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Normal Positive Linear Mappings of Norm 1
from a von Neumann Algebra into
Its Commutant and Its Application
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Huzihiro Araxkr*

Abstract

Let M and N be von Neumann algebras such that NcM’. Let Z=NnM
and p be any normal positive linear functional of (M UN)””. There exists a
unique mapping FY¥* from M into N satisfying

(1/2)p(FI™(Q) Q3+ Q. FY(Q1))=p(Q,0Q3)

for all Q;&M, Q,€N and s(F¥Y*(Q,))<s"(p), where s denotes the support and
s¥ denotes the support in N. The mapping FY¥ is Z-linear, positive and
transposed-n-positive, of norm 1 and continuous on the unit ball weakly and
strongly.

As an application, a generalization of a clustering theorem for an asymp-
totically abelian case is given.

§1. Preliminaries

We consider two von Neumann algebras M and N such that N CM’
and a normal positive linear functional o of (MUN)"”. H, m, and 2,
denote a Hilbert space, a representation of (M\UN)” and a cyclic vector
canonically associated with o through p=w,, where wp denotes the ex-
pectation functional by the vector £ (called a vector state if wgo(1)=1).

s(A) for an operator 4 on a Hilbert space denotes the support of A,
namely the smallest projection E satisfying EA=AE=A. s(A) is in the
von Neumann algebra generated by A4 and A* and hence the notation

s(A4) is also used for an element of von Neumann algebra. s"(p) denotes
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the support of p relative to [V, namely the smallest projection E in N
such that o(E)=p(1). s"(2) denotes s¥(wy).

Our tool is the following version of the Radon-Nikodym theorem by
Sakai [6].

Lemma 1. Let 4 and v be normal positive linear functionals of a

von Neumann algebra N such that #=v. There exists a unique hoE N
satisfying

1) v@=1/2)urQ+Qhy), QEN,

@) s(ho) =sM(1),

B) 0Zhi<1.

Proof. The existence of hy satisfying (1) and (3) is in [6]. Since

0=<vA—s"() < u(Q—s"(u))=0, we have s™(v)<s"(x). Setting Q=
sN(ho(1—sY(u)), we obtain from (1)

0=v(Q)=(1/2)2(Qho)=(1/2) (QQ*).
Since s¥(#)QQ*s"(1)=0QQ*, we obtain QQ*=0, i.e. Q=0*=0. Hence
ho=hj+ k)
where hg=s"(2)hos" (1) and hi=(1—s"())ho(1—s"(#)). Since
4(hoQ +Qho) = £1(hoQ -+ Qho)

h{ € N satisfies (1), (2) and (3).
The uniqueness holds in the following slightly more general form.
Q.E.D.

Lemma 2. Let y and v be normal linear functionals of N and pu
be posilive. An operator ho€ N satisfying (1) and (2) of Lemma 1 is

unique, if it exists.

Proof. Suppose ko and h§ satisfy (1) and (2). Then A=ho—Ah}
satisfy #(hQ+Qh)=0 for all Q€ N. Substituting Q=h*, we have
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0 < u(h*h) < p(hb* +B*h) =0

and hence sM(#)h*hs"(#)=0. Since s(h)<s"(ux), we have h*h=0 and
hence ho—hf{=h=0. Q.E.D.

We use Lemma 1 in the following complex form.
Lemma 3. Let u and v be normal linear functionals of N,
y=v1—vs+i(Ys—vy),

Uy V1, Va, Vs, and vy be positive and vy <24, k=1,2,3,4, 2>0. There
exists a unique ho €N satisfying the conditions (1) and (2) of Lemma 1.

Proof. Immediate from Lemmas 1 and 2. Q.E.D.

A linear mapping F from a von Neumann algebra M into N is call-
ed n-positive if the mapping F®1 from MRQQB(C") to NRQA(C™) is
positive, where C” is an n-dimensional Hilbert space, #(C") is the set of
all linear operators on C” and (F®1)(QRQ)=FQ)RQ for Qe M, Q' €
Z(C™). 1If F is n-positive for all positive integers n, F is called com-
pletely positive.

F is called transposed-n-positive if F@t from M Z(C") to N
#(C™) is positive where ¢ is any transposition of matrices relative to any
fixed orthonormal basis. The positivity of F:¢ does not depend on ¢
because two transpositions ¢ and ¢’ relative to different orthonormal bases
are always related by t'(Q)=ut(Q)u* for some unitary u € Z(C™).

If F is n-positive or transposed-m-positive, then Q=0 implies Q&1
=0 and hence F(Q)®1=>=0 and hence F(Q)=0. (More generally it is
n’-positive or transposed-n’-positive for n’<<n.) Considering F((z+Q)*
(z4+Q))=0 for z=1 and i, we then have the selfadjointness F(Q)*=
F@".

Lemma 4. If a linear map F from M into N is 2-positive and
satisfies FQ)F(Q)=F(Q), Q€ M, then

(L.1) FRQO=FQO'FQ), QcM.
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If a linear map F from M into N is transposed-2-positive and satis-
fies F(F(Q)=F(Q), Q€ M, then

(1.2) FRO=ZFQQFQ* QcM.

Proof. Consider

A

0=(px %) M@2(CYH

for Q € M relative to a fixed orthonormal basis e; and ez in C%. Let x
and x; be vectors in defining Hilbert space of M and N and x=x;Qe:
+x2&Qes. Then

(%, Q%) =]|%1+ Qx2]|2=0

and hence ég 0.
If F is 2-positive then

0= (%, FRL(Q)%)= (%1, F1)x1) +2Re(x1, F(Q)x2) + (%2, F(Q*Q)x2)
where we have used F(Q)*=F(Q*). Setting x;=—F(Q)x2, we have
0= (%2, F(Q*Q)%2) — (22, F(Q)*F (Q)%2)

for any x; where we have used F(1)F(Q)=F(Q). Hence we have (1.1).
If F is transposed-2-positive, we have

0= (x, FR0)(Q)x) = (w1, F(1)x1) +2Re(1, FQ)*52)+ (3, F(Q*Q2)-
Hence, by setting x;=—F(Q)*x3, we obtain (1.2). Q.E.D.
For a cyclic and separating vector £ for M, the polar decomposition
S=JodYy?
of the closure S of the operator S defined on M£ by
SQR=0Q*2, QeM

defines the modular operator 4g, which is a strictly positive selfadjoint
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operator satisfying 4o2=82 and Jed,=43'Je, and the modular conjuga-
tion Jo which is an antiunitary involution satisfying Jo@2=%2.

