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Normal Positive Linear Mappings of Norm 1

from a von Neumann Algebra into
Its Commutant and Its Application

By

Huzihiro ARAKI*

Abstract

Let M and N be von Neumann algebras such that TVcM'. Let Z=Nr\M
and p be any normal positive linear functional of (M\JN)". There exists a
unique mapping F*M from M into N satisfying

for all QitEM, Q2<=N and s(Ffx(Q1))^sir(p)9 where s denotes the support and
SN denotes the support in N. The mapping F*f M is Z-linear, positive and
transposed- n -positive, of norm 1 and continuous on the unit ball weakly and
strongly.

As an application, a generalization of a clustering theorem for an asymp-
totically abelian case is given.

§ 1. Preliminaries

We consider two von Neumann algebras M and N such that

and a normal positive linear functional p of (M\jN}ff. Hp, TTPJ and Sp

denote a Hilbert space, a representation of {M\jN}rf and a cyclic vector

canonically associated with p through p = a)ap where O)Q denotes the ex-

pectation functional by the vector Q (called a vector state if ft),e(l) = l).

s(A) for an operator A on a Hilbert space denotes the support of A,

namely the smallest projection E satisfying EA = AE=A. s(A) is in the

von Neumann algebra generated by A and A* and hence the notation

s(A) is also used for an element of von Neumann algebra. sN(p) denotes
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the support of p relative to N, namely the smallest projection E in N

such that p(E) = p(l). sN(S) denotes SN(O)^.

Our tool is the following version of the Radon-Nikodym theorem by

Sakai [J5],

Lemma 1. Let jU and v be normal positive linear functional s of a

von Neumann algebra N such that jU^>v. There exists a unique hQ

satisfying

(1) v(0 =

(2) *(&0)^A

(3) O^&o^l-

. The existence of A0 satisfying (1) and (3) is in jj)]- Since

s%H)) = 0, we have **(»)<* *"(#). Setting ^=

, we obtain from (1)

0 = KC) = (V2) A(^o) -

Since sN(v)QQ*sN(#)=QQ*, we obtain ^* = 0, i.e. ̂ =^* = 0. Hence

hQ = hQ-*r hfQ

where h'0 = sN(/t)hQsN(#) and AS = (1-5^))A0(1-A^))- Since

satisfies (1), (2) and (3).

The uniqueness holds in the following slightly more general form.

Q.E.D.

Lemma 2* Let IJL and p be normal linear functional s of N and /t

be positive. An operator hQ € N satisfying (1) and (2) of Lemma 1 is

unique^ if it exists.

Proof. Suppose hQ and h'Q satisfy (1) and (2). Then h = hQ — hQ

satisfy ft(hQ + QK) = Q for all QeN. Substituting Q = h*, we have
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0 <; fj.(h*K) <: fiQih* + h*h} = 0

and hence sN(ju)h*hsN(/t) = Q. Since s(fi)<=sN(/t), we have h*h = Q and

hence hQ — h,Q = h=Q. Q.E.D.

We use Lemma 1 in the following complex form.

Lemma 3. Let ft and v be normal linear functionals of N^

, Vs, and V4 be positive and y/^/l/*, 4 = 1, 2, 3, 4,

unique hQ^N satisfying the conditions (1) and (2) <?/ Lemma 1.

Immediate from Lemmas 1 and 2. Q.E.D.

A linear mapping F from a von Neumann algebra M into N is call-

ed 7i -positive if the mapping .F01 from M®^(CW) to N§Q&(Cn) is

positive, where Cw is an ^-dimensional Hilbert space, &(Cn) is the set of

all linear operators on Cn and (F®l}(Q®Qr} = F(Q}®Qf for QeM,Qfe

&(Cn). If F is rj-positive for all positive integers ra, F is called com-

pletely positive.

F is called transposed- ̂ -positive if F(&t from M§§&(Cn) to JV(g)

^(Cw) is positive where i is any transposition of matrices relative to any

fixed orthonormal basis. The positivity of F(S)t does not depend on t

because two transpositions t and tr relative to different orthonormal bases

are always related by t'(Q) = ut(ff)u* for some unitary uE^(Cw).

