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Generation Theorems of Semi-Groups
of Linear Operators

By

I. MrvapEra®, S. Ouaru** and N. Oxazawa***

This paper concerns the generation of semi-groups of linear operators
in a Banach space X.

By a semi-group {7T(¢); t==0} on X we mean a one-parameter family
of bounded linear operators T'(z), t=>0, such that 7(0) =1 (the identity
operator), T(¢t+s)=T()T(s) for t,s=0 and such that for each x € X,
T(t)x is strongly continuous in ¢>0. For a given semi-group {T(¢); ¢
=0} on X, we define the infinitesimal generator A, by Aox=Ilim,¢.
h Y (T(h)x—x) whenever the limit exists. We wish to investigate the
structure and properties of {7T(z); £=0} through those of A4,. While it is
desirable that A, has nice properties, 4, is not necessarily closed and the
domain D(A,) is not dense in X in general. In fact, a semi-group of class
(0, 4) is of class (0, C;) if and only if 4, is closed, see Phillips [117]; an
interesting semi-group on X with the infinitesimal generator A, such that
D(Ay)# X is discussed in Lagnese [7]. In order to investigate the prop-
erties of Ay, we consider two kinds of modified generators. One of
them will be called the infinitesimal generator in the sense of Feller and
the other the complete infinitesimal generator. Our first purpose is to
study the basic properties of these generators. The study of the former
generator is connected to the work of Feller [3]. To consider the later
generator we need to make an additional assumption on the Laplace

transform of the semi-group. These generators have dense domains if and
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only if the range of the semi-group {7(2);¢:=>0}, Xo=\Urso T@)[X],
is dense in X.

By the continuity set of a semi-group {7(¢); =0} we mean the set
2={x€X;lim;,o. T(h)x=x}. This set plays an important role in the
theory of semi-groups of linear operators and it might be natural to clas-
sify semi-groups on X in terms of the continuity set. In Oharu [9]
certain classes of semi-groups on X are introduced. That is, for each non-
negative integer k, we consider a class of semi-groups {7(¢); £=0} on
X such that D(4*) is contained in the continuity set of {7(z); =0},
where A is the complete infinitesimal generator. In [97], however, 4 has
always non-empty resolvent set; such a class is called class (C(y) and the
fundamental classes discussed in Hille-Phillips [4] are contained in the
classes (Cuy), k=0,1,2. Our second purpose is to extend these classes to
the case in which the resolvent set of the generator can be empty. In this
paper those extended classes will be called classes (&), k=0, 1, 2,.... As
will be shown, (Cuy) C(&,) and (&,)&(S,,1) for each £ in the set theo-
retical sense. Also, those classes contain, as their important subclasses, the
semi-groups of growth order & which have been studied by Da Prato [2]
and Sobolevskii [127].

Our third and main purpose is to characterize the classes of semi-
groups mentioned above in terms of the corresponding infinitesimal gene-
rators. We proceed with our argument as follows: Let 4 be a linear
operator in X and Y be a linear subset of X. We then impose the fol-
lowing conditions:

(a;) Y is a normed space under a certain norm [[+[l,

(az) there is a real w such that for each 1>w, R(1— A) contains Y,
R(A)=(A—A)™! exists and such that Y is invariant under R(2),

(az) there exists a constant M >0 such that [[R(2)"x|<
M@QA—o)lxll for x€Y,A>w and n=0,1, 2,....

Under these conditions there is a one-parameter family {7(¢); ¢ =0}
of linear operators defined on a subset Y; of Y such that T(¢)x=Ilim,..
(I—(t/n)A)"x for t==0 and x€ Y;. If in addition, we make some
assumptions on the denseness of Y; in Y, {T(¢); t==0} can be extended
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to a semi-group of class (C,) on a certain Banach space Y. Moreover, we
can extend this semi-group on Y to a semi-group on X by imposing a
condition of Feller type.

The fundamental idea for constructing a semi-group under these con-
ditions is based on that of Feller [ 3]]; we first introduce into Y another
norm N(-) defined by N(x)=sup{||(A—w)"R(A)"x||; A>w, n=0},x€Y,
and then regard the resolvents R(4) multiplied by (A—w) as contractions
in this new normed space Y. A quite similar method to ours is employed
in a paper by Krein-Laptev-Cvetkova [6 | in which the underlying opera-
tor A is supposed to be closed and the Hille-Yosida theorem is applied.
In this paper, the operator A need not be closed and the corresponding
semi-group is constructed by employing the method established by Crandall-
Liggett [1]. In this way, we construct semi-groups in a general way
and, as the particular cases, we shall improve a Feller’s theorem given
in [ 3] and give the generation theorem for semi-groups of classes (&;).

Finally, our fourth purpose is to derive some sufficient conditions for
the existence of solution operators of an abstract Cauchy problem, ACP,
formulated for a closed operator in a Banach space. The results are
obtained from the generation theorems mentioned above and give sufficient
conditions for the Hadamard correctness of ACP which is discussed by
[6]. On the other hand, Sunouchi [15] and Takahashi-Oharu [16] dis-
cussed ACP’s which are well-posed in the sense of semi-group. Our
results also furnish some sufficient conditions for such well-posedness.

This paper consists of seven sections. Section 1 contains some special
notations used in this paper and some basic notions. Section 2 treats
the infinitesimal generator in the sense of Feller. In Section 3, classes
(&,) are introduced and their properties are investigated. Section 4 deals
with some basic estimates for the construction of semi-groups. Section 5
concerns the construction of semi-groups and in Section 6, the generation
theorems for the semi-groups discussed in Sections 2 and 3 are established.

Finally, Section 7 concerns the abstract Cauchy problem.
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1. Notations and Definitions

In this section we list some notations and basic notions. Let X and
Y be (complex) Banach spaces. By B(X, Y) we denote the set of all
bounded linear operators on X into Y; we write B(X) for B(X, X). For
a U€B(X) and a subset S CX, we denote the image of S under U by
U[S]. Let A be a linear operator from X into Y. Then D(A4) and
R(A) stand for its domain and range, respectively. We write p(A4) for
the resolvent set of 4 and R(A; A) for the resolvent of 4 at A(€ p(4)).
If the null manifold of A consists of only 0, then 4! is defined as a
linear operator from Y into X; in this case we say that A is invertible.
We sometimes call a linear operator 4 with D(A4) and R(A4) in X an
operator in X.

Let SCX and A be an operator from X into Y. We write 4|S for
the restriction of 4 to D(A)NS. S denotes the closure of S and 4
stands for the closure of A provided that A is closable. For a closable
operator A such that A=B, D(A) is called a core of B, that is, a linear
manifold D(CD(B)) is a core of B if D is dense in D(B) with respect
to the graph norm of B.

In this paper we consider for a fixed Banach space X several kinds
of Banach spaces which are contained in X as its linear subsets and are
endowed with stronger norms than the norm of X: Let A4 be a closed
operator in X. Then for each positive integer k& we can regard D(A%) as

a Banach space under the norm
llzlls= 2ol L2ll,  x€ DAY,

where A°=1T (the identity operator on X); we write [ D(A¥)] for the
Banach space. Accordingly, every element U& B(X) is simultaneously an
element of B([D(A4¥)], X) for each k. Also, we consider other spaces
2 ’i and Y. Their norms are denoted by N(+), N(+) and |[|-]l, respec-
tively. These spaces are treated in a fixed Banach space and hence it is

needed to specify the topologies when we discuss the problem of conver-
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gence, denseness and so on. We then specify the norm in question by
putting the corresponding symbols of norm before the adjectives, nouns

and symbols, such as [|-[|-dense, [|-ll-core, lI-l|-lim,,.x,=2%, and so on.

2. Semi-Groups of Linear Operators

Let X be a Banach space. A one-parameter family {7(¢); ¢t =0} in
the Banach algebra B(X) is called a semi-group (of operators) on X, if

(2.1) T@+s)=T&)T(s) for ¢, s=0, T(0)=1,
(2.2) for each x € X, T(¢)x is strongly continuous in ¢>0.

In this section we discuss about the fundamental properties of semi-groups
on X. These properties are investigated through the notion of semi-group
of class (Cy) on a certain Banach space. If {T(¢); t=0} C B(X) satisfies
(2.1) and

(2.2") limy, 0. T(h)x=x for all x € X,

then it is called a semi-group of class (C;) on X; note that (2.2) is auto-
matically satisfied in this case.

Let {T(¢); =0} be a semi-group on X. Then it is proved (Hille-
Phillips [4; p. 306]) that wo=1lim;...t "log||7(z)|| exists and — oo <wo<
+oo; wp is called the type of the semi-group. The set

2=A{x € X; limyo. || T(h)x — x| =0}
is called the continuity set. We define the infinitesimal gemerator A, by
(2.3) Aox =limy_ o, Apx, Ah=h_1(T(h)— I)

whenever the limit exists. It is well-known that A, is not necessarily
closed. We then introduce two kinds of modifications of infinitesimal
generator. If A, is closable, the closure A, is called the complete infini-
tesimal generator of the semi-group. Also, according to Feller [3], we

define the operator £ from ) into itself by the relations
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(2.4) Qx=Avx, x€D(2)={x € D(Ay); Apx € 23 };

we call this restriction of A, the infinitesimal generator in the sense of

Feller.

First of all, we introduce a norm under which ), becomes a Banach
space. Let w(>w,) be arbitrarily fixed. Since e ||T(¢)|]|—>0 as t—
~+ oo, |le™* T'(¢)x|| is bounded on [0, o) for each x &€ );. We then define
a function N(x) on > by '

(2.5) N(x)=sf§13|le’°"T(t)xH for x € ..

It is easily seen that [|z||<N(x) (<+o0) for x €2, and that N(x)

defines a norm on ),. Moreover, we can prove the following (see Feller

[3D).
Lemma 2.1. }; is a Banach space under the norm N(+).

The semi-group {T(z)} can be regarded as a semi-group of class (Cy)
on the Banach space ), in the following sense: Let

(2.6) U@)=T®@)|Y  for 1=0.

Then each U(t) maps ), into itself and for the family of these operators
{U(¢); t=0} we obtain

Theorem 2.2, {U(¢); :=0} is a semi-group of class (Co) on the
Banach space ), such that

2.7 NU@)x) < e’ N(x) for 120 and x € 2]

and the operator 2 defined by (2.4) coincides with the infinitesimal gener-
ator of this semi-group. Moreover, D(27)=[\nz1D(2") is N(-)-dense in
.

