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Generation Theorems of Semi-Groups
of Linear Operators

By

I. MIYADERA*, S. OHARU** and N. OKAZAWA***

This paper concerns the generation of semi-groups of linear operators

in a Banach space X.

By a semi-group {T(t}\ t^>Q} on X we mean a one-parameter family

of bounded linear operators T(t\ £^>0, such that T(0)=J (the identity

operator), T(t + s)= T(t) T(s) for t, s]>0 and such that for each x G X,

T(t)x is strongly continuous in £>0. For a given semi-group {T(t); t

SjO} on X, we define the infinitesimal generator AQ by A0x = lim/j^0+

h~l(T(k)x — x} whenever the limit exists. We wish to investigate the

structure and properties of {T(z); £j>0} through those of AQ. While it is

desirable that A0 has nice properties, AQ is not necessarily closed and the

domain D(Ao) is not dense in X in general. In fact, a semi-group of class

(0, A) is of class (0, Ci) if and only if AQ is closed, see Phillips UllU; an

interesting semi-group on X with the infinitesimal generator AQ such that

is discussed in Lagnese [JT]. In order to investigate the prop-

erties of AQ, we consider two kinds of modified generators. One of

them will be called the infinitesimal generator in the sense of Feller and

the other the complete infinitesimal generator. Our first purpose is to

study the basic properties of these generators. The study of the former

generator is connected to the work of Feller Q3]. To consider the later

generator we need to make an additional assumption on the Laplace

transform of the semi-group. These generators have dense domains if and
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only if the range of the semi-group { T ( t ) m , zS^O}, X$ = \J t>$

is dense in X.

By the continuity set of a semi-group {T(t); t~^>Q} we mean the set

% = {x€X; limh_»Q+T(ti)x = x}. This set plays an important role in the

theory of semi-groups of linear operators and it might be natural to clas-

sify semi-groups on X in terms of the continuity set. In Oharu Q9]

certain classes of semi-groups on X are introduced. That is, for each non-

negative integer k, we consider a class of semi-groups {T(t); t^>Q} on

X such that D(Ak) is contained in the continuity set of {T(t)'9t^Q}9

where A is the complete infinitesimal generator. In Q9], however, A has

always non-empty resolvent set; such a class is called class (£(&)) and the

fundamental classes discussed in Hille-Phillips [/T] are contained in the

classes (C1^)), £ = 0,1, 2. Our second purpose is to extend these classes to

the case in which the resolvent set of the generator can be empty. In this

paper those extended classes will be called classes (@^)3 & = 0, 1, 2 , - - - . As

will be shown, (C^)) C (©*) and (@jOP(@*+i) f°r eacn * 'm tne set theo-
retical sense. Also, those classes contain, as their important subclasses, the

semi-groups of growth order a which have been studied by Da Prato [_2~]

and Sobolevskii £12].

Our third and main purpose is to characterize the classes of semi-

groups mentioned above in terms of the corresponding infinitesimal gene-

rators. We proceed with our argument as follows: Let A be a linear

operator in X and F be a linear subset of X. We then impose the fol-

lowing conditions:

(ai) F is a normed space under a certain norm ||H||,

(a2) there is a real a) such that for each A>&), R(A — A) contains F,

= (A — A)~l exists and such that F is invariant under J?(/l),

(a3) there exists a constant M>0 such that ||^(/0W#|| £S

60)-W|IMI| for x£Y,2.>o) and n = Q, 1, 2,....

Under these conditions there is a one-parameter family {T(0; ^^0}

of linear operators defined on a subset Yi of F such that T(t)x = limn^00

(I—(t/n)A)~nx for t^>Q and x € YI. If in addition, we make some

assumptions on the denseness of YI in F, {T( t ) ; t ]> 0} can be extended
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to a semi-group of class (C0) on a certain Banach space Y. Moreover, we

can extend this semi-group on Y to a semi-group on X by imposing a

condition of Feller type.

The fundamental idea for constructing a semi-group under these con-

ditions is based on that of Feller pT); we first introduce into Y another

norm #(•) defined by N(x) = sup{\\(t-a))nR(A)nx\\; t>a), 7*;>0}, x € Y,

and then regard the resolvents B(A) multiplied by (yl —o>) as contractions

in this new normed space Y. A quite similar method to ours is employed

in a paper by Krein-Laptev-Cvetkova [J5] in which the underlying opera-

tor A is supposed to be closed and the Hille-Yosida theorem is applied.

In this paper, the operator A need not be closed and the corresponding

semi-group is constructed by employing the method established by Crandall-

Liggett pT]. In this way, we construct semi-groups in a general way

and, as the particular cases, we shall improve a Feller's theorem given

in \J3T\ and give the generation theorem for semi-groups of classes (©*).

Finally, our fourth purpose is to derive some sufficient conditions for

the existence of solution operators of an abstract Cauchy problem, ACP,

formulated for a closed operator in a Banach space. The results are

obtained from the generation theorems mentioned above and give sufficient

conditions for the Hadamard correctness of ACP which is discussed by

[J3]. On the other hand, Sunouchi [JL5] and Takahashi-Oharu [JL6] dis-

cussed ACP's which are well-posed in the sense of semi-group. Our

results also furnish some sufficient conditions for such well-posedness.

This paper consists of seven sections. Section 1 contains some special

notations used in this paper and some basic notions. Section 2 treats

the infinitesimal generator in the sense of Feller. In Section 3, classes

(©*) are introduced and their properties are investigated. Section 4 deals

with some basic estimates for the construction of semi-groups. Section 5

concerns the construction of semi-groups and in Section 6, the generation

theorems for the semi-groups discussed in Sections 2 and 3 are established.

Finally, Section 7 concerns the abstract Cauchy problem.
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1. Notations and Definitions

In this section we list some notations and basic notions. Let X and

Y be (complex) Banach spaces. By B(X, F) we denote the set of all

bounded linear operators on X into F; we write B(X) for B(X, X). For

a U G B(X) and a subset S C X, we denote the image of S under U by

Let ^4 be a linear operator from X into F. Then D(A) and

stand for its domain and range, respectively. We write p(A) for

the resolvent set of A and -R(A; ^4) for the resolvent of A at A(Gp(^4)) .

If the null manifold of A consists of only 0, then A~l is defined as a

linear operator from F into X; in this case we say that A is invertible.

We sometimes call a linear operator A with D(A) and R(A) in X an

operator in X.

Let 5 C X and y4 be an operator from X into F. We write A\S for

the restriction of A to D(A)r^S. S denotes the closure of S and A

stands for the closure of A provided that A is closable. For a closable

operator A such that A = B, D(A) is called a core of 5, that is, a linear

manifold D(CD(B)) is a core of 5 if D is dense in D(B) with respect

to the graph norm of B.

In this paper we consider for a fixed Banach space X several kinds

of Banach spaces which are contained in X as its linear subsets and are

endowed with stronger norms than the norm of X: Let A be a closed

operator in X. Then for each positive integer k we can regard D(Ak) as

a Banach space under the norm

where AQ = I (the identity operator on X); we write \^D(Ak)~] for the

Banach space. Accordingly, every element U€; B(X) is simultaneously an

element of J3(QD(-^*)!]j X) for each k. Also, we consider other spaces
/^^ ~

2, 2 and F. Their norms are denoted by -/V(e)5 ^(") and III 'III, respec-

tively. These spaces are treated in a fixed Banach space and hence it is

needed to specify the topologies when we discuss the problem of conver-
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gence, denseness and so on. We then specify the norm in question by

putting the corresponding symbols of norm before the adjectives, nouns

and symbols, such as |||-[|1 -dense, |||- Ill-core, \\\'\\\-limn^eoxn = x, and so on.

2. Semi-Groups of Linear Operators

Let X be a Banach space. A one-parameter family { T(t)\ t^>Q} in

the Banach algebra B(X) is called a semi-group (of operators) on X, if

(2.1) T(t + s)=T(t)T(s) for t, 5^0,

(2.2) for each x€X, T(t)x is strongly continuous in

In this section we discuss about the fundamental properties of semi-groups

on X. These properties are investigated through the notion of semi-group

of class (C0) on a certain Banach space. If {T(0; t^Q}CB(X) satisfies

(2.1) and

(2.27) \imh^0+T(K)x = x for all x€X,

then it is called a semi-group of class (Co) on X\ note that (2.2) is auto-

matically satisfied in this case.