If F is n -positive or transposed- n -positive, then ^^0 implies Q®1

J>0 and hence F(Q)^l^Q and hence F(Q)^Q. (More generally it is

n/-positive or transposed- zi'-positive for 7i/<j7i.) Considering F((z + Q)*

^0 for z = l and i, we then have the selfadjointness F(Q)* =

Lemma 4. If a linear map F from M into N is 2-positive and

satisfies F(l)F(Q) = F(Q\ QeM, then

(1.1) F(Q*Q)^F(Q)*F(Q), QeM.
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If a linear map F from M into N is transposed-2-positive and satis-

fies F(T)F(Q} = F(Q\QeM, then

(1.2)

Proof. Consider

for Q£M relative to a fixed orthonormal basis ei and e2 in C2. Let x\

and A; 2 be vectors in defining Hilbert space of M and N and x = xi$$ei

2. Then

and hence

If F is 2 -positive then

where we have used F(@)* = F(Q*). Setting xi=—F(Q)x29 we have

for any x2 where we have used F(l')F(ff) = F(Q). Hence we have (1.1).

If F is transposed-2-positive, we have

Hence, by setting A;X= — F(Q}*x2, we obtain (1.2). Q.E.D.

For a cyclic and separating vector Q for M3 the polar decomposition

of the closure 5 of the operator 5 defined on MQ by

defines the modular operator AQ, which is a strictly positive selfadjoint
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operator satisfying AQQ = @ and JaAa = A$lJa, and the modular conjuga-

tion JQ which is an antiunitary involution satisfying JQ@ = &.

If Q is not a cyclic and separating vector, we consider the restric-

tions of M and M' to sM(^sM\^H, and define JQ and AQ on

s above and 0 on (l-sM(^sM\^}H. The mapping

maps M onto sM\ti)sM(ti)MsM(ti) and M' onto S
M(Q}sM\Q}MfsM\®\ It

is an automorphism of su\Q}sM(Q}Msu(Q} and

We denote

It brings M onto sM\S)Mr sM\S)sM (S) and M1 onto i
For a normal positive linear functional p on M, we denote /£, J^,

ffiCOj /a for np(M} and & = Qp by /^ Jp3 r^) and j^. We sometimes

denote the expectation functional of B(Hp) by the vector Sp again by p.

We need the following.

Lemma 5. Let p be a normal positive linear functional of M and

Zp be the set of x€.M such that p(xQ} = p(Qx} for all QeM, Then for

every z£Zp, [_sM(p\ *] = 0, [_Ap, ^(^ = 0 and

If zeMr\M', then

Proof. Substituting QsM(p^ into Q of p(xQ)=p(Qx), we obtain

p(QsM(p)±x) = 0 where SM (p^ = l-5M(p). Hence ^(5^)^)^ = 0.

Multiplying 7T/M)7, we obtain Q = np(s
M(p}±x}s7r^M\Sp) =7tp(s

M(p^xsM

(p)). Substituting SM (p^Q into Q of p(xQ)=p(Qx)9 we also obtain

7rp(s
M(p)xsM(p^ = xp(S

M(p^x*S
M(p»* = 0. Hence *,([>, 5

M(p)]) - 0.

Hence 5c(p)Q^3 5
M(p)] = 0 where sc(p) is the central support of p. Since

p.-5c(p)>M(p) = 0? we have [>?5
M(p)>0.
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Since Sp is cyclic for R = 7tp(M\ sR'(&p) = l. Since rp(t)np(z} =

rp(t}np(zsM(pfi and j p(n ,(*)) = j p(n p(z)su '(p)) by definitions of rp and jp,

it is enough to prove

for z€.Zps
u(p) on np(s

M(p))Hp = Hp. Since Qp is cyclic and separating

for Rp = Kp(s
M(p)MsM(p)} on JJ£3 the first equation is known. [8] It im-

plies [J,, 7r,(*);] = 0. From jp(z)Op = Jl
p

l2z*Qp = z*Qp we have jp(z) = z*

for z = np(z\ z£M(^MfsM(p). Q.E.D.

§2a Mapping F^M from a von Neumann Algebra M into A

Theorem 1. Let M and N be von Neumann algebras such that

Mf, Let p be a normal positive linear functional of (M\jN}rf, There

exists a unique mapping F^M from M into N satisfying

(2.1)

for all Q€M,Q'eN, and

(2.2)

It has the following properties'.

(1) F™ is (M r\N)-linear.

