Hence we obtain (4.15). Similarly we have (4.16). (4.17) and
(4.18) then follow.



352 Huziairo ARAKI
Since Qy;€s(y1)D1 for Q€NR{, we have
(xl, Q}’l)—:(xo, Q}’l)-
Since Qxo € s(x0)91 Cs(x1)91, we have
(xo, Q}’1>=<Q*xo, }’1)=<Q*xo, yo)-

Therefore (4.19) holds.
If (4.20) holds, then for any Q€R], 0=0, Q~0, we have, by
(4.19),

(%0, @ y0) = (%0, Qs(x0) 70) >0

and hence Qxo0, Qs(xo)yo70. Therefore x, and s(x,)y, are separat-
ing for Ri. (Q € R{ and Qxo=0 implies Q*Qxo=0, hence Q*Q=0.)
Therefore both x, and s(x)y, are cyclic for R; and hence cyclic for
s(x0)R15(x0) on s(x0)D1. o is obviously cyclic for s(xq)R] on s(x0)D:
and hence is separating for s(x)R1s(xo).

Suppose that Q € s(x)R1s(xy) and

Qs (x0) y0=0.

Then s(Q*Q)<1—s(y,) because Qyo=Qs(x0)yo=0. Since s(Q*Q)<
s(xy), we have by (4.18)

s(Q*Q) =5(x0)/\NA—s(50))=0.

Therefore we have Q=0. Hence z=s(x0)yo is separating for s(xo)R;
S(xo). QED.

Proof of Theorem 1 (2). In the proof of Theorem 1 (1), we set
’@1:<1—E)®Fa E}%l:”p(%)(l_E),
w1=(1—EW, y=Q1-E)o,

where E is taken from Lemma 4.
If Qe(1—E)xr,R)(1—E), Q=0, Q+0, we have
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(¥, Q0)+0

due to the maximality of E. Therefore we have (4.20).
We now apply Lemma 3 to 9o, Ro, xo and z of Lemma 4, and ob-

tain a positive self-adjoint operator (3.2), where
Ef e Ro=s(x0)R1s5(x0) N1
By w.,=u1, 7,(Q)(1—E) is faithful certainly for

Qe s(u)Rs(u1)

and
(4.23) Tu(s (1)1 —E)=s(x1)(1—E)

because x; is cyclic for R; on O; due to (4.20). Therefore there exists
a unique E} such that for A>0 (1—s(#1)) < EL and

(1—E)r(E)=E(1—E).

By the faithfulness of (1—E)m,, we have

(1) Ei=EY for 2=>7/,
(2) lim El =EL

(IS
(3) E}=0, lim E}=1.
We now define 4;(v/u) by (1.4). We have
(4.24) 1:1(A41Q41)=(m, (A1) x1, 7 Q7 (A1)x1), QER.
Since 7, (E})x1=E}x; with E& s(x0)R15(%0), we have
m,(A1)x1=Aoxo=5(x0) y1=5(%1) y1.
By w, =v; and (4.23), we obtain
(4.25) (s(x1)y1, 7 (Q)s (1) y1)=»1(s(£1)Qs (u1)).

By the same argument as for (4.23), we obtain

(4.26) T (s(W1)(1—E)=s(y)(1—E).
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From (4.15), (4.23) and (4.26), we have

(4.27) 7,(s)(1— E) = s(x0)(1—E).
Therefore we also have

(4.28) (s(x0)y1, 7u(Q)s(x0)y1)=v1(s;Qsp).

By (4.24), (4.25), and (4.28), we obtain (1.5).
From (4.27), we have

lim El=1—s,.
rio

Proof of Theorem 1 (3). Since the initial assumptions are symmetric

in # and vy, we define

(4.29) Ax(p/v)=[52" dE}s(x0)

and prove the corresponding properties. By definition of EZ,
7 (Ax(0/v) A1 (v/ 1))~ (A — E)=5(20)(1 — E),

where unbounded operators A, are always defined as the limit of A,E%.
By (4.27), we have

(A2pt/v) Ar(v/ 1)) s

Since s(v;) Ls(#)=s,, we have m,(A:(#/v))E®=0. Hence, by using

Tu(sp)y1=5(x0) 1 and 7, (sp)x1= %o,

(4.30) 7,(A2(1t/v)) 0= ,(A:(tt/V)) 11
=7,(A2(t/v))s(x0) y1
=xo=",(sp)%1.