If £ is not a cyclic and separating vector, we consider the restric-
tions of M and M~ to sM(2)s¥ (2)H, and define Jg and 4dg on s™(2)s”
(2)H as above and 0 on (1—s"(2)s™ (2))H. The mapping

a(DQ=45Q45"*s"(2)s" (2)

maps M onto s’ (2)sM(2)Ms”(2) and M’ onto s(2)s™ (D)M’'s™'(2). It
is an automorphism of ™' (2)s(2)Ms™(2) and sM(2)s" (Q)M's™ (Q).
We denote

Je(@=J2QJ .

It brings M onto s™ (2)M's™ (2)s"(2) and M’ onto sM(2)Ms™(2)s™ (2).
For a normal positive linear functional p on M, we denote Jg, 4,

79(t), jo for w,(M) and 2=8, by J,, 4,, 7,(t) and j,. We sometimes

denote the expectation functional of B(H,) by the vector £, again by o.
We need the following.

Lemma 5. Let 0 be a normal positive linear functional of M and
Z, be the set of x €M such that o(xQ)=0p(Qx) for all Q€ M. Then for
every z€Z,, [s™(0), z2]=0, [4,, 7,(z)]=0 and

1'-p(t)n'p(z) = np(z SM(D))'

If ze MN\M’, then

Jo(m () =7 ,(z*s" (0)).

Proof. Substituting Qs™(p)* into Q of p(xQ)=p(Qx), we obtain
0(Qs™(p)*x)=0 where sM(p)*=1—s"(p). Hence =,(s"(p)*x)2,=0.
Multiplying 7,(M)’, we obtain 0= ,(s¥(0)*x)s™™M(2,) =n,(s"(0)*xs"
(0)). Substituting sM(0)*Q into Q@ of o(xQ)=p(Qx), we also obtain
7, (s™ (0)x5™(0)*) = m, (sM(0)* x*s™(0))* = 0. Hence 7,([x, s"(0)]) = 0.
Hence s.(0)[ %, s”(0)]=0 where s.(0) is the central support of p. Since
[1—s.(0)1s(0)=0, we have [x, s™(0)]=0.
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Since 2, is cyclic for R=n,(M), s¥(2,)=1. Since r,()7,(2)=
o), (2s™(0)) and j,(7,(2))=j,(m,(2)s(0)) by definitions of 7, and j,,
it is enough to prove

Tp(t)n'p(z) = 77.',,(z)
Je(mp(2))=m,(2)*

for zEZ,,sM(p) on np(sM(p))H,,EH,’,. Since &, is cyclic and separating
for R,=n,(s"(0)Ms"(p)) on Hj, the first equation is known. [8] It im-
plies [4,, 7,(z)]=0. From j,(2)2,=4}%2*¥2,=z*2, we have j,(2)=z*
for z=m,(2), z€ MNM's"(p). Q.E.D.

§2. Mapping FY from a von Neumann Algebra M into M’

Theorem 1. Let M and N be von Neumann algebras such that N C
M’'. Let 0 be a mormal positive linear functional of (M\UN)". There
exists a unique mapping FYM from M into N satisfying

2.1 0(QQ)=0(FYM(Q)Q +QFFM(@)/2
for all Q€ M, ¢ €N, and
(2.2) s(FYM(@Q)) = s"(0)-
It has the following properties:
(1) FYM js (MN\N)-linear. FNM(Q)*=FYM(Q¥).
@) FM1)=s"o).

(8) FXYM is transposed-n-positive for all positive integers n. (In partic-
ular, FYM is positive and FYM(Q)*=FYM(Q*).)

@ [[FYM|=1 for o=0.

(6) FYM is o-weakly continuous (i.e. normal). It is continuous on
the unit ball relative to the strong topology on M and * strong topology

on N.
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(6) For any automorphism © of (M\UN)" satisfying t(M)=M and
t(N)=N,

(2.3) FYM(@Q)=cF Q)

where t*p is defined by (t*p)(Q)=0(cQ). In particular, if u€ M is uni-
tary,

2.4 FYM(uQu*)=F, Q)
and if v€ N is unitary
(2.5) vEMQ)u*=Fl(Q)
where (110t2)(Q)=p(t2Qt1).
(7) For any AEMNN, A=0,
FIRHQ)=FM(Q)s(4).

(8) If lim ”pn"' 0” =0 and limSN(pn) :SN(D)’ then
lim FYM(Q)=FYM(Q), lim FYM(Q)*=F™(Q)*

uniformly for a bounded set of Q. (If sM(0,) <sM(0), then lim|lp,—ol|
=0 implies lims™(0,)=s"(0).)

Proof. Let Q€M and Q'€ N. Consider
(2.6) fo@)=0(QQ).
If =0, then
Je@)=0Q"*Q'Q"?)
is normal positive linear functional on N. If (/>0 in addition,
@.7) fo@)=0Q"*QQ"*) < 1IQlI0(@).