Let {T(0; ^2£0} be a semi-group on X. Then it is proved (Hille-

Phillips [4; p. 306J) that fl)0 = lim^00^-1log||r(0|| exists and -oo^o)0<

+ oo ; o)0 is called the type of the semi-group. The set

is called the continuity set. We define the infinitesimal generator AQ by

(2.3) A0x = ]3mM+Ahx, Ah = h

whenever the limit exists. It is well-known that AQ is not necessarily

closed. We then introduce two kinds of modifications of infinitesimal

generator. If A 0 is closable, the closure AQ is called the complete infini-

tesimal generator of the semi-group. Also, according to Feller Q3], we

define the operator J2 from 2 into itself by the relations
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(2.4) £x

we call this restriction of AQ the infinitesimal generator in the sense of
Feller.

First of all, we introduce a norm under which 2 becomes a Banach
space. Let ft)(>ft)0) be arbitrarily fixed. Since e~mt\\ T(t)\\ — »0 as £— >
+ oos He'^r^)^!! is bounded on [J)5 oo) for each #62- We then define
a function N(x) on 2 by

(2.5) N(x)=sup\\e-utT(t)x\\ for *<E2-

It is easily seen that \\x\\ <^N(x) « + oo) for # E 2 and that N(x)
defines a norm on 2- Moreover, we can prove the following (see Feller

[3]).

Lemma 2.1. 2 & & Banach space under the norm JV~(0»

The semi-group { T(t)} can be regarded as a semi-group of class (C0)
on the Banach space 2 in the following sense: Let

(2.6) tf(0=r(OIZ for *;>o.

Then each U(t) maps 2 into itself and for the family of these operators
{U(t}\ *;>()} we obtain

Theorem 2.2, {U(t); £^>0} is a semi-group of class (C0) on the
Banach space 2 such that

(2.7) N(U(t}x} ^ e**N(x) for t^ 0 and x G 2

^ operator Q defined by (2.4) coincides with the infinitesimal gener-
ator of this semi-group. Moreover > D(Q°°} = {\n^iD(Qn) is N(^)-dense in

z.
Proof. Clearly, the definition yields that {U(t)} has the semi-group

property (2.1). Let *e2- Then JV"(^(0^) = sup^0||e-<BSr(5)r(0^il =
etotBups^\\e-to(s+^T(s + t)x\\^e<otN(x) for *;>0. Since lim^.||e-"fr(5)||
= 0, the function e~msT(s)x is uniformly ||«||-continuous in s€[J), <=<>) and
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hence limM+mp^Q\\e'^t+^T(t + s)x-e-u'T(s)x\\ = 0. Therefore,

^

as £— >0 + , which means that {U(t)} forms a semi-group of class (Co)

on 2- In view of (2.5) and (2.6), {xeX; JN(^-limh^0+h

x)}CD(&)- To show the converse relation of the implication, let x

Since Qx G 2 and since T(t)&x is the continuous derivative of

it follows that rl{T(t + s)x--T(s)x} = t-l(*+t T(r)QxdT for 5^0 and
J s

. In view of this, we have

, f s+* Cs+t
*r1\ rCOfl^dr-e—rM

Js J s

s+t

(e0'(T-s'-l)||e— T(r)Bx\\dt.

Since e"wsr(5)J2A; is uniformly ||-|| -continuous on QO, oo)5 given an s>0

there is a <? = <?(£)>() such that \\e-0>rT(r)Qx-e-<aST(s)Qx\\<£/2 and

^(J2A;)|e£B(T-s)-l|<£/2 provided |r-s| <*d. Consequently, N(t~l{U(^x

— x} — Qx)<^£ for £6(0, <?). This implies that & becomes the infinitesi-

mal generator of {U(t)}. Finally, the last assertion is well-known for the

semi-group of class (C0), see Hille-Phillips H4; Theorem 10. 3. 4].

Q.E.D.

In the remainder of this section we are concerned with the Laplace

transform of a semi-group {T(^); zSrjO} on X. For each A(>a)>ft)o)5 we

can define an operator /(A) on 2 by

(2.8) J($x^e-™T(t}xdt(=(~e-™U(t}xdt) for %£%.
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In view of Theorem 2.2, we see that the integral converges with respect

to 7VX«)-norm and a fortiori the original ||'||-norm. We list, as a Corol-

lary to Theorem 2.2, some of the fundamental properties of /(^) which

are well-known in the general theory of semi-groups of class (Co).

Corollary 2.3. (i) Q is a closed operator in 2 and f°r each A > a),

is the resolvent of Q, i.e., /CO == U - 5)-1 €

(ii) N(J(X)x)<Z(l-co)-lN(x) for l>a and

(in) N(*}-\im^+00U(X)x = x for x € 2 .

(iv) /(A)"* = (n - 1) l-l(~e-*as*-1 U(s)x ds
Jo

for x € 2], /l>ft) and n = l, 2, 3,...,,

(v) D(J2°°) i5 fl» N(-)-core of

Proof. The proofs of (i)-(iv) are stated in Hille-Phillips Q4 ; Theorem

12. 3. I/], (v) follows from the last assertion of Theorem 2.2 and (ii).

See also Oharu [9; Lemma 3.6]. Q.E.D.

In view of this corollary and by the same argument as in Feller Q3;

Section 3], we obtain the following

Theorem 2.4. (i) N(x)=supn*o. x^lU-oOVOO11*!!

for xe%.

(ii) For any e>0 and ^62, there exist KS>Q and 1Q = ̂ 0(s3 x)

such that

\\(l-t»y*J(X)nx\\<>Ks\\x\\ for A>^ 0 and n^(Z-o))e.

Remark 2.5. Condition (ii) is the so-called condition of Feller type.

This condition implies the following (ii7) which is proposed in Oharu £9;

Section 5]:

(ii') For any e>0 and x^^ there exist M£>0 and AJ = ^(e, x)

such that
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\\XnJ(Woc\\<M€\\x\\ for 1>K and n with n/l € [e, 1/eJ.

(ii') is obtained from Theorem 2.4 (ii) as follows: Let x € 2 and e>0.

Then ||r/U)^||=|l-ft)/A|-w||y-a>)V(A)^|| for n^l and *><o. We

then set ^Q = max {^0(£/2, A;), 2 1 a) \ } and M£= exp(2 | a) \/s) K£12, where

A0(e/2, x) and K£/2 are the constants associated with x and e/2 through

Theorem 2.4 (ii). If A>J£ and rc/7 € [>, 1/s], then by Theorem 2.4 (ii),

\l-a)/l\-n<, exp(2|fl)|/e) and HW-^VU^H^^^Ikll. Note that

and »^^e^(A — o))e/2. Consequently, we have

\/e)Kel2\\x\\=M€\\x\\ for ^>^J and n/i e [e, 1/e].

Finally, the following theorem due to Feller Q3] is obtained by com-

bining the results obtained so far.

Theorem 2.6. Let {T(t)\ zl>0} be a semi-group on X such that

\Jt>oT(t^X^] is dense in X. Then we have:

(a) the continuity set 2 is dense in X.

(b) 2 is a Banach space under the norm N(>).

(c) O defined by (2.4) is N(*}-densely defined in 2-

(d) For each A>o> and x £ 2 the equation (A — @)y = x has a uni-
/•«.

que solution y = J(X)x = \ e~x*T(t)xdt.

(e) tfOO = suPlla5o, x>Jia-o))Va)^|| /or x 6 2-

(f) For fl?ry £>0 ««J ^^2 5 ^^^ exist K£>0 and AQ = AQ(e, x)

such that \\(l-a>)HJ(X)*x\\^Ks\\x\\ for A > A 0 and

3. Semi-Groups of Class

In this section we first investigate the closability of the infinitesimal

generator of a semi-group on X and then introduce some classes of semi-

groups on X. Also, some of their basic properties are given.

Let X be a Banach space and {T(t)\ zj>0} be a semi-group on X

with the type O)Q and with the infinitesimal generator A0. We set

and for each ^>a)0, we define an operator J?oCO °n ^o by
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(3.1) tfoW* = (VX'r(0*<fr for x

Clearly, XQ is contained in the continuity set 2 of {T(t}} and

/(/I) for /£>ft)(>a)o)5 where J(X) is the operator defined on 2 by (2.8).

