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The Asymptotic Behavior of the Solutions
of (44+2) u=0 in a Domain with the
Unbounded Boundary

By

Takao Tavosur*

1. Introduction

We shall consider the equation
(1.1 4+DHu=0

in an unbounded domain £ in the Euclidean n-space E”(n=2), with the

boundary condition
(12) u | r= 0,

where I” is the boundary of £, and 1 is a positive constant. Let £(L)=
2 4(x1,-, x,) EE": xy>L}. We shall assume that [ is smooth (Cb),
and that there are positive numbers €, N and [(l=<1) such that the fol-

lowing (1.3) and (1.4) hold for at least one of the connected components
of 2(N), say £2:(N).

(1.3) @1(N)C {my -y ) EE™: (xdt -+ +22) < Carl}
(1.4) n(p)-a(p)=0 for pel'n02:1(N)

where n(p) is the outer unit normal to /" at p=(xi,---, x,) and a(p) is
the vector a(p)=(x1, [x2,---, [x,). Our purpose in this paper is to prove
the following.
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Theorem 1.1. Let 2 and A be as above. If u is a non-trivial solu-
tion of (1.1) and (1.2), then

(1.5) lim t‘ESP(uZ—i— 1P u|%)dS= oo

t—ro0
Sfor any ¢>0, where P, is the section of 2:(N) by the hyperplane x,=t.

If £ lies in the half-space x;>1, and (1.4) holds on the whole of
I with [=0. (1.5) is a part of the well known results by Rellich
[1]. Jones [2] (Theorem 9) has treated the problem in the case of [=
1. We can find in Agmon [ 3] (Theorem 11) an extension of Jones’ re-
sult, and, when /=1, our Theorem 1.1 is also included in Agmon’s theo-
rem. So the proof of Theorem 1.1 must be carried out for 0</<1, and
it will be done in the framework developed by Roze [4] and Eidus [5_.

In §2, introducing a curvilinear coordinate system for the conven-
ience of calculations, we shall give some preliminary lemmas. In §3, it
will be shown that a solution which does not satisfy (1.5) decreases, in
a sense, like an exponential function in £;(N), and in §4, it will turn
out that such solution is the trivial solution.

In consequence of Theorem 1.1 it is easy to see that the self-adjoint
realization of —4 in L?(2) with the Dirichlet boundary condition has no
positive point eigenvalues. A short remark on the spectrum will be given
in the final §5.

2. Preliminaries

In the sequel the conditions of the Theorem 1.1 are always assumed.
Let us introduce a curvilinear coordinate system (Xi, ..., X,) in E%={(x1,

<oy Zn): 21>0} as follows;

1
o N={attllad+ o +aD} (X>0),
2.1 X
Ho=tan M(ad+ - +ai2/al}  (0=X<3),
and Xj, ..., X, are the parameters which are suitably chosen on the sphere

S" 2= {(%g, - %n): x§+ - +x2=1}. (For example, we may put x;=
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cos X3, x3=sin X3 cos Xy, -+, x,_1=sin X3---sin X,,_; cos X,,, x,=sin X3...sin

X, 0<X; <7 for 3<i<n—1 and 0<X,<27.) Let (ds)’= . (dx,)>
i=1

Z g,]dX dX; be the ordinary Euclidean metric. Then we can see
gll—Xz/’Xz—i—(lz-—l)rz},glz—gzl—O go2=x Z’"Zsec"Xz/{Xz—i—(lz——l)rz}
and gy=r"g; for i, j==3, where r=(xz+~--+xn)2 and Z giid X;dX;
is the metric on the sphere S$”~% induced from E”‘lz{(xg,z-.-] ~=,3x,,)}. Put
(g7)=(giy)"* and G=det(gy). Then

AfEizz:lazf/axi:(1/\/5)iﬁ:—1(gij\/5fX])Xi
(2.2) N

1712 £ 107 /0w Jilgﬁfxtfxl

for a smooth function f, where fx,=0f/0X;.
Now we give some lemmas specifying the asymptotic properties of g""

and G, which will play important roles in the following sections.

