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The Asymptotic Behavior of the Solutions
of (J + ^) u = 0 in a Domain with the

Unbounded Boundary

By

Takao TAYOSHI*

1. Introduction

We shall consider the equation

(1.1) (J + ;i)H = 0

in an unbounded domain Q in the Euclidean n -space En(n^>2), with the

boundary condition

(1.2) i*|r = 0,

where F is the boundary of J2, and A is a positive constant. Let Q(L) =

•2n{(#i j ---5 Xn)£En: %i>L}. We shall assume that F is smooth (C1),

and that there are positive numbers C, N and / (Z<S l ) such that the fol-

lowing (1.3) and (1.4) hold for at least one of the connected components

of Q(N\ say

(1.3)

(1.4) n(p)-a(jo)^0 for

where n(_p) is the outer unit normal to /" at _p = (a;i5 • • • , #n) and a(p) is

the vector a(jo) = (3;i5 1x2,- •, l%n)* Our purpose in this paper is to prove

the following.

Received July 3, 1972.
Communicated by S. Matsuura.

* Department of Mathematics, Osaka Institute of Technology, Omiya 1, Asahi-ku?

Osaka 535, Japan,



376 TAKAO TAYOSHI

Theorem I.I. Let Q and /I be as above. If u is a non-trivial solu-

tion of (1.1) and (1.2), then

(1.5) \\rnA (u2+\Fu\2)dS=oo
f-*00 JPj

/or £?zy £>0, w/^re Pt is the section of &i(N) by the hyperplane x\ — t.

If J2 lies in the half-space #i>l, and (1.4) holds on the whole of

with Z = 0. (1.5) is a part of the well known results by Rellich

Jones Q2] (Theorem 9) has treated the problem in the case of 1 =

1. We can find in Agmon £3] (Theorem 11) an extension of Jones' re-

sult, and, when Z = l, our Theorem 1.1 is also included in Agmon's theo-

rem. So the proof of Theorem 1.1 must be carried out for 0<Z<1, and

it will be done in the framework developed by Roze Q4] and Eidus [J5]J.

In §2, introducing a curvilinear coordinate system for the conven-

ience of calculations, we shall give some preliminary lemmas. In § 3, it

will be shown that a solution which does not satisfy (1.5) decreases, in

a sense, like an exponential function in &i(N)9 and in §4, it will turn

out that such solution is the trivial solution.

In consequence of Theorem 1.1 it is easy to see that the self-adjoint

realization of — A in L2(@) with the Dirichlet boundary condition has no

positive point eigenvalues. A short remark on the spectrum will be given

in the final §5.

2B Preliminaries

In the sequel the conditions of the Theorem 1.1 are always assumed.

Let us introduce a curvilinear coordinate system (Xi9 • • - , Xn) in E$ = {(XI,

as follows;

(2Ti= {*? + *(*!+•• •+*»)}* (2T1>0),
(2.1)

and X39-"9Xn are the parameters which are suitably chosen on the sphere

Sn~2= {(x2> •-, xn): x2-\ \-x2 = l}, (For example, we may put x% =
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, #3 = sin .£3 cos .£4 5 • • - , xn,i = s

n^<,Xi<;K for 3<^i<^n-I and Q<^Xn<^27t.') Let

Zj gijdXjdXj be the ordinary Euclidean metric. Then we can see

o I »
and gij = rljgij for i, j^>3, where r = (sjH ----- h*jl)2 and 2 gifdXidXj

* . / = 3
is the metric on the sphere Sw~2 induced from En~l= {(x29--9 #»)}• Put

y). Then

(2.2)

for a smooth function /, where fxt = df/dXj.

Now we give some lemmas specifying the asymptotic properties of gij

and G, which will play important roles in the following sections.

Lemma 2.1. gll->l, Xlg}c\/ gll-+Q, X^/ g« -+2l(i = j = 2 or

t5 j^3) and X^Gxl/G-^2(n — \}l when Xi->oo. These convergences are

uniform in X2 6 [^0, 0j /or

Remark. Because of the condition (1.3), there is a number 0<-^-3 such
di

that ,T2<0 for any point in

Proof of Lemma 2.1. In the case of Z = l, the proof is easy. If

0<Z<1, then r/JTi->0 (Xi~>oo) uniformly when X2 varies in QO, 0], be-

cause, r=x{tanXz and ^1^X1. From this g11— >1 is obvious since

^r l l= {Xi + (Z2 — Z)r2}/JTf. The other convergences can be proved also

easily by straightforward calculations if we use the facts that xx^=-x\K\

/{Xl + (l*-iy}, rx=lrX1/{Xl + (la-iy}, G=gng22r
2^ det (^),

and g^ are independent of Xi and X2. Q.E.D.