Proof. Clearly, the definition yields that {U(¢)} has the semi-group
property (2.1). Let x€)]. Then N(U(¢)x)=supszolle *T(s)T(t)x||=
e supszolle T (s+1)x|| < e N(x) for t=>0. Since lim,.,.|[e ™ T(s)||
=0, the function e ®*T(s)x is uniformly ||+||-continuous in s&€[0, o) and
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hence lim;_o,supszolle "9 T (¢+s)x —e *° T(s)x||=0. Therefore,
N(U @)% —x)=supszolle ™ T (s)(T()x — )|
= sup;s=o||[{e VT (t+5)x — e T(s)x} + (e —1)e ¢+ T (1 +5)x|]
< supszolle VT (t+5)x—e  T(s)x||+(e* —1)N(x)—>0

as t— 04, which means that {U(¢)} forms a semi-group of class (C,)
on Y. In view of (2.5) and (2.6), {x € X; 3 N(+)-limy_o b (Uk)x—
%)} CD(2). To show the converse relation of the implication, let x € D(Q).
Since 2x€ Y, and since T(¢)2x is the continuous derivative of T'(¢)x,
it follows that t‘l{T(t+s)x~T(s)x}zt‘lgs“T(r)Qxdz‘ for s=0 and

s

t>0. In view of this, we have
NGE'[U@)x—x]—2x)=supszolle ™ T(s){t [ T(t)x—x]— 2x}||

s+i s+t
=sups;oHe“"st“IS T(z‘).Qxdr—e""st"lg T(s)2xde|

s+t
gt‘lsupsgog lle=*" T(2) 2% — e~ T'(s) Q|| dr

s+i
-l—t_lsups;og (7= 1)||e=" T (c) 2| dr.

Since e “*T(s)2x is uniformly

-continuous on [0, ), given an &>0
there is a 0=0(e)>0 such that |le™®" T(v)2x—e T (s)2x||<e/2 and
N(Qx)|e*"~)—1| <e/2 provided |t—s|<d8. Consequently, N(: *{U(¢t)x
—x}—80x)<e for t€(0,0). This implies that £ becomes the infinitesi-
mal generator of {U(¢)}. Finally, the last assertion is well-known for the
semi-group of class (C,), see Hille-Phillips [4; Theorem 10. 3. 4.

Q.E.D.

In the remainder of this section we are concerned with the Laplace
transform of a semi-group {T(¢); £=>0} on X. For each A(>w>w,), we
can define an operator J(1) on ] by

(2.8) ](/I)x=S:e‘”T(t)xdt(=S:e‘”U(t)xdt) for x€ 3.
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In view of Theorem 2.2, we see that the integral converges with respect

to N(:)-norm and a fortiori the original ||+||-norm. We list, as a Corol-

lary to Theorem 2.2, some of the fundamental properties of J(4) which

are well-known in the general theory of semi-groups of class (C).

Corollary 2.3. (i) & is a closed operator in }, and for each A>uw,
J(Q) is the resolvent of 2, i.e., J(A)=A—8)'€ B(Y).
(i) NUJQx)<(A—w)"'N(x) for A>w and x € }.

(iii) NC)-lim,,, AJ(Dx=x for x € ).
Gv) J)'x=(n—1) !'IS:e‘“s”'lU(s)x ds

for x€ 3, 2>w and n=1, 2,3,....
(v) D(27) is an N(+)-core of L.

Proof. The proofs of (i)-(iv) are stated in Hille-Phillips [4; Theorem
12. 3.17]. (v) follows from the last assertion of Theorem 2.2 and (ii).
See also Oharu [9; Lemma 3.6 |. Q.E.D.

In view of this corollary and by the same argument as in Feller [3;

Section 37, we obtain the following

Theorem 2.4. (i) N(x)=supsz0, r>ol|(A—)"J(2)"x||
for x€ .

(ii) For any €>0 and x€ ), there exist K. >0 and Ao=12.(c, x)
such that

A=) JAY's|| < Kel|#ll ~ for A>20 and n=(A—w)e.

Remark 2.5. Condition (ii) is the so-called condition of Feller type.
This condition implies the following (ii’) which is proposed in Oharu [9;
Section 5 J:

(ii’) For any €>0 and x € ), there exist M>0 and Aj=2{(¢, x)
such that
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A" T (A" x|| < M,||x|| for A>2{ and n with n/2€[e, 1/c].

(ii") is obtained from Theorem 2.4 (ii) as follows: Let x &€ > and &>0.
Then ||[A*J(A)*x||=|1—w/d]|7"[|(A—w)*"J(A)*x|| for n2>1 and A>w. We
then set 1) =max{20(c/2, x), 2|w|} and M.=exp(2|w|/e)Ke2, where
Ao(e/2, x) and K., are the constants associated with x and ¢/2 through
Theorem 2.4 (ii). If 4>2} and n/A€[¢, 1/¢], then by Theorem 2.4 (ii),
[1—w/2] "< exp(2|w|/c) and ||(A—w)"J(A)"x||< K, 2||x|l. Note that
A>2:(e/2, x)(>w) and n=2e=(i—w)e/2. Consequently, we have
| 2" T ()" %|| <exp(2|w|/e)Kep||x||=M||x|| for A>2{ and n/2€[e, 1/].

Finally, the following theorem due to Feller [3] is obtained by com-

bining the results obtained so far.

Theorem 2.6. Let {T(t);t=0} be a semi-group on X such that
\Ji>oT ()X is dense in X. Then we have:

(@) the continuity set ), is dense in X.

(b) 2% is a Banach space under the norm N(-).

(c) 8 defined by (2.4) is N(+)-densely defined in ..

(@) For each 2>w and x € 3, the equation (A—8)y=x has a uni-
que solution y=](l)x=S:e‘”T(t)xdt.

(&) N(x)=supnz0; r>el[A— )" J(A)"x||  for x€ 2.

(f) For any €¢>0 and x € )., there exist K. >0 and Ao=24.(¢, x)
such that ||(A—w)"J(A)'x|| S K||x|| for 2>y and n=(A—w)e.

3. Semi-Groups of Class (&)

In this section we first investigate the closability of the infinitesimal
generator of a semi-group on X and then introduce some classes of semi-
groups on X. Also, some of their basic properties are given.

Let X be a Banach space and {T(¢); :1=>0} be a semi-group on X
with the type wo and with the infinitesimal generator 4,. We set

Xo=\Urso T(t)[X]

and for each A>w,, we define an operator Ro(1) on X, by
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(3.1) Ro(l)x=g eMT(Dxdt  for x€ Xo.
0

Clearly, X, is contained in the continuity set ), of {7(¢)} and Ry(1)C
J(2) for 2>w(>w,), where J(A) is the operator defined on ), by (2.8).
To obtain the closability of A, we impose the following condition:

(a1) there exists an w>w, such that for each A>w, Ro(4) is clos-

able and its closure R(A) is invertible.

Lemma 3.1. Assume condition (®1). Then we have:
) R(l)x=gme'”T(t)xdt for x€ Y and 3>,
0

(ii) Ay is closable and its closure A is equal to A—R(A)™ for every
2>, ie, RA)=QA—A)" for 1>0.
Conversery, if Ay is closable and X — A is invertible for A>w, where A=
Ao, then condition (i) holds.
Proof. Suppose condition («;) holds. Let A>w and x € ),. Then
R T(s)x= S” eMT (1 +5)x dt =™ S”e—*f T(G) xdt— g” eMT()wde as
0 s 0

s—>0+. Since lim,,o; T(s)x=2x, the closedness of R(A) implies that
x € D(R(2)) and that the relation (i) holds. In view of this, we have

A,,R(,l)x=R(/1)A,,x=h‘1(e”‘——1)R(l)x—e""h‘lg: eMT(t)wdt;
hence, passing to the limit as A—>04,
(3.2) AoR(D)x =limy 0, AxR(D)x =limy0, R(A) Apx =2R(A)x — x.
From this and the closedness of R(4), it follows that Ayx € D(R(1)) and
(3.3) R(Q)Ayx=2R(\)x—=x

provided that x € D(4,). To show the closability of 4o, let x,€ D(4,),
%,—>0 and Aox,— y as n—>oco, Then, R(A)(A—A4o)x,=x,—>0 by (3.3)
and hence R(4)(—y)=0. Since R(Z) is invertible, we obtain y=0. This
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means that A, is closable. Now, writing 4 for the closure A, and then
using the relation (3.3), we see that (A—A)x € D(R(A)) and R(A)(A—A)x
=z for x € D(A). Next, let x € D(R(A)). Then there exist x,€ X, such
that x,—x and Ro()x,—> R(A)x as n—co. Since (A—A)R(D)x,=A—
A)R(Dx,=2x, by (3.2), the closedness of (1— A) implies that R(1)x €
D(A) and (A— A)R(AD)x==x. Consequently, R(A)=(1—A)"!. Since 1 was
arbitrary as far as A>w, we have the assertion (ii). Finally, we show
the converse. Suppose that A4, is closable and that 1—A(=21—4,) is

invertible for A>w. In the same way as in (3.2), we obtain
A—ADRy(D)x=QA—Ap)Ro(D)x==x for x € Xy and 1>w.

In view of this, we see using the closedness of 4 and then applying the

invertibility of A— A4 that Ry(1) is closable and that (A— A)R(A)x=x for

each x € D(R(Z)). This shows that R(X) is invertible provided 1> w.
Q.E.D.

We now exibit a relationship between the complete infinitesimal gen-

erator A, and the infinitesimal generator in the sense of Feller £.

Lemma 3.2. Assume condition (a1). Then 2 is closable as an oper-

ator in X and its closure coincides with the complete infinitesimal genera-
tor, ie., A=Ay=49.

Proof. We first note that A=A, exists by Lemma 3.1. Since £C
Ay C A, £ is closable and 2C 4. We want to show that D(A4) (= the
range of R(1))CD(P). Let A>w. Then by (3.2) 4,R(D)x—>AR(A)x—
x€)) as h—>0 for each x€ ), which means that R(1)x € D(£) and
QR()x=AR(\)x—x, ie.

(3.4) QA=2)RMN)x=Q—2)RQ)x=x for x € .

Now, we take an arbitrary element x € D(R(Z)). Then there exist x,€
X, such that (%,, Ro(D)x,)—>(x, R(A)x) in Xx X as n—>oco. But, (1—2)
R()x,=x, by (3.4); hence it follows that R(1)x € D(2). This states
that D(4) CD(2). Q.E.D.
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Now, we introduce the following classes of semi-groups on X:

Definition 3.3. Let %k be a nonnegative integer. A semi-group
{T();t=0} on X is said to be of class (&), if it satisfies the follow-
ing conditions:

(a1) there exists an w>w, such that for each 1>w, Ro(1) is closable
and its closure R(Z) is invertible;

(a2) Xo=\UroT()[X] is dense in X;

(as) D(A¥)C 3], where A4 is the complete infinitesimal generator of
{T@);t=0}.

Remarks. (1) In Oharu [9], some restricted classes, called classes
(Cwy), k=0, 1, 2,..., are discussed (cf. Remark 6.5):

A semi-group {7T(z); t=0} on X is said to be of class (Cp,) if it
is a semi-group of class (&;) and if the operators R(1), 1>w, are defined
on X.

As is seen from the definition, (Cuy) C (Cis1y)y (&) C(Sy1) and
(Cxy) C(S;) for each k in the set theoretical sense. We can find some
examples which show that (Cp)) & (Cs.1y) for each £, see [9; Example
4.107]. From this we see that (&,) & (&;,1) for each k. Also, we note
that classes (C() contain the fundamental classes (0, 4) and (4) which
are discussed in Hille-Phillips [4; Section 10.6]; (Co)=(C(0y)=(S,), (0, 4)
C(Cy) and (4)C(Czy). In fact, the generation theorem for semi-groups
of class (A4) is obtained as a corollary of that for semi-groups of class
(Czy) ([9; Theorem 6.147]) and it is shown by Miyadera [8] that the
generation theorem for semi-groups of class (0, 4) is obtained in view of
that for semi-groups of class (C)).