(2)

(3) F^M is transposed-n-positive for all positive integers n. (In partic-

ular, F^M is positive and

(4)

(5) F^M is 6 -weakly continuous (i.e. normal). It is continuous on
the unit ball relative to the strong topology on M and * strong topology

on N.
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(6) For any automorphism r of (M\jN}ff satisfying r(M) = Af and

(2.3)

where r*p is defined by (r*p)(()) = p(r<2). In particular, if u€.M is uni-

tary,

(2.4)

and if v E N is unitary

(2.5)

where (JiP*2)((?) = p(*2(?O-

(7) For any A€Mr\N, A^Q,

(8) // limllp,, — p|| = 0 and limsN(pn} = sN(p\ then

uniformly for a bounded set of Q. (If sN(pn}^sN(p\ then lim||pB — p||

= 0 implies HmsN(pn) = sN(p')^

Proof. Let Q&M and Q' € N. Consider

(2.6)

If Q^>Q, then

is normal positive linear functional on N. If (XSjO in addition,

(2.7)

Hence e^|
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For general Q, we have

(2.8) Q=Qi

where Qi and Q2 are positive and negative parts of ((? + (?*)/2, Qs and

are positive and negative parts of ((?— (?*)/(20- Then

where fQk^ \\Qk \\p.

By Lemma 3, there exists a unique hQ = F^M(Q')eN such that

(2.9)

for all Q'eN and

(2.10)

This shows the existence and uniqueness of

(1) Let zi, z2€Mr\N and Qi,Q2€M. Note that Mr\N is in the

center of (N\JM)" by NC.M'. We have, for Q=z1Ql + 22Q2,

= p(F'Q'+Q'F')/2

where

Since s(F^M(Qk)^sN(p\ k = l,2, we also have s(Fr)^slf(p). By the

uniqueness, we have
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From p(Q*Q') = p(Q(QT)* and the uniqueness, we obtain
(2) The substitution of Q=l and F*M(Q} = sN(p) into (2.1) and

(2.2) immediately prove this statement.

(3) If (?^0, then F*M(Q^Q from Lemma 1. Hence F*M is posi-

tive.

To prove transposed- ra-positivity for ^>13 let ei, • • • , en be an ortho-

normal basis of CW
3

JQ be the modular conjugation for Q (/fl2cj/ej®e/=Z!ctfe/®ej)> and the
transposition t be chosen to be

(2.11) tQ=J,Q*Jil.

which maps <36^(C")(g)l onto KgJ^CC1"). Consider (on

Then F^M^)t from M to TV coincides with ff^ due to the following

computation and hence is positive by our earlier result.

Let <?i 6 M, Q{ e iV, <?2 £ «(C")(g)l, (?^ € 1®«(C"). Then

, Q'zQ)/2

where we have used the fact that the modular operator for a faithful
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trace vector Q is 1 and hence ja(Q)Q = JaQQ = dlJ2Q*£=Q*ti. Sub-

stituting the definition of *Q, we have

for Q'=Q{ (g)(?2- Since such (X linearly span JV(g)(10^l(C"))J the same

equation holds for all (X in N. Since sjf(p) = sjv(<3)01 because Q is cy-

clic for l<g)^(CB), we have

Hence

(2.12)

(4) From Lemma 1 (3) and (2.7), we have

for ()I>0. Due to Lemma 4, we have

for arbitrary Q. From (2), we obtain \F*!M\\ = \ if

(5) Assume that a net ^ a €M has a weak limit () and |K?«||^1.

Then

(2.13)
a

Since ||FfM«?a)||^||(3a||^l, the set of accumulation points

(2.14)

is non-empty due to the weak compactness. Let Q be in this set. Then

from (2.13)3 we have

From the uniqueness in Lemma 23 we have



VON NEUMANN ALGEBRA 449

and hence the set (2.14) consists of a single point F^M(Q). Thus

w-lim

The weak continuity on bounded sets implies the normality and the

(T-weak continuity for a positive linear mapping.

Next, we assume that a net Qa^M has a strong limit Q and \\Qa\\

^1. Then \\F™(Qa-Q)\\^Qa-Q\\^2. Hence

lim

By using (2.1) with Q=(Qa-Q)*, Q' = F^M(Qa-Q\ we have

a -Q)}*F»"(Qa

and hence

s*.

Multiplying Q € np(N}', we have

lim

for ¥ = QQp. Since ||JF
TfM(<2a;-0||^2, the same hold on the closure of

icp(N)'Sf, which is np(s
N(p))Hp. Hence

lim KP{F?>'<Qa-Q-)S
lf(p)} = 0, lim

Since np i

S
N(p)NsN(()) and

Since np is faithful at least on sN(p)NsN(p), n^ is continuous on
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0 = lim ̂ (0)(^-0*^(0) = Km

due to (2.2) and (1).

(6) For Q € M and Q' € N, we have

r*p({r~

We also have

Hence (2.3) holds by the uniqueness.