Therefore we have

v(Aa(u/v)Q A 1t/ v)) = ,U1(SZQSZ)-
Q.E.D.
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Proof of Theorem 1 (4). We have already the existence because the
vector y; in the proof of Theorem 1 (2) satisfies all requirements. To
prove the uniqueness, suppose that y’'€ 9, satisfies w,r=v; and s(x1)y'=
z. Then there exists a partial isometry u € R{ such that u*u y1= ¥ and

uyr=y’ due to wy=w,. We have
us(z)yi=s(xDuy1=s(x)y =s(x)n
and hence u—1 is 0 on z. By applying 7,(42(#/v)), we have
(u—1)x,=0.
Since x, is separating for R{, we have u=1 and y'=7y. Hence the

uniqueness. Q.E.D.

Proof of Theorem 2. From the construction of 4; and A4,, we have
d(p, v)?=p(1)+v(1)—2(x1, y1)
=p(1)+v(1)—2u(41)
= p(1)+ (1) —24(4).

To prove the uniqueness, suppose ¥; and @; be given, satisfying wg,
=4, wo,=v and d(u, v)=||¥;—0,||. By expanding the representation,
we can identify ¥; with ¥ in the proof of Theorem 1 (2), where the
representation contains 7, and @; is not necessarily the same as @.

Since wg=uwe,=V, there exists a partial isometry u € n(R)’, satisfy-

ing u*u®=0 and u®=0,. We also have

&, 0)=d(u, v)llzz(w-, D).

Since
s(YuED=us(¥)ED
=un(s(wy))ED

=u EF(S(,L())E@ =0,
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we have
#F,0)=F, u(1—E)0)=(A} %1, uAd}?x;).
Equality of this expression with (¥, @)=||A}?x,||* implies
(u—1)A432%,=0.
By multiplying 7(A45(#/v))''?, we obtain
(u—1)xe=0.
Since x, is cyclic in §;, we have u=1 on ;. Therefore
(1—E)0,=y,=(1—E)0.

Setting E@;= y’, we obtain the statement of Theorem 2.

§5. d.(u,v) and d(y,v)
In [17], we have defined
(5.1) d.(u, V)=Inf{[|T —0||; vg=p, wo=v, ¥€P,, 0€9,}

where 7 is a fixed representation on 9,. Obviously d.(x, v)=d(u, v).
We shall now discuss when the equality holds.

We shall start by considering whether there exists @ giving d(x, v)
=||¥ —0|| for the fixed representation 7 and a fixed vector ¥. It al-

ready gives some cases where d(u, v)=d.(u, v).

Theorem 3. Let yu,ve S(R) and © be a fixed representation of R
on Q.. Let ¥ be a fixed vector in D, satisfying wg= A.
(1) Let E, be the projection on the closure of

(5.2) TR n(A:(v/ ).
Then there exists O € D, satisfying

(5.3) wo=v, ||¥—0||=d(s, »)
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if and only if there exists a vector y' in (1—E\)H such that w,=y,.
2) If s(u)=s(), then there always exists @ €D, satisfying (5.3).
(3) If ¥ is separating for n(N), there always exists O €D, satisfying
(5.3).

Proof. We first extend 7 to sufficiently large representation # of R

A

on @Ez@,, such that @ in Theorem 1 is in 9.
By (4.30) with # and v exchanged, we have

w(A(p/ V) = 2(Ax(2t/V))¥ = 50 € D,

Since ¥, is cyclic for 2(R) on $;, we have

E1@=@1<®,-

Therefore we have (1).

If s(u)=s(v), then v,=0 and (2) follows from (1).

If ¥ is separating for #(R), then s(#)=1 and s(x)=s(v) for any v.
Hence (3) follows from (2). Q.E.D.

Theorem 4. Let m be a fixed representation of R on O, and x, ye
Due Then

(5.4) d 0z, 0,)=d(0z, ©y)
and there exist ¥ and O in O, such that
Wy =0z, Wo=0,, d(0x, 0,)=|7—0|.
Proof. Let #=uw., v=w, and E; be the projection on the closure of
TR (A2(4/v))%
and E{ be the projection on the closure of

TR (42(v/ 1)) y.

Since 7(R) on E. P, and E{D, are unitarily equivalent by the uniqueness
in Theorem 1 (4), there exists a partial isometry u &€ z(R)" such that
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(5.5) uv*u=E,, uu*=E],
(5.6) (%, u*y)=w.(42(v/ 1))

There exist a central projection F and partial isometries u;, us € 7(R)’
such that

(5.7) ufur=FQ1—E), wuf<F(1-EY),
(5.8) uiu; S (1—-F)1—Ey), uuf=1—F)1—E).
We set

V=Fui+u)x+(1—F)x
O0=Fy+(1—F)(us+u*)y.
Since F is a central projection, we have
O =Wz,+ O1-Fyzs sr=F(ui1+u)x.

*ui=ufu=0. Therefore

Since Ejlu=u, (1—E))u;=u;, we have u
Flui+ u)*(u+u)=F(ufu,+u*u)=F.
Since u;+u € w(R), we have
Wyp=0Fz, OF=0Fz+ O1_F)z= 0.
Similarly, we have
Wo=Wy.