(2) Da Prato [2] and then Sobolevskii [12] studied the behavior of
a semi-group on X at :=0 through the notion of growth order. Let a>
0. Then a semi-group {7'(¢); =0} on X is said to be of growth order

« if it has the following properties:
() if T(®)x=0 for all £>0 then x=0;

(i) ||e*T(@)||=0Q1) as t—>0+;
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(1) Xo=\UroT(¢)[X] is dense in X.

Condition (i) is used to guarantee the closability of the infinitesimal gen-
erator A, of the semi-group and also the invertibility of A— Ay, 4> wo.
Under condition (ii), it is proved that D(AC%3*1) is contained in the con-
tinuity set >;. Consequently, a semi-group of growth order « is proved
to be of class (&;), k=[a]+1. The detailed arguments concerning these
propositions will be done in the forthcoming paper by Okazawa [ 107].
Now, let {T(t);t=0} be a semi-group of class (&;) and let 4 be
its complete infinitesimal generator. Then D(4*) becomes a Banach space
#; we denote this Banach space by [D(4*)7]. More-
over, we denote by N(x) the norm on the continuity set >, defined by

under the norm

(2.5) and we mean by w the constant stated in condition ().

Lemma 3.4. If {T(¢);t=0} is a semi-group of class (&), then
there exists a constant M >0 such that

|R(A) x|| < M(A—w)~"||x]|, for x€D(A*), 2>w and n=>0.
Proof. By the definition of J(1) and Lemma 3.1 (i), we see that
R(D)x=J(A)x for 2>w and x € ;. Thus, by Theorem 2.4 (i),
SUPsz0s x>l (A—0)"R(A)"x|| S N(x)  for x € D(A*)(C ).

Now, we observe that |le ' T()x||<Ze || T@)|||%]|lz for ¢>0 and
x€D(A4%); hence e ®T(t), >0, are bounded operators from the Banach
space [ D(A*)] into X. Since supssolle ™ T()x|[(=N(x))<oe for each
x € D(A4¥), the uniform boundedness theorem states that there exists an
M>0 such that

(3.5) N(x)=supsolle ™ T(t)x|| < M||x||, for x € D(4").
Q.E.D.

We now obtain the following main theorem in this section.

Theorem 3.5. Let {T(¢);t=0} be a semi-group of class (&;).
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Then, it has the complete infinitesimal gemerator A with the following
properties:

(i) D(4) is dense in X and D(A)D D(Ap) D D(A*1),

(ii) there is a real constant o such that R(1— A)D D(A*) and R(1)
=(A—A)? exists for 1>w,

(iii) there is a constant M>0 such that

IR % || = M(A— )" x|l

for x€D(A*), >0 and n=>0,
(iv) for any €>0 and x € D(A®) there exist M;>0 and lo=24(¢, %)
such that

ICAR(A) ] ]| = Me|| ||

for A>2¢ and n with n/A€[e, 1/c],

(v) D(A*?Y) is a core of A,

(vi) D(A**Y) is N(+)-dense in D(A*), where N(x)=sups>ol|le ** T (s)x||
=SUP 205 250l (A—0)"R()"x||, € D(4").

Proof. Condition (&) and the last assertion of Theorem 2.2 yield
that D(A) is dense in X. Also, by (3.2), we have that R(A)[ X5 |CD(Ay).
Since Y} D D(4*) and since R(A)[D(A*)]=D(4*"), we obtain D(A**1)C
D(A,). Hence, we have the assertion (i). Lemma 3.1 states that R(A—
A)=D(R()) DY for A>w. The existence of (1—A)~! follows from
Lemma '3.1 (ii). Thus, (ii) is obtained. Lemma 3.4 gives the assertion
(iii). In view of the fact that R(A)"x=J(A)"x for x € ), A>w and n=
1, (iv) follows from Theorem 2.4, Remark 2.5 and condition (a3). (v) is
proved by applying Corollary 2.3(v) and Lemma 3.2, note that D(2~)C
D(A*Y). Finally, (vi) is obtained by employing the last assertion of
Theorem 2.2, Theorem 2.4(i) and condition (&3). Q.E.D.

4. Preliminaries for the Generation of Semi-Groups

Let A be a linear operator in X and let ¥ be a linear subset of X,
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We impose them the following conditions:

(a1) Y is a normed space under a certain norm |[|-]l which is
stronger than the original norm ||+|| of X;

(az) there exists a real w such that for each 1>w, R(1— A) contains
Y, R(A)=(— A)™! exists, and such that Y is invariant under R(Z);

(az) there exists a constant M>0 such that

[|R(2)"x|| < M(2— o)~ "lll= ]l

for x€ Y, 1>w and n=0,1, 2,....

These conditions are generalizations of the conditions given in Theo-
rems 2.6 and 3.5, in the following sense:

1°) If X is the continuity set of a semi-group {7(¢); =0} on X
and if £ and N(x) are defined by (2.4) and (2.5), then £ and }; satisfy
conditions (a;)-(as) with >, =Y, =4 and N(x)=Ilx|l (see Theorem 2.6).

2°) If A is the complete infinitesimal generator of a semi-group of
class (&,), then 4 and [D(A4%)] satisfy (a;)-(as) with [D(4¥)]=Y and
llz]lz=Mlxll (see Theorem 3.5).

In this section we let 4 and Y be a pair of linear operator and
linear subset of X satisfying (a;)-(as) and we are concerned with the
convergence of (I — -;::—A)—n on Y as n—>oco, The results obtained here
will be applied to the generation problem of semi-groups on X. Also, we
can apply them to construct solution operators of abstract Cauchy prob-
lems. The results in this and the next sections are closely connected with
those by Krein-Laptev-Cvetkova [6]; the norm N(-) defined by (5.2) is
the same thing as the norm |[|+||¢ treated in their paper and our Lemma
4.3 is similar to their Lemma 2. However we note that the operator A4
treated in their paper is always closed, while our result is obtained with-
out assuming the closedness of operator 4. For the relation between our

result and theirs, we shall mention it in the final section.

4.1. This subsection contains a basic estimate for the iteration of

—n
the resolvents ( I —LA> ’n=0,1, 2,.... Noting that
n

(4.1) R(Dx—R(u)x=—QA—w)R(DR(y)x for A, u>w and x€ Y,



524 I. MivADERA, S. OuAarRu AND N. Oxkazawa
we start from the following

Lemma 4.1. Let 1>w. If |h|<A—w, then for every positive in-

teger n,
(4.2) RQA+R)"%=27-n-11Ca-1(—R) "' R()'x, x€Y.

Proof. Condition (a3) guarantees that the series of the right side in
(4.2) is absolutely convergent with respect to the norm |[|-]| for n=>1
and x € Y. (4.2) is proved by induction: Let x € ¥ and put y=R(1+h)x.
Then y€ YND(A) and (A—4)y=x—hy €Y. Now,

Zi-o(—B)' R 2= Z7-o(—h)' R (A= D) y— L7-o(—h)* 'Ry
=y=R(A+h)x.

This means that (4.2) holds for n=1. Suppose that (4.2) is true for n.
Then

Z7=n 1C(—R)' "R %
=27 1C(—h) "R y— L7y 1C(—h)' " R y
=RA)"y+ D 7-al141Co—1Co J(—R) " R(A) 1 y
= L 7=n-11Cu1(=B) " IR y=R(A+h)"y=RQA+h)" =,
which shows that (4.2) holds for n+1, too. Q.E.D.
Corollary 4.2. If A>u>w, then

R(u)"x=27-p-11Cr1(A— )" " 1R(A)"*'x  for x€Y and n=>1.

Proof. Since —(A—w)<pu—Ai<0, we have the assertion by setting
h=u—2 in (4.2). Q.E.D.

Now, let us define a function N(x) on Y by

43) N(x)=supazo, ssull(t— 0P R(e)'sl,  x€Y.
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Clearly, N(-) defines a norm on Y such that ||x||<N(x)< Mllxll for
x €Y. Moreover, we can obtain the following result which is crucial in

our argument:
Lemma 4.3. For every 1> w,

4.4) N({(A—0)R(A)x) < N(x), x€Y.
Proof. We prove that

(4.5) (e — )" R(1)"(A— )" R(A)"%|| = N ()

for x€Y, 2, #>w and m,n=0; (4.4) is obtained by taking m=1 in (4.5).
First, (4.5) is clearly true in case n=0. Next, by (4.1), R(ADR(u)x=
R(#)R(A)x for x€Y and A, £>w. Hence, it suffices to show that (4.5)
holds for x€Y,A>u>w,m=0 and n=1. Let x€Y and 1>x>o0.
Since R(A)"x€ Y for m=0 by (az), Corollary 4.2 yields that

R("R(A)"x =2 5=p-1 1Cn-1(A —ﬂ)l_"HR(l)Hm*lx

for m=0 and n=>=1; hence

I(z—w)*R(1)"(A— )" R(A)"x||

21— Y e u—o 7 o \l4m+l I+m+1
(A7) Brwr Coa(1—A72) A= 0) R |

(A0 s G (1-422 ) T N =N )

for m=0 and n>1. Q.E.D.
-n
4.2, We shall deal with the convergence of <I —%A) as n—>oo,
To do this, we further introduce two linear subsets of Y;
Yi={x€Y; Ax€ Y},
Yg‘:{x € Yl, Ax € Y1}.

From the relation (4.1), we see that
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(4.6) AR(M)x—x=R(ADAx(€Y), for x€ Y, and 1> 0.

Also, for each t>0 and positive integer n with n> |w|t, we can define

an operator T(¢; n) on Y by

(4.7) T(t; n)x = (I—%A)_”F{%RH—)}Z (t>0)
* (t=0).

Now, in view of Lemma 4.3, we can employ the method given by
Crandall-Liggett [1] and obtain

Lemma 4.4. Let t=>0 and m, n be positive integers with n=m>
2|w|t. Then for every x €Y,

N(T(t; n)x— T(t; m)x) < 2et°*(1/m—1/n) 2 N(Ax).
Lemma 4.5. For each t=>0 and integer n with n>|o|t, we have:
(4.8) N(T(t; n)x)<(Q—wt/n)""N(x) for €Y,

(4.9) N(TG;n)x—x)<t(1—|w|t/n) "N(4x) for x€ Y,

(410) T n)x—x=S’ T(s; n)lR(_”_)Axds for xE€ Yy,
0 S S

(4.11) R(l)x-—S;e‘“T(s; n)xds

—e M T (4 n)R(l)x—S:e““T(s; n)R(%)AR(/I)Axds

for x €Y, and 2>w, where the integrals in (4.10) and (4.11) exist (with
respect to the norm N(+) and a fortiori ||-||).

