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On the Principle of Limiting Absorption

for the Dirac Operator

By

Osanobu YAMADA*

§ 1. Introduction

In this paper we are concerned with the Dirac operator

with a Hermitian symmetric potential Q(x) in R3, which appears in the

relativistic quantum mechanics. The oij and 0 are the so-called Dirac

matrices. The mathematical scattering problem for the Dirac operator has

been investigated by many authors (see, e.g., Birman Q2], Kato [J3],

Mochizuki £7], Prosser Q8]3 Roze (JT]). Our aim in the present paper is

to study the nature of the spectrum of the Dirac operator by means of

the principle of limiting absorption. Roughly speaking, this principle may

be defined to research a certain limit of u^+ip as ft | 0 or ju f 0, where

is a solution of the equation

(see Eidus [A]). Eidus £3], Q4] developed a principle of limiting absorp-

tion for elliptic Dirichlet problems in exterior domains, where the radia-

tion conditions at infinity and the near-singularity properties of fundamental

solutions were made use of in an essential manner. But recently Agmon

j^l] proposed a new method without explicit recourse to these tools and

involving a priori estimates, which is valid for elliptic operators in the
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whole space under appropriate decay conditions on the coefficients at infini-

ty. We shall derive results analogous to Agmon's for the Dirac operator

provided that the potential Q(x) decreases near infinity like l^l"1"^, &>0.

We shall outline the contents of the present paper. In § 2 we give

some fundamental spectral properties of the Dirac operator, such as essen-

tial self-adjointness, invariance of essential spectra and non-existence of

eigenvalues A with |A|>1. In §3 we shall estimate the resolvent of the

unperturbed Dirac operator in terms of Fourier transforms,, which is es-

sentially due to Agmon Ql]. In §4 we show that the principle of limit-

ing absorption holds for the Dirac operator satisfying the above condition

and prove the absolute continuity.

§2- The Dirac Operator

We consider the unperturbed Dirac operator

for x = (xi, xz, #3) 6 it3, where o/5 0 are 4x4 constant Hermitian mat-

rices and satisfy the anti-commutation relations

(2.1) ajak + akfzj = 28jkl9 ;, *=1, 2, 3, 4

with the convention a4 = /9 (I is the unit 4x4 matrix and Sjk is

Kronecker's delta). Since LQ is a formal differential operator, we can

construct from LQ various operators in the Hilbert space L2 = (X2(R3))4

consisting of all C4-valued functions such that

Z

The associated inner product is

(u, v)=\ <u(x\ v(x}>dx, <u(x\ v(x)>= 2 UJ(SG)VJ(X).
JR3 j=l

We denote by TQ the symmetric operator T0u = L0u with the domain
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CQ. CQ consists of all C4-valued functions u(x) with the com-

ponents Uj(oc) lying in C£(R3), all C°° functions on E3 with compact sup-

port. Then by Kato |JT], p. 306, TQ turns out essentially self -adjoint and

the domain of its self -adjoint realization HQ is Hl. Hl denotes the space of

all L2 functions with square integrable first order distribution derivatives.

The following proposition is well-known (see, e.g., Mochizuki

Proposition 2.1. Every real A such that |A| J> 1 is in the continu-

ous spectrum of HQ and the interval (—1, +1) is contained in the

resolvent set of HQ.

Now we consider the Hermitian matrix

£o(f)= Sa/fy + fl

for f = (fi, £2, ?s)£R3- The following property of Z0(f) can be proved

by using the relation (2.1) and will be applied in §4.

Proposition 2.2. The following relation holds for £o(f ) i

(2.2) (

The eigenvalues of £0(? ) o,re + V | f | 2 + 1 and — V | ? | 2 + 1 o;f^ multiplici-

ty 2.

Next let us consider the perturbed Dirac operator

for A; = (^i3 A;2, ^3)€R3, where <?(A;) is a 4x4 Hermitian matrix valued

function. For the self-adjointness of the perturbed Dirac operator, Prosser

proved the following.