To obtain the closability of A 0 we impose the following condition:

(<2i) there exists an o)>o)0 such that for each ^>o), RQ(£) is clos-

able and its closure R(X) is invertible.

Lemma 3.1. Assume condition (cti). Then we have:

(i) R(r)x=(0°e-™T(t)xdt for x^E and

(ii) AQ is closable and its closure A is equal to h — R(fc)~l for every

i.e., R(1) = (A-A)-1 for JL>co.

Conversery, if AQ is closable and A — A is invertible for A>ft), where A =

AQ, then condition (<2i) holds.

Proof. Suppose condition (<%i) holds. Let /l>ft) and # € 2- Then

R(Z)T(s)x= (~e-™T(t + s)xdt = e**(~e-™T(t)xdt^(~e-™T(t)xdt as

5->0 + . Since lims_ Q+T(s)x = x, the closedness of R(X) implies that

and that the relation (i) holds. In view of this, we have

AkR(X)x = R(X)Akx = h-\e™ - l)R(X)x - e^h'1 e~xt T(t}x dt ;
Jo

hence, passing to the limit as A— >0 + 5

(3.2) A*R(X)x = limh^0+AhR(^x = limh^+RWAhx = AR(Z)x ~ x.

From this and the closedness of -R(/l), it follows that AQx^D(R(^)) and

(3.3) R(X)AQx =

provided that x 6 D(Ao). To show the closability of A^ let xn

xn-+Q and AQxn-> y as TI->OO. Then, R(X)(k — Ao)xn = xn-»Q by (3.3)

and hence R(X)( — y) = Q. Since R(X) is invertible, we obtain y=Q. This
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means that A0 is closable. Now, writing A for the closure AQ and then

using the relation (3.3), we see that (A — A)x 6 D(jR(A)) and /Z(A)(A — .4)*

= # for x€D(A). Next, let x€D(R(W. Then there exist ^<EX0 such

that xn-+x and Ro(X)xn-+R(X)x as TJ— >oo. Since (A — A)R(X)xn = (A —

Ao)R(X)xn = xn by (3.2), the closedness of (A — A) implies that R(X)x 6

D(^) and (^--4)/Z(A)A; = ^. Consequently, R(i) = (i — A)~l. Since A was

arbitrary as far as A>&), we have the assertion (ii). Finally, we show

the converse. Suppose that A0 is closable and that A — A( = A — AQ) is

invertible for /l>o). In the same way as in (3.2), we obtain

Z)x = (A — AQ)RQ(X)x = x for x€XQ and

In view of this, we see using the closedness of A and then applying the

invertibility of A — A that RQ(^) is closable and that (A — A)R(£)x = x for

each x€D(R(A.y). This shows that J?CO is invertible provided A>ox

Q.E.D.

We now exibit a relationship between the complete infinitesimal gen-

erator AQ and the infinitesimal generator in the sense of Feller J2.

Lemma 3.2. Assume condition (a^). Then J2 is closable as an oper-

ator in X and its closure coincides with the complete infinitesimal genera-

tor •, i.e.9 A=AQ=£.

Proof. We first note that A = AQ exists by Lemma 3.1. Since

A0CA, ifi is closable and SCA. We want to show that D(A) (= the

range of fi(A))C/>(fi). Let A>o>. Then by (3.2) AhR(l)x^AR(tix-

x£.^ as A— >0 for each ^ € 2 ? which means that R(£)x€:D(@) and

— A;, i.e.,

(3.4) (l-ti)RWx = (!t-^R(l')x = x for

Now, we take an arbitrary element x£D(RW). Then there exist xn£z

X0 such that (xH9 RQ(X)xn)->(x, R(X)x) in XxX as TI->CXD. But, (A — J2)

jR(A)^w = A;w by (3.4); hence it follows that R(tyx€D(S\ This states

that D(A)CD(3). Q.E.D.
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Now, we introduce the following classes of semi-groups on X:

Definition 3.3. Let k be a nonnegative integer. A semi-group

{T(0; £^0} on X is said to be of class (©*), ̂  ft satisfies the follow-

ing conditions :

(#1) there exists an o)>a)0 such that for each A>o), J?0(>0 is closable

and its closure R(fc) is invertible;

(<Z2) ^o = Wf>or(OD3Q is dense in X;

? where A is the complete infinitesimal generator of

Remarks. (1) In Oharu [9], some restricted classes, called classes

(C(*)), i = 0, 1, 2,..., are discussed (cf. Remark 6.5):

A semi-group {1X0; ̂ ^0} on X is said to be of class (C^) if it

is a semi-group of class (©*) and if the operators .RCl), A>&> 5 are defined

on X

As is seen from the definition, (C(fe)) C (C(*+i)X (@*)C(@*+i) and

(C(*))C(@*) for each 4 in the set theoretical sense. We can find some

examples which show that (C^)) p (C^+i)) for each A, see [9; Example

4.10]. From this we see that (©*) §i (@^^i) for each A. Also, we note

that classes (C^ contain the fundamental classes (0, A) and (A) which

are discussed in Hille-Phillips [4; Section 10.6]; (C0) = (C(0)) = (@oX (°3 -^)

C(C(i)) and (^4)C(C'(2)). In fact, the generation theorem for semi-groups

of class (A) is obtained as a corollary of that for semi-groups of class

(C(2)) ([9; Theorem 6.14]) and it is shown by Miyadera [8] that the

generation theorem for semi-groups of class (0, A) is obtained in view of

that for semi-groups of class (C^).

(2) Da Prato [2] and then Sobolevskii [12] studied the behavior of

a semi-group on X at t = Q through the notion of growth order. Let a>

0. Then a semi-group { T(t) ; 1 1> 0} on X is said to be of growth order

a if it has the following properties:

(i) if r(0* = 0 for all t>Q then x = 0;

(ii) ||**r(0||=0(l) as
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(iii) ^o = Vf>or(OD3T] is dense in X.

Condition (i) is used to guarantee the closability of the infinitesimal gen-

erator AQ of the semi-group and also the invertibility of A — J0, ^>ft)0 .

Under condition (ii), it is proved that D(ALal+1) is contained in the con-

tinuity set 2- Consequently, a semi-group of growth order a is proved

to be of class (©&), k = \jx~\ + 'L. The detailed arguments concerning these

propositions will be done in the forthcoming paper by Okazawa ClO].

Now, let { T(t) ; t ̂ > 0} be a semi-group of class (@ft) and let A be

its complete infinitesimal generator. Then D(Ak) becomes a Banach space

under the norm ||-||*; we denote this Banach space by £_D(Aky^\. More-

over, we denote by N(x) the norm on the continuity set 2 defined by

(2.5) and we mean by 0) the constant stated in condition (cti).

Lemma 3.4. If {T(t)\ t^>Q} is a semi-group of class (©*),

there exists a constant M>0 such that

\\R(l}noc\\<,M(l-(dYn\\x\\k for x€D(Ak\)i>ti> and n

Proof. By the definition of /(/Q and Lemma 3.1 (i), we see that

x = J(X)x for A>o) and ^ ^ 2 = Thus, by Theorem 2.4 (i),

sup^oJx>JIU-a))w
JRU)^||^^W for *G£(^)(CE).

Now, we observe that He-"* T(t)x\\ ^e~ut\\ T(t)\\\\x\\k for t>0 and

x€D(Ak); hence e~GJ?T(^), ^>0, are bounded operators from the Banach

space [Z)(-4*)3 into X. Since sup,>0||e-ffl''r(0^||( = ^(^))<«> for each
x 6 D(Ak\ the uniform boundedness theorem states that there exists an

M>0 such that

(3.5) NW = *upt>0\\e-utT(t)x\\^M\\x\\k for

Q.E.D.

We now obtain the following main theorem in this section.