(2.4) and (2.5) are special cases of (2.3) where t(A) = uAu* and

»^(»* for A£(N\JM}".

(7) Since NCM', Mr\N is in the center of (N\JM.y. We have

We also have

Hence, by uniqueness5 we have

(8) We have for Sn=F^M(Q)-F^n
M(Q') the following estimate
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^\\Q\\\\Q'\\\\P-e«\\-

Setting Q' = d* and using ||5«||^2||Q||, we have

Hence we have

lim xp(djr = 0, lim 7tf(8*)¥ = 0,
w-»oo n-*oo

for W=Qf and hence for V = Q'QP,Q' 6 np(N)'. Since ||7r/

is uniformly bounded, the same holds for W^sN(S^)Hp and hence

lim ff/fcAp)) = 0, lim Tf/ffHAp)) = 0,

uniformly for a bounded set of Q. Since TTp 1 is continuous on Ns*?(p),

where s^(p) is the central support of sN(p), we have

lim {F™«?) - F^C^AP)} = 0,
W-^oo

lim

If limAp») = Ap), then as ||^/((3)||^||<3|| we have

lim

-lim J**«?)(AP) - AP.)) = 0
«->oo

and we obtain

uniformly for a bounded set of Q. Similar equation for adjoint also holds.

If Ap^Ap), then

(̂1-̂ 0)1 = |p(l-Ap.))-P-(l-«Ar(P.))l^l|p-P.II
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and hence

limjr/l -*%>„))£, = 0.

As before, we have

) = 0. Q.E.D.

The proof of (3) implies the following corollaries.

Corollary 1. // Mf=N, p = a)s and J2 is a faithful trace vector for

M as well as for N^ then

Corollary 2. Let M=Ml®M2, N=Ni®N2, p = pi(S)p2. If Pi is a

trace on N\ or if p2 is a trace on N2, then

for all Qi£Mi,Q2£M2. (In particular, if either NI or N2 is abelian

then this holds for any normal states PI and p2.)

Remark 1. F™(Q) = F*?N(Q) for QeM, where pM is the restriction

of p (which is a functional on (JVW-ZV)") to (M\jNyf, In this sense3

the case M = Nf is most canonical and we shall study it from different

viewpoint in the next section.

Remark 2. In order to define F^M(Q\ p need not be normal on the

whole (MW-ZVy, but it is sufficient that p is normal on N. The unique-

ness and existence together with properties (1)3 (2)5 (3), (4), (6)5 (7) and

(8) hold for such non-normal p. Note that fQ defined by (2.6) is normal

due to (2.7) if p is normal on N.

Remark 3. Theorem 1 holds also for the case where N is a weakly
closed * subalgebra of M ' even if the unit in N is not the identity oper-

ator in M'.
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§3. Mapping G^ from a von Neumann Algebra M into Itself

Theorem 2. Let p be a normal positive linear functional of M,

There exists a unique mapping G^ from M into sM(p)MsM(p) satisfying

(3.1) (flP,^0^/2^(^fip) = P(^(0^+^C?(C))/2

for all Q9Q'€M.

It has the following properties :

(1) G^ is Zp-linear, where Zp is the set of x€.M such that p(xQ) =

p(Q%) f°r oil Q€zM, and M is considered as two-sided Zp module. In

particular , G^ is Z-linear for the center Z=Mr\M'.

(2) (̂1) = AP).

(3) G^ is completely positive. (In particular, it is positive and

GM(Q)*=GM(Q*}.}

(4) \\Gy\\ = \far p=^0.

(5) G^ is (J-weakly continuous (i.e. normal}. It is continuous on the

unit ball relative to the strong topology for Q and * strong topology for

(6) If r is an automorphism of M and r*p = p, then

(7) y*€Z, z^Q, then

(8) The kernel of G? is

which implies
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The image of Gf is strongly dense in sM(p)MsM(p).

Proof. Let R = np(M} and Q,Q'eR. From the formula ja(Q)Q

and (2.1), we have

(3.2) (fl,, 0Jj'VS,) = (fl,, Qjf{Q'*}Op)

where p is also used for p(Q) = (QP,QGp\ Q€(R\jRy, in writing FR/R,

Since (/,*, y) = (J$Jpx, y) = (JPx, J$y) = (x, JPy) = (JPy, *} where J2
P =

sR(Sp) is hermitian (sR'(&p) = l due to the cyclicity of Sp\ and since

JPQP = QP, we have

(3.3) (flp, QA}t*Vaf)

Since s*(jp(F?*(QM^sR(Qp)=7Cp(s
M(p», there exists G€5

M(p)

MsM(p) such that

(3.4) ^(0=7X^(0*))-

From (3.2) and (3.3), G*f(Q)=G satisfies (3.1) for all </eM. Hence the

existence is proved.

