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Some Remarks on the Modified Korteweg-
de Vries Equations
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Shunichi TANAKA*

Abstract

In Section 1 we associate certain linear differential operators to modifica-
tions of the KdV equation. An interpretation is given to the non-linear
transformation of Miura [4] which converts a solution of one of modified
KdV equations into that of the KdV equation.

In Section 2 we construct a family of special solutions of another modi-
fication of the KdV equation.

1. In this paper we study the modified Korteweg-de Vries (KdV)

equations

(1) i,±6v2v'+v"' = Q

where v and vr are t and x derivatives of real-valued smooth function

v = v(x, t) (— co<a;, £<<x>) respectively. We shall refer to them as equa-

tions (1 + ) and (1 — ) according to their signs. These equations appear

in Zabusky \J6T\ as generalizations of the KdV equation

(2) u-§uu'+ufff = Q

and in Miura [J5] where the relation between the solutions of (1) and (2)

is discussed. The existence theorem for the initial-value problem of (1)

has been proved in Kametaka Q2],

Lax [_4T\ has rewritten the KdV equation into an evolution equation

for a linear operator: For a complex-valued smooth function u(x\ let Lu

be the one dimensional Schrodinger operator
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La=-D2 + u

and put

where D stands for the x differentiation. Then the operator

is the multiplication by the function §uur—ufr/. So the operator equation

for real-valued function u(t) = u(t, x)

is equivalent to the KdV equation.

For the modified KdV equations we can give a similar operator

interpretation. For a complex-valued smooth function v(x\ introduce the

first order differential operator

L,=

and put

oil r o v
-10 v 0

Bv' +V2 0

0 B-V'+V2

Then the operator [BV'LV~] is the multiplication by the matrix valued

function

0 6t>V-t/" n

6t,V-t/" 0

So for real-valued function 0(j) = 0(#, t), the operator evolution equations
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and

are equivalent to (1 — ) and (1 + ) respectively.

Note that we have an operator identity

o
(3)

Putting a solution v = v(t, x) of the equation (1—) into (3), we differen-

tiate (3) with respect to t. Then we have

r i.'+.« o

and finally

So ±z/ + t;2 satisfy the KdV equation. This fact has been discoverd by

Miura [J>] by a different consideration.

2. In this section we construct a family of special solutions of the

modified KdV equation (1 + ). They are analogous to the iV-tuple wave

solutions of the KdV equation, which have been constructed in Gardner,

Greene, Kruskal and Miura [JQ based on the inverse scattering theory for

the Schrodinger equation.

Consider the eigenvalue problem for the operator Livi

Putting zi = yi — iy2 and z2 = yi + iy2, we have
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This is a special case of the system of first order differential equations

(4) iz{

where q is a complex-valued function and q* denotes its complex

conjugate.

The inverse scattering theory for (4), namely the problem of the

construction of the potential q from the scattering data, has been discuss-

ed by Zakhalov and Shabat Q7] and applied to the exact solution of a

certain non-linear equation. In what follows we restrict our attention to

the case where the fundamental equation of the inverse scattering theory

reduces to the system of linear algebraic equations.

Let Ci5 • • • 3 G v r be complex numbers different from each other in the

upper half -plane and cl3 - - . 5 CN be any complex numbers. Put

and consider a system of linear equations for

(5a)

(5b)

(The sums are taken from 1 to TV throughout the present paper). Then

this system of equations has a non-singular coefficient matrix. Put

Then for each y, the pair C^iy5 V^y) satisfies the differential equations

(6)
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We give a proof of these facts in Appendix.

Multiply i/rfy on (5b) and take the summation over j. Then we

have another expression for q(x):

We pose further restriction on the system (5): Let M be a non-

negative integer such that 2M<^N. Let ff be the permutation among

integers between 1 and N defined by

/odd<:2M

= j — 1 j even <I 2M

= / j>2M.

We assume that Cr(/)=— C* and cfl.(y) = c^(l^y ^ TV).

Now let cy depend on £ as

and put

Theorem. L^ ^iy(^5 0 flwrf ^2j(x^ t) be the solution of the system

(5) /or ^y = AyO&, ^) defined above and put

q(x, 0=-2f2y^(^, t)^(x, t).

Then v(x, t)=—iq(x, t) is real-valued and satisfies the modified KdV

equation (1 + ).

Proof. Put ^ij = i^j^ij and 02y = ^/^2/- Then the system (5) is

rewritten as

(7a) Aj'ft, + J S »(C/ - CJ)- VI * = 0

»z*cc^- c»r V



434 SHUNIGHI TANAKA

It is easy to verify that 0*<r(/) and 020-(/> satisfy the same equation as

0iy and 02/- By the uniqueness of solution we have <f>i<r(j) = <f>ij and 0*o-cy)

= 02r The function v(x^ t) is thus real-valued.

Eliminating 0i/ from (7), we have a system of linear equations for

(8)

where

(<5// is Kronecker's delta). Now we differentiate (8) with respect to t and

obtain a system of linear equations for $2/:

where

Let f}jk = 0jk(x9 t} be the element of the inverse matrix of the matrix

). Then we have

Using these relations and (7a)5 we have a formula for the ^-derivative of

v:

v = i6»sx-cj^!/ +Cf V" )•

We differentiate

successively with respect to x and obtain the formulas for # -derivatives

of vi
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v" = -2v* + 8SX-

Beside the relation (6), we have used the relations

to derive these formulas. Q.E.D.

If N=19 then Ci = i?7 0?>0) and c = ci(0) is real. We have thus

solutions

v(x, 0 =

where

s(#, 7])= —

and

These solutions coincide with the soliton solutions known to exist for the

generalized KdV equations (see Zabusky [JO).

Now let N = 2 and M=0. Then C/=%, 0<^i<^2 and cy=cy(0)

are real. The solutions decompose into two solitons as £->±oo;

where
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More generally in the case Af=0 (i.e. all of Cy are purely imaginary) the

corresponding solutions seem to decompose into solitons as £— »±oo 0

Appendix. The following arguments are quite similar to that of

Kay and Moses £3] where the construction of reflectionless potential for

Schrodinger equation has been discussed.

The NxN matrix A= (i(Cy — Cf)"1) is positive definite because of

the identity

*(Cy- CD'1 = Texp (iCyO exp (iC*0*<fe.
Jo

Eliminating ^iy from (5)5 we have a system of N linear equations for

where

Putting B = (bjk), we have

so det.B is positive. Any principal minor of B is also positive because it

is expressed as the sum of the determinant of the matrices having the

same form as B. Now the characteristic polynomial of B is

where a,j is positive, being the sum of the principal minors of B of order

y. If we set ^ = 1, we see that the matrix B + I is invertible and so is

the coefficient matrix of (5).

Differentiating the equations (5) with respect to #, we see that 2N

functions
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satisfy the homogeneous system of equations associated with (5) and

therefore vanish.
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