Theorem 3,5. Let {T(t)\ t^Q} be a semi-group of class (©*).
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Then, it has the complete infinitesimal generator A with the following

properties :

(i) D(A) is dense in X and D(A)^D(A0)^D(Ak+l\

(ii) there is a real constant a) such that R(A — A)^)D(Ak) and

= (A — A)~1 exists for >l>ft),

(iii) there is a constant M>0 such that

for xeD(Ak\l>a) and re^O,

(iv) for any e>0 and x£.D(Ak) there exist M£>0 and ^o = ^o(£j ^

such that

\\<M£\\X\\

for / l>^o and n with n/ 'A€[X 1/V],

(v) D(Ak+l) is a core of A,

(vi) D(Ak+l) is N(-}-dense in D(Ak\ where 7V"(^) = sups>0||e"a)S T(s)x\

Proof. Condition (a2) and the last assertion of Theorem 2.2 yield

that D(A) is dense in X. Also, by (3.2), we have that #(/0[SIlCIMo).

Since Z^D(Ak) and since R(^D(Ak^ = D(Ak+l\ we obtain D(Ak+l)C

D(Ao). Hence, we have the assertion (i). Lemma 3.1 states that J?(A —

A) = D(R(W^E for ^> a). The existence of (A-^)"1 follows from

Lemma '3.1 (ii). Thus, (ii) is obtained. Lemma 3.4 gives the assertion

(iii). In view of the fact that R(Z)n x = J(X)n x for ^ e 2 , A > f t ) and n^

1, (iv) follows from Theorem 2.4, Remark 2.5 and condition (<23). (v) is

proved by applying Corollary 2.3 (v) and Lemma 3.2, note that D( J2°°) C

D(Ak+l). Finally, (vi) is obtained by employing the last assertion of

Theorem 2.2, Theorem 2.4 (i) and condition (<23). Q.E.D.

4e Preliminaries for the Generation of Semi-Groups

Let A be a linear operator in X and let Y be a linear subset of X.
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We impose them the following conditions:

(ai) Y is a normed space under a certain norm |||-|ll which is

stronger than the original norm ||8|| of X\

(a2) there exists a real CD such that for each /L>o), R(A — A) contains

F, R(X) = (A — A)~l exists, and such that Y is invariant under

(a3) there exists a constant M>0 such that

for x€ F, A>a) and n = Q, 1, 2,....

These conditions are generalizations of the conditions given in Theo-

rems 2.6 and 3.5, in the following sense:

1°) ^ 2 is tne continuity set of a semi-group {r(£);£^0} on JT

and if Q and TV(^) are defined by (2.4) and (2.5), then Q and 2 satisfy

conditions (ai)-(a3) with Z=F, Q — A and JVOO = IW1 (see Theorem 2.6).

2°) If ^4 is the complete infinitesimal generator of a semi-group of

class (@*), then ^ and [/?(^*)U satisfy (at)-(a3) with \JD(Ak^\=Y and

11*11* = |||x III (see Theorem 3.5).

In this section we let A and F be a pair of linear operator and

linear subset of X satisfying (ai)-(a3) and we are concerned with the
/ t \-»

convergence of (/ -- A) on Fas ra->oo. The results obtained here

will be applied to the generation problem of semi-groups on X. Also, we

can apply them to construct solution operators of abstract Cauchy prob-

lems. The results in this and the next sections are closely connected with

those by Krein-Laptev-Cvetkova Q6]; the norm N(<) defined by (5.2) is

the same thing as the norm ||-||G treated in their paper and our Lemma

4.3 is similar to their Lemma 2. However we note that the operator A

treated in their paper is always closed, while our result is obtained with-

out assuming the closedness of operator A. For the relation between our

result and theirs, we shall mention it in the final section.

4.1. This subsection contains a basic estimate for the iteration of

the resolvents (l—--A\ "> n = Q, 1, 2,.... Noting that

(4.1) R($x-R(fl)x = -(l--fl)R(X)R(tt)x for A, /*>o> and x € F,



524 I. MIYADERA, S. OHARU AND N. OKAZAWA

we start from the following

Lemma 4.1. Let A>a). If | & | < A — a), then for every positive in-

teger n,

(4.2) *a+A)"*=S7— i iCn-i(-hy-n+iR($i+i
x, *e Y.

Proof. Condition (as) guarantees that the series of the right side in

(4.2) is absolutely convergent with respect to the norm ||-|| for n^>I

and x € F. (4.2) is proved by induction: Let #G F and put y=R(A + f i ) x .

Then j€ Yr\D(A) and (A — A)y=x — hy€ F. Now,

1*-zr^

This means that (4.2) holds for n = l. Suppose that (4.2) is true for n,

Then

which shows that (4.2) holds for n + l, too. Q.E.D.

Corollary 4.2. If /l>#>ft), then

x=Z7=n-i iCn-i(l-fl)'-*
+lR(X)Mx for xe Y and n^l.

Proof. Since — (A — co)</^ — A<0, we have the assertion by setting

h=v-X. in (4.2). Q.E.D.

Now, let us define a function N(x) on F by

(4.3) JV(*)=sup,so.
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Clearly, JV(«) defines a norm on Y such that \\x\\ ̂ N(x}^M\\\x\\\ for

x £E Y. Moreover, we can obtain the following result which is crucial in

our argument:

Lemma 4.3. For every

(4.4) JV((Jl - eo)#(/0s;) ^ JV(«), * € Y.

Proof. We prove that

(4.5)

for #6 F, /I, #>o) and TTI, raj>0; (4.4) is obtained by taking m — l in (4.5).

First, (4.5) is clearly true in case n = 0. Next, by (4.1), R(X)R(#)x =

R(jt)R(X)x for X€L Y and A, ju>0). Hence, it suffices to show that (4.5)

holds for x£ F, /l>/*>&), m^>Q and n^>l. Let A; € F and

Since R(K)mx 6 F for m^O by (a2), Corollary 4.2 yields that

*=^

for 77i I>0 and ra^l; hence

^ — 60 ~^+

^

for TTX^O and n^l. Q.E.D.

j -- ^\ as

To do this, we further introduce two linear subsets of F;

From the relation (4.1), we see that
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(4.6) JLR(X)x-x = R(Z)Ax(£ F), for x 6 YI and

Also, for each 1 1> 0 and positive integer n with n > | CD \ £, we can define

an operator T(t; n) on Y by

(4.7) T(t',n)x =

f = 0).

Now, in view of Lemma 4.3, we can employ the method given by

Crandall-Liggett Ql] and obtain

Lemma 4.4. Let £^>0 and m, n be positive integers with n*

2 1 ft) | £. Then for every x € FI

N(T(t; n)x-

Lemma 4.5. For each t ̂ > 0 and integer n with n > | a) \ I? we have :

(4.8) N( T(t ; n)x) <, (1 - a)t/n)~nN(x) for x€Y,

(4.9) N( T(t ;7i)x-x)<:t(l-\ti>\ t/nYnN(Ax} for x € FI,

(4.10) T(t; n)x-x= T(s; ny-R—Axds for x
Jo s \ s

(4.11) R(Z)x-e-*'T(s; n)xds

for x^Yi and xl>ft), where the integrals in (4.10) and (4.11) gjra'sJ (with
respect to the norm ^V(-) and a fortiori ||-||).

Proof. (4.8) is an immediate consequence of Lemma 4.3. In view

of the relation (4.6), & R(^nx - x can be written as A^SJ

for x € FI and >i > a) ; hence by Lemma 4.3,

X-)^( \ Y JV(^^
A \ X— ft) /
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for x € YI and A > | a) | . Taking Jl = n/t, we obtain (4.9). Now, Lemma

4.3 and (4.1) assert that R(£)nx, x^Y, are differentiate in A (with re-

spect to the norm 7V(0 and a fortiori ||-||) and (d/d£)R(X)nx = — nR

(Z)n+lx for x€ Y, X>0) and n^l. Hence,

T(t; iO*-
s /

Since N(T(s\n}RAx}^(l-\(d\t/n}-n-lN(Ax} for

the integrand is Bochner integrable on (0, ^). Also, N(T(s; n)x — x)-+Q

as s->0+ by (4.9). Therefore, letting £-»0 + , we have (4.10). Finally

we prove (4.11). For x€Yi and

Integrating both sides of this equality from 5 = 0 to s = £, we get (4.11).

Q.E.D.

Now, we are in position to state the main result of this section.

