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On the N-tuple Wave Solutions of the
Korteweg-de Vnes Equation

By

Shunichi TANAKA*

1. Introduction In this paper, we discuss properties of the N-tuple

wave solutions of the Korteweg-de Vries (KdV) equation

(1) u-6uu'+u'" = 0,

where u and u' are t and x derivatives of u = u(x, t) ( —oo<# ? £<oo)

respectively.

The KdV equation is known to have traveling wave solutions

u(x, t) = s(x — ct — 8', c),

where

s(x\ c)=-2-1csech2(2-1c1/2A;).

Each of such solutions is called a soliton or solitary wave solution. Re-

cently it was discovered that there exist solutions of the KdV equation

which behave like superposition of two solitons as t -> ± oo (Kruskal and

Zabusky [JT]). The existence and properties of such solutions (called double

wave solutions) were studied by Lax |Jf].

The structure of the solution of the KdV equation for the rapidly

decreasing initial value was clarified by Gardner, Greene, Kruskal and

Miura Q2]. They related the solution u(x, t) to the Schrodinger equation

with the potential u (for each t) and found that discrete eigenvalues re-

main invariant. The reflection coefficient and the normalization coefficients
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of eigenfunctions are shown to depend on t exponentially. Here soliton

is characterized as the solution with one discrete eigenvalue and the zero

reflection coefficient.

According to £2], one calls a solution TV-tuple wave if for each t corres-

ponding Schrodinger equation has N discrete eigenvalues and its reflection

coefficient identically vanishes. As the reflectionless potentials are explicit-

ly constructed by Kay and Moses £3], the possible form of the TV-tuple

wave solution is determined for each t. In Section 3 of this paper we

give a proof that the function thus constructed is actually a solution of

the KdV equation. Our proof is elementary and independent of the

general structure theory of the initial value problem of the KdV equation

such as given by Zakharov and Faddeev [JT]. We have to rewrite the

formula of the reflectionless potential by Kay and Moses into the form

which is more convenient for the study of the TV-tuple wave (formula

(11)). Formula (11) is particularly suitable for the study of the asympto-

tic behavior of the TV-tuple wave solution, as each term asymptotically

behaves like soliton. This will be discussed in Section 4. Asymptotic

behavior of the TV-tuple wave solutions have been also discussed in Zakha-

rov Q7] in a somewhat different form.

After completion of the present paper the author became aware that

a result similar to our Theorem in section 3 has been obtained by Hirota

Q9], In £9], TV-tuple wave is given as logarithmic derivative of the

determinant of the coefficient matrix of the equation (6) (the formula of

Kay and Moses) and the proof has been given by direct calulation. Using

the same expression for the TV- tuple wave, Wadati and Toda [1(0 have

verified that the TV-tuple wave solutions asymptotically split apart into

TV-solitons.

2. A formula for the reflectionless potential Let u be a real-

valued measurable function which satisfies

CD r
J-o
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and consider the eigenvalue problem (Schrddinger equation)

(2) -y"+u(X)y=k2y

on the infinite interval (— °o, oo). For each k with non-negative imagina-

ry part, there exist solutions g(x, k} and /(#, fc) of (2) which behave as

g(x, k) = e~i

f(x, K) =

For non-zero real k, /(#, k} and f(x, —k) are linearly independent solu-

tions of (2). So £•(#, k) can be expressed by them as

g(x, ft) = 6(ft)/(*, ft) + <*(*)/(*, -ft).

r(k) = b(k)a(k)~l is called the reflection coefficient and a(ft)"1 is called the

transmission coefficient. The eigenvalue problem (2) is known to have

only a finite number of negative eigenvalues — £?,•••, — KZ
N which are sim-

ple and corresponding eigenfunctions are given by f(x, iKn), Put

(3) c?= \f(x,iKn)\2dx.
J-oo

{r(k\ Kn, cn} is called the scattering data of the eigenvalue problem (2)

and one can reconstruct the potential u from the scattering data solving

the Gelfand-Levitan equation (see Faddeev Ql] and Kay, Moses £3]).