Proposition 2.3. Suppose that \Q(x)\ lies in I?(R3) (p>3), where

\QM\2= E_ |?*yO*012 for Q(x) = (qy(xy) and LP(R3) denotes all complex-

valued measurable functions /(#) defined in R3 such that (I I/ 1 1 IP)* = \
Ja3
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1/00 \pdx< + oo. Then for any given £>0, there exists a positive con-

stant C£ such that

(2.3) ll<?a|U>

for all u 6 D(Ho). H=HQ-\-Q is self -adjoint with the domain D(H) =

We denote by Lp(@) the class of all C4-valued functions /(#) such

that (\\f\\LPWy=( \f(x)\pdx< + ood where Q is an open set in R3

and denote by Hl(ti} the class of all Z,2(J2) functions with first order

distribution derivatives in Z,2(J2).

Corollary 2818 Let p>3. For any given £>03 there exists a posi-

tive constant C'e not depending on R>Q such that

(2.4) ll^lU'cflri^llieilU'Cfl^Cell^oalU'cfl^ + ̂ ll"!!^^))

for all u 6 HI(BR+I), where BR denotes the ball with the center at the

origin and the radius R.

Proof. We take &R(x) 6 Q(R3) such that

max I £*(*)! + S

where Ci is a constant not depending on R. Then we have by Proposi-

tion 2.3

IK?K|U«(*a)^l|0^

for all ueHl(BR+i). Thus the proof of (2.4) is complete. Q.E.D.

The following proposition states a relation between the essential

spectra of H0 and H=H0
JrQ.
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Proposition 2.4. (cf . Birman \J2Tf). Assume that \ Q(x) \ is a local-

ly Lp function (p>3) and \Q(x)\=o(l) ( |#|-><*>). Then the essential

spectra of H and HQ coincide, i.e., every real number I such that [A| ^> 1

is in the essential spectrum of H, and any spectrum of H in ( — I, +1),

if it exists, is discrete.

Proof. According to Kato [6], Theorem IV-5.35, it suffices to prove

that

(H,-iYl-(H-iYl=(H-iYlQ(H,-iYl

is completely continuous. Let {(Pk} be an arbitrary infinite sequence such

that ||<^||z,2<; const, 4=1,2,.... We put ^k = (HQ — 0~~V*- Then ^6

D(H0} = Hl, and {HQtyk}, {^} are bounded sequences in L2, which im-

plies that {tyk} is a bounded sequence in H1. By Rellich's theorem we

can select a subsequence {^} from the sequence {^k} which converges

locally in Lz to some function. Then we obtain by Corollary 2.1

+( sup

where ER denotes the complement of BR. Thus it follows from the as-

sumption on Q(x) that {Q^f
k} is a Cauchy sequence in L2. As (H—i)~l

is a bounded operator on L2, {(H—iYlQ^k} is a Cauchy sequence in L2,

which shows that (H—iYlQ(.HQ — iYl is completely continuous.

Q.E.D.

When we discuss the principle of limiting absorption for H=HQ

in §4, we want to claim that H has no eigenvalues on the intervals
(_oo? _]_) ancj ( + 15 +00). So we shall give a sufficient condition in the

following.

Proposition 2.5. Let Q(x} have Cl components qtj(x) except at a
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finite number of singularities, and let there exist positive numbers RQ and

p>3 such that

3

S dQ <; const. (\X\:>RQ)

and

Then H=H0 + Q has no eigenvalues on (— oo, —1) and ( + 1,

For the proof of the above proposition we need only to follow Roze

, where a similar result is proved.

§3. An Estimate for the Resolvent of HQ

In this section we shall study the behavior of the resolvent of HQ

near the real axis.

The following proposition is a special case of Agmon pQ, Theorem

2.2.