Hence fo=1|Qllp.
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For general Q, we have

(2.8) 0=0:—0:+i(Qs—0Qy)

where Q; and Q. are positive and negative parts of (Q4Q*)/2, Q3 and Q,
are positive and negative parts of (Q—Q%*)/(2i). Then

szfgl_sz—‘—i(st——fQ;)

where fo, < [|Q:ll0.
By Lemma 3, there exists a unique ho=FY¥(Q) € N such that

(2.9) Fo@)=0(FYM(Q@Q +QF™(Q))/2
for all '€ N and
(2.10) s(FFM@Q) =5 (0).

This shows the existence and uniqueness of FYM,
(1) Let z;,22€MNN and Qy, Q€ M. Note that M NN is in the
center of (N\UM)"” by NCM'. We have, for Q=2z10;+ 230,

o(FYMQQ +QFYMQ))/2=0QQ")
=0(Q121Q0") +0(Q222Q)
=0(FYM(Q1)z:Q"+ z:Q'F}™(Q1))/2
+0o(FM(Q2)22Q" + 22Q'FY™(Q2))/2
=0(F'Q"+Q'F")/2
where
F'=z1FyM(Q1) + z2FM(Q2)-

Since s(FYM(Qy)<s"(0), k=1,2, we also have s(F)<s"(0). By the

uniqueness, we have

F'=FM(z,Q14 22Q2).
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From p(Q*Q") = p(Q(Q’)*)* and the uniqueness, we obtain FYM(Q)*=FYM(Q*).
(2) The substitution of Q=1 and FY(Q)=s"(p) into (2.1) and
(2.2) immediately prove this statement.

(3) If Q=0, then FY¥(Q)=>0 from Lemma 1. Hence FY™ is posi-
tive.

To prove transposed-n-positivity for n>1, let ey, ---, e, be an ortho-
normal basis of C”,

2=n"123 ¢,Qes € C*RCT,

k=1

Jo be the modular conjugation for £ (Jo2icie:QRei= D, ¢;5e;Qe;), and the
transposition ¢ be chosen to be

(2.11) ‘Q=J20%] .
which maps Q€ Z(C*)®1 onto 1®QZ(C"). Consider (on HR (C*RC™))
M=M& (#(C"Q1),
N=N® (1®2(C"),
=0Qwe.

Then FYM®t from M to N coincides with F¥¥ due to the following
computation and hence is positive by our earlier result.
Let Q1€ M, Qi€ N, Q:€ Z2(CMR1, Q;€1R4(C*). Then

0((01QQ2)QI&R0)) =0(Q:101)(L2, Q:0;2)
=0o(FYMQDRDQF L, Q;:2)/2
+0QIFM(Q)(L, Q30:2)/2
=0o(F7M Q00D 2(Q2)2, 052)/2
+oQIFFMQ)(L, Q3j.(QF)2)/2

where we have used the fact that the modular operator for a faithful
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trace vector £ is 1 and hence jo(Q)R2=J,02=4YQ*2=0Q*2. Sub-
stituting the definition of ‘Q, we have

8((Q:1802)Q) = ({FYM(Q1R'Q:}Q")/2
+oQ{FMQD®Q:})/2

for Q'=0Q{®Qj;. Since such @ linearly span NQ (1Q%(C")), the same
equation holds for all Q' in N. Since s¥(p)=s"(0) @1 because 2 is cy-
clic for 1Q#(C™, we have s(FY¥(Q:)®'Qz) <s(FFM(Q))R1=<s"(p).
Hence

(2.12) FE(Q:1QQ2) = (FYM®R1)(Q:1RQ2).
(4) From Lemma 1 (3) and (2.7), we have
IFF @Il
for 0=>0. Due to Lemma 4, we have
IFEFH @I = FF@FY (@)l
<IFF*@* QI =lle*li=lQll*

for arbitrary Q. From (2), we obtain ||[FYM||=1 if p=~0.
(5) Assume that a net Q,€M has a weak limit Q and ||Q.[[=1.
Then

213)  limpFHQ)Q +QFM(Qu)=o(FM@Q +Q FM(Q))
Since [|[FY™(Q)||<1|Q«l| =1, the set of accumulation points

214 N FEHQu)y =

is non-empty due to the weak compactness. Let Q be in this set. Then
from (2.13), we have

oFTM Q' +Q FYM(Q)=0(0Q"+Q'Q).

From the uniqueness in Lemma 2, we have
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Q=F™©Q)
and hence the set (2.14) consists of a single point FYM(Q). Thus

W—l(ilm FYM(Q.) =F‘:’,VM(W-1£1’H Qo).

The weak continuity on bounded sets implies the normality and the
o-weak continuity for a positive linear mapping.

Next, we assume that a net Q, €M has a strong limit Q and ||Q.]|
=1. Then [[F7¥(Qu—Q)l=/Qa—Ql|=2. Hence

lim o({F}™(Qa— @)} (@2~ Q) =0.
By using (2.1) with Q=(Q.—@)*, Q'=F"(Q.—Q), we have
0=0({FMQu— D} FMQa—Q)) +0o(FMQu—D{FFM(Qa— Q)
=20({F/MQ.—Q)}*(Qa—0Q))—0
and hence
lim 7, {F"(Qu—Q)}2,=0,
lim 7 {FY"(Qn—Q)}*2,=0.
Multiplying Q € 7 ,(N)’, we have
lim 7, {F"(Qa—Q)}¥ =0,
lim 7, {F¥(Q. —Q)*} ¥ =0.

for ¥ =é~99- Since ||[FFM(Q,—Q)||<2, the same hold on the closure of
7,(N)'2,, which is 7,(s"(0))H,. Hence

lim 7 {F}"(Qu—Q)s"(0)}=0,  lim m {F}"(Q—Q*s"(0)} =0.