Lemma 21. g''-1, Xig¥/g'"—0, Xlg /g”—)Zl(l,—] 2 or
i,j=3) and X:Gx /G—2(n—1) when X,—co. These convergences are
uniform in X, €[0, 0 for any 0<%.

Remark. Because of the condition (1.3), there is a number 0<—7;-, such

that x,<6 for any point in £2,(IN).

Proof of Lemma 2.1. In the case of /=1, the proof is easy. If
0<1<1, then r/X;—0 (X;—>o0) uniformly when X, varies in [0, ], be-
cause, r=x!tan X, and x;<X;. From this g''—1 is obvious since

={X}+(I*—1)r*}/X}. The other convergences can be proved also
easily by straightforward calculations if we use the facts that xx =% X;
JAXEH(P =%, rx,=lr X /{X 2+ (P—Dr’}, G=gr1g22r""? det (&),
and §;; are independent of X; and X,. Q.E.D.

Lemma 2.2. For any real 0, we have X} °(NG X3)/NG -0+ (n—
DI, X172 (g6 X)x /NG >0+ (n—1)l, and X1° (g6 X})x /gNC—
0+(n—3) for i=j=2 or i,j=3, when X,—>o0, These convergences are
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uniform in X, €0, 0] for any 0<%.

Proof. Lemma 2.1. and direct calculations lead us to this lemma.
Q.E.D.

Let 245, 24 and S, be the subsets of £;(/V) characterized by 4<X;
<B, A<X,<oo and X;=A respectively, and put I ,3=082453—(S4YSs)
(the ‘side’ of 24p). If u is a solution of (1.1) and (1.2), then v=X"u
(m =0) satisfies

(2.3) AV =22 g Yy (MDY =0 (in )
1

and

(2.4) Vir,=0

for A> inf X,=N,, where M=(m?+m)g'/X3—m(g'VG )x/XNG.
21(N)

Lemma 2.3. XiM— g''m’>m(1—(n—1)) uniformly when X1— oo
in 21(N), and there exist positive constants C, and N, which are inde-
pendent of mZ=>0 such that the inequalities M=>0 and XMy +2(m/X1)*<
mCl/X§ hold in IQA fOT A>N1.

Proof. 1t is easy to prove that g x,=o(1/X%) and Gx x,=0(1/X%)
as X;—co in £,(N). Using these facts and Lemmas 2.1-2, we have the
lemma. Q.E.D.

The next two lemmas are concerned with the solutions of (2.3) and
(2.4).

Lemma 2.4. Let v be a real valued solution of (2.3) and (2.4).
Then

(2.5) ggw gbleIZd.Q:{SSB—-XSA}\/?TgbvaIdS

- 1y 2mg N 1 S 2
SM@ + 2 )g voxd@+{ gt antae,
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where B> A>N,, and ¢ is smooth and depends only on Xj.

Proof. Multiply (2.3) by ¢v and integrate over £4p5. Using (2.4)
we have (2.5). Q.E.D.

If we put m=0 in (2.5),

(2.6) Smmmvdg:{SSB—SSA}\/?gaqu,ds

——S g”gb'uuxld.Q—ng Yutdf.
248 248

Lemma 2.5. Let v be a real valued solution of (2.3) and (2.4).
For any 0>0,7>0 and m=0, we can find a real No=Nj(0, y) which
is independent of m such that the inequality

2.7 {SSB_SSA}X? {gn”%n— lV;lZ_F(M;'DUZ}\/EdS

—(2m+6—l)g X 1g"0%dR
248

+%S X0+ (n—3)+7) | P v
248

—{@0+n—Dl—p)(M+ l)—l—XlMXl}vz]d.Q
=0
holds for B> A> N,.

Proof. We multiply (2.3) by Xivx, and integrate over 245(A>Ny).