Theorem 4.6. For each x€Yi, the \\*\\-limit

(4.12) lim

exists uniformly on every bounded interval of QO, oo). If we define opera-

tors T(t\ J^O, on YI by

(4.13) T(t)x = lim^o. T(t ; n}x

for t^>Q and x£ Fls then {T(t)\ £l>0} has the following properties:

(i) \\T(i)x\\<*e*N(x) for x^Yl and ^0,



528 I. MIYADERA, S. OHARU AND N. OKAZAWA

for 5, t I> 0 and x E FI,

(iii) T(i)x — x = (* T(s)Ax ds for t^Q and x € Y2,Jo

(iv) R(X)x = (~e-MT(t)xdt for *>a> and x€Yi,

(v) AT(*0=sup,fc0||e--'r(0*ll for x^Y^

If in addition, YI is N(*}-dense in Y, then (4.12) is obtained for x€Y

and the operators T(t) are defined on Y by (4.13); in this case, {T(t)\

£^0} satisfies (i), (iii), (iv) and (v) with YI and Y2 replaced by Y and

YI respectively^ and furthermore

(ii/ for each x^Y, T(t)x is \\> \\-continuous in ̂ ^0.

Proof. It follows from Lemma 4.4 that for each x^Yi, the ||-||-

limit (4.12) exists uniformly on every bounded sub-interval of £0, oo).

(i) is an immediate consequence of (4.13) and (4.8). Next, by (4.10)? we

have

\\T(t; n)x-T(s; n)x\\N(T(r; B ) - R - -

for 5, t^>0, 7- = max{^, s} and #€ FI. (4.10) can be written as

T(t; »)*-* = (' T(s; n}Axds+*\ T(s; n)\—R(-2^\Ax-Ax\
Jo Jo L s \ s / J

= (' T(s; n)Axds+[t T(s; n)R(^]
Jo Jo \ s /

for t^>0. Since
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n

for 5 G (0, z], we have

c*
T(s; n) — (l- | o> | — V^Vo^2*

n \ n /
as

)o \ s

from which (iii) follows. Next, we prove (iv). Since

N(T(s'9 n}R(^^AR(l)Ax}^—(l-\0)\-^]~n~ N(AR(X)Ax)
\ 5 / n \ n /

for s€(0, f} and x£ FI, (4.11) implies that

- a)
n

V *"
7i /

for ^c € FI and £^>0. Passing to the limit as 71— >CXD? we have

for x 6 FI and zS^O. Hence, (iv) is obtained by letting £->oo. Finally,

we prove (v). The relation (4.1) and Lemma 4.3 imply that for each

x€ F, (d/dl)n-lR(X}x = (-T)n-l(n-l}\R(^)n
x for Jl>fi> and n^l. On

the other hand, we see using (iv) that

(4.14) (d/diy-lR (JO* - ( - 1)-1 ("c-x V
Jo

for #£ FI, /l>ft) and Ti^l, and hence we have

~e-Mt*-1 T(fix dt, x
o

Using this relation, we obtain

)**||^(ji-^^
Jo
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for x€Yi,A>a) and n^l. This shows that N(x

for x £E YI. The opposite inequality is clear from (i). Now, assume that

YI is AT(«)-dense in F. Then it follows from (4.8) that the convergence

(4.12) holds uniformly on every bounded sub-interval of QO, oo) for all

x 6 Y. This fact states that (i) holds for YI replaced by Y and hence

(ii)' is obtained in view of (ii). To see that (iii) holds for all x £E FI, we

first observe that for every y€E F

(4.15) N(lR(X)y-y)-»0 as A->oo.

Indeed, if jE Yl then

as A— >oo. From this and the 7V(-)-denseness of FI in F, it follows

that (4.15) holds for y€ F. If x € FI, then lR(X)x 6 F2 and hence (iii)

implies that

*I]= fJo

Letting ^—>oo and using (4.15), we see that (iii) holds for all x 6 FI. To

show that (iv) holds for FI replaced by F, let /i > o>, x 6 F and choose

{xn}CYi such that N(xn — x)-+Q as ra-»oo. Then by (iv), Jf?(/0#M =
/•oo /•«,

\ e~™T(t}xndt for each ra. Hence, we have R(£)x = \ e~™T(t)xdt,
Jo Jo
because of that \\R(X)xn — ̂ 00*11 SSW — ti))~lN(xn — *)->0 and also of that

lirCO^fi-rCO^II^e"^^,, —A;)->0 as TI->CXD. Finally, if FI is JV(-)-

dense in F, then (4.14) holds for every x€Y, ^>o> and w^l; hence

(v) is obtained for FI replaced by F. Q.E.D.

5B Construction of Semi-Groups

Let A be a linear operator in a Banach space X and F be a linear

subset of X satisfying conditions (ai)-(a3) which have been introduced in the

preceding section. We then define a linear subset ^ of X and a function

]¥(•) on 2 by

(5.1) E = i*e A
X>o> w
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(5.2) #00 = suPllS6o, i>.\\tt-co)*R(X)*x\\ for x e £.

Obviously, IHI^^OO for x G - Also, the function #(•) defines a norm

on 2 and

(5.3) FC if, N(x) = N(x)(<;M\\M\\) for * £ Y.

In this section we first construct a semi-group of class (C0) on a

certain Banach space which is contained in the above-mentioned £J as its

linear subset and then discuss to extend this semi -group to a semi-group

on X, by imposing a condition of Feller type. The results obtained will

be applied to establish the generation theorems of the semi-groups which

we discussed in Sections 2 and 3.

5.1. Throughout this subsection, let A be a linear operator in X

and Y be a linear subset of X satisfying (ai)-(a3) and the following con-

ditions :

(a4) Fi is ^V(-)-dense in F,

(B) 2 is a Banach space under the norm

We note that (B) is satisfied if A is closed in JT, as will be shown in

Lemma 5.3.

Now, let us denote by Y the ^V(-) -closure of F. Then, under condi-

tion (B), F becomes a Banach space under iV(-). We shall construct a

semi-group of class (Co) on this Banach space. First, Lemma 4.3 and

(5.3) state that N((k-(d}R(£)x)<,N(x} f or x 6 F and l>o). Hence, for

each A > co, R(X) \ F has a unique extension R(X) onto F. R(X) maps F

into itself and

(5.4) N((A-a)}R(Z)x)<;N(x) for x € Y and

In view of this fact, for each £j>0 and each positive integer n^xDt^ we

can define a linear operator T(t, n) from F into itself, by

(5.5) ?(*; n)x = - R J x (if *><)), = * (if i = 0), for * € F.
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Clearly, ?(*; n)x = T(t\ n)x for x £ Y and

(5.6) R(T(t; n)x}<>(l-(j)t/nYnN(x) for x e Y, tl>Q and n>ti>t.

Since YI is ]¥(•) -dense in F, Lemma 4.4 and (5.6) imply that for each

x e Y ,

(5.7) T(t}x^N(-yiimn^T(t; n)x

holds uniformly for t in every bounded sub-interval of £0, co). As is

easily seen, ?(*)€£(?) for £l>0 and

(5.8) ff(T(t)x) <; e"'#GO for * <~ F and * ̂  0.

Theorem 5.1. {T(t), t^>Q} forms a semi-group of class (C0) on

Y such that N^^x^^e^N^) for xeY and t^Q, and its infinitesi-

mal generator is the N(°}-closure A\Yi of A\Yi. Moreover, 5(A) =

(A-A\Y{)-1 for l>(d and T ( f ) \ Y = T ( f ) for ^0, where T(t), t^Q,

are the operators defined by (4.13).

Proof. Since T(t'9n)\Y=T(t\n)\Y9 Lemma 4.5 yields that T(t\n)x

is N(') -continuous in £6^0, /?] for x€Yi, n>\(D\09 and /?>0. Hence,

T(t)x is 7V(«) -continuous in £^>0 for each A; € FI. This also remains

true for all x 6 ? by (5.8) and condition (a4). Also, we can prove the

semi-group property ?(£ + $):= T(t)T(s), t, s[>0, by the usual method.

Consequently, {?(£); ^^0} forms a semi-group of class (C0) on F. It is

obvious that T(f)\ Y = T(i)\ F for J^O; hence by theorem 4.6, we have

(5.9) ?(0*-* = T(s)Axds for ^ € FI and ^0,
o

(5.10) R(X)x(=R(Vx) = e-xtT(t)xdt for x€Y and

the integrals being taken with respect to the norm ./¥(•)• Let B be the

infinitesimal generator of the semi-group {T(t)\ ^^0} on F. In view of

(5.8), we see that B is 7V(«)-closed and
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for l>a) and * e F.