Proof. (4.8) is an immediate consequence of Lemma 4.3. In view
of the relation (4.6), [AR(A)J"x —x can be written as 21~ X7_;[AR(A) [ 4x
for x€Y; and A>w; hence by Lemma 4.3,

NCARQ) "% —x) < A~ Zz=1< l—llw ) N(n)<"- ( — ) N(4x)
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for x€Y; and > |w|. Taking 1=n/t, we obtain (4.9). Now, Lemma
4.3 and (4.1) assert that R(1)"x, x € Y, are differentiable in 41 (with re-
spect to the norm N(-) and a fortiori ||-||) and (d/dA)R(A)"x=—nR
(A)**'x for x€ Y, 2>w and n=>1. Hence,

T(t; n)x— T(e; n)x=St T(s; n)lR(_”_)Axds, 0<e<s.
& S S

Since N(T(s; n) ~%—R(—Z’——)AJ\:)g(l— |o|t/n) " IN(4x) for 0s<t,
the integrand is Bochner integrable on (0, z). Also, N(T(e; n)x—x)—0
as e—>0+4 by (4.9). Therefore, letting e— 0+, we have (4.10). Finally
we prove (4.11). For x€Y; and 1> 0,

(d/ds)e™ T(s; n)R(A)x

= 2e™ T(s; n)R(D)x+e~ T(s; n)—Z‘—R(-Z—)AR(l)x
= — e T(s; n)x+ e T(s; n)R(—’:—>AR(z)Ax.

Integrating both sides of this equality from s=0 to s=t, we get (4.11).
Q.E.D.

Now, we are in position to state the main result of this section.

Theorem 4.6. For each x € Y, the ||+||-limit

(4.12) limy.. T(¢; n)x =lim,,_,,,<1—-—:l—A>—n x

exists uniformly on every bounded interval of [0, o). If we define opera-
tors T(t),t=0, on Y; by

(4.13) T(t)x=lim,,.T(t; n)x
Jfor t220 and x € Y1, then {T(¢); t=0} has the following properties:

G |IT@®=x||ZLe*N(x) for x€Y; and t=0,
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() T@x— T(s)x||Ze'*™=IN(Ax) |2 —s]
for s,:=0 and x €Yy,

(i) T@)r—x =S' T(s)Axds  for t=0 and x€ Vs,
0

(iv) R(l)x=sue'MT(t)x dt for 2>w and x € Yy,
0

(v) N(x)=supisolle ™ T(¢)x|| for x €Y.

If in addition, Y, is N(-)-dense in Y, then (4.12) is obtained for x€Y
and the operators T(t) are defined on Y by (4.13); in this case, {T(t);
t =0} satisfies (i), (iii), (iv) and (v) with Y1 and Y, replaced by Y and
Y. respectively, and furthermore

(i) for each x€Y, T(t)x is ||+||-continuous in t=0.

Proof. It follows from Lemma 4.4 that for each x€ Y, the |-
limit (4.12) exists uniformly on every bounded sub-interval of [0, o).
(i) is an immediate consequence of (4.13) and (4.8). Next, by (4.10), we
have

I T(t; n)x— T(s; n)xng‘g'z\r(:r(r; ny 2 R(2-)dx) dz“
s T T
élgt(l—lwlf/n)‘”"ldle(Ax)é [t—s|(1—|o|7/n)" ' N(4x)
for s, t =0, y=max{t, s} and x€ ¥;. (4.10) can be written as
t 3 n n
T(¢t; n)x—-x=S T(s; n)Axds—i—g T(s; n)[—;—R(T)Ax—Ax]ds
0 4
t t n
=S T(s; n)Axds+§ T(s; n)R(——)Azxds
0 0 s
for t=0. Since

N( T(s; n)R(—Z’—)Azx)g—;—O— lo] %)_"'IN(AZx)



GENERATION THEOREMs OF SEMI-GROUPs 529

N

for s€ (0, t], we have

2

H S; T(s; n)R(—%—)Azxds gin-<1— |o] —;—>—n—1N(A2x)—>0 as n—»oo,

from which (iii) follows. Next, we prove (iv). Since
-n-1
N(T(s; n)R(%)AR(z)Ax)g{L—(l— o] ;—) N(AR(A) Ax)
for s€(0,¢] and x € Yy, (4.11) implies that

HR(Z)x—S e T(s; n)wds|

t
0

A

—n 2 -n-1
e—M(1—w_‘n-) N(R(l)x)+e"‘”t7<1—~ le-i—) " N(AR() 4x)
for x€Y; and t=0. Passing to the limit as n—>co, we have

t
IR (D)% — So e T($)wds || < e~ N(R()x)

for x€Y; and t=0. Hence, (iv) is obtained by letting t—oco. Finally,
we prove (v). The relation (4.1) and Lemma 4.3 imply that for each
x€Y, (d/d)" 'R(AD)x=(—1)" n—1)!R(2)"x for 2>w and n=>1. On
the other hand, we see using (iv) that

(4.14) (d/dA)" 'R (A)x=(— 1)”‘1S:e‘“t”"1 T(t)wdt
for x€ Y3, 2> and n=1, and hence we have

R(/Z)”x=(n—1)!‘IS:e‘”t””lT(t)xdt, X€Y1, 1>0,n>1.
Using this relation, we obtain

lA— o) RA)" x| < (n—D)!7' - w)"g:e‘“‘“’)’t”‘llle‘”’ T(t)x||de

Ssuprzolle™ T'(2)x]|
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for x €Yy, A>w and n=>1. This shows that N(x)<sup;z¢lle™ T(z)x||
for x € Y,;. The opposite inequality is clear from (i). Now, assume that
Y, is N(:)-dense in Y. Then it follows from (4.8) that the convergence
(4.12) holds uniformly on every bounded sub-interval of [0, o) for all
x €Y. This fact states that (i) holds for ¥; replaced by Y and hence
(i)’ is obtained in view of (ii). To see that (iii) holds for all x € Y, we

first observe that for every yeY
(4.15) NQARQ)y—y)—0 as 1— oo,

Indeed, if y€ Y, then N(AR(A)y—y)=NRQ)Ay) <(A—w) 'N(4y)—0
as A—>oco. From this and the N(-)-denseness of Y; in Y, it follows
that (4.15) holds for y€ Y. If x€ Y;, then AR(A)x € Y, and hence (iii)
implies that

T()[AR()x]—[AR(D)x]= S: T()[AR(A) Ax]ds.

Letting A—oco and using (4.15), we see that (iii) holds for all x € ¥;. To
show that (iv) holds for ¥Y; replaced by Y, let A>w, x €Y and choose
{x,} CY, such that N(x,—x)—>0 as n—oo. Then by (iv), R(\)x,=
S:e*”T(t)x,,dt for each n. Hence, we have R(/I)x=g:e"”’T(t)xdt,
because of that [|[R(1)x,—R()x||<(A—w) *N(x,—x)—>0 and also of that
NT@)xn— T@)x|| < e N(xn—x)—>0 as n-—>co. Finally, if Y, is N(-)-
dense in Y, then (4.14) holds for every x €Y, A>w and n=1; hence
(v) is obtained for Y; replaced by Y. Q.E.D.

5. Construction of Semi-Groups

Let A be a linear operator in a Banach space X and Y be a linear

subset of X satisfying conditions (a;)-(az) which have been introduced in the
preceding section. We then define a linear subset ’z of X and a function

N() on ’z by

G T={x€ [\ N\DRD; supuzes rsell(A—0) RA) x| <o},
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(5.2) N(x)=supnz0, 150l @A—0)"RQA)"x||  for x € 2.

Obviously, ||z|| < N(x) for x € 57, Also, the function NV(-) defines a norm

on E and
(5.3) YC S, N(x)=N(x)(E Mlxll)  for x€ Y.

In this section we first construct a semi-group of class (Cy) on a
certain Banach space which is contained in the above-mentioned ’Z\:’ as its
linear subset and then discuss to extend this semi-group to a semi-group
on X, by imposing a condition of Feller type. The results obtained will
be applied to establish the generation theorems of the semi-groups which

we discussed in Sections 2 and 3.

5.1. Throughout this subsection, let 4 be a linear operator in X
and Y be a linear subset of X satisfying (a;)-(az) and the following con-
ditions:

(ay) Y; is N(:)-dense in Y,
(B) E is a Banach space under the norm N(:).

We note that (B) is satisfied if A is closed in X, as will be shown in
Lemma 5.3.

Now, let us denote by Y the N(-)-closure of ¥. Then, under condi-
tion (B), Y becomes a Banach space under N(:). We shall construct a
semi-group of class (Cp) on this Banach space. First, Lemma 4.3 and
(5.3) state that N((A—w)R(2)x) < N(x) for x€Y and A>w. Hence, for
each 4>, R(2)|Y has a unique extension R(1) onto Y. R(1) maps ¥
into itself and

(5.4) N@A—0)RD)x)<N(x) for x€ Y and 1>0.

In view of this fact, for each ¢1=>0 and each positive integer n>wt, we

can define a linear operator 7'(¢; n) from Y into itself, by

(6.5)  T(; n)x={_;"—fa<’t’—)}"x (it t>0),=x (if t=0), for x€ .



532 I. MivADERrA, S. Ouaru AND N. Okazawa
Clearly, T(t; n)x=T(¢; n)x for x€ Y and
(5.6) N(TG;n)x)<(A—wt/n)"N(x) for x€Y,t>>0 and n>wt.

Since Y; is N(:)-dense in ¥, Lemma 4.4 and (5.6) imply that for each
x € Y,

(5.7) T(@)x=N()-lim,,. T(¢; n)x

holds uniformly for ¢ in every bounded sub-interval of [0, o). As is
easily seen, 7'(t) € B(Y) for t==0 and

(5.8) MT@®)x) < e®*N(x) for x€ Y and t=>0.

Theorem 5.1. {7(t);t=0} forms a semi-group of class (Cy) on
Y such that N(T(@)x) < e *N(x) for x€Y and t==0, and its infinitesi-
mal generator is the N(-)-closure ;I-l\f 1 of A|Y,. Moreover, R(A)=
G=A| T for A>w0 and TG)|Y=TG) for t=0, where T(), t=0,
are the operators defined by (4.13).

Proof. Since T(t;n)|Y=1T(¢t;n)|Y, Lemma 4.5 yields that T(¢;n)x
is N(-)-continuous in t€[0, 8] for x€ Yy, n>|w|B, and §>0. Hence,
T(t)x is N(-)-continuous in £=>0 for each x€ Y;. This also remains
true for all x€ ¥ by (5.8) and condition (as). Also, we can prove the
semi-group property T (t+s)=T@&)T(s), t,s=0, by the usual method.
Consequently, {7(z); t =0} forms a semi-group of class (Co) on Y. It is
obvious that 7(z)|Y =T(¢)|Y for t=0; hence by theorem 4.6, we have

t
(5.9) T(t)x—x=go T(s)Axds for x€ Y, and t =0,
(5.10) R(/Z)x(=R(/l)x)=S:e"“T(t)xdt for x€Y and 1>0,
the integrals being taken with respect to the norm N(:). Let B be the

infinitesimal generator of the semi-group {7(¢); :=>0} on Y. In view of
(5.8), we see that B is N(-)-closed and
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(i——B)‘lx:Soe““T(t)xdt, for 2>w and x€ Y.