Since

wu,x=wF(1_E,)xéw(1—E,)x=wx—wE1x=ﬂz(x),

we obtain

s(u1x) = m(s(uz)) Ls ().

Hence
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(Fu,zx, Fy)=(F7r(s(,aZ))u1x, F}’)= (Fuyx, Fr(s (ﬂz))}’)
=0.
Similarly
((1—F)x, A—F)ufy)=0.
Therefore
#, 0)=Fux, Fy)+ (1—F)x, A—F)u*y)=(x, u*y)

=w.(A4:(v/ 1)). Q.E.D.

Remark. By [2], d(w, 0)?<|lo—wo’||. Using (5.4), we then have
dn(wxa wy)zgllwx——wy”'

The remark at the end of [1] is thus incorrect. The counterexample

mentioned there was a counter-example only to the method of [1].

§6. Discussions

If 4>y, then we can obtain ||4;||<1 as follows. From g_>vy, we
have

0=p(1—s(u)=v(1—s(w)
and hence s(#)=s(»). Thus »,=0, s‘=s(») and
(6.1) v1(Q)=2(Q)= 1(4:Q4>).
Let 5>1. Then
v(1—E})=u((1—E}) A3 = b u(1—E3).
> b%(1—E3).

Therefore y(1—E%)=0 and hence #(1—EZ2)=0. This implies E%=>s(x).
Since s¢A;= A, and s(u)=>s%, we have (1—E2)A;=0 and hence || 4;]|=1.
From (6.1), we see that A, is the same as Sakai’s f,.
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As for A, we have for Q1, Qz € w1 ()
(Q1%0, T1(A2)Q220)=(Q1%0, Qa7 1(A2)71(s8)%0)
=(Q1%0, Q2y0)=(Q1%0, Q25(0) o)
=(Q1%0, Q22)=(Q1%0, T1(41)Q2%0).
Therefore we have, from s(xo)m1(41)=m1(41),
(A1) =s(x0)w1(A2)s(x0)=11(s;425,)

and hence
A 1= S;AzS;.

In particular ||4;]|<1.

If R is commutative, g,y € S(R) are measures on the spectrvm cf
R and A4,= A, is the square root of the Radon-Nikodym derivative. The
decomposition y=y;-+v; is the decomposition of the measure vy into abso-
lutely continuous and singular parts relative to the measure u.

From proof of Theorem 1, it is seen that 7.(4;) is unique on (1—
(x%0)9:1+D. We would obtain the uniqueness of A; if D is the core of
Ay in Lemma 3.

As for the appearance of two operators A4; and A;, we have the fol-

lowing result.

Theorem 5. A; and A; coincide if and only if s(#1) commutes with

s(v1). If s(u1) and s(vi) commute, then s,=st=s(u1)s(v1).

Proof. From the construction of 4; and A, in the proof of Theo-
rem 1, it is clear that 4;=4, if and only if s,=s’.

If s(#1) and s(v;) commute, then obviously s.=st=s(y1)s(v,). If
s(#1) does not commute with s(v;) then [s), s(#:)]=0 while [s(x1), s47]
=[s(#1), s(»1)]5~0 and hence s.==s%. [Note that st=s(y;)—s(v)A1—
s(u))=s(v1)—s@)ANQA—s(u1)).] Q.E.D.

If g=v, then [s(x), s(»)]=0. The following example gives the
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case where #—>v and [s(41), s(v1)]=~0.

Example. Let R=2(P) and p and ¢ be mutually orthogonal unit

vectors in . Let

, 1
(6.2) U=WpT Wpygs V:7wq.

First we prove #=>y. For Q=0, Q€ R,
#(@)=(p, Op)+(p+q, Qp+q)

=2(p, Op)+(g, Qg)+2Re(p, Qgq).

Since

1 1
2 I(Pa QQ)I éZ(P, QP)Z(% QQ)Z
=2(p,0p)+ %(q, Q9);

we obtain
HQ)Z5 (g, 09)=(Q).

Next, we see that any p satisfying #->p and s(p)_Ls(y) must be
proportional to w, because #=p implies s(p) <s(p)+s(g) and (1—s(»))
A(s(p)+s(g))=s(p) due to s(v)=s(gq). Since #=w, and #(Q)=w,(Q)
#+0 if Q=s(p—q), we see that #=w, and hence #;=w,,,. Therefore
s(u#1)=s(p+gq) does not commute with s(v1)=s(¥)=s(g).

In this example si=s(g), s,=s(p+¢q) and 4,=27%s(p+q), A,=
271%5(q).
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existence is well-known.