Proposition 3.1, For any 5>-^~ and 6>a>0, there exists a posi-

tive number C2 = C2(s, &> 6)

(3.1) lkl

/or H2
S and LJ) /or a// ue H2

S and /I € K(a, 6), M;/^ ^"(a, 6)

denotes the set of all complex numbers such that a <I Re A <J 6, | Im ̂ l | ̂  1

(Re ^(Im ^) /s ^^ real (imaginary) part of /I). C2 is independent of u

and L

For 5 a real number, L?s denotes the Hilbert space of all complex-

valued functions u(x} defined in R3 such that (1+ |#|)stt(>)6£2(R3)

with the norm
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For m a non-negative integer and 5 a real number, H™ denotes the class

of all L2
S functions with distribution derivatives in L2

S up to the m.-th

order inclusive, which is normed by

1 2 3
where Dau(x}=^ — = — ̂ — nG&i, x2, #3) and |a| = | (#1, a2, <Z3)| =<

For ^ a real number, H* denotes the class of all temperate dis-

tributions whose Fourier transforms are I/f functions. We define the

norm in H* by

where u(f ) is the Fourier transform of u :

R3

It is well known that If coincides with the class of £2(R3) functions

with distribution derivatives in L2(R3) up to the Mb order inclusive when

t is a non-negative integer.

The next proposition will be often used in the present paper.

Proposition 3.2. Let <p(x) be a complex-valued function defined in

R3 such that #>(#) has bounded continuous partial derivatives up to the

m-th order inclusive, where m is a natural number. Take an arbitrary

real number s such that O<^S<JTTI. Then we obtain

for /GO € H s. There exists a positive constant C3 such that

for f 6 ffs(R3).
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The proof of the above proposition follows almost trivially when 5 is

an integer. The general case when 5 is not necessarily integral can be

reduced to the integral case by using an interpolation theorem (see, e.g.,

Gagliardo [5]).

For -°o<a<6<-l or + l<a< &< + <», /+(a, &)(/_(a, &)) denotes

the set of all complex numbers ^ such that a <J Re ^ <^ b and 1 > Im /I > 0

(0>ImA>-l). We put

/(a, 6) = /+(a, 6)W/_(a, 6).

Now the following theorem holds.

Theorem 3.1. For any s>~-^- and /(a, 6), there exists a positive

constant CQ = CQ(S, a, 6) such that

(3.2) \\u\\Hls^C6\\(LQ-Vu\\Ll

for all u € H \ and A G /(a, 6), where CQ is independent of u and A. H]

(L*) here denotes the space of all C4 -valued functions with the components

in Hl(L2
s).

Proof. It is enough to show that the inequality (3.2) holds for all

u £ CJ*, because C% is dense in H^. We put

(3.3) f=(L»-X)u

for &€C7 and ^6 /(a, 6). Then we obtain by taking the Fourier trans-

forms of both sides,

(3.4) (£0(f)-A)«(f)

where £0(£) was defined in §2. From Proposition 2.2 we have

So (3.4) shows that
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(3.5)

Next we take r(x) 6 Q (R3) such that

r(*) = l for |*|

Then (3.5) is represented as

(3.6) «(*) =(2*)

(2,0-f

First we estimate wi(a;). We denote by A(x) the inverse Fourier

transform of r(?)(io(f) + A ) ( f ) . Then

ui(«) belongs to #«, as j - / ( f ) belongs to F s for |
|f| +1 — A

by means of Proposition 3.2. Therefore according to Propositions 3.1 and
3.2,

(3.7)

wher

mate u2 we note that there is a positive constant C9 = C9(/) such that

where positive constants C7, C8 are dependent on *>~o~ anc^

for |6R3, |a|^l and A6/. Then we have

(3.8) l|a2l|ffL.^||«2||F^C1o||/|

The desired estimate is obtained from (3.7) and (3.8). Q.E.D.
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§4. The Principle of Limiting Absorption for H=HQ

In this section we shall show that the assertion of Theorem 3.1 holds

for H=HQ + Q if Q(x) satisfies the condition (A) to be stated later, and

prove the principle of limiting absorption and the absolute continuity for

H. We start with proving two lemmas.

Lemma 4.1. The following inequality is valid for all

such that LQ(p€L2(Br+{):

(4.1)

where Cu is independent of r>0.