Combining this with (5.10), R(X)x = e'xtT(t}xdt for A>o) and x € F;
Jo

hence ^(A) = (A — 5)'1 for A>fl>. Also, we see from (5.9) that A\YiC

B. We further demonstrate that A\Yl = B. Let x£D(A). Then there

is an element y€ Y such that x = R(X)y( = (A — B)~ly). Choose { yn} C

FI so that N(yn — y)->0 as n-+°o and set A;» = 5(A)yn( = -R(A)yw), ral>l.

Then, *w6F2(CFi) and N(xn-x}^(l-o>ylN(yn- y}-+$ as n,-»co.

Moreover, #((^170*,- 5*)^^
y))<:AN(xn — x) + N(yn--y)-*Q as rc->oo. This means that

^B. Thus, 5(^) = U- JlYi)-1 for A>co. Q.E.D.

Remark 5.2. If we do not assume condition (a4), then for each x 6

YI, r(0^=^(')-lim«->oo?(^; TZ)A; exists uniformly on every bounded sub-

interval of [0, oo)3 where FI is the #(•) -closure of FI. {T(i)'9t^>Q}

becomes a semi-group of class (C0) on FI such that N(T(t)x)^emtN(x)

for x€.Yi and £^>0; its infinitesimal generator is A\Y%. Moreover,

T(i)\Yi= T(i)\ YI for ^0, where T(t), t^>Q, are the operators defined

by (4.13).

5.2. Throughout this subsection, we assume condition (34) which has

been imposed in the preceding subsection and furthermore that A is closed

in X. In this case, we do not need to suppose condition (B), see Feller

[3; Theorem 1]:

Lemma 5.3. The space 2 becomes a Banach space under N(»).

By means of this lemma, all conclusions obtained in Section 5.1 hold

under the assumptions in this subsection. Also, we see from the closedness

of A and R(X) that

(5.11) A\YiCA and R(X)CR(X) for

(5.12) f (»; n}x=
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for x€=. F and £>0. Combining these with Theorem 5.1, we obtain

Theorem 5.4, For each x 6 F,

(5.13) f(t)x s 7V(-)-limw_ (l -- t-A}" x
\ n /

exists uniformly on every bounded subinterval of QO, oo)o The family

^^0} forms a semi-group of class (Co) on Y such that N(T(t)x)<:

ewtN(x) for x€Y and t^Q. Its infinitesimal generator is A\R(X)[T\

and R(X)\ F, /l>o), are the resolvents of the infinitesimal generator. More-

over, T(t)x = T(t)x for t^>0 and xeY, where T(i), t^>0, are the oper-

ators defined by (4.13).

Proof. By theorem 5.1, A\Yi is the infinitesimal generator of the

semi-group {T(t); t^Q} and /Z(A) is the resolvent of A\Yi at

But, R(V=R(X)\Y by (5.11), and so, D(A\Y^) = R(^T^

Since ^|YiC^3 it follows that A\Yi = A\R(^T\. Q.E.D.

Remark 5.5. If we do not assume condition (3.4), then for each x^Yi,

x exists uniformly on every bounded sub-
n

interval of [0, oo). The family {e~°*T(t)\ ^^0} forms a contraction

semi-group of class (Co) on YI whose infinitesimal generator is A\Y2 =

^|lZW)[;?J;iZ(A)|?i is the resolvent of A\Y2 at l(>o)) and ?(*)l^i

= T(t)\Yl for t^O.

5.3o Let (^4, Y) be a pair of linear operator and linear manifold in

X satisfying (ai)-(a4) and (B) and let {T(f)m, £^0} be a semi-group on

Y obtained by Theorem 5.1. T(t) need not be bounded on the linear

subset F of X if it is observed in the original space X. In this subsec-

tion we extend this semi-group {?(£); £^0} on F to a semi-group on X

by imposing the following two conditions:

(as) F is dense in X,

(ae) for every e>0 and x^Y there exist Me>0 and /lo^ofe x)

such that for A > A o and n with 7i/A6£s, 1/e],
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Let T(t, ft) and T(t) be the operators on Y defined by (4.7) and

(4.13) for the case in which YI is JVr(-)-dense in Y, respectively. Condi-

tion (a6) states that for each x 6 Y,

(5.14) || T(t; n)x\\<*Me\\x\\ for £6[>, 1/e] and n sufficiently large.

Therefore T(t)x satisfies

(5.15) ||jT(0*H<;.Me|l*|| for te^e, 1/e] and x € Y.

This means that for each £>0, T(t) is a bounded linear operator on Y

as an operator in X. According to (a5), each T(t) can be uniquely ex-

tended to an element of B(X}. We denote this extension again by the

same symbol T(t). Then we have

(5.16) \\T(t}x\\<,Me\\x\\ for te[>, 1/e] and x€X.

Now, setting jT(0) = /, we demonstrate that {T(t);t^Q} forms a

semi-group on X. In fact, by Theorem 5.1, T(t)\Y = T(t)\Y for t^O

and {T(t)9 t^>Q} is a semi-group of class (Co) on the Banach space Y.

Hence, T(t)\Y=T(t) for i^O, and so, T(t + s)x=T(t + s)x=T(f)f(s)x

= T(t)T(s)x for £, 5^0 and A; G F. Since F is dense in X by (a5), we

obtain the semi-group property T(t + s)=T(f)T(s) for t, s^O. Also,

since jT(£)# is continuous in £^>0 for each x^Y and since Y is dense

in X, (5.16) implies that T(t)x is continuous in ^>0 for each x€X.

Thus, { T ( f ) \ ^^0} forms a semi-group on X. Furthermore, A\Yi is a

restriction of the infinitesimal generator of {T(t);t^>Q}. Indeed, since

A\Yi is the infinitesimal generator of {T(t);t^0}9 if x£Yi then

We can summarize the above-mentioned as follows:

Theorem 5.6. Assume conditions (ai)-(a6) and (B). Then there is

a semi-group { T ( f ) \ Z^JO} on X such that
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T(t}x = \imn^Jl -- -A\ H x for x€ Y and
\ n /

where the convergence is uniform with respect to t in every bounded subin-

terval of Q), °o). Moreover,

(i) for each x £ F, T(t)x is continuous in £^>0,

(ii) A | FI is a restriction of the infinitesimal generator,

(m) R(^x=[°e~xtT(^xdt for x€.Y and t>a),
Jo

(vi) ^(AO = supfg0||e~°'rOO*|| for x^Y (cf. Theorem 4.6).

Remark 5.7. Let us consider the following (a605 instead of (a6) :

(a6') for every £>0 and x£ Y there exist K6>0 and A0 = A0(£, x)

such that for A > A 0 and n with 7i^(A — o))e,

We observe that (a6
7) implies (a6). See Remark 2.5. If (a6) is replaced

by (aeOj then the semi-group { T(t) ; t ̂  0} on X has the property that

for every e>0, \\e~wt T (t)\\ is bounded on [>, oo). Indeed, if t^>e>Q and

x€Y, then a constant M£>0 can be found such that \\T(ti n)x\\ = (nf

(n-(dt}}n i| (n/t-(d}nR(^^ x\\^M£(l-M/nYn\\x^ for all sufficiently

large n. Now, we see taking the limit as ra->oo that || T(t)x\\^Mee
mt

\\x\\ for t^>e and x£Y. Since F=X, we have the desired conclusion.

6. Generation Theorems

In this section we give some necessary and sufficient conditions for

given operators to be the infinitesimal generators of the semi -groups which

we discussed in Sections 2 and 3.

We start from the following

Theorem 6.1. Let Y be a dense linear subset of a Banach space X
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and let A be a linear operator with domain and range in Y. Assume

that

(GI) there is a real a) such that for each /i>co and # E F, the equa-

tion (A — A)y=x has a unique solution y=R(X)x,

(c2) N(>)=sup^o5 x>J!(A-6o)w£(A)w*|i<oo for every x € Y and Y

is a Banach space under the norm N(*\

(c3) D(A) is N('}-dense in the Banach space Y,

(c4) for every e>0 and x£Y there exist K£>Q and AQ = AQ(e, x) 6 R

such that for ^ > A o and n with ra> (\ — o))g,

Then the operator A is the infinitesimal generator in the sense of Feller

of a semi-group {T(t)\ £^>0} on X such that Xo=\Jt>oT(t)^_X^\ is dense

in X and such that Y is the continuity set of this semi-group. Moreover,

{T(t)\ t^>Q} 15 determined by

(6.1) T(f)x=\imn^Jl -- —A] H x for x€Y and £>0,
\ n /

where the convergence is uniform with respect to t in every bounded sub-

interval of [^0 3 oo ) for each x 6 Y.

