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Some Remarks on the Modified Korteweg-
de Vries Equations
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Abstract

In Section 1 we associate certain linear differential operators to modifica-
tions of the KdV equation. An interpretation is given to the non-linear
transformation of Miura [4] which converts a solution of one of modified
KdV equations into that of the KdV equation.

In Section 2 we construct a family of special solutions of another modi-
fication of the KdV equation.

1. In this paper we study the modified Korteweg-de Vries (KdV)
equations

1 o602+ 0" =0

where ¢ and v’ are ¢ and x derivatives of real-valued smooth function
v=v(x, t) (—oo<x, t< o) respectively. We shall refer to them as equa-
tions (14) and (1—) according to their signs. These equations appear
in Zabusky [ 6] as generalizations of the KdV equation

(2) t—6uu’+u”"=0

and in Miura [5] where the relation between the solutions of (1) and (2)
is discussed. The existence theorem for the initial-value problem of (1)
has been proved in Kametaka [27].

Lax [4] has rewritten the KdV equation into an evolution equation
for a linear operator: For a complex-valued smooth function u(x), let L,

be the one dimensional Schrédinger operator
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L,=—D*+u
and put
B,=—4D*+3uD+3Du

where D stands for the x differentiation. Then the operator

is the multiplication by the function 6uu’—u’’. So the operator equation

for real-valued function u(z)=u(s, x)
Luty=[Buy Lue]

is equivalent to the KdV equation.
For the modified KdV equations we can give a similar operator
interpretation. For a complex-valued smooth function »(x), introduce the

first order differential operator

and put

B, +22 0
B,= .
0 B_,

Then the operator [B,-L,] is the multiplication by the matrix valued

0 61)22)/ _ UW
6v%0 — "’ 0 .

So for real-valued function v(¢)=uv(x, ¢), the operator evolution equations

function

Ly@y=[Bogy, Logy]
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and
Liu(t): [Biu(t), Liv(t):l

are equivalent to (1—) and (1) respectively.
Note that we have an operator identity

Ly 0
3) L= .
0 L_y iy

Putting a solution v=wv(z, ) of the equation (1—) into (3), we differen-
tiate (3) with respect to z. Then we have

jlv'+vz 0 . .
. =L,L,+L,L,
0 L—v’+v2

=Lv[Bv: Lv] + [Bv: Lv]Lv

=[B,, vazj
and finally

Liv’+vz=EB1-v’+vz; Lsy ).

So +v'+v? satisfy the KdV equation. This fact has been discoverd by

Miura [5] by a different consideration.

2, In this section we construct a family of special solutions of the
modified KdV equation (1+). They are analogous to the N-tuple wave
solutions of the KdV equation, which have been constructed in Gardner,
Greene, Kruskal and Miura [17] based on the inverse scattering theory for
the Schridinger equation.

Consider the eigenvalue problem for the operator L;,:
yitivy:=Cy1
“:}’{"‘i'l}yl:C:}’z.

Putting z;=y1—iy: and z:=y;+iys, we have
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iz14+vz=C8z
—izy—vz1={z;.
This is a special case of the system of first order differential equations
4) iz]—igza=Cz;
—iz5—ig*z1=Cz,,

where ¢ is a complex-valued function and ¢* denotes its complex
conjugate.

The inverse scattering theory for (4), namely the problem of the
construction of the potential g from the scattering data, has been discuss-
ed by Zakhalov and Shabat [7] and applied to the exact solution of a
certain non-linear equation. In what follows we restrict our attention to
the case where the fundamental equation of the inverse scattering theory
reduces to the system of linear algebraic equations.

Let &, ---, ¥ be complex numbers different from each other in the

upper half-plane and ¢y, ---, cy be any complex numbers. Put
Ay=c}'? exp (il;x)

and consider a system of linear equations for vrij, v3;(j=1, ..., N):

(52) Vit Dadidi(CG—C) =

(5b) = DrddFCF &) Wty =2F

(The sums are taken from 1 to NN throughout the present paper). Then

this system of equations has a non-singular coefficient matrix. Put
q(x)=—2i L diP s
Then for each j, the pair (yrij, ¥rz;) satisfies the differential equations
(6) r1; —iqyra; =81
— it —ig*yr=Cppas
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We give a proof of these facts in Appendix.
Multiply w’z“j on (5b) and take the summation over j. Then we

have another expression for g(x):
q(2)=2i 3 ;(y}; — 5.