Proof. We can choose vr6C|f(R3) as follows:

f 1, N^r
VrGO =

[ 0,

dmax

where the positive constant Ci2 is independent of r>0. Then

1 3 / d
r- 2i M J\dxj ^

Thus we obtain ||£oG>r00IU2< + °°, which shows that vr<p belongs

to .ff1. Therefore we have \\<p\\H\Br)^\\VrP\\H1^Ci3\\Lo(vrp)\\L2^Ci4:

(||i0^|U2(5r+1) + ||^IU2(Br+1)), when Cis and Cu are independent of r>0.

Q.E.D.

Throughout this section we assume that (?(#) satisfies the following

condition:

(A) (?(#) is a 4x4 Hermitian matrix valued function with Cl
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components qa(x} except at a finite number of singularities and there exist

positive numbers h, RQ and p>3 such that

\ I 0(*)|>cte<+co,
J &(KQ)

9Q <; const.

and

. „, x, ^ const.
(4.2) i^,,^(1+W)1+*

Lemma 4.2. Let (A) be satisfied and suppose —— <s<——.

is a positive constant Cis — C^s, a, 6) such that

(4.3) (||«||flL.

for all u£.Hl
s and A € /(a, 6), where R is a positive number such that

R>RQ.

Proof. From Theorem 3.1 we have

(4.4) <]

From (2.4) of Corollary 2.1 and (4.2), we have

(4.5) ll<

where R>R0 and s>0. Thus we can obtain (4.3) from (4.4) and (4.5)

if we take sufficiently small £>0 and sufficiently large R by virtue of
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-2/1+45-2=4(5

Q.E.D.

Theorem 4.1. Let Q(x) satisfy the condition (A). Then for any

s>— rr and /+(«, 6), there exists a positive constant Ci8 = Cis(s9a9b) such

that

(4.6) \\u\\Hls<;ClB\\(L-Vu\\L*

for all u€zHl and A€/+(a5 6)3 where L = LQ + Q(x^). Cis zs independent

of u and 1. A similar result holds with /+(a, 6) replaced by /_(a, 6).

Pra>/. It suffices to show that (4.6) holds for JL<5<--lt*, whichz z
we always assume hereafter. Furthermore, in view of Lemma 4.2 we

have only to show that there is a positive constant £19 = £19(5, a, 6) such

that

(4.7)

for all ueHl
s and

It we assume the contrary, there should be a sequence {un} of

and a sequence {ln} of /^(a, 6) such that

(4.8)

(4.9) (L- 4)^-^0 in LJ (^->oo).

We may assume that ^w->^o? where A0 is a real number with A0 € Ca3

because if Im^ 0>^o>0, we would obtain for n large

which is inconsistent with (4.8) and (4.9).

From (4.3) of Lemma 4,2 and (4.8) we have
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(4.10) IM*!.^C20 (71 = 1,2,...),

where C2o is a positive constant. If follows from (4.10) and Rellich's

theorem that we can select a subsequence from {un} which converges

locally in L2. We shall denote this subsequence by {un} again. We put

fn = (L— An)un.

Then evidently we have from (4.9)

(4.11) /,-»0 in LI

and

(4.12) L0uH=-Qun + lHun+fn.

Then it follows from (4.5), which appeared in the proof of Lemma 4.2,

(4.10) and _A-<5<1±A that
£j £t

(4.13) Qun->Qu0 in L2
S (ra->oo).

Therefore from Lemma 4.1, (4.11), (4.12), (4.13) and the fact that {un}

converges locally in Z,2, we have

(4.14) un-*u,Q locally in Hl.

Thus we have from (4.8)

(4.15)

and

(4.16) (

If we can show uQ£L2, then z^o^O follows from Proposition 2.5. This

contradicts (4.15), which concludes the proof of our theorem.

We shall prove uQ£L2. We put
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From (4.11) and (4.13), we have

gn-»go in L*.