Combining this with (5.10), R(i)x=g:e‘”T(t)xdt for A>w and x€ ¥;

hence R(A)=(A—B)™! for A>w. Also, we see from (5.9) that fIl\Y{l C
B. We further demonstrate that ;ﬂ\f 1=B. Let x€D(A4). Then there
is an element y€ ¥ such that x=R()y(=(A—B)'y). Choose {y,}C
Y, so that N(y,—y)—>0 as n—>co and set x,=R(1)y,(=R()y»), n=1.
Then, %,€ Y2(C Y1) and N(x,—2)<(A—0) 'N(y,—y)—>0 as n—>co.
Moreover, N((4| Y1) %, — Bx) = N(AR(Z) y»— BR(2) y) = N((AR(Z) yn— yn)—
(AR y— y) < AN(x,— %)+ N(y,—y)—0 as n—>co. This means that
A[Y.=B. Thus, RQ)=(U— AT for 1>0. Q.E.D.

Remark 5.2. If we do not assume condition (as), then for each x €
Y1, T()x=N()-lim,...T(¢; n)x exists uniformly on every bounded sub-
interval of [0, o), where Y; is the N(:)-closure of Yi. {T(¢);t=>0}
becomes a semi-group of class (C;) on Y, such that N(7'(t)x) < e”’N(x)
for x€ Y, and ¢>0; its infinitesimal generator is Afl\Y-;. Moreover,
T@)|Y,=T()| Y, for t=0, where T(t),21=>0, are the operators defined
by (4.13).

5.2. Throughout this subsection, we assume condition (as) which has
been imposed in the preceding subsection and furthermore that A is closed

in X. In this case, we do not need to suppose condition (B), see Feller
[3; Theorem 17:

Lemma 5.3. The space ’z becomes a Banach space under N(°).

By means of this lemma, all conclusions obtained in Section 5.1 hold
under the assumptions in this subsection. Also, we see from the closedness
of 4 and R(4) that

(5.11) A\ Y. C 4 and ROCRQ)  for A>w,

(5.12) T(t; n)x= {%R(%)} x =<I—;—A>—” x
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for x€ Y and ¢>0. Combining these with Theorem 5.1, we obtain

Theorem 5.4. For each x€ Y,
(5.13) T(t)xsN(-)-lim,,.,,,([———;—Aynx

exists uniformly on every bounded subinterval of [0, o). The family {T(t);
t=>0} forms a semi-group of class (Co) on Y such that N(T(t)x) <<
e’ N(x) for x€Y and t==0. Its infinitesimal generator is A|RQA)[ Y]
and R(2)| Y, 2>w, are the resolvents of the infinitesimal generator. More-
over, T(t)x=T(t)x for t=0 and x €Y, where T(t), t==0, are the oper-
ators defined by (4.13).

Proof. By theorem 5.1, ;él-l\f 1 is the infinitesimal generator of the
semi-group {7'(¢); t=0} and R(1) is the resolvent of A/]\Y; at (> o).
But, R(A) =R()| ¥ by (5.11), and so, D(A|¥y)=RA[¥]=RWT].
Since .2|\Y/1CA, it follows that A| Y1=:4|\1€(/1)[ 7. Q.E.D.

Remark 5.5. If we do not assume condition (as), then for each x € V3,

T (t)xE]V(-)-limn_,,,(I ——;Z—A)—nx exists uniformly on every bounded sub-
interval of [0, o). The family {e **7T(¢); t==0} forms a contraction
semi-group of class (Co) on Y; whose infinitesimal generator is EI\/YZ=
A|R()[Y,]; R(2)|Y; is the resolvent of él\f’{z at A(>w) and T()| Y1
=T()| Y1 for t=0.

5.3. Let (4,Y) be a pair of linear operator and linear manifold in
X satisfying (a;)-(ay) and (B) and let {7'(¢); =0} be a semi-group on
Y obtained by Theorem 5.1. 7'(¢) need not be bounded on the linear
subset ¥ of X if it is observed in the original space X. In this subsec-
tion we extend this semi-group {7'(¢); t=>0} on Y to a semi-group on X
by imposing the following two conditions:

(as) Y is dense in X,
(as) for every €>0 and x€ Y there exist M.>0 and Ao=2.(c, %)
such that for A>2o and n with n/2€[e, 1/e],
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AR % ||< Me|| x|

Let T(t,n) and T(¢) be the operators on Y defined by (4.7) and
(4.13) for the case in which Y; is N(+)-dense in Y, respectively. Condi-
tion (ag) states that for each x€ Y,

(5.14)  ||T(¢; n)x||< M,||x|] for t€[e, 1/c] and n sufficiently large.

Therefore T'(¢)x satisfies
(5.15) || T@)x|| < M||x|| for t€[e, 1/e] and x €Y.

This means that for each >0, T(¢) is a bounded linear operator on Y
as an operator in X. According to (as), each T'(¢) can be uniquely ex-
tended to an element of B(X). We denote this extension again by the
same symbol T'(¢z). Then we have

(5.16) 1Tl < M.|x||  for t€[e, 1/6] and x € X.

Now, setting T (0)=1, we demonstrate that {7(z); t=0} forms a
semi-group on X. In fact, by Theorem 5.1, T()|Y=T@)|Y for t=0
and {T(¢); t=>0} is a semi-group of class (Cy;) on the Banach space Y.
Hence, T(¢)| Y= T(t) for t==0, and so, T'(t+s)x=T(t+s)x=T()T(s)x
=T(@)T(s)x for t,s=>0 and x€ Y. Since Y is dense in X by (as), we
obtain the semi-group property T (t+s)=T(@)T(s) for t,s=0. Also,
since T'(¢)x is continuous in ¢=>( for each x€ ¥ and since ¥ is dense
in X, (5.16) implies that T'(z)x is continuous in ¢>0 for each x € X.
Thus, {T(¢); t =0} forms a semi-group on X. Furthermore, 4]|Y; is a
restriction of the infinitesimal generator of {7T'(¢); £==0}. Indeed, since

N
A|Y; is the infinitesimal generator of {7'(¢); t==0}, if x € ¥, then
/\_/ X
(4| Y)x= (4] Y)x=limyo,; b (T(h)x — x) =limpg . b~ (T (h)x — x).
We can summarize the above-mentioned as follows:

Theorem 5.6. Assume conditions (a1)-(as) and (B). Then there is
a semi-group {T(t); t=0} on X such that
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-n
T(t)x=lim,,_,w<I—TtA> x for x€Y and t =0,

where the convergence is uniform with respect to t in every bounded subin-
terval of [0, o). Moreover,
(1) for each x€ Y, T(t)x is continuous in t =0,
(i) A|Y. is a rvestriction of the infinitesimal generator,
i) RWx=| e™T@xds  for x€Y and 1>,
(vi) N(x)=supszo|le ™ T(®)x|| for x €Y (cf. Theorem 4.6).
Remark 5.7. Let us consider the following (as’), instead of (ag):

(ag’) for every €>0 and x €Y there exist K, >0 and A=2(, x)
such that for 4>1¢ and n with n=>(A—w)e,

1A= )" R()"x|| = Ke||x]|.

We observe that (ag’) implies (as). See Remark 2.5. If (as) is replaced
by (as’), then the semi-group {7(¢z); t==0} on X has the property that
for every >0, ||le™ T (z)|| is bounded on [¢, o). Indeed, if £=>e>0 and
x €Y, then a constant M;>0 can be found such that ||T(¢; n)x||=(n/
(n—wt))"“(n/t—w)”R(Tn>nx||gME(l—wt/n)"”HxH for all sufficiently
large n. Now, we see taking the limit as n—> oo that ||T()x|| < Mge*
||%]| for t=¢ and x€ Y. Since Y=X, we have the desired conclusion.

6. Generation Theorems

In this section we give some necessary and sufficient conditions for
given operators to be the infinitesimal generators of the semi-groups which
we discussed in Sections 2 and 3.

We start from the following

Theorem 6.1. Let Y be a dense linear subset of a Banach space X
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and let A be a linear operator with domain and range in Y. Assume
that

(c1) thereis a real w such that for each 2>w and x €Y, the equa-
tion (A—A)y=x has a unique solution y=R(1)x,

(cz) N(x)=SUPsz0, r>0l||(A—0)"R(A)"x||< o0 for every x€Y and Y
is a Banach space under the norm N(-),

(c3) D(A) is N(-)-dense in the Banach space Y,

(cs) for every e>0 and x €Y there exist Kc >0 and Ao=2¢(c, x) ER
such that for A>2y and n with n=(1—w)s,

12— )" R()" || = Ke||x]|.

Then the operator A is the infinitesimal gemerator in the semse of Feller
of a semi-group {T(t); =0} on X such that Xo=\r~o T @) X ] is dense
in X and such that Y is the continuity set of this semi-group. Moreover,
{T(); t=0} is determined by

(6.1) T(t)leim,,_,,([——;—A)_nx for x€Y and t=0,

where the convergence is uniform with respect to t in every bounded sub-
interval of [0, o) for each x €Y.

Proof. Noting that D(4A)CY and R(A)CY, we see that (c;) and
(cz) imply conditions (a;)-(a3) with [lx|l=N(x) and the range condition
R(A—A)=Y for A>w. Furthermore, Y,=D(4) and Y=F=) and
hence N(-)=N(-). Therefore (c;) and (cs) imply conditions (B) and (as),
respectively. (c,) is nothing but (as’). Thus, it follows from Theorem 5.6
and Remark 5.7 that there exists a semi-group {7(¢); t=0} on X deter-
mined by (6.1), such that ¥ CJ; and 4C 4y, where ), denotes the con-
tinuity set of {7'(¢); t==0} and where A, stands for the infinitesimal

generator. Moreover, we have the following relations:

(6.2) N(x)=supszolle ™ T(t) x|| for x€Y,

(6.3) R(A)x=8:e'”T(t)xdt for x€ ¥ and 2> 0,
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(6.4) for every >0 there is an M:>0 such that |e™T()||< M.
for t =>e.

To show that Y D), we first prove that
(6.5) Xo=\Urso T@LX]CY.

Let x€X and ¢>0. Since Y=X, a sequence {x,} CY can be found
such that ||x,—x||—>0 as n—>oco. Since T'(t): Y—Y, Y=Y, and since
T(t)=T()|Y, we have that T(t)[ Y JCY; hence T(t)x,€ Y. Now, (6.2)
and (6.4) yield that N(T()xy,— T () xm)< M:e*||xn— %n|]|—0 as m, n—>
co. Thus, there is an element y€Y such that N(T(¢)x,—y)—>0 and
a fortiori ||T(t)xs—y||—0 as n—>co. But, ||T(#)x,— T(¢)x||—>0 as n—
oo, and so, T'(t)x=y€Y. Let x€2;. Then T(¢)x is uniformly ||-|-
continuous on every bounded sub-interval of [0, co). Combining this with
(6.4), we obtain N(T'(h)x— T(h)x)=supszolle (T (s+h)x— T(s+A")x)||
—0 as h, ¥ —> 0+, note that T(h)x €Y for >0 by (6.5). Thus, there
exists a y€Y such that [|T(A)x—y||SN(T(R)x—y)—>0 as h—>0+.
On the other hand, ||T'(h)x—x||—0 as A—>0+, and so, x=y€ Y. This
shows that >, Y. Therefore we have Y =),. The range X; of the
semi-group {7'(¢); t=0} is dense in X since it is dense in ;=Y. Final-
ly, we prove that A coincides with £, the infinitesimal generator in the
sense of Feller of {T'(¢); t=0}. Since A4 A,,

limyo A [ T(h)x—x]=Ax€Y  for x € D(A),
so that 4CR2. Let y€D(2). Then, by Corollary 2.3 (i), there is an
x € 2, such that y=](/1)x=S:e'“T(t)xdt. Since x €Y (=), (6.3)

states that y= S:e'“ T()xdt=R()x € D(A). This means that D(2)C
D(A). Consequently, 4=2. Q.E.D.

