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Mixed Problem for Hyperbolic Systems
of First Order

By

Masaru TANIGUGHI*)

1. Introduction

In the last ten years, a general theory of mixed problems for linear

hyperbolic systems of first order has been developed.

In this paper, we treat the L2 well-posed mixed problems for strong-

ly hyperbolic systems of first order with constant coefficients. It is well

known that Cauchy problem for hyperbolic systems of first order with con-

stant coefficients is L2 well-posed if and only if it is strongly hyperbolic

DL2j. The family of strongly hyperbolic systems contains the strictly and

symmetric hyperbolic systems. But, Strang's condition for strong hyper -

bolicity seems to be useless except for Cauchy problem. So, in Sec. 3, we

prove another condition for strong hyperbolicity which is useful for not

only Cauchy problem, but also mixed problems, the lacunas of Riemann's

matrix of strongly hyperbolic systems [1], the propagation of singularities

Q8] and others. The L2 well-posed mixed problems for the strictly and

symmetric hyperbolic systems have been fully investigated. But, even if

hyperbolic systems have constant coefficients, nothing is known in general

for ones with multiple characteristics except for systems with constant

multiple characteristics [[KT] and 2x2 systems [JL3].

We consider the mixed problem for hyperbolic systems of first order

with constant coefficients:
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dt dx dy

in a quarter space {tf, x, y)|zl>0, #2£0, y £ I?1}, where u is an TV-vec-

tor, ^4 and $ are N xN real constant matrices, and 5 is an IXN con-

stant matrix with rank /. Already, L. Sarason Qll], T. Sadamatsu £10],

H. O. Kreiss Q7] and K. Kajitani [5] gave a priori estimates for hyperbolic

systems. But they did not treat the system with multiple characteristics

except for T. Sadamatsu. Here, we treat the problem (1.1) with multiple

characteristics. In Sec. 4, we prove some lemmas for the problem (1.1)

which are similar to Kreiss's paper. In Sec. 5, we treat the problems oc-

curring by reason of multiple characteristics with the help of the result in

Sec. 3, and prove the Main Theorem. The author expresses his thanks to

Professor H. Sunouchi for many useful advices.

2. Assumptions and Result

We consider the mixed problem

( du = A du , B d
dt dx d^

S'u(t, 0, y) = g(t, y)

in a quarter space {(£, x9 y)U^O, ^^0, y£R1}.

We assume the following conditions for (1.1):

Condition I. The operator "^7""-^ is strongly hyperbolic, that is,

for any (f, y) 6 R2 — {0}, A? + By has only real eigenvalues and is uni-

formly diagonalizable in (f , 77).

Condition II, A is non-singular and has the form
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which is no restriction.

Condition III. The real roots of the equation det (Tl —

= 0 with respect to $ are at most double for any (?% 97) G i?2 — {0}.

Put M(-c,7]} = A-l(rI-iyB\ Re r>09^eR1. We denote by E_(r,7j)

the span of the ordinary and generalized eigenvectors of M(r, y) corre-

sponding to the eigenvalues with negative real parts. The hyperbolicity of

(~flT~ — L J implies that dim E_(r, ??) is constant for Re r>0, y£.Rl and

equal to the number of negative eigenvalues of A (cf. Lemma 4.1). We

can locally construct a system of vectors {ry(r, ??) }/=!,.„,* which is a base

of £_(r, ^) (Rer>0), and the vectors ri(r, 77), • • - , r^r, 77) are linearly

independent, continuous and homogeneous of degree 0 in r and 77 (Re r^>

0). This fact follows from the results of Sec. 4, Sec. 5 and Kreiss's paper.

Condition IV. The boundary matrix S satisfies the uniform

Lopatinski's condition, that is, l = k and det (5-fl"(r, ^))=VO for Re rj>0,

7] eR\ (r, T?)^0, where £T(r, ?) = (ri(r, ^),-.., r*(r, 97)).
Taking the Laplace transform of u with respect to £ and the Fourier

transform of u with respect to j, we get the problem of a system of

ordinary differential equations depending on parameters with an inhomo-

geneous boundary condition:

- -
(2.1) dx

, Su = g, x = 0

where A(r, x, 77) denotes the Fourier-Laplace transform of h(t, x^ y).

We obtain the following:

Main Theorem. Assume the Conditions I, II, III and IV. Then

there exists a positive number /*0 such that, for any solution £(r, x9 77)



474 MASARU TANIGUCHI

of the problem (2.1),

+|£(r, 0, ?)

for any Re r = fj. 2> #o3 where the constant does not depend on r and y,

3. Strongly Hyperbolic Systems with Two Space Variables

We sum up some results in perturbation theory for matrices by

T. Kato [6].

Let NxN matrix T(K) be r(1) + /cT(2) (/cGC1), and the eigenvalues

and the associated eigenprojections of T(AJ) be /U(/0 and P/,Oe). We have

the following results by T. Kato:

(K.I) Let ic = 0 is an exceptional point of P/z(/u).