If Gy(Q)=G and Gf both satisfy (3.1), then G-G' also satisfies

p((G-G')Qf+Qf(G-G'» = Q for all Qr e M. In particular, we have

p((C-CO*(C-CO) = 0 for ^-(G-GO*. Since p is faithful on s(p)Ms(p),

we have G— G'=0 and hence the uniqueness.

(1) From (3.4) and Theorem 1 (1), Gf is linear. If z€Zp, then

z = 7tp(z) commutes with Ap (Lemma 5) and we have

(fl,,



VON NEUMANN ALGEBRA 455

for q = np(Q} and Q'=7tp(Q
f), QeM, Qf €M. Since z commutes with s(p)

by Lemma 5, s(G^(Q)z)<^s(p) and hence

Since [_jp(z\ A P~} = j P(£_z, dJ1']) = Q, we also have

Hence we have

(2), (4) and (5) follow from the corresponding results in Theorem 1

and (3.4).

(3) Let Qij-eR such that Z (*/,(>//#/) ̂ > 0 for any Xj-eHp where

the indices i, j run from 1 to n. By Theorem 1 (3),

for any vectors ^y € fl^. Hence

z (*<, *f<G
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Since np is faithful on sM(p)MsM(p\ this proves ra-positivity of GJ*.

(6) If r*p = p3 there exists a unitary operator Up(r) on Hp such

that

Applying S, we have

Hence Up(j:} also commutes with closure S and hence with Ap and Jf.

We also have rsM(p) = sM(p). From Theorem 1 (6), we now have, for

Since sM(rGy(Q)~)<;SM(T:p) = sM((>\ we have (6).

(7) It follows from Theorem 1 (7) and ;»(ff

The latter equation is due to Lemma 5.

(8) From G^(Q) = 0 and (3.1), we obtain

Since jf(itf(My)af = 7tf(M)'3f span np(s
M(p)}Hf (=sR(^f~)Hp), we have

By multiplying <2' € itf(M)', we obtain
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for sR(Qp}¥ = Q'Qp and hence for all ¥. Therefore

and hence sM(p)QsM(p) = 0. Thus Q must be in 5M(p)M(l-5
M(p)) + (l-

sM(p))M. On the other hand, if Q is in this set, (3.1) vanishes and

hence by the uniqueness of £f(0, we have Cjf(0=Cjf(0) = 0.

To prove that the image of G™ is strongly dense in sM(p)MsM(p), it

is enough to prove that the image of G^ is strongly dense in M for

faithful p because p is faithful on sM(p)MsM(p). Assume that p is faith-

ful on M.

Let qen(M} and

It satisfies ||<)0||<^||(?||, HmQ^^Q. Furthermore,

is analytic for all t. Hence, for Q' 6 np(M), we have

where the first equality is due to KMS condition. Hence we have for

(3.5)

Thus the image of GjJ* is strongly dense in M for faithful p.

Q.E.D.
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§4. Projections of a von Neumann Algebra into Its Center

Theorem 3. Let Z denote the center of M and NCZ. Then

has the following properties besides the properties (l)-(8) of Theorem 1.

( 9 ) F$M is a projection from M onto NsN(p).

(10) Define p and pr to be N-equivalent if sN(p) = sN(p') and pf is

in the norm closure of the set of all Ap, A 6 TV, A J> 0. It is an equiva-

lence relation and F^M=F$M if and only if p is N-equivalent to pr.

(11) Let sN/(^p) be the projection on the closure of np(N)@p. The

mapping from Q€NsN(p) to sN\Qp}np(Q}€sN\tip}np(s
N(p)M} is bijective.

Let the inverse mapping be a. Then

(4.1)

(12) // KCN, then

Proof. (9) F?M(Q) = QsN(p) = Q for Q€Ns(p) due to Theorem 1 (1)

and (2). Hence F^M is a projection onto NsN(p).

(10) If p is TV-equivalent to p', then pr is a norm limit of Anp,

where we may restrict sN(p)Anp=pn. Then by Theorem 1 (7) and (8),

we have F^M(Q) = lim F?n
M(Q)=F»M(Q).