Proof. Noting that D(A) C Y and R(A) C Y, we see that (d) and

(c2) imply conditions (ai)-(a3) with HI| = 7V(A;) and the range condition

R(l-A)=Y for l>a). Furthermore, Yl = D(A) and Y=Y=Jl and

hence N(^ = N('). Therefore (c2) and (c3) imply conditions (B) and (a4),

respectively. (c4) is nothing but (a60. Thus, it follows from Theorem 5.6

and Remark 5.7 that there exists a semi-group {T(t)\ £^>0} on X deter-

mined by (6.1), such that Y C 2 and ACA0, where 2 denotes the con-

tinuity set of { T(t) ; t J> 0} and where AQ stands for the infinitesimal

generator. Moreover, we have the following relations:

(6.2) ^*) = sup,fco||e-"T(0*|| for x e Y,

(6.3) R(Z)x = (~e-MT(t)xdt for x€.Y and
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(6.4) for every s>0 there is an MS>Q such that \\e~atT(t)\\^M6

for

To show that Y D 2 3
 we first prove that

(6.5) x0^U

Let x£X and £>0. Since F=X, a sequence {#w} C ^ can be found

such that \\XH — #||-»0 as ra->oo. Since T(t): F->F, F= F, and since

T(i)= T(t)\Y, we have that T(i)[YlCY; hence r(*)*«€ F. Now, (6.2)

and (6.4) yield that N(T(f)xH — T(t}xm}<, Mte
wi\\xn — xm\\-+Q as m, n-+

oo. Thus, there is an element jG Y such that N(T(t)xn — j)->0 and

a fortiori \\T(i)xn — y\\-*Q as TI->CX). But, || T(t)xn- T(i)x\\-+Q as »->

oo, and so, r(£)* = .y£ Fa Let x €2. Then r(0^ is uniformly ||-||-

continuous on every bounded sub-interval of QO, oo). Combining this with

(6.4), we obtain N(T(K)x- T(hf)x) = sups^\\e-(aS(T(s + K)x- T(s + hf}x}\\

->0 as h, A /->0 + , note that T(K)x£Y for &>0 by (6.5). Thus, there

exists a j6 F such that \\TQi)x — y\\<>N(T(K)x~-y)-+Q as A->0 + .

On the other hand, \\T(K)x — x\\-*Q as &->0 + , and so, ^ = jG F. This

shows that %CY. Therefore we have F=S- Tne range JT0 of the

semi-group {T(t)\ ^^0} is dense in X since it is dense in Y1=Y. Final-

ly, we prove that A coincides with J2, the infinitesimal generator in the

sense of Feller of {3T(0; ^0}. Since ACAQ,

\imh^+h-l\iT(K)x-x^ = Ax<aY for x€D(A),

so that AC.Q. Let y€D(Q). Then, by Corollary 2.3 (i), there is an

xeE such that y=J(Z)x = (~e-"T(f)xdt. Since x € Y (=Z), (6.3)

states that y=( e~™T(i)xdt = R(£)x£D(A). This means that Z?(fl)C

Consequently, A = J2. Q.E.D.

Remark, The above theorem is the converse of Theorem 2.6. This

theorem is proved for the case o) = 0 in Feller £3]. In £3] it is assumed,

together with (ci)-(c4), that N()iR()C)x)<*N(x) for x£. Y and /l>0. But,

this assumption is superfluous, as is seen from our proof,
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Theorem 6,2, Let Y be a linear subset of a Banach space X and

let A be a densely defined, closed linear operator in X, Assume that

(ai) Y is a normed space under a certain norm [|HII3

(3.2) there is a real a) such that for each A>a), R(A — A)~^) Y,

U-J)-1 exists and R(Z)[Y^CY,

(a3) there exists a constant M>0 such that

for xeY, l>a and ̂ ;>0,

(a4) YI = {X£ F; Ax€z Y} is N(*)-dense in F, where -AT(-) is defined

by N(x^supn^>(a\\tt-a)yRttTX\\ for * e F,

(a6) for every £>0 and x^Y, there exist M£>0 and A0 = Ao(e3 oc}

such that

\\l*R(Wx\\<^MG\\x\\ for /l>^0 and n with rc/AeO, 1/el

(a?) FI is a core of A.

Then A is the complete infinitesimal generator of a semi- group { T(t) ;

£=2^0} °n ^ such that XQ=\J t>Q T (t^X^\ is dense in X and such that Y

is contained in the continuity set 2 °f this semi-group. Moreover, this

semi-group is determined by (6.1).

Proof. (a7) and the denseness of D(A) imply (a5), i.e., Y=X. The

closedness of A implies (B) by Lemma 5.3. Hence3 by Theorem 5.6, there

is a semi-group {T(V); ^S^O} °n X determined by (6.1) such that FCS

and such that A \ FI C A^ where A0 is the infinitesimal generator of

{T(0; ^0}. Recall (Theorem 5.4) that R(Z)\ Y, A>o)3 are the resolv-

ents of the infinitesimal generator of the semi-group {T(t)\ £l>()} of class

(C0) on the Banach space F. Therefore R(K) \ Y can be expressed by

R(Z)x=(~e-"T(t)xdt for xeY and ^>o>. Since T(i)\¥=T(t) for
Jo

(see Section 5.3), we see that T(0[F]CF for j^O and

(6.6) R(Z)x = e-"T(t)xdt for oc^Y and

Let Q)Q be the type of {T(i); t^>0} on X and let ti>i>coQ. For each

5>0 there is an M(^)>0 such that \\T(t)\\^M(s)exp((Oit) for t^s. We
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want to show that T(s)x € D(R(Z)) and

(6.7)

for A;GX, s>0 and /l>max{a)i, a)}. Since Y= X, one can choose a se-

quence {xn}CY such that \\xn — #||->0 as TJ-»°O. Since T(s)xn^Y, it

follows from (6.6) that

Since \\e~

(A — (di)t)€iL(Q, oo), we see applying the dominated convergence theorem

that R(X)T(s)xn=( e-xtT(t + s)xndt-*( e~xt T(t + s) x dt as rc->oo. Ad-
Jo Jo

ditionally, limn^00T(s)xn= T(s)x. Thus, (6.7) is obtained from the closed-

ness of R(X). Now, (6.7) states that R0(X)CR(X) for /i> max{o>i, a)}

(> 0)0)5 -^o(^) being the operator on XQ defined by (3.1). Since R(X) is

closed and invertible, RQ(Z) is closable and its closure RQ(X) is invertible

for each ^>max{o)i, a)}; hence condition (<%i) introduced in Section 3 is

satisfied. Therefore, by Lemma 3. 1, AQ = A - ^oU)"1 C ̂  - # W"1 = -

Combining this with the fact that A \ YI C A^

Hence, in view of (a7), we have A = A0, namely, A is the complete infin-

itesimal generator of {T(t)\ £^>0}. Finally, XQ is dense in X, for

loDZ and 2=^. Q.E.D.

We next mention a generation theorem for semi-groups of class (@^)

which appears as a corollary of Theorem 6.2.

Theorem 6.3. Let A be a densely defined, closed linear operator in

a Banach space X and let k be a nonnegative integer. Assume that

(di) there is a real a) such that for each /i>ft), R(l — A) contains

D(Ak} and R(X) = (l- A)'1 exists,

(d2) there exists a constant M>0 such that
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\\R($nx\\<,M(k-0)yn\\oc\\k for x€D(Ak), l>a) and zi^O,

(d3) for every £>0 and x£D(Ak), there exist Me>0 and AQ =

AO(S, x) such that

\\l*R(X)nx \^MB\\x\\ for l>l* and n with n/A€[e, 1/s],

(d4) D(Ak+l} is N(-)-dense in D(Ak\ where JV(-) is defined by N(x)

= supWfc0fX>.||tt-fl>)^Rtt)B*|| for xeD(Ak\

(d5) D(Ak"1) is a core of A.