If Ph(ic) is represented by a Laurent's series in Kllp, its princi-

pal part is finite.

(K.2) If /U(/c) is single valued near an exceptional point K = KO, then

Pk(fc) is single valued there.

(K.3) If fc = tcQ is a branch point of ^00 of order p^23 then P^(A;)

has a pole there and ||PaOO||— >°° for tc-+KQ.

Now, we return to the problem for strong hyperbolicity. Throughout

Sec. 33 we assume that A and B are complex matrices. G. Strang shows

the following conditions are equivalent:

(5.1) Operator (~oT~ — A-~— —B-^—J is strongly hyperbolic, that is,

for any (f,^eR2-{0}, C(f,^ = A$ + B^ has only real eigen-

values and is uniformly diagonalizable in (g , -rf).

(5.2) For any (f, ^) 6 ̂ 2-{0}, any ^GC1(Re^>0), ||Re z(zI-i
1 1|<: const.

Theorem 3.18 77^£ following conditions are equivalent',

(i) Operator (-Q~ —A -^- —B-^ — J z's strongly hyperbolic,
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(ii) (a) For any (?, i) € R2-{0}, C(g,Ti) = A£ + B-q has only real

eigenvalues and is diagonalizable.

(b) For any (£, 97) 6 I?2 — {0}, the eigenvalues and the associated

eigenprojections of C(wi^W2) = Awi + Bw2 are holomorphic

in a neighborhood of (f , T/) in C2.

Proof. (ii)=^(i). C(f, y) is homogeneous of degree 1 in f and 77,

and (ii)-(b) holds. So, C(f, 77) is uniformly diagonalizable in (f, 77) for

any (?, 97) 6 #2-{0}. Therefore (i) holds.

(i)=^(ii). From the condition (i), (ii)-(a) follows easily. To prove

the condition (ii)-(b), we use the equivalent condition (S.2) for strong

hyperbolicity. As C(f , 77) is diagonalizable for any (?, 97) 6 J?2 — {0}, C(f, 97)

has the spectral decomposition:

where P/(f , 97) are mutually orthogonal projections. Therefore,

Let 2 = s+f7s(f, 77) (e>0). Then, by (S.2)

)||= lim ||e
— Ay)

Without loss of generality, we may assume £=VO. Set K=wi/w2 and

Cf(fc) = A + itB. Then, the eigenvalues ^/(X) and the associated eigenpro-

jections P'i(K) of Cf(ic) are holomorphic at ye = ^/f((f, 77) 6 I?2 — {0}, f^=0).

For, if ic = 7}/$ is a branch point of ^(V) of order of />J>2, the inequality

H-PfGp/Oll^const. contradicts (K.3). So, ^(fc) is holomorphic at fc = 7j/g.

By (K.2), P<00 is single valued near ic = y/$. Also, by (K.I) and (K.3),

PI(K) is not able to have a pole there. Therefore, the eigenvalues and

the associated eigenprojections of C(wi9 w%) are holomorphic in a neighbor-

hood of (?, 77) in C2 for any (f, 77) e J?2-{0>. Q.E.D.

Remark 1. By Theorem 3.1, we can construct a smooth symmetrizer
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for A + B-- under strong hyperbolicity [2], [3].

40 Some Lemmas

In this section., we shall derive some lemmas for the problem (1.1)

which are similar to Kreiss's paper.

Lemma 4.1 (R. Hersh [4]). For Rer>0, M(r,if) = A-l(rI

has k eigenvalues /I with Re/l<0 and N—k eigenvalues /I with Re/l>0.

Proof. By the hyperbolicity of -^— — L M(r, if) has no eigenvalues

^ — jf where f is real. The eigenvalues of M(r3 y) are continuous func-

tions of r and 7]. Let r = l and ^ = 0, Then we have Lemma 4.1.

Q.E.D.

Lemma 4,2 For Re r > 0, there exists an analytic transformation

f/(r, ??

(4.1) Z7
\ 0 M22

^ MH is a kxk matrix with eigenvalues A having negative real parts,

and MM is an (N — k)x(N—k) matrix with eigenvalues A having positive

real parts.

Lemma 4.2 follows from Lemma 4.1.

Lemma 4-3 For any r (Re r ^ 0) and pure imaginary i$ (f : real)3

we have the estimate

(4.2) ||(M(r3 ^-if/^H^const./lRe

Lemma 4.3 follows from the condition (S.2).

Let r = ju + i^, #3 v real, A^O. We set
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M(r, 7)=JJf(C,

=M(C,

Lemma 4.4 For any fixed Co = (^o, Vo):¥0 and ,# = 0, there exists

a transformation T"0 such that

/ M! 0 \
(4.3) r0-

1Mr0=
\ Q Mq /

where Mj have the following properties.