Remark. The above theorem is the converse of Theorem 2.6. This
theorem is proved for the case w=0 in Feller [3]. In [3] it is assumed,
together with (c1)-(cy), that N(AR()x) < N(x) for x €Y and 1>0. But,

this assumption is superfluous, as is seen from our proof,
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Theorem 6.2. Let Y be a linear subset of a Banach space X and
let A be a densely defined, closed linear operator in X. Assume that

(a1) Y is a normed space under a certain norm |||,

(az) there is a real w such that for each 2>w, RA—A4)DY, R(A)=
(A— A" exists and RQA)[Y]CY,

(as) there exists a constant M>0 such that

IRQ)" 5| < MQA—w)™llxll  for x€Y, 2>0 and n=0,

(@) Yi={xcY; Axc Y} is N(-)-dense in Y, where N(+) is defined
by N(x)=sup,zon>el|(A— )" RQ)"%|| for x€ Y,

(as) for every e>0 and x €Y, there exist M >0 and A9=21(c, %)
such that

[|A*"R(A)"x|| < M| x| for 2>2¢ and n with n/i€[e, 1/e],

(a;) Y. is a core of A.
Then A is the complete infinitesimal gemerator of a semi-group {T(t);
t=>0} on X such that Xo=\J;>oT(@)[ X ] is dense in X and such that Y
is contained in the continuity set ), of this semi-group. Moreover, this

semi-group is determined by (6.1).

Proof. (a;) and the denseness of D(A) imply (as), i.e., Y=X. The
closedness of A implies (B) by Lemma 5.3. Hence, by Theorem 5.6, there
is a semi-group {7T(¢); =0} on X determined by (6.1) such that Y C X}
and such that A4|Y;C A4, where A, is the infinitesimal generator of
{T();t=0}. Recall (Theorem 5.4) that R(1)| Y, 1>w, are the resolv-
ents of the infinitesimal generator of the semi-group {7(¢); t=>0} of class
(Co) on the Banach space Y. Therefore R(2)|Y can be expressed by
R(/l)xr—‘S:e"“T(t)xdt for x€ Y and 1>w. Since T(¢)|Y=7T() for
t=>0 (see Section 5.3), we see that T(t)[ Y ]CY for :=0 and

(6.6) R(l)sz:e‘”T(t)xdt for x€ Y and 1> 0.

Let w, be the type of {T(¢);t=0} on X and let w;>w, For each
s>0 there is an M(s)>0 such that ||T(¢)||<M(s)exp(w.t) for t=s. We
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want to show that T'(s)x € D(R(A)) and
6.7) RQ) T(s)x= g:e‘” T(i+5)xds

for x€ X, s>0 and 2>max{w;, }. Since ¥Y=X, one can choose a se-
quence {x,} CY such that ||x,—=x||—>0 as n—>o0. Since T(s)x,€7, it
follows from (6.6) that

RADT(s)x,= S:e’)“ T(t+s)x,dt.

Since |le™ T (¢ +5)x4|| < M(s) exp(w15)|| % || exp(— (A —w1)2) < M'(s)exp(—
(A—wy)t) € L(0, o), we see applying the dominated convergence theorem
that R(l)T(S)xn=g0e"“'T(t—i—s)xndt—*S e MT(t+s)xdt as n—>oo. Ad-

ditionally, lim,...T(s)x,= T(s)x. Thus, ((()5.7) is obtained from the closed-
ness of R(1). Now, (6.7) states that Ry(2) CR(Z) for 42> max{wi, o}
(>wo), Ro(A) being the operator on X, defined by (3.1). Since R(R) is
closed and invertible, Ro(2) is closable and its closure Ro(2) is invertible
for each A>max{w;, w}; hence condition (e;) introduced in Section 3 is
satisfied. Therefore, by Lemma 3.1, 4o=24— Ry(A)"'CA—RQA) ' = 4.
Combining this with the fact that 4|Y;C 4,,

A|Y,CA4oCA.

Hence, in view of (a;), we have A=4,, namely, 4 is the complete infin-

itesimal generator of {7(¢);t=0}. Finally, X, is dense in X, for
XD and 1 =X. Q.E.D.

We next mention a generation theorem for semi-groups of class (&)

which appears as a corollary of Theorem 6.2.

Theorem 6.3. Let A be a densely defined, closed linear operator in
a Banach space X and let k be a nonnegative integer. Assume that

(d,) there is a real o such that for each 1>w, R(A—A) contains
D(A%) and R(AD)=QA—A)" exists,

(dz) there exists a constant M>0 such that
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NRA) x|| < M(A—w)™"||x]|x for x € D(4%), 2>w and n>0,

(d3) for every €>0 and x € D(A¥), there exist M:>0 and 2=
Zo(e, x) such that

[|AZ*"R(A)"x|| < M| x| for 2>2q and n with n/l€[e, 1/¢],

(dy) D(A*Y) is N(-)-dense in D(A®), where N(-) is defined by N(x)
=SUP,zoa50l|(A—w)"R()"x|| for x € D(4),

(ds) D(A4*?Y) is a core of A.
Then A is the complete infinitesimal generator of a semi-group {T(t);
t=>0} of class (&) and (6.1) holds for x & D(A¥) and t=0.

Proof. Letting Y=D(A*) and |lxll=|/x||s and then applying Theo-
rem 6.2, we see that there exists a semi-group {7(¢); =0} on X such
that Xo=\U,5,T(¢t)[X] is dense in X, 4 is its complete infinitesimal
generator and such that D(4%¥)C Y], the continuity set of {7(z);t=>0}.
Now, it remains to show that there exists an ®'>w, such that for each
A>w’, Ry(2) is closable and its closure is invertible, where w, denotes the
type of {T(t); :==0} and where R, (1), 1>w,, are the operators on X,
defined by (3.1). But this has already been shown in the proof of
Theorem 6.2. Q.E.D.

Remarks. (1) Theorem 6.3 is the converse of Theorem 3.5.

(2) In case of k=0, (d;) states that {1; A>w} is contained in the
resolvent set p(A4) of A. In this case condition (d;) yields that N(-) is
equivalent to |||, and hence (d;) is automatically satisfied. Also, under
conditions (d;) and (dz) with k=0, it is proved that (d4) and (ds) are
also satisfied. Hence, Theorem 6.3 gives a generation theorem for semi-
groups of class (Cy).

(3) In case of k=1, N(x) < M| ||y for x € D(A), and so, (d4)
follows from (ds).

(4) Tt is sometimes convenient to employ the following somewhat
stronger condition (d,) in Theorem 6.3, instead of (dy):

(d/) D(A*') is dense in the Banach space [ D(4%)].
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Finally, we discuss the semi-group whose complete infinitesimal genera-

tor has nonempty resolvent set.

Corollary 6.4. Let A be a densely defined, closed linear operator in
X I

(a1") there is a real o such that {1; 1>w} Co(A),
and if (dz) and (d3) in Theorem 6.3 arve satisfied, then A is the complete

infinitesimal generator of a semi-group of class (C)).

Proof. 1t is proved ([9; Lemma 2.7]) that if 4 is a closed operator
satisfying (d;") and if D(4)=X then D(A4"*!) is dense in [D(4")] for
each nonnegative integer n. Hence, (ds) and (ds) are satisfied. Therefore,
by Theorem 6.3, A becomes the complete infinitesimal generator of a
semi-group {7 (¢); t=0} of class (&,). Now, from (d,) and the defini-
tion of class (C() it follows that {T'(¢); t =0} is of class (Cy). Q.E.D.

Remark 6.5. The definition of class (C(y) proposed in Oharu [9] is
slightly different from the one given in Remark (1) after Definition 3.3.
The relationship between those two definitions is stated as follows: A
semi-group {T(); t==0} on X is of class (C)) if and only if it satisfies

(o)) there exists an w>w, such that for each 1 >w, there exists
an R(1) € B(X) with the properties

@ R(l)x=g:e““T(t)xdt (=Ro()x)  for € Xo,

(b) R(A) is invertible,

together with conditions (az) and (a;) (stated in Definition 3.3).

In fact, if {T(); :=0} is of class (C(), then for each 2>w, R(Z)
is a closed operator defined on X and hence it is bounded. Since (a) and
(b) are trivially satisfied, condition (c{) holds. We note that in this case
{1; 2> 0w} Cp(4) and R(A)=R(4; 4) for A>w. Conversely, assume con-
ditions (a}), (@z) and (&3). Clearly, Ry(4) is closable and Ro(2) CR(Z)
for A>w. Let x€X. By (az), a sequence {x,} can be found in X,
such that x,—>x as n—>oo, Making use of (a]), Ro(D)x,=R()x,—~
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R()x as n—> oo} this means that Ry(A)x=R(A)x for x€ X and 1>o.

7. Abstract Cauchy Problem

In this section we are concerned with the abstract Cauchy problem.
Let A4 be a closed linear operator in a Banach space X and let us con-

sider a differential equation in X
(7.1) (d/dt)u(t)= Au(t), t>0.

By an abstract Cauchy problem for A we mean the following:

ACP. Given an element x € X, find an X-valued function u(z)=u(t;
x), defined on [0, o), such that

(i) u(#) is continuously differentiable in t==0 (or £>0),

(i) for each >0, u(z)e D(A) and u(z) satisfies (7.1)

(i) lim,,o.u(t)=u(0)==x.

The function u(t) satisfying (i)-(iii) is called the solution of ACP.
There are two alternatives for condition (i); the corresponding problems
will be denoted by ACP; and ACP;, respectively. Let D be a linear
manifold in X. By a family of solution operators of ACP on D we mean
a one-parameter family {U(¢); t==0} of linear operators, defined on D,
such that for each x€ D the function u(t)=U(t)x is a solution of the
underlying problem. Our object is to derive some sufficient conditions for
such solution operators to exist uniquely. The domain D of the solution
operators U(t) constructed in the sequel is not necessarily dense in X and
U(t) need not be bounded on D even if D=X. However, as will be
shown later, the results are closely related to the notions of Hadamard
correctness, semi-group (S. G. -) well-posedness and well-posedness in the
sense of distribution semi-group.

We divide this section into two parts and discuss the construction of
solution operators of ACP; and ACP,, separately.

Throughout this section, let 4 be a closed linear operator in a fixed
Banach space X and we assume that there exists a real w, such that
R(A)=(Q—A)™! exists for 2> wy.
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7.1. Let D be a linear manifold in X such that
(7.2) there is a norm |[|-]] under which D is a normed space,
(7.3) there is a seminorm p(+) on D,
and let us consider a family of operators U(z) on D into D(A) satisfying

(7.4) for every x€ D, u(t)=U(t)x is a solution of ACP; for 4 with the

initial value u(0)=ux,
(7.5) there exists a positive constant M such that
|U@)x|| < Me*ll%ll and |[AU()x|| < Me*p(x) for x€ D, t>0.