Since 7, is faithful at least on s"(0)Ns"(p), ;! is continuous on
s"(0)Ns"(p) and

0=lim s"(0) F}'™™(Qa—Q)s"(0) =lim {F}'™(Qa) — F{™(Q)},
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0=lim s"(0) FY™(Q. —Q)*s"(0) =lim {FYM(Q,)* — FY'™(Q)*},
a a

due to (2.2) and (1).
(6) For Q€ M and Q'€ N, we have

o(c(@Q)=0(z{Qr7'Q'})
=t*0(Qc™'Q")
=r*p(FF Q) 7Q)/ 2+ c*o({r QY FRI(Q)) /2
=0({cFNY(@)}Q)/2+0(QFFIQ))/2.
We also have
s @) = {s(FNI (@)}
<c{s"(e*0)} =5"(0).

Hence (2.3) holds by the uniqueness.

(2.4) and (2.5) are special cases of (2.3) where t(4)=udu* and
t(4A)=vAv* for Ae (NUM)".

(7) Since NCM’', MN\N is in the center of (N\UM)”. We have

(40)(QQ)=0(QQ"4)
=0(FYMQQ' 4)/2+0(Q AFY(Q))/2
=Ao(s(DFM(QQ +Q's(DFM(Q))/2.
We also have
s{s(DFYM(s)} = s(A)s(FHM(5)) < s(A)s"(0) =5"(40).
Hence, by uniqueness, we have
FIRQ=FYM@Q)s(4).
(8) We have for 0,=FY"(Q)—FYM(Q) the following estimate

|0(04Q"+Q'0:) | = 2]0(QQ") — 0,(QQ) |
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+ [0.(FEM@Q +Q FIMQ) — o(FEM(QQ + Q' FM(Q) |
=< 4[|0llllQ"llllo— pall.
Setting (/=0% and using [|3,]|<2||Q|l, we have
0= 0(0%0.)=0(0,0%+0%3,) < 8/IQII*llo— 04l
0=000.07)=8|lQlI*llo—pall.
Hence we have

lim 7 ,(0,)¥ =0, lim 7 ,(0%)¥ =0,
n—e n-reo

for =8, and hence for ¥=Q'82,, '€, (N)'. Since ||7,(3,)| =2[Q]|
is uniformly bounded, the same holds for WESN(.QF)HF and hence

lim ”p(ansN((») =0, lim ”P(aﬂ;SN(p)) =0,

uniformly for a bounded set of Q. Since 7! is continuous on Ns¥(p),

where s¥(p) is the central support of s¥(p), we have

lim {FYM(Q)—FYM(Q)s"(0)} =0,

lim {FM(Q)*—FIM(Q)*s"(0)} =0.
If 1im s%(,) =5"(0), then as |[FYM(Q)||<|Ql| we have

lim {F}M(Q)s"(0)— FYM(Q)}

= lim FI(Q)(s"(0) — s"(0.)) =0
and we obtain
lim FY(Q)=lim FY™(Q)

uniformly for a bounded set of (. Similar equation for adjoint also holds.
If s"(0,) <s"(p), then

lp(l—'sN(pn)) | = lp(l —SN(pn))_pn(l—sN(pn)) I = Hp—pn”
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and hence
lim 7,(1—s"(p.))2,=0.

As before, we have

lim (s¥(0) — s™(0,)) =0. Q.E.D.

The proof of (3) implies the following corollaries.

Corollary 1. If M'=N, p=wgo and 2 is a faithful trace vector for
M as well as for N, then

F/I»VM(Q) = J.RQ*J.Q'

Corollary 2, Let M=M1®M2, N=N1®Ng, p=pl®pz If 01 1S a
trace on Ny or if 0s is a trace on Ny, then

FYM(Q,&Q2) = FY Q) RFNQ2)

for all Q1€ My, Q. € My, (In particular, if either Ny or N is abelian
then this holds for any mormal states p1 and 03.)

Remark 1. FYM(Q)=FY N'(Q) for Q € M, where py is the restriction
of o (which is a functional on (W UN")") to (M\UN)”. In this sense,
the case M =N’ is most canonical and we shall study it from different

viewpoint in the next section.

Remark 2. In order to define FY™(Q), o need not be normal on the
whole (M\UN)”, but it is sufficient that o is normal on N. The unique-
ness and existence together with properties (1), (2), (3), (4), (6), (7) and
(8) hold for such non-normal p. Note that fo defined by (2.6) is normal
due to (2.7) if p is normal on V.

Remark 3. Theorem 1 holds also for the case where NN is a weakly
closed * subalgebra of M’ even if the unit in IV is not the identity oper-

ator in M.
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§3. Mapping GY from a von Neumann Algebra M into Itself

Theorem 2. Let p be a normal positive linear functional of M.

There exists a unique mapping G¥ from M into s™(0)Ms™(0) satisfying

(3.1 (2, m,(Q)45°7,(Q)2,)=0G(QQ +QGH(Q))/2

for all Q,Q € M.

It has the following properties:

1) G¥ is Z,-linear, where Z, is the set of x €M such that p(xQ)=
0(Qx) for all Q€ M, and M is considered as two-sided Z, module. In
particular, GM is Z-linear for the center Z=MNM’'.

(2 6}1)=5"(0).

(B) GYM is completely positive. (In particular, it is positive and

GM@*=6"(Q%).)
(4) lI6HI=1 for p0.

(5) GY is o-weakly continuous (i.e. normal). It is continuous on the

unit ball relative to the strong topology for Q and % stromg topology for

G (Q)-
(6) If v is an automorphism of M and t*p0=0p, then

G Q) =G} (Q).
(7) If 2€Z, 20, then
CL@=6"(Q)s"(2).
(8) The kernel of G¥ is
MM A —s"(0)+ A —s" ()M,
which implies

GH(Q)=GX(s"(0)QsM(0)).
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The image of G¥ is strongly dense in s™(0)Ms™(p).