We may assume un-^uQ in H±s from (4.10), where -* denotes the weak

convergence. Then we have

(4.17) (un, gn)-+(u0, go)= — (UQ, Quo) as

where (°, •) denotes the usual inner product (/, g)=\ 3</G*Os g(x)>dx.
JR

On the other hand, (un, gn) is represented in terms of Fourier trans-

forms as follows:

|2 i ^ _ _ ^ 2

where Sr denotes the spherical surface of radius r about the origin. It

can be shown by using Sobolev's imbedding theorem for j£P(R3), s>— s-,

that \ <(£o(f) + ^»)gii(f), gn(S)>dS is locally Holder continuous uni-
J s r

formly with respect to r (see, e.g., Sobolev ElOJ)- This enables us to take

the limit for n-^oo in (4.18) and to obtain

lim(un, gn)= <(£o(« + ^o)^o3 gQ>dS

As (&w, g-w) converges by (4.17) to — (u0, QUQ), which is a real num-

ber, we have from the above relation

(4.19)

This implies

(4.20) (
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Indeed, let {V0'(f)}j=i,2,3,4 be an orthonormal system such that ^i(f),

are eigenvectors associated with +V|? | 2 + 1 and 1^3 (?)9 ^(f) with

~TT. Then

is + V | f | 2 + 1 or -V|£|2 + l when | f | =V^§ —1. Therefore, we have

From (4.19), we have thus

where j=l, 2 in case of ^o— + V | f | 2 + l and y = 3, 4 in case of ^0 —

-V|£ |2 + 1, which yields (4.20).

Next we shall show

(4.21) a 0 ( g ) - y ° o 0
2 ^ almost every f 6R3.

Iff I +1 — A0

To prove this we shall take arbitrary <p(g) £ Q1 . Then we have

because UK— >-iio in ^TLj,, which implies un-^u0 in .ff~s. On the other

hand, we have for re— ><x>

(u (£)(un(?),

where jo.t;. denotes the principal value. This is obtained from (4.20) and

the local Holder continuity of \ <(£0(f) + /lo)£o(?)3 <P> dS with respect
j sr

to r€E(0 , +°°), which can be shown by using again Sobolev's imbedding

theorem and the fact gQ£L2
s, i.e., gQ^Hs. (4.21) now follows in view

of the arbitrariness of (p.
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By (4.20) and (4.21) we can show that

(4.22) &0(e^S

if we make use of the following proposition which was referred to by

S. Agmon in his lectures at the Oberwolfach Symposium on Mathematical

Theory of Scattering, 1971.

Proposition 4.1. Let geffQb*) satisfy

ff(£) = 0 on | f |=J,

where £>~o~ an^ ^^^' Then we have

(4.23)

Let us prove (4.22). We shall take r(£) 6 QT (R3) such that

r(f)=i for -wiFT^ W ^

Then zt0(f)» (4.21), is written as

a 9<r> ,5 f.s i(4.24) U o ( ? ) _ _ _

We obtain by Proposition 3.2

because g"o(^) 6 ^s and, therefore, ^0(f ) ̂  ^s- Thus we can apply in

view of (4.20) Proposition 4.1 to the first term of (4.24). For the second

term we have from Proposition 3.2 and the property of
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Thus we obtain (4.22).

uQ(S)^Hs~l implies w0(X)€£?-i5 and hence g0 = — QuQe I/L^i by
2

(4.2) and - - < s < . Another use of Proposition 4.1 gives
£j &

4s -3 4s-l

H 2 by means of (4.20) and £o(?) £ H 2 . If we repeat this proce-

dure, we obtain finally uQ(x)^L2. Then we have u0 = Q from Proposition

2.5 and (4.16), which contradicts (4.15). The proof of Theorem 4.1 is

now complete. Q.E.D.

Corollary 4.1. (The principle of limiting absorption). Let Q(x}

satisfy the condition (A). We put

for /El<s and Imz^O, where s>— o~~ . Then for any real number A

such that |/1|>1, there exists u+(A, /) swc/z that

n

*. Similarly there exists ii~(A, /) swc/z

£— >A — Oi. u+(A,/) <md u~(A,f) are solutions of the equation

are continuous functions of I in the topology of HLS.