We call this {U(z); t =0} a family of solution operators of ACP; on
D with type wo and D the domain of the solution operators.

Remark 7.1. Since A is closed, the solution u(z) of ACP; satisfy the
equation (7.1) at ¢t=0 and its initial value u(0)=x belongs to D(A).
Therefore, it must hold that D D(A4). Also, by (7.5), the norm [|-] is

stronger than the original norm ||+|| on D.

Lemma 7.2. (i) R(A—A)>D and R(l)x=S:e""U(t)xdt for 2>
wy and x € D.

(ii) For each x € D, the corresponding solution u(t)=U(t)x is unique
in the sense that e *'u(t) is uniformly bounded on [0, o) together with
e Au(t).

Proof. (i) is obtained from the relation (d/dt)[ e ™U(¢)x]=—e™
A—AU(t)x for t=0, A>wy and x € D, and (ii) follows from (i).
Q.E.D.

In view of this lemma, the family of solution operators satisfying
(7.4) and (7.5) can not exist more than one. Hence, according to Krein-
Laptev-Cvetkova [ 6] we see that ACP; is Hadamard correct with type wg
on D when the family as above exists on D.

Now, let us consider the set D consisting of those elements x for
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which there exists a solution u(z; x) of ACP; for 4 such that
(7.6) sup,zolle*"u(t; x)||<oo and sup,zolle " Au(t; »)||<oo.

In the same way as in Lemma 7.2, we see that the solution u(z; x) is
unique in the sense that (7.6) holds. By virtue of the linearity of A4 and
Remark 7.1, D forms a linear manifold in X such that DCD(A4). More-
over, let w>w, be arbitrarily fixed, then D becomes a normed space under
N’(+) defined by

N'(x)=sup;zolle'u(t; »)(Z %)), x€D

and g(x)=sup,zolle"du(t; x)l, % € D, define a seminorm on D. There-
fore, we can define linear operators U(¢) from D into D(4) by U(t)x=
u(t; %), x€D, t=0; {0(t); =0} is a family of solution operators on
D satisfying (7.4) and (7.5) with D, M]|-|| and Mp(-) replaced by D,
N’(+) and g(-), respectively. D is maximal in the sense that every do-
main D of solution operators of ACP; for the fixed operator A satisfying
(7.4) and (7.5) is contained in D, note that in this case N'(x)<<M||x]|
and q(x) < Mp(x) for x €D. The following lemma is easily seen:

Lemma 7.3. U(t) maps D into itself and ﬁ(t—i—s):ﬁ(t) U(s) on D
for t, s=>0. Furthermore, N'(U()x)<e“'N'(x) for t=>0 and xc D.

Also, in the same way as in Lemma 7.2 and Feller [3; Section 3],

we obtain the following (cf. [6; Propositions 1°-5°]):

Lemma 7.4. () R(A—A)>D and R(Z)x=S:e"”l7(t)xdt for 1>
o and x€ D.

(i) RLDICD and R()—R(z)=—(—u)R(R() on D for
A, u>o.

(i) N'(%)=supnzo,>all(A—0)"R(2)"x|| and

q(%) =supuzo,>0||(A—0)" AR(2) x| for x€D.

Lemma 7.4 states that the pair of 4 and D satisfies conditions (a;)-
(as) with Y=D and M|-l=N’(-). We then define a linear subset z
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and a norm N(-) on i by (5.1) and (5.2); i is a Banach space under
N(-) by Lemma 5.3. Then ﬁC’z and N'(x)=N(x) for x€ D by
Lemma 7.4 (iii). Since the pair of 4 and i satisfies also (a;)-(as)
with M||-ll=N(:), we see applying Remark 5.5 that there exists a semi-
group {7'(t); =0} of class (Cy) on the N(:)-closure (iﬁ' of ’zl such
that N(T'(¢)x) < e*’N(x) for xe('fl)* and >0 and also that its infini-
tesimal generator is 4=(4]| iz)”=A|R(l) [(il)‘], where ’ir——{xefi ;
Ax e i}, ’zz={x6 El; Axeil} and where (4| iz)” denotes the N()-
closure of 4|3, Therefore, it follows that D(A)C D and T(¢)|D(A)C
U(¢) for :t=0. Consequently, we have

(7.7) D> D(A)=D((4] %) ")=RA(E D]
={xe (B "ND); 4x€(X1)}.

Since N'(x)=N(x) for x€ D, Lemma 7.3 yields that each U(¢) can
be uniquely extended to an operator U(¢) on the N(:)-closure D of b
such that N(T()x) <e”N(x) for x€D. It is clear that U(¢) maps D
into itself. The relationship between {7'(z); =0} and {U(z); t=0} is

stated as follows:

Theorem 7.5. U(t)=T() for t=0 and {U(t);t=0} forms a semi-
group of class (Cy) on the Banach space D whose infinitesimal generator
A coincides with A|D.

Proof. Lemma 7.3 implies that {U(¢); =0} has the semi-group
property. Let x€ D. Since |le='U(t)x||—>0 as t—>oco, we see from the
same argument as in Theorem 2.2 that N'(U(t)x —x)=N(U(t)x—x)—0
as t—>0+. Hence, {U(t); :=>0} forms a semi-group of class (Co) on D.
Let A; be the infinitesimal generator and let A>w. Then (A—A) lx=
S:e"”ﬁ(t)xdt for x€D. Since R(/l)x=S:e"“UA'(t)xdt for xe€D by
Lemma 7.4, R(A)x=(@A—A4,)'x for A>w and x€D. So that x=(1— A)
(A—A)tx for A>w provided x € D(4;). Since 2A(A—A) tx=214,(2—
A) 'x—>A1x as A—>+oo, the closedness of A4 yields that Ax=A4x.
This also means that D(4;)C Y, and hence DC(X1)~. But, T() | D(A)
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CU@) CU@) for t=0; hence U(t)=T(z) for t=>0. Consequently, 4;=
A=A|R(Q)[D]CA|D. Next, we show that A=A|D. Let k>0 and
let x€D. Then A" [Uh)x—x]—h LORW)x—=x]€ D for h, h'€ (0, ho).
We want to show that N(-)-limj_q:h [ U(A)x—x] exists and is equal to
Ax. Noting that

N N 1
h‘l[U(s+h)x—U(s)x]:SOAU(s—i—hﬁ)xda, s=0, he (0, ko),
we obtain

e U(s)[A Y (U(h)x — %) — K~ (TR x —x)]
=e-msgz[,4 U(s+h0)x— AU(s+1'0)x]do.
Since No(x)=sup,=o|le ** AU(s)x|| < + oo,
He““’sS:A 0 (s-+h6)x d6|| < Ng(x)e“"sSZe‘“’“(”“)dﬁ
<e @ o Ny(x)e' @t —0 as s—> + oo,

1 N N
Therefore, e“"sSo[A U(s+h0)x— AU(s+h'0)x ]d0—0 as h, ’—>0, uniform-
ly for s=>0, i.e, NG L OR)x—x]—hK " TUR)x—x])—0 as h, k' —
04. From this we see that

N()-limyg b [OB)x —xJ=Ax € D=7~

Since 4 is the infinitesimal generator of the semi-group {U(z); :=>0} of
class (Co) on D, we have that DCD(A). Combining this with (7.7), we
obtain D=D(J) and hence 4A=A|D. Q.E.D.

Remarks. (1) The main results announced in Krein-Laptev-Cvetkova
[6; p. 766 ] are obtained from Lemmas 7.2, 7.4 and Theorem 7.5.

(2) We showed that N'(x)=N(x) for x€ D. Also, the assertion of
Theorem 7.5 states that q(x)=]\7(Ax). Therefore, we can let g(x)=
SUP pz0>0l|(A—®)"R(A)"Ax|| in Lemma 7.4 (iii).

(3) Let A be the complete infinitesimal generator of a semi-group
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{T(t); t=0} of class (&;) and let us consider ACP; for 4. Then D=
» and p(x)=||4x| x €D,
define a seminorm on D. Also, Theorem 6.2 states that {U(z); t=0}
defined by U(t)= T(¢)|D(4*"), t=0, satisfies (7.4) and (7.5). Hence,

the maximal domain D of solution operators of ACP; for A4 contains D.

D(A4**') is a normed space under [|-[|=

But, in virtue of Theorems 2.6, 6.1 and 7.5, we see that D coincides with
the domain D(£) of the infinitesimal generator in the sense of Feller of
{T(t); t=0}. That is, ACP; for 4 is Hadamard correct with type
on D(£). See also Theorem 7.7.

Next, we consider some particular cases. Let k& be a positive integer
and assume the following conditions which are treated in Theorem 6.3:

(dy)) R(A—A)DD(4" for 1> o,

(d;) there exists a constant M >0 such that ||R(1)"x||< MQA—w)™"
|||z for x € D(4*), A>w and n=>0.

We first note that R(Q)"[D(AH)]CD(4**") for A>w and n=>1 and
that the pair of 4 and [D(4*)] satisfies conditions (a;)-(as). Now, let
Y=[D(4%] in Remark 5.5; then Y;=D(4**') and Y,=D(4*%). Hence,
there is a semi-group {7'(¢); =0} of class (Cp) on the N(-)-closure
D(A**Y)~ of D(A**') such that T(t)x=]V(-)-limn_m<[—%A)—nx and
N(T()x)<e*N(x) for t=0 and xe D(4*1). Also, its infinitesimal
generator A4 coincides with 4| R(A)[D(A4***)~] and R(2)|D(4**1)~ is the
resolvent of 4 at A>w. We then set

U@)=T(@)|D(A*) for t=>0.
Then it is easily seen that {U(¢); t=0} C B((D(4*Y)], X) and

(7.8) for every x € D(A**Y), U(t)x is
< Me®|| ][4,

-continuous in >0 and ||U(¢)x||

t
(7.9) U(t)x-—-x=goU(s)Axds for x€ D(A***1) and ¢=>0,

(7.10) AU x=U(t) A% for x € D(A**1*?), >0 and p=1,

(7.11) Ut +s)x=U)U(s)x for x € D(A***1Y) and s, 1 =>0,
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(7.12) R(/I)x=S:e_“U(t)xdt for x € D(A**!) and 1>o.

If D(A**Y) is N(-)-dense in D(4*), where N(:) is defined on D(A4*) by
(4.3), then the semi-group {7'(t)} is constructed on D(4*)~ by Theorem
5.4, from which it follows that (7.8)-(7.12) hold for k+1 replaced by k.
Consequently, we obtain

Theorem 7.6. If (d1) and (d;) are satisfied for some k=1, then
ACP; for A is Hadamard correct with type v on D(A**%). If in addi-
tion, D(A**Y) is N(-)-dense in D(A®), then the ACP, is Hadamard correct
on D(A*Y).

Remarks. (1) 1If D(A*) is N(-)-dense in D(A4*), then so is D(A4**")
for n=>2.