Lemma 2.2. For any real 8, we have X{-*(jGX{)/jG-*d + (n —

1)Z, Xrs(^11^XD^/^">^ + (^-l)^ and X\-°(g
iJjGX[)Xl/g»jG-»

n — 3)l for i=j=2 or i,y"^3, w/?^ JTi^^oo, TA^5^ convergences are
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uniform in X2€'[Q, 0~] for any 0<-—.

Proof. Lemma 2.1. and direct calculations lead us to this lemma.

Q.E.D.

Let &AB) &A and SA be the subsets of J2i(7V~) characterized by

<B, ^<JTi<c>o and Xi = A respectively, and put F AB = d^AB — (AB

(the 'side' of QAB). If u is a solution of (1.1) and (1.2), then v = Xmu

satisfies

(2.3) jr-2p.g
llrXl+(M+vr=o (in

A. i

and

(2.4) r\FA=0

for A> inf Xl=NQ, where M=(

Lemma 283. X\M— gllm2— >m(l. — (n — 1)Z) uniformly when Xi-*°o

in Q\(N\ and there exist positive constants Ci and N\ which are inde-

pendent of m^>Q such that the inequalities M^>0 and XMXl + 2(m/Xi)2<=

l hold in QA for A>Ni.

Proof. It is easy to prove that g^x^oQ/Xl) and GXlXl =

as Xi~-*oo in J?i(JV). Using these facts and Lemmas 2.1-2, we have the

lemma. Q.E.D.

The next two lemmas are concerned with the solutions of (2.3) and

(2.4).

Lemma 2.40 Let v be a real valued solution of (2.3) and (2.4).

Then

(2.5)
$ A

-\ (0'
JaAB\
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where B>A>N0, and 0 is smooth and depends only on Xi.

Proof. Multiply (2.3) by $v and integrate over @AB. Using (2.4)

we have (2.5). Q.E.D.

If we put 77i = 0 in (2.5),

(2.6)
SB

</>u2dS.

Lemma 2.5. Let v be a real valued solution of (2.3) and (2.4).

For any £>0, ̂ >0 and 771^0, we can find a real N2 = N2(d, TJ) which

is independent of m such that the inequality

8 AB

holds for B>A>N2.

Proof. We multiply (2.3) by X[vXl and integrate over ®AB(A>N0).

Integrating by parts, we have

-2m\ Xi-ig"v*XldO-\ \dXl~1

J GAB J AB *>
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where X{ is the vector Xi = -?2-T = (xi, I x 2 , - - - , lxn\a\

Here we have used the fact that vx1(Pv*ri) = '\lgii\Fv 2(Xi°n) on FAB,

which follows from the boundary condition (2.4). In view of the condi-

tion (1.4), the right side of (2.8) is non-negative. In consequence of

Lemma 2.2, for any 77 >0, we can take N^d^y) such that the inequalites

^

hold if Xi>N'2(d,ri. Thus we have the inequality (2.7) for B>A>

N2(d, 77) = max(JVo, Nly N'2(d, ^)) by Lemma 2.3. Q.E.D.

38 On a Solution Which Does Not Satisfy (1.5)

In this and following sections, we use the abbreviations X, fx and

7* which stand for Xi, fXl = df/dXi and g-11 respectively.