If the reflection coefficient is identically zero, the potential u is more

explicitly written by the scattering data as follows. Let /Ci, • • - , £ # be

positive numbers different from each other and ci, • • - , CN be any positive

numbers. Put

(4)

and let K(x, y)(y^x) be the solution of the Gelfand-Levitan equation

(5) K(

Putting (4) into (5), we see that K(x, y) has the form
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(we shall hereafter assume that the summation is taken over 1, 2, • • - , N

unless explicitly indicated). Putting this expression into (5), we have a

system of linear equations for fn(x} :

(6) /w(*) + cwexp(-/^^

771 = 1,. -., N9

whose coefficient matrix is easily seen to be invertible. Then the poten-

tial u(x) is given by the formula

(7) U(x} = -2(d/dxXXnfnWeXp(-K**y),

and fn satisfies the equation

(8) -/2+»/.= -*5/"

Now let us rewrite the formula (7) into the form which is more con-

venient for the application to the KdV equation. Put

Then the equation (6) is written as

(9) S»o»»(*)A,,(#)= — 1,

where

(10) amm(x) = (2O-1 + c-1 ex

Let (bmn) be the inverse matrix of (am^). Then

Differentiation of (9) with respect to x leads to the equation for /&„(#):
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So we have

and

As the matrix (bmn) is symmetric, we have finally

(11) u(x)= -42 HKnc-

3. N-tupIe wave solution Let u(x, z) be a solution of the KdV

equation and consider the Schrodinger equation (2) with the potential

u(x, t) for each t. Assume that the corresponding reflection coefficient

identically vanishes and there exist N eigenvalues — /cf, • • - , —fC2
N. Time

dependency of the normalization coefficient cn is determined in Q2] as

(12) c,(0 =

(see also Lax H5]). Conversely we have

Theorem. Let £1, • • • , £ # be positive numbers different from each

other and cn(t) be defined by (12). Let u(x, t) be the reflectionless poten-

tial which corresponds to the scattering data {/eW5 cw(£)} for each t. Then

u(x,t) is a solution of the KdV equation.

Proof. We differentiate (9) with respect to t and obtain equations

for hn(x, z) :

So we have

, t)
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*.*)Aj|(*J 0

By (7) we have a formula for the ^-derivative of u(x, t):

u(x, 0 = 32S.*»c;1(OyS/.(*, 0.

On the other hand, successive # -differentiations of (11) lead to

u =-

where the formula (8) is used. So u satisfies the KdV equation.

Q.E.D.

4. Asymptotic behavior of the N-tuple wave solutions For

JV=1, the solution of the KdV equation constructed above takes the form

u(x, 0= — 4/cc"1

where z = x — 4=K2t and c = c(0). This solution coincides with the soliton

u(x, t) = s(x — 4:fc2t — d, 4/c2),

where

We now proceed to the study of the asymptotic property of the gene-

ral JV-tuple wave solutions. Put zn = x — 4/e2£3 cw = cw(0) and

Then each un(x, t) behaves asymptotically like a soliton. More precisely,

suppose Ki<K2< ...... <Kjf. Then we have
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Proposition. As £— >±oo5

un(x, i) — s(x — ±Klt — d%, 4A£)->0

uniformly in x, where

+ l^n-Kd\Kn^

Proof. We express hn(x, £) by the Cramer's formula as

Note that

is a polynomial in exp(2£izi)3 . . - , , exp(2/cj/v^^) with positive coefficients

and non-zero constant term (Lemma 2 of Q3]). It is easy to see that the

estimate

\hH(x9 t)\<C(l + exp(2KnZn))-1 t>Q

holds. Therefore un(x, ^) converges to zero as t — > co uniformly in the

half spaces x<(4K% — e)t + d and #>(4/^ + £)£ + #, 5 and e being any fixed

real number and small positive number respectively.

Now we consider the behavior of hn(x, t} in the infinite sector

t>0.

We express A(x, t) and An(x, t) as

A(x, 0 = (n?lic71exp(2^f))Sw(^ t)(l + Rn(x, t}*)

and

where
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Bn(x, 0

and Bn is the determinant obtained by replacing the first column of the

above determinant by *( — 1, — 1, • • • , — 1). Then we have the estimate

in the sector. The same estimate holds for Qn(%9 0-

For positive numbers a^ '-,&„, put

As i->oo3 ^^(A;, «) behaves like

It is easy to see that

by the relations

By Proposition, as
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uniformly in x. We have moreover the formula for the phase shift of

each soliton:

Ino- ™~" 4-r"1
2-im=n+l „ , „

^?w ~T A' w
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