Next assume that F^M = F^M. From Theorem 1 (2), we have

By the Radon-Nikodym theorem, there exists a non-negative self-adjoint

operator A affiliated with TV" such that s(A)=sN(p) and

p(QA) = p'(Q\ QeN.

Let E£ be the spectral projection of A and An = AE%€.N, pn = Anp. Let

p~Ap = limAnp which exists as a state of M, because Q^p(AnQ) —

p(AmQ)<[\\Q\\p(An-Am)-+Q for Q^Q,QeM and n^m. Then the re-

striction of p to TV is the same as the restriction of pf to N. By what

we have already proved, F^M = F^M = F^M. Hence we have
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for all Q^M and Q'^N. Setting (X — 1, we have p = p' as a functional

on M. This shows that p is JV-equivalent to p'.

pNM--pN/M js certainly an equivalence relation for p and pf.

(11) Since p is faithful on Ns"(p)9 sN'(Qp)7i:p(Q) = Q for Q€NsN(p)

implies ||5^(fi/,)7r/,(®lSp||
2 = p(Q*0 = 0 and hence 0 = 0. Thus Q-^sN\ap)

np(Q) is bijective from NsN(p) to sN\^p)np(N

We have, for QeM,Q'eN,

If we prove that

(4.2) sN

then we have

Due to the commutativity of elements of 7V3 we have (4.1).

To prove (4.2), we note that Q p is a cyclic vector for abelian 7Cp(N)

on 5^ (tip) Hp by definition and hence maximal abelian there. Further-

more, 7tp(l — sN(p))Q@p = Q for Q€:7Tp(N) by the commutativity and hence

^(flp)7T/,(/
r(p)) = ̂ (flp). Thus any Q£@(SN\® p}Hp") satisfying [Q9Qd

= 0 for all Qlenp(N} belongs to Kp(N

Since SN' (Q J € n p(ff)' and TV commutes with M, Q€sN'(Qp)xp(]lf)

sN'(Sp) commutes with any Qi G ftp(N). Hence

Since M^NsN(p), the equality holds.

(12) This is immediate from the defining equations (2.1) and (2.2)

and the abelian property of N. Q.E.D.

Corollary. (10), (11) and (12) of Theorem 3 holds if N(^Mf and

N is abelian.
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Proof. Let R = (N\jMy. Then N is in the center of R. Further-

more

Hence by applying Theorem 3 (10) and (11) to F*R, we obtain (10) and

(11) for F*M. Note that F?R(Q) for QeM determines F*R due to the

property (1) of Theorem 1. Q.E.D.

Remark. If N is abelian, Q e N can be identified with continuous

function on its spectrum and any normal linear function on N with a

Radon measure on its spectrum. Denoting the measure corresponding to

the normal linear functional p(QQ^=fQ(Qf) for Q'eNand QeM by jUQ,

js given by the Radon-Nikodym derivative:

where we define djUQ/d{ti = Q outside the support of sN(p).

F^M(Q) for an abelian N has been introduced through the equation

(4.1) by D. Ruelle [5] in his theory of decomposition of state. If jup

denotes the measure on the spectrum 3N of N, corresponding to the re-

striction of p to N, then

is his decomposition.

§5. Asymptotically Abelian System

A net Qa of elements of a von Neumann algebra M is called weakly

central if there exists a weakly total selfadjoint subset M0 of M such

that

(5.1) l>,0«:i->0

in the weak topology for every x € M0. If (5.1) holds with the strong

limit., then Qa is called strongly central
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The following result is an extension of Proposition 4 of [Ij to non-

factors.

Theorem 4, // Qa is a uniformly bounded weakly central net in M3

then

(5.2) w-lim(0B-F^(Oa))a
z(p) = 0

a

for any normal positive linear functional p on M, where Z=M r\Mr.

For any two normal positive linear functionals p and p'3

(5.3) w-
a

In particular, if sz

(5.4) w-lim(f™((?a) - Fz
p^(Qa}} = 0.

a.

When sz(p')<^sz(p\ let Az(p'/p) be the Radon-Nikodym derivative of

pf by p relative to Z9 namely r,

S(A
z(p' /p)) = sz(p'\

where Az(p'/p) can be unbounded and

If sz(p')^sz(p\ then

(5.5) lim {p'(0a) - p(QaA(p'/p»} = 0.
a

In particular, if A(pf/p) = l (i.e. if p\Z=pr\Z\ then

(5.6) li

Proof. Consider H^ 7tp, ®p canonically associated with p^O. Let

a = np(Qa). Let R0 be the linear hull of TT/MO), R = np
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Given £>0 and vectors 0y£jff, /=1, ••-, n, 0y^0, there exist Q'{, • ••,

and Q[, ...,Q'k€R' such that

satisfies

because s'GZ' and linear hull of R^R^ is * strongly dense in Zf

For this set of operators, there exists a£ such that for all

due to the weakly central property.