Lemma 3810 Let u be a solution of (1.1) «^ (1.2). //

(3.1) l i m i n f * 8 (N | 2 + Vu
t-*°° Js t

for some $>0, then

(3.2)

Proof. We may assume that u is real valued. If we put m, = 0 in

Lemma 2.5, we have
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(3.3) \\ -\)SB

for B>A>N2(89-q). On the other hand, taking Xs"1 as 0 in (2.6), we

see

(3.4) {( -( U'-1

(JSB JSA)

From (3.3) and (3.4), we have, for A>N2,

sA

2 JaAB 2

Without loss of generality, we may assume 5<Z e So we can consider that

Moreover, \(d — l}(n — l)uux/X\ <^y(ru2x + Au2) for sufficiently large X,
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say X>NS(T], A). Thus, passing to the limit for 5->oo5 it follows from
(3.5) that

(3.6) \
JSA

for

We integrate (3.6) with respect to A from £0 to f i (
Using | i i^z |<(u2+ Fz^ 2)/2 and (2.6) in which we replace 0 by
we have

(3.7)

{( -(
(JSS1 J

where C2 = C2(<?) is some positive constant which is independent of $Q and

f i. By (3.1) and

(3.7) implies

. Integrating this inequality with respect to £0 ^rom fi to

"4)3 we find

(X-fl)
2Xs~1( \?u\2 + lu2)dti <C3( Xs( | F u | 2 + i
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where C3 does not depend on £IB Repeating this process, we arrive at

(3.2). Q.E.D.

Lemma 3.2. Under the assumption of Lemma 3.1,

(3.8) Iime2at( \u\2dS = Q
*-*«> jst

for a<\UZ/( l— 0- If Z = l, a may be taken arbitrarily.

Proof. We may assume that u is real valued. Put v=Xmu. In

Lemma 2.5, we replace d by Z and let jB— >oo. Then, by Lemma 3.1,

we have

(3.9)

for A>N2(l, y\ On the other hand, taking JT'"1 as 0 in (2.5) we see

(3.10)
SA

From (3.9) and (3.10), we have

(3.11) < s
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for A>N2. Note that the fourth term of (3.11) is estimated as follows;

QA

where C4 is a positive constant independent of A>NQ and m^>l. Thus

we have the inequality

(3.12)
JsA

sA

for A>N2. Using the equality

| Vv \2 = X2m | Vu \

the first term of (3.12) can be written in the form

C
X1

JsA

lf X^(-\Fu\2-^)^.
2jsA Vr

Multiplying this by A2~2'm~l and integrating with respect to A from f to
00 ($>^2\ we have, by Lemma 3.1,

f
)QS 2, Jae

, m-1 f y i—+—^—\ x^r^ ~~ , 2 j5/
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Here we have used (2.6) with (J} = X2. Thus we have from (3.12)

(3.13)

for £>N2. (Note that {(n-2)l + -ri}Xl-2m\ vvx\ <,X2-2mv2
x + ~

2X-2mvz).

Put

Then

(3.14) -|-̂ =

By Lemma 2.2, we can choose C5>0 such that

for X>NQ. (3.13) and (3.14) give

(3.15) {X2M- rm2 + (m- l)(Xr^G)x/^~G- (nl -
(

1 d® ., r\^ ok+(m-C^--0
2 df $

The coefficient of u2 in the first integral of (3.15) tends to 2m — I — (n

-l)Z-(n,Z-2Z + T?)2/4 as JT->oo. See Lemmas 2.1, 2.2 and 2.3. So it

is positive if m>C6> {l + (n-l)l}/2 + (nl-2l + 7])2/8 and X is suffi-

ciently large, say X>N5. We can take ^V5 independently of ??i, at least,

when 77i >Ce. If we put
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(3.16)

= 2(1-7]- l)m2/X2 + 2(1-71)1- mh,

then, by Lemma 2.3, we can take a positive constant C7 such that \h\ <

C7/X
2 for X>N0. Now if we put in (3.15) and (3.16) m = m($, y} =

—I +-—?]), then there exists positive ^eO?) such that

C6, m>C1/-ri for f>7V6. Note that

(3.16) = 2(1—q- 1)(Z - yW/(L -1 + ~-y}X2 + 2(1 - y)]L - mh

>0

if X>£>NQ. Taking TJ sufficiently small we may assume m(^ ??)/£> a.

Moreover, for such 97, we can take N7(y) (> NQ(TJ)) so that (m(g, ff) — C5)

a for $>N7. Thus we have from (3.15) the differential inequality

for large f. This proves the lemma. Q.E.D.

Lemma 3.38 Under the assumption of Lemma 3.1,

(3.17)

/or a<\/Al/(l — l). If 1 = 1, a may be taken arbitrarily.