Integrating by parts, we have

_ sf o1 e _ Pul?  (MA2) 2\ yo e
@ ] bl D

—ZmSQABXi'lgnU%“dQ—S fpxigive

AB

1 — de 1 A
—7<gu\/GX§>X1}v§(u/—hG—+73 L2 (g NG Xél;)leXiva

Q48 i.j22
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a9

— L DVC X012

=—_;-S X3 7o | gn(n-X,)dS,
4B

1
where X is the vector X;=-2 =(xy, [xa, -, [x,)/ (x4 *x}+ -+ 12x2)2.

la|
Here we have used the fact that le(V'u-n)_zxfgll[VvV(Xl-n) on [ 4p,
which follows from the boundary condition (2.4). In view of the condi-
tion (1.4), the right side of (2.8) is non-negative. In consequence of

Lemma 2.2, for any >0, we can take N;(0, 7) such that the inequalites
08X — - (g NC XD x NG 25 (0—(n—Di—mg'Xi™,
(g"NG XDx /NG <(0+(n—3)l+7)g X1, j=2),
(WG XDy =@+ (n—1I—7pXi™!

hold if X;>Nj(0, ). Thus we have the inequality (2.7) for B>A>

N,(8, 7)=max (N, N1, Ny(0, 7)) by Lemma 2.3. Q.E.D.
3. On a Solutien Which Does Not Satisfy (1.5)

In this and following sections, we use the abbreviations X, fx and
7 which stand for Xi, fx,=0f/0X, and g'' respectively.

Lemma 3.1. Let u be a solution of (1.1) and (1.2). If
(3.1) lim inf tags (lu|%4 |Pu|?)dS=0
[ 2nded 3
for some 0>0, then
(3.2) S X"(Ju)?+ [Pu|?)d2 < oo
2,()
Sfor any m=0.

Proof. We may assume that u is real valued. If we put m=0 in

Lemma 2.5, we have
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I =

(6—Z)S Xﬁ—uug{d.g—%gg XU+ (n—3)+7) | Pu|?—

24
A0+ (n—1l—7)u’}de,
for B> A>N,(0,7). On the other hand, taking X’ ' as ¢ in (2.6), we

see

(3.4) {SSB —SSA}Xa“lqu\/?ElS

=S X"‘”l(qulz——luZ)d.Q-%—S rE—1)X 2uuxdQ.
248 248
From (3.3) and (3.4), we have, for 4> Ny,

(3.5) {XSB—SSA}XB {Tugg—ﬂ-gﬁ—l—/luz}\%i

+(L_L)z{g —S }XS-lqustg(a-l)g Xo-1rut d@
2 Sp Sy 245

4

o T e A LR R PR R

_!_(TL_—_Q@__ l)lg X *uuxd
2 248

= xHE-2mIru P+ —2nut} de
AB

+(z-a+l>g XB~1|Vu|2dg+(a—z)S X1ru2 dQ
2/)2,48 Q48

+ 2 xrrurag (nm DOV pxstyyyag,
AB AB

Without loss of generality, we may assume 0</. So we can consider that
[(6—1)& X u%d| g(z-a)g X7y |2de.
Q4B 248

Moreover, |(0—1)(n—Duux/X|<y(ru%+Au?) for sufficiently large X,
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say X>N;z(y, A). Thus, passing to the limit for B — oo, it follows from
(3.5) that

(3.6)

[N

X7 u = 1) (=D X V7 dS
Sa \/T Sa
gggxs—l( 1Pu|?+u?)de

for A>N,(0, l)Emax{Ng(ﬁ, %), N3<g—, i)}

We integrate (3.6) with respect to 4 from &, to &; (§1>&0>Ny).
Using |uux|<(u®+ |Fu|?)/2 and (2.6) in which we replace ¢ by X°,

we have

31
(3.7) %Sfdsgg X‘S‘I{IVu[2+luz}d!2§ngg X5-3(|Pu|?+u?)dQ

€of1

+ {gSel_SSeo}Xsqu\/-?dS’

where C,=C,(0) is some positive constant which is independent of &, and
&1, By (8.1) and

£
S‘dsg X (P u|?+2u?)de
& 2

=S9 (X——SO)X“’l(IVulz—i—luz)d!?—l-(él—éo)gﬂ X3 Pu|®+ Au?)dR
foé1 £

(3.7) implies

%gﬂ (X—Eo)Xs"l(]Vuiz—l—luz)d.Qéngg XU\ Pu |+ u?)d®
€0 €0

—-S XuuxNt1dS
Se

(6¢>Ny). Integrating this inequality with respect to &, from &; to oo
(1> N,), we find

[, @—erxiqruprwiae<cl x(ralt+ubas,
I3 €1
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where C3; does not depend on &;. Repeating this process, we arrive at
(3.2). Q.E.D.