Proof. Let R=m,(M) and Q,Q'€R. From the formula jo(Q)2=
4%?2Q*2 and (2.1), we have

(3.2) (2,, Q4520 2,)=(8,, Qj,{10*}2,)
=(8,, FER(Q)j(Q)2,)/2
+ (G, (Q)2,, FFRQ)2,)/2

where p is also used for p(Q)=(£,, 02,), Q€ (RUR’)", in writing FER,

Since (J,%, y)=(3J,%, ) =%, Ji9)=(x, J,3)=(J,y, %) where Ji=
sR(2,) is hermitian (s®(2,)=1 due to the cyclicity of 2,), and since

J,2,=2,, we have
(3.3) (2, Q43" 2,)=Q"*2,, j,(FE*Q)*)2,)/2
+ (R (FERQ)2,, ¢'2,)/2.
Since sE(j, (FER(Q))) <s®(8,) =m,(s"(0)), there exists G €s"(p)
Ms™(p) such that
(3.4) 7,(G)=j ,(FER(@Q")).

From (3.2) and (3.3), G¥(Q)=G satisfies (3.1) for all '€ M. Hence the
existence is proved.

If G¥(Q)=G and G’ both satisfy (3.1), then G—G’ also satisfies
p(G—GNQ' +Q (G—G))=0 for all Q'€ M. In particular, we have
p((G—G"Y*(G—G"))=0 for Q’=(G—G")*. Since p is faithful on s(p)Ms(p),
we have G—G’=0 and hence the uniqueness.

(1) From (3.4) and Theorem 1 (1), GY is linear. If z€Z,, then

z=m,(z) commutes with 4, (Lemma 5) and we have
(2,, Qz43°Q'R,)=(2,, 04;7%20'2,)
=0 (QQ'+ QG (Q))/2
=0(G(Q@zQ"+ QG (Q)2)/2
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for Q=7,(Q) and Q'=7,(Q), Q€ M, '€ M. Since z commutes with s(0)
by Lemma 5, s(G¥(Q)z)<s(p) and hence

GY(Q2)=6}(Q)=.
Since [j,(2), 4,1=7,((z, 4;*])=0, we also have
(2,,2Q04;%Q'2,)=(z*2,, 04;%Q'2,)
=(j,(2)2,, 04}'*0'2,)
=(8,, 04320’} (z9)2,)
=(2,, 04;%*0'z82,)
=0GH(QQ'z+Q'zG}(Q))/2
=0(GY(Q)Q + Q=G (Q))/2.
Hence we have
G (2Q)=2G(Q).

(2), (4) and (5) follow from the corresponding results in Theorem 1
and (3.4).
(3) Let Q;€R such that 2; (x4, Q;jx;)=0 for any x;€ H, where
A

the indices 7, j run from 1 to n. By Theorem 1 (3),
2 (w3, FER(Qi0) %) =0
for any vectors x;€ H,. Hence
2 (i, w,(GH Qi) %7)
= X (%5, J2TLFE R(Qi)* ] ,%7)
= 2 (J2xs, JFERQi)* T, %)
= NFERQi)*T, %), Jo%:)
= (5, FERQi)J %) =0.
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Since 7, is faithful on s™(0)Ms"(p), this proves n-positivity of GM.
(6) If t*p=p, there exists a unitary operator U,(r) on H, such
that

U,0)7,(Q)82,=7,(cQ) 2,
Applying S, we have
SU(D)m,(Q)2,=m,(zQ%) 2,
=U,(x)S7,(Q)2,.

Hence U,(r) also commutes with closure S and hence with 4, and J,.
We also have ts™(p)=s"(p). From Theorem 1 (6), we now have, for
TQ=U,(1)QU, ()%

7, (GH (zQ) = j,(FF *(zQ*))
= j,EFF*@Q*)
=17, (GH(Q)
=1,(cGY Q).

Since sM(zGM(Q)) < sM(z0)=s"(p), we have (6).

(7) It follows from Theorem 1 (7) and j,(m,(s¥ (2)*)) = 7 ,(s"(2)).
The latter equation is due to Lemma 5.

(8) From GY(Q)=0 and (3.1), we obtain

0=(8,, 7,(Q)4}"*7,(Q)2,)
=(8,, 7,(Q) ] (7)) L2,)
= (7 (Q@0) 2, w,(Q)L2,).
Since j,(r,(M))2,=n,(MY 2, span 7,(s™(0))H, (=s*(2,)H,), we have
7 o(s"(0)Q) 2, =7 ,(s™(0))7 ,(Q)2,=0.

By multiplying Q'€ 7,(M)’, we obtain
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7 (M (0)QsM () ¥ =1 (s (0)Q)s™ (2,)¥ =0
for s®(2,)¥=Q'R, and hence for all ¥. Therefore
7,(M(0)0s"(0)) =0

and hence s™(0)Qs™(p)=0. Thus Q must be in s™(p)M1—sY(0))+(1—
sM())M. On the other hand, if Q is in this set, (3.1) vanishes and
hence by the uniqueness of GY(Q), we have G¥(Q)=G¥(0)=0.

To prove that the image of G¥ is strongly dense in s™(0)Ms™(p), it
is enough to prove that the image of Gf,“ is strongly dense in M for

faithful o because p is faithful on s™(p)Ms™(p). Assume that o is faith-
ful on M.

Let Qe (M) and
Qo= O0exa(—e2/8) /(87"

It satisfies ||Qgl| <110l lﬂim 0s=Q. Furthermore,
-0

£(00s= {7,6)0 exp (— (t—5)/B)ds/ (BT
is analytic for all z. Hence, for Q' € 7 ,(M), we have
(@, @0 +000)2)=(2,, Q7,102
= (@, (5o(—i/2)Qa+7,G/D0) 470 2,)

where the first equality is due to KMS condition. Hence we have for

Q’ € Ma Q—_— TEp(Q)a QB:: np(Qﬂ)
(3.5) G ({7o(—i/2)Qs+7,(i/2)Qs}) = 20Qp.

Thus the image of GY is strongly dense in M for faithful p.
Q.E.D.