Proof. As before we may assume — — > s > — — -. We take an arbi-

tary sequence {zn} such that Im2 w >0 and zn— >A + Qi as n,— >oo. Then

we have by Proposition 3.2,

for |a|^l, where ^2n- -Qu2n+f€ L2
S. This implies uZn(f}eH\. We

have, therefore, from Theorem 4.1
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(4-25) i:«,.(/)||Hl.^C

for n large and s>~2~3 where C2i is a positive constant independent of

zn. We can select a subsequence {uz'n} from the sequence {uZn} which

converges in the sense of HLS to some function UQ by the method describ-

ed in the proof of Theorem 4.1.

Next we want to obtain

(4.26) ugn-+uQ in Hls.

If we assume the contrary, there would exist a positive constant dQ

and a subsequence {z%} of the sequence {zn} such that

(4.27) lk,;-ttolUi.>ffo>0.

We can choose a subsequence {u2^} of the sequence {uz%} which tends

in H±s to some function &i by the above-mentioned argument. We put

Then we have

vn-*UQ — ui in

and

where VQ = UQ — UI. Then #o€.£2 can be shown as in the proof of Theo-

rem 4.1. Therefore, by Proposition 2.5 we obtain t^^O, which contradicts

(4.27). This proves (4.26).

We now show that the limit UQ is independent of the choice of the

sequence {zn} converging to 1 + Qi. We take another sequence {vn} such

that yw->^ + Oz*5 as n-+oo. Then according to what we have established

above, there exists U2^H-S such that uVn— >U2 in H-s. We shall show

1^0 = ^2. To prove this we put
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Then we have

— U2 in

and

which implies w$ = 0 by using the same argument as the proof of (4.26).

Therefore we have UQ = u2.

Thus u+(A,f) = uQ is well-defined for / £.L2
S.

Finally we shall prove that i£+(7,/) is continuous in i with values

in HLS. In view of the fact that uz(f) is a continuous function of z6

/+(a, b) in HLS, as can be seen by using the resolvent equation, it suffices

to prove that MX+»>(/) tends in HLS to u+(^,/), as T? 4 0, uniformly with

respect to /1 6 [_a^ &H- If we assume the contrary, there would be a posi-

tive number di and two sequences {Aw} (contained in [a, 6]) and {yn}

such that fin 4 0 and

(4.28) lkx.+/,.(/)-M+a,/)IUi.^ffi>0.

On the other hand, we can select for each n a real number y'n such that

flf
n \ 0 as ra— >oo? and

(4.29)

because iix+*>(/)->i£+U3/) in flls, as 7y 4 0, for each ^. From (4.28)

and (4.29) we have

(4.30)

As [_a, 6] is a compact set, there is a convergent subsequence {&n(fi} of

{&„}' Denote by ^0 the limit of {AW(j)}. Now (4.30) is inconsistent with

the fact that uXn(.}+hn(.{f) and u^n(^+h^(f) converge as /->°o to the

same limit u+(AQ,f). Thus the convergence of MX+*>(/) to u+(A,/) for

-q 4 0 is uniform. Q.E.D.
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Corollary 4.2e Let Q(x} satisfy the condition (A) and E(fc) be the

right-continuous resolution of the identity associated with H=Ho + Q.

Then (£(^)/, /) is absolutely continuous on ( — oo? — 1) and (4-1, +°°).

Proof. It is enough to show the assertion for all f €L

because L2
S is dense in L2, We make use of the following relation,

(4.31) --((£(£) + E(0 - O))/, /) - - - ( ( E ( a ) + E(a - O))/,

We take an arbitary interval Qa, b~} contained in (—00, —1) or (+1,

+ 00). Then we have from Corollary 4.1 and (4.31)

and

for a<J<2</?<J63 where 6*22 is a positive constant depending only on \ja,

6] and s, which shows the desired absolute continuity. Q.E.D.

In conclusion, the author wishes to express his sincere gratitude to

Professor T. Ikebe for his enduring encouragements and valuable advices.
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