Lemma 3.2. Under the assumption of Lemma 3.1,

(3.8) 1imez‘“gs |u|2dS=0

t—o

for «a<y 21/(1—1). If I=1, @ may be taken arbitrarily.

Proof. We may assume that u is real valued. Put v=X"u. In
Lemma 2.5, we replace 0 by [ and let B—>co. Then, by Lemma 3.1,

we have

2
(3.9) —Ss X’<rv§(— [Pol® | M+2 . d:—ZmSg X103 dQ

2 2 N1
+%gg X =247} [Fo|? = {(nl —p)(M+2)+ XMx}v*]d 2
>0

for A>N3(l, 7). On the other hand, taking X'~ ! as ¢ in (2.5) we see

(3.10) SQ X1 [Vvlzd.Q:——Ss X7 vugdS

A

—X,, XI—Z{(Z—1)+zm}rqud.q+§ XYM+ )0d Q.
A

24

From (3.9) and (3.10), we have

as

[7v]|? as
Vr

2

(3.11) SSAXI {m§ - + e (M+ /I)vz}

(n—2)l+7
=R

X’_l\/TvadS—I-ZmS X% d®
Sa 24

-|-%(l—1+2m){(n—2)l+77)}gs X 2rppyd @

+%Sg X2 =M+ )+ XMx}v*d2 <0
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for A>N,;. Note that the fourth term of (3.11) is estimated as follows;
ll(z—1+2m){(n—2)z+n}g ---dﬂ\éZmS XYk dg
2 2,4 2,4
+ %l x-srag
2 2,4

where C, is a positive constant independent of 4>N, and m=>1. Thus

we have the inequality

1 2_“717[2 (M+l) 2}@
(3.12) gSAX {mx S e

— = BIER( X Jox| dS+p{ ) XTHRU-) (M4

+XMx—mCy/X*}0*d2 <0
for A>N,. Using the equality
[Po|2=X2"|Fu|?+2mX*™ Lruuyx +m? X " 2ru?,

the first term of (3.12) can be written in the form

2m
[, xfrop+ X - rmZ/Xz)uz—mXZf"-lrqu}%

1 2m+lp 2__ 2 _d__ﬁ
+-2~SSAX (—|Pu| lu)\/r.

A2—2m—-l

Multiplying this by and integrating with respect to 4 from & to

oo (6> N3), we have, by Lemma 3.1,
Sg Xz_zm?’v%rdg'*'%s (X’M—rm?*)u?d2+(1—m) S” Xruuxd
€ €

2.

+lg XNT uuxdS
2 )s,

- Sg X224 +%SQ (XM —7m® + (m—1)(X7VC ) x /NG }u?dQ
€ 3

n ”‘;1 S X«/?uzd5+ig X7 uuydS.
Se 2 )s,
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Here we have used (2.6) with ¢ =X2% Thus we have from (3.12)

(3.13) Sﬂ {X?M—ym?+(m—1)(XVG)x /NG —(nl—21+7)*/4}u®d 2
13
+g X2V7qudS+(m—l)SS XV 7 u?dS
Se ¢
+S:A2‘2”‘"dASQ X112l —7)(M+ )+ XMy —mCy/X?}0*d 2
<0
for £>N,. (Note that {(n—2)l+77}X1‘2’”iva|§X2‘2m0§;+%{(n——2)l
+77}2X—2m,02)'

Put
o(e)= SSEXZ\/?uZdS.
Then
(3.14) _;_ %: SSG{XZ\/7qu (X G )x uN T G} dS.