We pose further restriction on the system (5): Let M be a non-
negative integer such that 2M<N. Let 0 be the permutation among
integers between 1 and N defined by

o(j)=j+1  jodd<2M
=j—1  jeven=2M
=J j>2M.

We assume that ,y=—¢F and c,;=c¥(1<j<N).

Now let c¢; depend on ¢ as
ci(8)=c;(0) exp (8i{})
and put
Ay=12i(x, 1) =c;(t)"'* exp (i€;x).

Theorem. Let rij(x, t) and r2j(x, t) be the solution of the system
(5) for 2;=2/(x,t) defined above and put

q(xa t)= '—ZLZJ}‘?;(xa t)‘zl’;:j(x3 t)'

Then v(x,t)=—iq(x,t) is real-valued and satisfies the modified KdV
equation (1+).

Proof. Put ¢1;=ilpp1; and @2;=2;yr2;. Then the system (5) is

rewritten as
(7a) 2721+ i (& —CH) g =0

(7v) iZk(Cf—Ck>—1¢1k+lf—z¢zj= .
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It is easy to verify that ¢%.;) and @3, satisfy the same equation as
$1; and ¢z;. By the uniqueness of solution we have ¢¥.;,=¢1; and @3
=¢s;. The function v(x, ¢) is thus real-valued.

Eliminating ¢;; from (7), we have a system of linear equations for

ZVE
®) Ziangs =1
where
=z, 1)= Lk~ 07 G TN+ 25 0

(0 is Kronecker’s delta). Now we differentiate (8) with respect to ¢ and

obtain a system of linear equations for ¢g;:
Ziadd =v;
where
7i=—8i L LU — ) (G — P b, — il A T8

Let Bjz=Pjx(x,t) be the element of the inverse matrix of the matrix

(ajz). Then we have
S5 =2iBin=2bri  B5=2sBuTs

Using these relations and (7a), we have a formula for the z-derivative of

v.
v =161 2 ,(—Ciyi; +CFoyE)).
We differentiate
v=22(y};—vi})

successively with respect to x and obtain the formulas for x-derivatives

of v:

v =4 N (—Cpd; + CEED
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o = —20°+ 8T (— C, + S
v = — 6020+ 16 1 (32 — CF3yrsR).
Beside the relation (6), we have used the relations
Re(Zpr1jyrz1)=0
Z&npinprai=—8"v
Re(2iCHrip21)=0
to derive these formulas. Q.E.D.

If N=1, then & =iy (#>0) and c=c;(0) is real. We have thus
solutions

v(x, t)=(sgn c¢)s(x—47*t—0, 7)
where

s(x, 7)= — 27 sech (27x)
and

0=0(c, p)=(27) " log(| c|/27).

These solutions coincide with the soliton solutions known to exist for the
generalized KdV equations (see Zabusky [6]).
Now let N=2 and M=0. Then &;=iy;, 0<71<72 and c;=c;(0)

are real. The solutions decompose into two solitons as t—> 4 co:
v(x, £)— 233-1(sgnc;)s(x—479%t—0%F, 7;,) >0
where
07 =0(c1, 1)+ 77 log (n2—91)(n2+72) 7"
03 =0(cz, 72) 01 =0(c1, 71)

07 =0(cz, 72) + 75 1og (92— 1) (2 +71) 7"
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More generally in the case M=0 (i.e. all of ; are purely imaginary) the

corresponding solutions seem to decompose into solitons as z— & oo,

Appendix. The following arguments are quite similar to that of
Kay and Moses [ 3] where the construction of reflectionless potential for
Schriodinger equation has been discussed.

The N x N matrix A= (i(§;—&¥)™') is positive definite because of
the identity

i(ci—Cf)—1=S:exp(itjt)exp(ickt)*dt.
Eliminating +ri; from (5), we have a system of N linear equations for
Vi

Zibjyrdy +yd; =17,

where

bjy= AT F(CF— )N E—CH)
Putting B=(b;3), we have

det B= |12z Ax|*|det 4|3,

so det B is positive. Any principal minor of B is also positive because it
is expressed as the sum of the determinant of the matrices having the

same form as B. Now the characteristic polynomial of B is
det(B+2AD)=a"+a:A" '+ +ay,

where a; is positive, being the sum of the principal minors of B of order
j- If we set A=1, we see that the matrix B+ is invertible and so is
the coefficient matrix of (5).

Differentiating the equations (5) with respect to x, we see that 2/V

functions

Vi tiipri—qyre; Vs — et g
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satisfy the homogeneous system of equations associated with (5) and

therefore vanish.
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