458 Huzimiro ARrAkI

§4. Projections of a von Neumann Algebra into Its Center

Theorem 3. Let Z denote the center of M and NCZ. Then FYY
has the following properties besides the properties (1)-(8) of Theorem 1.

(9) FNM s a projection from M omto Ns™(p).

(10) Define p and o' to be N-equivalent if s"(0)=s"(0") and o' is
in the norm closure of the set of all Ap, AEN, A=0. It is an equiva-
lence relation and FYM=FNM if and only if 0 is N-equivalent to 0.

(11) Let sN'(.Q,,) be the projection on the closure of nw,(N)R,. The
mapping from Q € Ns"(p) to sV'(2,)7,(Q) €™ (2,)m,(s"(0)M) is bijective.
Let the inverse mapping be . Then

(4.1) FYMQ)=as"(2,)m,@)s" (2,).

(12) If KCN, then FKNFYM—FKM,

Proof. (9) FYM(Q)=0Qs"(0)=Q for Q€ Ns(p) due to Theorem 1 (1)
and (2). Hence FYM is a projection onto Ns"(p).

(10) If p is N-equivalent to p’, then o’ is a norm limit of A,p,
where we may restrict sV(0)4,0=0,. Then by Theorem 1 (7) and (8),
we have FYM(Q)=lim FYM(Q)=FYM(Q).

Next assume that FYM=FY™, From Theorem 1 (2), we have

sY(0)=s"(0").

By the Radon-Nikodym theorem, there exists a non-negative self-adjoint
operator A affiliated with NN such that s(4)=s"(p) and

0QAH=0"(), Q€N

Let E¢ be the spectral projection of 4 and A,=AE2€ N, p,=A,0. Let

p=Ap=lim 4,0 which exists as a state of M, because 0=0(4,Q0)—
n

0 (4.Q)=1Qllo(Ar— An)—0 for Q=0,Q€M and n=>m. Then the re-

striction of p to IV is the same as the restriction of o’ to N. By what

we have already proved, FYM=F¥=FNM  Hence we have
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0(QQ)=0'(QQ")
for all Q€M and Q'€ N. Setting Q'=1, we have g=p’ as a functional
on M. This shows that p is N-equivalent to o’

FYM—=FNM ig certainly an equivalence relation for p and p'.

(11) Since p is faithful on Ns¥(p), s"'(2,)7,(@Q)=0 for Q& Ns"(p)
implies ||s¥'(2,)7,(Q)2,||>*=0(Q*Q)=0 and hence Q=0. Thus Q—s"'(£2,)
7, (Q) is bijective from NsM(o) to SN,<.QF)7Z'P(NSN(0)).

We have, for Q€ M, Q'€ N,

0(QQ)=(&,, =,(@7,(@)L2,)

=(2,, sV (2,)7,Q)s" (2,)7,(Q)2,).
If we prove that

(4.2) (2w, (MY (2,) =1, (Ns"(0))s" (2,),

then we have

0(QQ)=0({as" (2,) 7 (Qs" (2 N}Q).

Due to the commutativity of elements of N, we have (4.1).

To prove (4.2), we note that 2, is a cyclic vector for abelian 7,(IV)
on sV ’(.Q,,)HP by definition and hence maximal abelian there. Further-
more, 7,(1—s"(0))Q2,=0 for Q€ x,(N) by the commutativity and hence
Y27, (sM(0)=5""(2,). Thus any Q€ B(s" (2,)H,) satisfying [Q, Q;]
=0 for all Q; € m,(IN) belongs to ﬂp(NsN(p))sN)(.Qp).

Since s¥'(2,)€n,(N) and N commutes with M,QESN)(.QP)HP(M)
sV ’(.QP) commutes with any Q;€ 7,(INV). Hence

SN (2,)m,(M)sV(2,) S 7, (Ns™(0))s™ (2,).

Since M D Ns¥(p), the equality holds.

(12) This is immediate from the defining equations (2.1) and (2.2)
and the abelian property of IV. Q.E.D.

Corollary. (10), (11) and (12) of Theorem 3 holds if NCM and
N is abelian.
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Proof. Let R=(N\UM)”. Then N is in the center of R. Further-

more
FPMQ=FY*Q), QeM.

Hence by applying Theorem 3 (10) and (11) to FYZ we obtain (10) and
(11) for FYM, Note that FYE(Q) for Q€ M determines FY® due to the
property (1) of Theorem 1. Q.E.D.

Remark. 1f N is abelian, Q € N can be identified with continuous
function on its spectrum and any normal linear function on N with a
Radon measure on its spectrum. Denoting the measure corresponding to
the normal linear functional p(QQ)=f¢(Q") for ' €N and Q€M by ug,
FYM is given by the Radon-Nikodym derivative:

FfavM(Q) =due/du,

where we define dug/du;=0 outside the support of s™(p).

FYM(Q) for an abelian N has been introduced through the equation
(4.1) by D. Ruelle [5] in his theory of decomposition of state. If x,
denotes the measure on the spectrum Ky of N, corresponding to the re-

striction of p to NN, then

0=, eI @)dn,®)

is his decomposition.

§5. Asymptotically Abelian System

A net Q, of elements of a von Neumann algebra M is called weakly
central if there exists a weakly total selfadjoint subset M, of M such
that

CRY L%, Qa]—0

in the weak topology for every x € M,. If (5.1) holds with the strong
limit, then Q, is called strongly central.
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The following result is an extension of Proposition 4 of [1] to non-
factors.

Theorem 4. [f Q. is a uniformly bounded weakly central net in M,
then

(52) W'I}lm (Qa - F/{M(Qa)>sz(p) =0

for any mormal positive linear functional 0 on M, where Z=MNM.