By Lemma 2.2, we can choose C5>0 such that (1 X*Gx/VG)<(Cs—1)1X
for X>N,. (3.13) and (3.14) give

(3.15) Sﬂ (X2M—1m? -+ (m— 1) XN x NC —(nl—21+7)/4} u2d@

g E A (m—Co) 0

2 d&

S:Az’z’""dASg X2l — ) (MA+2)+ XMy —mC,/ X} v?dQ2
0.

AN+

The coefficient of u? in the first integral of (3.15) tends to 2m—1—(n
—1I—(nl—2l47%)*/4 as X—>oco. See Lemmas 2.1, 2.2 and 2.3. So it
is positive if m>Ce>{1+(m—1)I}/2+(nl—21+%)*/8 and X is suffi-
ciently large, say X>Ns. We can take N5 independently of m, at least,
when m>Cs. If we put
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(3.16) 201 —7) (M+ /I)—l—XMX—%
=2(l—9—1)m?*/X%+2(l—7)2—mh,

then, by Lemma 2.3, we can take a positive constant C; such that |A] <
C7/X? for X>N,. Now if we put in (3.15) and (3.16) m=m(&, )=

E']/ -/ (1—[ +%-,7> , then there exists positive Ng(7) such that m>

Cs, m>Cy/q for §>Ns. Note that

(3.16):2(1—77—1)(z-n)/152/(1—z+-§n)X2+z<z—n)x—mh

> 2/1(l——77)<1—%.2—2)+ (myp—Cr)m/X?
>0

if X>&>Ns. Taking 7 sufficiently small we may assume m(§, 7)/&>a.
Moreover, for such 7, we can take N;(7) (>Ns(%)) so that (m(&, 7)—Cs)
/€>a for €>N;. Thus we have from (3.15) the differential inequality

d—m+2a@§0

d¢

for large &. This proves the lemma. Q.E.D.
Lemma 3.3. Under the assumption of Lemma 3.1,
(3.17) g 2 X (42 4 |Fu|?)d@ < oo
Q,(N)
for a<JAl/(1—1). If l=1, a may be taken arbitrarily.

Proof. We assume that u is real valued. Replace ¢ in (2.6) by

e?*X then we have

(3.18) S eZ“X|Vu|2d.Q={S —S }\/?ezaxuuxds
248 Sa Sg

—ZaS re***uuydQ+ XS e?*Xu?dQ.
248

Q48
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Next note that

(3.19) S re?*Xuuy d!2=——1—g (Wrer* )7 ude
248 2 )ap

gy, e T e Ttas

In view of Lemma 3.2, the limit of (3.19) exists when B—>co. Hence

lim inf
Booo

Ss V7 e**XuuyxdS|=0.

Thus the limit of (3.18) exists when B—>co. Q.E.D.

4, Proof of Theorem 1.1

If the assertion of Theorem 1.1 is not true, there exists some 0>0,

and
lim inf t5SP([u[2+[Vu|z)dS=0.
t—roo A

This is nothing but (3.1) of Lemma 3.1. Thus, for the proof of

Theorem 1.1, it suffices to show the following assertion.

Let u be a solution of (1.1) and (1.2). If u satisfies (3.1), then u=
0 on the whole of L.

First note that
(4.1) g XkemXi(|u|® 4 |pu|?)dR< oo
2,(N)

for any m>0, k>0 and f<1. This is a direct consequence of Lemma
3.3.

Put v= e"‘Xﬁu, then
(4.2) dv—2mBX* vy +(L+D)v=0,

where
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(4.3) L=m?B2X* 2 —mpB(R—1)X* 2 —mBX*'(+VG)x/VG.
We multiply (4.2) by X*vy and integrate over £24. From (4.1) we have

(L+2) vz}d_ﬁ

(4.4) _SsAXk{T"%‘—_—"l V;’|2+ > 7r

(. @mpxe G- Xk dg+

5, X =D Po | {4 (n— DI =)L+ D)