Then for a>a£, we have

<£.

Hence

(5.7) w-lim[<ja,
a

By Theorem 3 (11)3 we have

(5.8) *'$a*'=*P(F™(QaW.

Since s'$p = Qp, we obtain from (5.7) and (5.8)

Take any Q"eR0, Q'eR'Q. Since ^P(Fz
p
M(Qa)}^Z, it commutes with
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Q"Qf. By weakly central property,

Hence

(5.9) w-limnp(Qaa

for W=^Q"Q'Qe. Since Qa is assumed to uniformly bounded and

1, (5.9) holds for all ¥ in the closure of Z'GP, which is sz(Sp)Hp =

np(s
z(p)}Hp. Hence

w-lim itp({Qa -
a

Since np is faithful on sz(p)M, we have (5.2).

From (5.2) for p and p', we have (5.3) and in the special case

sz(p') = 5
z(p), we obtain (5.4), where we use FZM(Qa)s

z(p) = FZM(Qa).

If sz(p7)<;sz(p)3 we obtain from (5.2)

(5.10) lim
a

Using the definition of Az(pf/p) and (2.1) with (/ = !, we obtain

This proves (5.5). (5.6) then follows. Q.E.D.

If a subset SI of a von Neumann algebra M and a net of * automor-

phisms ta of M satisfy the property that raQ for every <?63l is weakly

(or strongly) central, then SI is called weakly (or strongly) rtf central in

M.

Corollary . // SI zs weakly ra central in M and p is a ra invari-

ant normal positive linear functional on M, then

(5.11) w-lim (raQ-
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for all () G §1 where Z is the center of M.

If pf is another normal positive linear functional on M and sz(pf) <^

sz(p)3 then

(5.12) lim {p'(r«0 - p(Qr^ A2 V '/ 'p))> - 0
a

for all <?6Sl where TalAz(p//p}=(^d('CalEx). In particular if p'(z) =

p(z) for all z€Z, then

(5.13)

Proof. Since ||r«()|| = | l (? l l» raQ is uniformly bounded. By (5.2), (2.3)

and rjp = p, we have (5.11). (5.12) follows from (5.5) and the invariance

of p. (5.13) is a special case of (5.12) where sz(p') = sz(p) and Az(p'/p)

= 1. Q.E.D,

Remark. If Qa is weakly central and uniformly bounded, then w-lim

D^? (?aH~ 0 f°r a^ A; EM, because it holds for any # in the linear hull

MI of M0, which, being a weakly dense linear subset, is * strongly dense

in M, and hence for given #€M, £>0, fy, % there exist 3/6 MI and

a0 such that ||(

and

for

which imply \(Wh [_x,

Hence, if 21 is weakly ra central, then the norm closure Sli of the

linear hull of §tW2l* is obviously weakly ra central and (5.2)-(5.6) for

Qa = raQ and (5.11)-(5.13) hold for any Qe^ti.

(5.11)-(5.13) hold for (T-weak colsure of Sli if 5Z(p) and

are replaced by sM(p) and sM(p') 2S sM(p), because (5.11) implies

w-lim 7t(ra- raF
ZM(QW = 0
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for W = @p and Q in the strong closure of the unit ball of SXi and hence

for WeR'tip and Q in the tf-weak closure of Sli.

The next theorem has an application in |J2].

Description of situation. A von Neumann algebra M3 a net of *

automorphisms ras a faithful normal positive linear functional p=^0 on

M, invariant under all ra and a C* subalgebra 21 of M are given. Let

f/a be the unique unitary operator on Hp satisfying Uanp(Q} Qp = np

(raQ)QP for all QeM. Let taQ=UaQU$ for all Qe@(Hp}. Let /, be

the modular conjugation operator for the cyclic and separating Q p rela-

tive to np(M) and jp(Q}^JPQJP,Q£@(Hp}. Let t be the C* algebra

generated by

(5.14)

and «=(

Theorem 5. Assume that §1 is strongly ra central in M. For any
/s.

normal positive linear functional p' on £i(Hp~), all Q€^i satisfy

(5.15) lim {p'(f «<?)-(£„ Qfa1A2(p7n)^p)} = 0
a

where P = O)Q, Z = K p(M) r\n p(M)f which is the center of R and A^(p'/p)

is as in Theorem 4. In particular, if p(z') = pf(np(z}} for all z in the

center of M, then

(5.16) Iimp'(?a0)
a

Proof. Let SP=JPA}12. We have

where Q&np(M\ which implies fa<?€7rp(M). Thus Ua commutes with

5^ and hence with AP^=S*SP and Jp.