(i) The eigenvalues A of MI have Re/l^O.

(ii) The eigenvalues of Mj(j^>2) have Re/l = 0 and every

has one of the following three forms :

/ MCo, 0) i \
0)-

\ 0 J/Co, 0) /

/ ^(Co, 0) 0 \
® Afy(Co,0) =

\ 0 AXCo3 0) /

with Ij^lj (i^j).

Proof. Above forms are nothing else but a variant of Jordan's nor-

mal form. We have only the above forms by the Condition III.

Q.E.D.

Remark 2. The form (ii)-® occurs from the Condition I. We had

not the form (ii)-® in Kreiss's paper. In Sec. 5, we treat the form (ii)-

5* The Representation of M(C, A) by a Similar Transformation

In Lemma 4.4, we have the form (ii)-® different from Kreiss's one.

But we shall show that in such a case -M/(C, #) is diagonal in a neighbor-
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hood of (Co, 0) (<

Lemma 5.1 For any Co — (^o3 ^o)=¥03 # = 05 there exists an analytic

transformation jT(C3 ju) of (£, /O £ #XCo3 0) where t/"(Co 0) z's a neighbor-

hood of (Co? 0), s^c/z

/ Ml 0 \

\ 0 Mq /,

Furthermore, My(C3 0) (y^2) /s ^r^ imaginary, and if M/(Co> 0) (/^

/ AXCo, 0) 0 \
XCo, 0) =

\ 0 JyCCo, 0) /,

, A)

0

Proof. When Af/Co, 0) has the form (i), or (ii)-©, or (ii)-@ in

Lemma 4.4, we use Kreiss's paper to construct T. If M/£0, 0) has the

form (ii)-® in Lemma 4.4, the equation det (iv^I — i(Ag + Byo)) = Q with

respect to f has a double root fo = ^(Co3 0)/i by the Condition III. From

the Condition I,

det (r/-»U£ + S?))= IT (r-*ry(f, ?))

where 7"y(f, v) is real (l^j^N), Without loss of generality^ we may

assume

Then, by the Condition III and Theorem 3.13
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(5.2)

We consider the transformations

f w{ = r/(f
(5.3)

I w*2 = y

Then,

(5>4)

and fr(£, ^) is real for any (f, 7])eR2 — {0}, (& = 1, 2). So, by Theorem

3.1 and (5.4), the mappings (5.3) are topological and analytic mapping

such that a neighborhood U(g 03 ??o) of (£o3 tfo) in C2 corresponds to a

neighborhood F(VOS TJQ) of (v05 ̂ o) in &2 and U(£Q, 7]o)r\R2 corresponds to

V(y^ 7]o)r\R2, where (ffl, Vo) £ ^2~ {0}. Therefore, we can construct the

analytic transformation T in Lemma 5.1. Q.E.D.

We introduce the notation :

and consider the matrix Jlf (C, /0= iCl-fl^C'j /O ^or a ^xe(^ C /==Co as a
function | £ I , /^. Hereafter we consider in a neighborhood of (Co3 0)

(Co^O). By Lemma 5.1, every block M/(C, A) has the form

M,(C, /«) = | C I (MX«) + A%(Co) + 0(^/2))3 A)= (nw).

Lemma 5.2 (H. O. Kreiss [7] and J. V. Ralston [9]) Suppose that

s = s(j) is order of My. Then, there exists a constant c>0 such that the

following hold in a neighborhood of C — Co^f05 /* = 0:

(i) // M/Co, 0) has the form (ii)-© or (ii>® m Lemma 4.4, JV)(Co)

(ii) /f M;-(Co3 0) tes ^g /orm (ii)-® m Lemma 4.4,

inequalities | Re T&U | > c and | Re 7^22 1 > c.

. See Kreiss's paper for (i). If -M/(Co, 0) has the form (ii)-®,
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we have

I1
jtf/C, /0=lCl(

So, by Lemma 4.3,

const. -

Re nu°jU + (lower order of ju

where we set if = Gl/(C£, 0) + ^'(i Im 7i«))|C| (* = 1, 2). Therefore

c. Q.E.D.

From Lemmas 4.1-4.4 and Lemmas 5.1-5.2, we can construct the

symbol R having the following properties by the method similar to Kreiss's

paper :

(i) R = R(ju, v, 7]} is defined in {(#, v, if) |#;>Ao>0, 0, -q) 6 R2} and

a uniformly bounded smooth function of /t, v, y and of the

coefficients of A, B and 5.

(ii) RA is symmetric.

(iii) w*RAw ^> 8 1 1 w \ 2 — c \ g \ 2 for all vectors w which satisfy the

boundary conditions.

(iv) ReR(i:I-i7]B):>d2yI,'C = y + i». Here di, 82>Q and c>0 are

constants independent of /*, v, 77.

Then, we get the Main Theorem.
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