Proof. We assume that u is real valued. Replace 0 in (2.6) by

e2aX, then we have

(3.18)
sB

-2a(
J
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Next note that

(3.19) \
J

—2 UsB JsA)

In view of Lemma 3.2, the limit of (3.19) exists when 5-»oo. Hence

lim inf \ v r cr a X uu x dS = 0.
B-»°O USB

Thus the limit of (3.18) exists when £->oo. Q.E.D.

4. Proof of Theorem 1,1

If the assertion of Theorem 1.1 is not true, there exists some $>0,

and

lim inf t8( (\u\2+\pu\2)dS=Q.

This is nothing but (3.1) of Lemma 3.1. Thus, for the proof of

Theorem 1.1, it suffices to show the following assertion.

Let u be a solution of (1.1) and (1.2). If u satisfies (3.1), then u^

0 on the whole of Q.

First note that

(4.1)

for any 77i>0, &>0 and /5<1. This is a direct consequence of Lemma

3.3.

Put v = emx'u, then

(4.2) Jt7

where
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(4.3) L= m2!32X^-2 - m0(P - 1)X^~2 -

We multiply (4.2) by Xkvx and integrate over Q^. From (4.1) we have

for 7?>0 and sufficiently large A, say ^4>JV8(^). (See the proof of Lemma

2.5.) If we put k=(3 — n)l — i] in (4.4),

(4.5)

1 + ((2 - TI)Z -

_f
J

There is ^9(97) (>N80?)) such that /i^O for A>NQ. Assuming

and — </?<!, we can take JV9 independently of m and /9.
Zi

Next note that

XL X

where C8(/5) and C9(/#) are constants which are independent of m.

Now let us assume 7] is small so that I — 97 >0. If we take /?(<!)

near to 1, then I — 97 > 2(1 — #), and hence
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for large m and X, say m>Cio and -X~>^V"ioO?) O-ATg), where JVio is

independent of TTI (>Cio). Thus we have from (4.5)

(4.6)

for A>NIQ and 77i>Ci0.

On the other hand, if we put

(u, A),

(where MI, M2 and M3 are independent of TTI,) then it is easy to see

MI(U, A)>Q when z^O on SA. Note that v = emX^u. If we assume

for some

for sufficiently large m. This contradicts (4.6), hence we see u^O on

SNW. The unique continuation theorem for the second order elliptic equa-

tions enables us to conclude w = 0 on the whole of Q. The proof of

Theorem 1.1 is now complete.

5. On the Spectrum of — A

This final brief section concerns the spectrum of — A in Q with the

Dirichlet boundary condition.

Let L be the operator in Z,2(J2) with the domain D(L}={fi feDl
L*,

^/GL2($)}, and Lu= — Au^ where D1
L2 is the completion of C%(&) with

regard to the norm

1 —
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Then L is a non-negative self-adjoint operator in Lz(@).

Theorem 5.1. Under the assumption on & in §1, L has no point

eigenvalues. Moreover, the continuous spectrum of L fills up the non-nega-

tive half of the real axis.

Proof. L is a non-negative operator, and so it has no negative eigen-

values. Let u£D(L), and Lu = Q. Integrate uLu over J2, we have

Hence u= constant. By the Diriclet condition, u = 0, and so /l = 0 cannot

be an eigenvalue of L. If u G D(V)> then

l imin fz f (| u |2+ \Vu \2)dS=Q.
*-»o JPt

This shows that the non-existence of positive eigenvalues is a consequence

of Theorem 1.1.

Next let us prove the latter half of the theorem. That is, we must

prove that any non-negative real number A belongs to the spectrum of L.

Let <p = <p(Xi, >-9Xn) be a function which is in CQ(@NQ #0+i), and

, X2>- -, Xn). Put

where vm= \\<pm\\L2w- It is not difficult to show that

\\L0m- ̂ m|Uiw->0 (TTI->°O).

Taking subsequence if necessary, we may assume supp <0/n supp 0j=(p

((^,- and 0,- (j =Vy) are orthogonal), where supp 0 denotes the support of 0.

This shows that A is in the spectrum of Z, because, if not, {®m} would

tend to 0, which is impossible, however, on account of ||0»»||/;2(0)=1.

Q.E.D.
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