(2) In order that D(4**') is N(:)-dense in D(4*), it is sufficient
that D(A*') is dense in [D(A4*)]. If A is densely defined and if p(A)
2=0, then D(A4**!) is dense in [D(4*)]. Hence, our result extends those
of Sova [13; Theorem 2.6 ] and Oharu [9; Theorem 4.37.

(3) A linear operator A in a Banach space X is the infinitesimal
generator of an exponential distribution semi-group if and only if 4 is a
densely defined, closed operator in X with p(4)=x@ and satisfying (d;)
and (d,) for some k=>0, see [14; Theorem 3.2] and [9; Theorem 5.5

Before concluding this subsection, we exhibit an example of an opera-
tor satisfying (d;) and (d;). Let X=L%(R)x L%(R), and let 4 be a dif-

ferential operator of the form

01

A(D)=< )D D=i(8/0s).
0

0

Applying the Fourier transform, the equation (8/0¢)u(t, s)=A(D)u(t, s) is

reduced to the ordinary differential equations with & as a parameter

(d/d)i(t; &)=AE)a(t; &), EER,

where @ denotes the Fourier transform of u, and
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(7.13) (AE—A@)) '=1""E+1724(9),

E being the 2 X2 unit matrix. Moreover,

(7.14)  QE—A@)"=(—1""(n—1!I"(0/01)" *AE—AE)™
=AT"E+nl "t AE).

(7.13) states that R(A—A)=D((A—A))=D(A) for 2>0. By virtue of
(7.14), we have that ||A"(A—A)"x|| < ||z||+(n/A)||4x|| for >0, n =0
and x € D(A). Therefore, 4 satisfies (d;) and (d;) with £=1. On the
other hand,

(7.15) eAO=FE 11 A4(8), E€R.

The solution operator U(z) is obtained by taking the inverse Fourier trans-
form of e™®), note that {U(¢); £==0} can not be extended to a semi-
group on X. (7.15) states that U(z) map D(A) into itself and that (d/dt)
Ul)x=Ax for x€D(A) and :=>0. Hence, U(z)CU(:) for :=>0 and
ﬁC’f‘:CD(A)Cﬁ, and so, D(Z)=IA)=D=§=D(A). Consequently, in
this case, {U(z);t=0} forms a semi-group on the Banach space D(A)

endowed with the norm N(:) and A4 is its infinitesimal generator.

7.2. In this subsection we restrict ourselves to a densely defined,
closed linear operator A and discuss the construction of solution operators
of ACP, for A.

Theorem 7.7. Let D be the maximal domain of solution operaiors
of ACPy for A and {U@); >0} be the family of solution operators on
D. Let {UQ);t=0} be the semi-group obtained by Theorem 7.5 and A
be its infinitesimal gemerator. Assume that D be a core of A and

(C) for every t>0 there is an M;>0 such that

0@l <M=l for x€D.

Then A(=A|D) is the infinitesimal generator in the sense of Feller and A
is the complete infinitesimal generator both of which arve of a semi-group
{T(t); t=0} on X such that
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(@) T@)|D=U(t) for t=0 and D is the continuity set,

(b) AT (W) x=T@)Ax and T(t)x— T(s)x=st T(@)Axdo for x €
D(A) and t=5>0. |

Therefore, V (£)=T()|DN\D(A), t==0, form a family of solution
operators of ACP, for A.

Proof. Since D is dense in X, each U(¢) admits a unique extension
T(t)e B(X). In view of the fact that (fil)‘ZD, we have T(t)|D=
U(t), t=0. Hence, Theorem 7.5 and condition (C) imply that {T(z); =
0} forms a semi-group on X. Let x€D(A). Since D is a core of 4,
there is a sequence {x,} CD such that ||x,— x|+ ||4%x,— 4x||—>0; hence
AT 2,=A0)%,=U@)A%,= T(t)Ax,—> T (&) Ax for t>0. From this
it follows that AT()x=T())4x and T()x—T(w={ T@dxds for
x€D(A) and t=s>0. Thus, we have (b). Next, we sshow that 4 is
equal to the infinitesimal generator in the sense of Feller 2 of {T(¢);
t=>0}. Let Y=D, A=A and let N(-)=N(:) in Theorem 6.1. Theorem
7.5 states that those Y, 4 and N(-) satisfy (ci)-(c3). Also, since {7T(z);
t=>0} is a semi-group on X, (c,) is easily verified. Hence, Theorem 6.1
yields that A= and that D coincides with the continuity set of {7'(¢);
t=>0}. Finally, to prove that A is the complete infinitesimal generator
of {T(t);t=0}, let Y=D, ||-ll=N(-) in Theorem 6.2. Then by assump-
tions, A satisfies (a;) and (a;). Also, Theorem 7.5 states that (a3) and
(as) are satisfied. (ag) follows from the fact that T'(x)|D=0U(z), :1=>0,
and (a;) is a part of the assumption. Hence, Theorem 6.2 implies that
A is the complete infinitesimal generator of {7T(z); t=0}.

Q.E.D.

Remarks. We note that D(2)=DCD(4,) CDND(A) in the above
theorem, see also Lemma 3.2. According to Krein [5], condition (C) is
called the condition of correct posedness of ACP. As is seen from Sec-

tion 6, (C) is equivalent to the condition of Feller type, (as).

Theorem 7.8. Let A be a densely defined, closed linear operator in
X and k be a positive integer. Suppose conditions (d;), (dz), (d3) (stated
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in Theorem 6.3) and

(ds") D(A**Y) is dense in [ D(A*)] and D(A*) is dense in X.
Then there exist a one-parameter family {U(t); t=0} CB((D(4%)], X)
and a semi-group {T(t);t=0} on X such that

(@) T@&)|DAH=U@) for t=0 and D(A*) is contained in the

continuity set,
(b)) A’T)x=T()A’x for x€D(A4"), t>0 and p=1, 2, .k,

() TW)x—T(s)x= St T(0)Axdo for x€D(A*) and t=s5>0.

Therefore, {U(t); t=0} becomes a family of solution operators of
ACP; for A.

Proof. As was stated in Remark (2) after Theorem 7.6, (d,") implies
that D(A**1) is N(-)-dense in D(A¥). Hence, as is shown in the proof
of Theorem 7.6, a semi-group {7'(z); =0} of class (Cy) is constructed
on D(A4*)~. We then put U(¢)=T(:)|D(4*) for t=0. Then {U(¢);
=0} CB((D(4%)], X). On the other hand, the pair of 4 and [D(A4%)]
satisfies conditions (a;)-(ag) with Y =[D(4*)] and [|-ll=||||z; hence by
Theorem 5.6 and Theorem 7.6, a semi-group {7(¢); t=0} can be found
such that 7T(¢)|D(A4*)=U(t) for t==0. In order to show (b), we ob-
serve that D(A*™) is dense in [ D(A%)] for n==2. In view of this,
given an x € D(A4%), a sequence {x,}(CD(A**)) can be found such that
%,—>x and A'x,—> A'x, j=1,2,..k, from which it follows that U(¢)x,
—T(t)x and A'U(t)x,=U@) A x,—> T(t)A’%, j=1,2,..-, k, for each t=>0.
Note that 4’ commutes with U(z) on D(A4**7). Hence, we first have that
T(t)x€ D(A) and AT(t)x= T(¢t)Ax for t>0 and then obtain the asser-
tion (b) inductively. Now, let x&€ D(4*) and {x,} CD(4**) be a se-
quence as above. Then we see from the same argument as in (7.9) that
U(t)xn—U(s)xn=S:U(0')Ax,,do‘ for t=s>0. Passing to the limit as

n— oo, we obtain

(7.16) T(t)%— T(s)x= S’ T(0)Axds,  x€D(AY).
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Since T(:)Ax is ||-||-continuous in s>0, (7.16) means that T(¢)x is a

solution of ACP, associated with the initial value =x. Q.E.D.

Remarks. (1) If x€D(A4%), then u(t)= T(¢)x gives a unique solu-
tion of ACP, for A in the sense that u(t)€ D(A4*) for t>0. In fact, let
0<s<t. Then (d/ds) T(t—s+e)u(s)]|=—T(t—s+e)Auls)+ T(t—s+e)
Au(s)=0. Integrating this from s=0>0 to s=¢—0, we obtain T(J+¢)
u(@—N=TG@—0+¢e)u(d). Now, letting § >0+, we obtain T(e)u(z)=
T(t+e)x; hence it follows that u(¢)= T(¢z)x for t=>0.

(2) Let A4 be a densely defined, closed linear operator and suppose
that there exists a family of operators U(z), defined on a core D of A4,
such that for any x€ D, u(¢)=U(t)x is a unique solution of ACP; for
A with the initial value x and u(z)€D for t>0. When each U(%) is
bounded on D, U(t) admits an extension T(¢)€ B(X) and {T(¢); =0}
becomes a semi-group on X. In this way, if there is a semi-group {7(¢);
t=>0} on X such that T(¢)|D=U(t) for t==0, then we say that ACP
is well-posed in the sense of semi-group on X (simply, S.G.-well-posed).
If the semi-group is of class (&;) for some nonnegative integer k, then
we say that the ACP is (&,)-well-posed. Theorem 7.7 gives a sufficient
condition for ACP to be S.G.-well-posed and Theorem 7.8 gives a suffici-
ent condition for ACP to be (&,)-well-posed. The (C)-well-posedness
and the well-posedness in the sense of distribution semi-group are similar-
ly defined (cf. Remark (3) after Theorem 7.6); for details, see Takahashi-
Oharu [16; Section 4].

Finally, we make mention of an example of the operator satisfying
(dy)-(dy"). Let X=L%R)x L%(R) and A be a differential operator of the
form

—1 0 0 1
A(D)z( >DZ+< >D2’, D=i(0/0s),
0 —1 0 0

where r is a nonnegative integer. Applying the Fourier transform, A4(D)

is converted to a multiplication operator in X
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___EZ 627
A(€)=< >, é¢€R.
0 —¢&

Then, for each 1>0, 1E — A(£) has the inverse
(717)  QE—AE)'=Q+&) A+ 26DE+(+8)724(8).

Hence, if r==3, (A—A4)~! is not bounded for 2>0 and o(4)=@. But we
see from (7.17) that R(A— A)=D((A—A))DD(A) for 2>0. On the
other hand, for a fixed £€ R, we have

(718)  (AE—A@)"=@+E)"E+ng”(A+¢) " VF,
where F' =(8 (1)> Hence, we have

12 (A— )" xl| <[+ /D) (nr/(n+1=1)) A —r/(n+1))" Jll«||

for >0, n =r and x € X; this estimate shows that (ds) holds. Moreover,
(7.18) can be written as

QE—A@)"=[(n+1)&+2JA+E) "' E+n(A+£)""14(8)

and hence we have that ||A*(A— 4)™"x||<|| ]|+ (n/A)||Ax]| for A>0, n=>0
and x€D(4). To see that condition (ds) holds, it suffices to observe
that C5(R)x C;(R) is contained in D(A%) and dense in [D(4)]. Thus,
we obtain a semi-group {7(¢); t==0} on X of class (&;) such that 4 is
the complete infinitesimal generator and such that ||7(2)||<1+ (r/e)"t'~"
for t>0 and || T(&)x|| < x|[+¢||4x]|| for x € D(A) and t=0.
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