For any two normal positive linear functionals 0 and 0,
(5.3) w-lim (FF(Qa) —F5™(Qu)) (% (0) As%(0) =0.
In particular, if s%(0)=s%(0"),

(5.4) wm(FE(Q) — FFM(Qu) =0,

When s%(0") <s%(0), let A%(0"/0) be the Radon-Nikodym derivative of
o' by o relative to Z, namely,

47(/0=\1a8,  Eez
s(4%(0'/0))=s%(0"),
0'(2)=p(z4%(0'/0)), z2€Z,

where A%(0'/0) can be umbounded and p(zAZ(p’/p))Egld(p(zEx)).
If s%(0") <5%(0), then

(5.5) lim {0'(Qa) —0(QuA(0"/0))} =0.
In particular, if A(0'/0)=1 (.e. if 0|Z=0"|Z), then
(5.6) lim {0'(Q0)—0(Qu)} =0.
Proof. Consider H,, mw,, £, canonically associated with p0. Let

Q.=m,(Q.). Let R, be the linear hull of 7,(Mo), R=mu,(M)=r,(My)"=
Ry, Z=r,(2), s'=sZ’(sz).
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Given ¢>0 and vectors &€ H, j=1, ..., n, @;50, there exist QF, -,
"€ Ry and Q1, ---, Q; € R’ such that

Pe= 3 0105
satisfies
1P.2,— 2,I|=I[{P.~ 5},
< (ouplIQull} - {supllos|}e/4,
4P =530, < sup 10 l1} 112,112/,

because s’ € Z’ and linear hull of RyR} is * strongly dense in Z'.

For this set of operators, there exists a, such that for all o> «,,
|(@j, [Qm Pe]gp)} <€/2>

due to the weakly central property.
Then for a>a, we have

|(9;, [Qas s"12,)]
< (), [Qu, P:12,)| +¢/2
<e.
Hence
5.7 W-I‘ixm [Qn s12,=0.
By Theorem 3 (11), we have
(5.8) s'Qus’=m ,(FEM(Qa))s'.
Since s'2,=8,, we obtain from (5.7) and (5.8)
wlim 7,(Qu— FF¥(Q0))2,=0.

Take any Q" € Ry, Q'€ R;. Since 7,(FZM(Q,)) € Z, it commutes with
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Q"(Q'. By weakly central property,
wilim [7,(Qa), @012, =0.
Hence
(5.9) wlim 7,(Qu — FF#(Qu)¥ =0

for ¥=Q"Q'2,. Since Q, is assumed to uniformly bounded and |[[FZ¥||=

1, (5.9) holds for all ¥ in the closure of Z’%,, which is s%(2,)H,=
7,(s*(0))H,. Hence

w-lim 7,({Qa — F¥(Qa)}s"(0)) =0.

Since 7, is faithful on s?(0)M, we have (5.2).

From (5.2) for ¢ and o', we have (5.3) and in the special case
s%(p")=5%(p), we obtain (5.4), where we use FZ¥(Q,)s*(0)=FZM(Q,).

If s%(0")<s%(p), we obtain from (5.2)

(5.10) lim {0'(Q2) — 0’ (FEM(Qa))} =0.
Using the definition of A4%(0’/p) and (2.1) with /=1, we obtain

o' (FE"Qu)= | 1d0(FF* Q) )

= |1d0(QuB) =0(0u 4%(0'/0)).
This proves (5.5). (5.6) then follows. Q.E.D.

If a subset % of a von Neumann algebra M and a net of * automor-
phisms 7, of M satisfy the property that r,Q for every Q€U is weakly

(or strongly) central, then 2 is called weakly (or strongly) 7, central in

M.

Corollary. If U is weakly v, central in M and 0 is a t, invari-

ant normal positive linear functional on M, then

(5.11) w-lim (7,Q— 7. F¥(Q)s*(0)=0
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Jor all Q€N where Z is the center of M.
If o is another normal positive linear functional on M and s%(0") <
s%(0), then

(5.12) lim {0'(r.Q)—0(Qra*4%(0'/0))} =0

for all Q€W where T&lAZ(O’/D)l‘g/Id(r;lEX). In particular if 0 (z)=
0(z) for all z€ Z, then

(5.13) lim p'(7,Q)=0(@), Q€A

Proof. Since ||,Q||=]|0|l, toQ is uniformly bounded. By (5.2), (2.3)
and t¥p=p, we have (5.11). (5.12) follows from (5.5) and the invariance

of p. (5.13) is a special case of (5.12) where s%(0")=s%(p) and A%(0’/p)
=1. Q.E.D.

Remark. If Q, is weakly central and uniformly bounded, then w-lim
[%, Qo ]=0 for all x & M, because it holds for any x in the linear hull
M; of M,, which, being a weakly dense linear subset, is * strongly dense
in M, and hence for given x €M, ¢>0, ¥;, @;, there exist x'€M; and
a, such that ||Q.||<L,

NZHILII (o — )05 <e/3, ||(x—2")*LS[| LI 05| <e/3

and

|(@;, [, Q.19,)| <e/3 for a>a,

which imply |(¥;, [x, Q.]0,)|<e, j=1, ..., n.

Hence, if 2 is weakly v, central, then the norm closure 2[; of the
linear hull of A\UA* is obviously weakly 7, central and (5.2)-(5.6) for
Q.=1t.Q and (5.11)-(5.13) hold for any Q€.

(5.11)~(5.13) hold for -weak colsure of 2; if sZ(p) and s%(p")<s%(p)
are replaced by s™(p) and s™(p") <s™(p), because (5.11) implies

w-lim 7, (7 ,Q— 7 FZM(Q)¥ =0
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for =2, and Q in the strong closure of the unit ball of ?; and hence
for ¥ €R'2, and Q in the g-weak closure of ;.

The next theorem has an application in [ 2.