Let Q, (Xe§I, (?o 6 M0(<3), (?^ 6 M0«?0 where M0((?) is a selfadjoint
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total subset of M such that (5.1) is satisfied in the strong topology for all

x€MQ(Q) and Qa = ra(Q) and MQ(Qf) is the same for (X.

(5.17) LxPmjPixM»,t«(

Since both Q(?o, ra(T] and Q(?o, ra(?'H tends to 0 strongly, and all opera-

tors are bounded uniformly in a, (5.17) tends to 0 strongly.

Since M0(0 and M0((X) are selfadjoint and total,

is also selfadjoint and total in R. Hence (5.14) is strongly ra central in

R.

By (5.12) and (5.13), we obtain (5.15) and (5.16) when Q is in

(5.14). Note that sz(p) = l because p is assumed to be faithful. Note

also that Z=itp(Z).

By Remark after Corollary to Theorem 4, Q in (5.15) and (5.16) can
/s

be in the norm closure of the linear hull of (5.14), which is §1.

Q.E.D.

Remark. Let 31 1 be a C* algebra, p be a state on 2li and ra be a

net of * automorphisms of §li. If

tends to 0 weakly (or strongly) for all @i, Q2 6 Sli, then Sli is said to be

weakly (or strongly) ra asymptotically abelian. We can apply Theorem 4

to such a situation by taking M0 = 7tp(yti)9 M= np($li)ff and Qa = TCp(raQ)

for ^ESli. If p is TO- invariant and 2li is strongly ra asymptotically

abelian, then we can apply Theorem 5.

Method of Mg translation in \J3T\ can be formulated as follows.

(See Theorem 6).
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Lemma 6. Let pa be a net of (not necessarily normal} positive

linear functional on (M\jN}rf such that limpa = p (i.e. lim pa(Q) = p(Q)
a a

for each Q^.(M^JN)//). Assume that the restriction of pa to N is nor-

mal and independent of a. Assume also that N is abelian. Then

(5.18) w-lim
a

(See Remark 2 of §2.)

Proof. Let the restriction of pa to TV" be denoted by o~ which is in-

dependent of cc by assumption. Then we obtain, from limp^^p,

for all Q[€N, Q'Z€N. Setting xa = (F™-F*>M)(Q\ we have

lim(T, 7^000) = 0
a.

for V = nv(Q[)*Qv and 0 = TT, ((?£)£,. Since ||#«|| <S2|!<?||, we have w-lim
a

K<r(xa) — 0. Since s(x^) ^SN(O~\ we obtain w-lim xa = Q.

Theorem 6. Let SI be a weakly ra central C* subalgebra of a von

Neumann algebra M. Assume that the center Z of M is elementwise ra

invariant and has a faithful normal state p. Let 2t be the C* algebra

generated by SI and Z. Then there exists a subnet ra:(/s) such that

(5.19) £((?) = w-lim raWQ
$

exists for all Q € SI, where L is Z-linear, completely positive projection of

norm 1 from 2t onto Z and £(!) = !. If Z is trivial, then L(Q) = a)(Q)l

for a state CD on SI.

Proof. Let p be any extension of p to a state on M. By weak

compactness, there exists a subnet a(0) such that

lim r S^p = p«

exists.
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Since Z is elementwise invariant under r^, the restriction of r$p to

Z is always p and hence the restriction of £u to Z is also p. Since p is

faithful on Z, sz(p) = l. By (5.2), (2.3) and Lemma 6,

w-lim Ta(/3)Q=w-lim

Hence (5.19) holds with L = Fj^. The properties of £ follow from Theo-

rem 1 applied for Fp^ (see Remark 2 of § 2) except possibly for the

complete positivity.

Since Z is abelian, Jpz*Jp = z, z£ itp(Z} for a faithful state p. Hence

Q—^Q^JpQ^Jp is a transposition on &(H^ leaving Z invariant. Hence

if L is transposed- n -positive then

is also positive and hence F is n positive. Here ln and tn denote the

identity mapping and a transposition of n X n matrices. Q. Ea D.
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