+XLx}’UZ]d.Q
=0

for >0 and sufficiently large A, say 4> Ng(7). (See the proof of Lemma
2.5.) If we put k=(8—n)l—y in (4.4),

(3-m)1— o |Pv]®  (L+2) z}iii_
(4.5) SSAX v{mx il -

<—{_ {2mpxP -t (@ n)—XC 1 0k dg
A

'SQ XC-Wi=1-14(] )L+ )+ XLx}v?d@=1I,+I,.
A

There is No(y) (>Ng(y)) such that I; <0 for A>Ny. Assuming m=>1,
and ~;—<B<1, we can take NNy independently of m and S.
Next note that
L=m*B*X*8~2 —mCy(B)X*?,
XLx <m?B*(28—2)X* "2+ mCy(B)X*7?,

where Cg(B) and Cy¢(B) are constants which are independent of m.
Now let us assume 7 is small so that [—%>0. If we take S(<1)
near to 1, then [—%>2(1—p), and hence

(=) L+2)+ XLy
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=m?B* (L —7+28—2)X** 2 —m{(I—7)Cs(B)— Co(B)} X*~*
=0

for large m and X, say m_>C;, and X >N;o(y) (>N;), where Ny, is
independent of m (>Cy,). Thus we have from (4.5)

2
(4.6) S X(s“””””{rv%{— [Pol® | (L+2) vz}dT§§11+Iz§0
Sa 2 2 Vr

for A>N10 and m>C10.
On the other hand, if we put

(3-n)l— 2 __ IV'UIZ (L’HU z}ii
SSAX ”{rvx 2 + 3 v V7

=m Mi(u, A)+mMy(u, A)+ M3(u, A),

(where M;, M, and M; are independent of m,) then it is easy to see
Mi(u, A)>0 when u3£0 on S,. Note that v=e™*’u. If we assume
My(u, A)>0 for some A>Ni,

(3—m)l— o |Pv]® L4+ 2 dS
SSAA "{P’UX 2 + 2 v }\/—’F>O

for sufficiently large m. This contradicts (4.6), hence we see u=0 on
2y, The unique continuation theorem for the second order elliptic equa-
tions enables us to conclude z=0 on the whole of £. The proof of

Theorem 1.1 is now complete.

5. On the Spectrum of —4

This final brief section concerns the spectrum of —4 in £ with the
Dirichlet boundary condition.

Let L be the operator in L?(2) with the domain D(L)={f: f€ D},
Af € L*(2)}, and Lu= —4u, where D}: is the completion of C5(2) with

regard to the norm

1rlh={J, (Lr 12+ 177 19 ag)?
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Then L is a non-negative self-adjoint operator in LZ(Q).

Theorem 5.1. Under the assumption on £ in §1, L has no point
eigenvalues. Moreover, the continuous spectrum of L fills up the non-nega-

tive half of the real axis.

Proof. L is a non-negative operator, and so it has no negative eigen-

values. Let u€ D(L), and Lu=0. Integrate uLz over £, we have
f 17urzag=o.
2

Hence u= constant. By the Diriclet condition, ©=0, and so 4=0 cannot
be an eigenvalue of L. If u€ D(L), then

liminftS (Ju|*+ |Pu|?)dS=0.
-0 P,

This shows that the non-existence of positive eigenvalues is a consequence
of Theorem 1.1.
Next let us prove the latter half of the theorem. That is, we must
prove that any non-negative real number A belongs to the spectrum of L.
Let ¢=¢(Xy, .-, X)) be a function which is in C5(2y, n,+1), and
Oon=0(Xy/m, X3,---, X,,). Put

Opn= ei/x—lepm/ Vs
where Vu=||@m||12(g)- It is not difficult to show that
| LOm— 20| 12¢0)—0 (m—>o0).

Taking subsequence if necessary, we may assume supp @i, supp &;=¢ (i=¢j)
(0; and 9, (i=¢j) are orthogonal), where supp @ denotes the support of ®.
This shows that A is in the spectrum of L, because, if not, {@,} would
tend to 0, which is impossible, however, on account of ||@u||z2e)=1.
Q.E.D.
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