Description of situation. A von Neumann algebra M, a net of *
automorphisms 7., a faithful normal positive linear functional p<0 on
M, invariant under all v, and a C* subalgebra 2 of M are given. Let
U, be the unique unitary operator on H, satisfying U,7,(Q)2,=m,
(caQ)2, for all Qe M. Let 7,Q=U,QU¥ for all Q€ #(H,). Let J, be

the modular conjugation operator for the cyclic and separating £, rela-

tive to 7,(M) and j,(Q)=J,QJ,, Q€ #(H,). Let 9l be the C* algebra
generated by

(5.14) (W) {m (W)}

and IA{E(H,,(M)U m (M))".

Theorem 5. Assume that U is strongly ©, central in M. For any

normal positive linear functional o' on #(H,), all QE§I satisfy
(5.15) lim {0'(7.Q) —(2,, Q' 4%(0'/0)2,)} =0

where p=wg, Z=n,(M)Nr,(M) which is the center of R and A*(0'/0)
is as in Theovem 4. In particular, if 0(z)=0"(7,(2)) for all z in the
center of M, then

(5.16) lim 0'(F.Q)=0(Q), Qe

Proof. Let S,=J,4}%. We have
U.S,08,=U.Q0%2,=(Z.Q0)*2,
= S,(2.0)2,=S,U,08,.

where Q€ m (M), which implies 7,Q€ 7,(M). Thus U, commutes with
S, and hence with 4,=S%S, and J,.

Let Q, Q'€ Qo€ Mo(Q), Q€ My(Q") where My(Q) is a selfadjoint
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total subset of M such that (5.1) is satisfied in the strong topology for all
x € My(Q) and Q,=r7,(Q) and My(Q’) is the same for (.

(517) [”p(QO)jp{”p(Qa)}s ?a(”p(Q)ip{n‘p(Ql)})j
= np([Q% faQ])j,a{np(QéfaQ/)}
+ 7, ({7aQ}Q0)j {7 ,([Q5; TaQ D}

Since both [Qo, ,Q] and [Qf, v,Q'] tends to 0 strongly, and all opera-
tors are bounded uniformly in «, (5.17) tends to 0 strongly.
Since Mo(Q) and My(Q’) are selfadjoint and total,

My=1,(My(Q)) j, A7 ,(Mo(@))}

is also selfadjoint and total in R. Hence (5.14) is strongly v, central in
R.

By (5.12) and (5.13), we obtain (5.15) and (5.16) when Q is in
(5.14). Note that s%(p)=1 because o is assumed to be faithful. ~Note
also that Z=m,(Z).

By Remark after Corollary to Theorem 4, Q in (5.15) and (5.16) can
be in the norm closure of the linear hull of (5.14), which is 9.

Q.E.D.

Remark. Let 2A; be a C* algebra, o be a state on U; and 7, be a

net of * automorphisms of ;. If

ﬂp([Ql, 7.Q02])

tends to 0 weakly (or strongly) for all Q;, Q; €2, then 2; is said to be
weakly (or strongly) t, asymptotically abelian. We can apply Theorem 4
to such a situation by taking My=m,(2;), M=r,2,)" and Q,=7,(.Q)
for Q€;. If p is t, invariant and UA; is strongly r, asymptotically

abelian, then we can apply Theorem 5.

Method of big translation in [3] can be formulated as follows.
(See Theorem 6).
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Lemma 6. Let o, be a net of (not necessarily mormal) positive
linear functionals on (M\UN)" such that Iitxzn oo=p (i.e. liam 0.(Q)=0(Q)
for each Q € (M\UN)"). Assume that the restriction of p, to N is nor-
mal and independent of «. Assume also that N is abelian. Then

(5.18) w-lim FYM(Q)=FYM(Q), Qe M.
(See Remark 2 of §2.)

Proof. Let the restriction of o, to IN be denoted by ¢ which is in-

dependent of ¢ by assumption. Then we obtain, from lim p,=p,
a

lim 6(F)M(Q)Q102) =0 (F2™(Q)Q1Q3)
for all Q{€ N, Q4€ N. Setting x,=(FY¥—FYM")(Q), we have
lim ¥, 7,(x,)0)=0
for ¥=r,(Q)*R2, and 0=r,(Q})2,. Since ||x.||=2|/Q||, we have W-liam

7.(x,)=0. Since s(x,)<s"(0), we obtain w-lim x,=0.
a

Theorem 6. Let 2 be a weakly v, central C* subalgebra of a von
Neumann algebra M. Assume that the center Z of M is elementwise t,

invariant and has a faithful normal state p. Let A be the C* algebra
generated by U and Z. Then there exists a subnet T,y such that

(5.19) L@)= w-lim 746/

exists for all Qeﬁ, where L is Z-linear, completely positive projection of
norm 1 from N onto Z and L(1)=1. If Z is trivial, then L(Q)=w(Q)1

for a state o on .

Proof. Let p be any extension of p to a state on M. By weak

compactness, there exists a subnet a(#) such that
lim fi‘(,s)ﬁzpm

exists.
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Since Z is elementwise invariant under t,, the restriction of t%p to
Z is always p and hence the restriction of p. to Z is also p. Since p is
faithful on Z, s*(p)=1. By (5.2), (2.3) and Lemma 6,

wlim TagQ=w-lim FF¥(z4(6)Q)
o i FZM
=W lgn Frj(ﬁ) p(Q)
=F7Q).

Hence (5.19) holds with L=F%Y. The properties of L follow from Theo-
rem 1 applied for FZY (see Remark 2 of §2) except possibly for the
complete positivity.

Since Z is abelian, J,z*J,=z, z€ m,(Z) for a faithful state o. Hence
Q0—-'Q=J,Q0*J, is a transposition on %#(H,) leaving Z invariant. Hence

if L is transposed-n-positive then
L® 1,= (n;1® ln)(t X tﬂ)(np ® ]-n)(L® tn)

is also positive and hence F is n positive. Here 1, and ¢, denote the

identity mapping and a transposition of n X n matrices. Q.E.D.
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