Then A is the complete infinitesimal generator of a semi- group { T ( t ) >

£^>0} of class (&k) and (6.1) holds for x€D(Ak) and tl>Q.

Proof. Letting Y=D(Ak) and |||#||| = |HU and then applying Theo-

rem 6.2, we see that there exists a semi-group { T ( t ) m , t^>Q} on X such

that JTo = WjxjTXOD^H ^s dense in X, A is its complete infinitesimal

generator and such that D(Ak)CH, the continuity set of {T(t); t^>Q}.

Now, it remains to show that there exists an o/>ft)0 such that for each

A>o/, RQ(%) is closable and its closure is invertible, where o)0 denotes the

type of {T(t)m, £2^0} and where RQ(£), ^>ft)0 3 are the operators on Jf0

defined by (3.1). But this has already been shown in the proof of

Theorem 6.2. Q.E.D.

Remarks. (1) Theorem 6.3 is the converse of Theorem 3.5.

(2) In case of & = 0, (di) states that {A; /l>o)} is contained in the

resolvent set p(A) of A. In this case condition (d2) yields that JV(-) is

equivalent to ||-||, and hence (d3) is automatically satisfied. Also, under

conditions (di) and (d2) with k = Q, it is proved that (d4) and (d5) are

also satisfied. Hence, Theorem 6.3 gives a generation theorem for semi-

groups of class (C0).

(3) In case of & = 1, N(*)<:.M||:*;||i for x^D(A\ and so, (d4)

follows from (d5).

(4) It is sometimes convenient to employ the following somewhat

stronger condition (d4
7) in Theorem 6.3, instead of (d4):

(d/) D(Ak+l) is dense in the Banach space
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Finally, we discuss the semi-group whose complete infinitesimal genera-

tor has nonempty resolvent set.

Corollary 6.4* Let A be a densely defined, closed linear operator in

X. If

(diO there is a real a) such that {A; &>a)}Cp(A),

and if (d2) and (d3) in Theorem 6.3 are satisfied^ then A is the complete

infinitesimal generator of a semi-group of class

Proof. It is proved (Q9 ; Lemma 2.7]) that if A is a closed operator

satisfying (di7) and if D(A) = X then D(An+l) is dense in [_D(A*)1 for

each nonnegative integer n. Hence, (d4) and (d5) are satisfied. Therefore,

by Theorem 6.3, A becomes the complete infinitesimal generator of a

semi-group {T(t);t^>Q} of class (@>/>). Now, from (di7) and the defini-

tion of class (C(*)) it follows that {T(t)'9 *2>0} is of class (C(ft)). Q.E.D.

Remark 6.5. The definition of class (C^) proposed in Oharu [J)J is

slightly different from the one given in Remark (1) after Definition 3.3.

The relationship between those two definitions is stated as follows: A

semi -group { T(t) ; t ^> 0} on X is of class (C(&)) if and only if it satisfies

(a/) there exists an a)>a)0 such that for each /l>a), there exists

an R(X)£B(X) with the properties

(a) R(X)x = \ e~xtT(f)xdt (=R0(X)x) for x 6 X0,
Jo

(b) R(X) is invertible,

together with conditions (a2) and (as) (stated in Definition 3.3).

In fact, if {T(t)'9 t^>Q} is of class (C^), then for each A>o), -R(A)

is a closed operator defined on X and hence it is bounded. Since (a) and

(b) are trivially satisfied, condition (a() holds. We note that in this case

{A; ^>o)}Cp(^) and R(X) = R(&i A) for A>&). Conversely, assume con-

ditions (#i)5 (#2) and (as). Clearly, J?0(A) is closable and RQ(A)CR(&)

for A>o). Let ^GX. By (#2), a sequence {A;W} can be found in Jf0

such that xn-*x as ^-^c>o. Making use of (a(\ RQ(^xn
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x as TI->OO; this means that RQ(X)x = R(X)x for x €:X and

7. Abstract Caucliy Problem

In this section we are concerned with the abstract Cauchy problem.

Let A be a closed linear operator in a Banach space X and let us con-

sider a differential equation in X

(7.1) (d/dt)u(f) = Au(t\ *>0.

By an abstract Cauchy problem for A we mean the following:

ACP. Given an element x€-X, find an X- valued function u(t) = u(t\

x\ defined on QO, oo)3 such that

(i) u(f) is continuously differentiable in £^>0 (or £>0),

(ii) for each £>0, u(t)€D(A) and u(t) satisfies (7.1)

(iii) limt-+Q+u,(t)=u(ty = x.

The function u(t) satisfying (i)-(iii) is called the solution of ACP.

There are two alternatives for condition (i); the corresponding problems

will be denoted by ACPi and ACP2, respectively. Let D be a linear

manifold in X. By a family of solution operators of ACP on D we mean

a one-parameter family {U(t)\ £S>0} of linear operators, defined on D,

such that for each x G D the function u(t)—U(t)x is a solution of the

underlying problem. Our object is to derive some sufficient conditions for

such solution operators to exist uniquely. The domain D of the solution

operators U(t) constructed in the sequel is not necessarily dense in X and

U(t) need not be bounded on D even if D = X. However, as will be

shown later, the results are closely related to the notions of Hadamard

correctness, semi-group (S. G. -) well-posedness and well-posedness in the

sense of distribution semi-group.

We divide this section into two parts and discuss the construction of

solution operators of ACPi and ACP2, separately.

Throughout this section, let A be a closed linear operator in a fixed

Banach space X and we assume that there exists a real a>0 such that

= U — A)"1 exists for
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7,1 . Let D be a linear manifold in X such that

(7.2) there is a norm HHI1 under which D is a normed space,

(7.3) there is a seminorm p(-) on D,

and let us consider a family of operators U(t) on D into D(A) satisfying

(7.4) for every x€D, u(t}=U(t)x is a solution of ACPi for A with the

initial value u(Q) = x,

(7.5) there exists a positive constant M such that

\\^Me^lx\^ and \\AU(t)x\\<*Mew**p(x) for x€D, t>0.

We call this {U(t)\ t^>Q} a family of solution operators of ACPi on

D with type CDO and D the domain of the solution operators.

Remark 7.1. Since A is closed, the solution u(t) of ACPi satisfy the

equation (7.1) at £ = 0 and its initial value u(G) = x belongs to D(A).

Therefore, it must hold that DCD(A). Also, by (7.5), the norm HHII is

stronger than the original norm ||-|| on D.

Lemma 7.2. (i) R(l-A)^D and R(^x = e-xtU(t)xdt for A>
Jo

a)Q and x^D.

(ii) For each x€iD, the corresponding solution u(t)=U(t)x is unique

in the sense that e'^u^t) is uniformly bounded on QO, oo) together with

Proof, (i) is obtained from the relation (d/dt}[_e~xtU(t}x~^= — e~xt

(k — A)U(t)x for ^^0, /l>ft)0 and x^D, and (ii) follows from (i).

Q.E.D.

In view of this lemma, the family of solution operators satisfying

(7.4) and (7.5) can not exist more than one. Hence, according to Krein-

Laptev-Cvetkova \J6T\ we see that ACPi is Hadamard correct with type o)Q

on D when the family as above exists on D.

Now, let us consider the set D consisting of those elements x for
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which there exists a solution u(t\ x) of ACPi for A such that

(7.6) sup,fc0l|e~"°X*; *)ll<°° and

In the same way as in Lemma 7.2, we see that the solution u(t', x) is

unique in the sense that (7.6) holds. By virtue of the linearity of A and

Remark 7.1, D forms a linear manifold in X such that DCD(A). More-

over, let O)>(J)Q be arbitrarily fixed, then D becomes a normed space under

defined by

and gr(;«;) = supf£o| |e~~< B*-4M(£; #)||, # € /), define a seminorm on J9. There-

fore, we can define linear operators U(t) from 6 into D(A) by U(t)x =

u(ty x\ x £z D, £^0; {^(Oj^S^O} is a family of solution operators on

D satisfying (7.4) and (7.5) with D, M[||-|ll and -Mp(-) replaced by ,6,

^V'CO and 5(0? respectively. Z) is maximal in the sense that every do-

main D of solution operators of ACPi for the fixed operator A satisfying

(7.4) and (7.5) is contained in D, note that in this case Nf

and q(x)<^Mp(x) for x€:D. The following lemma is easily seen:

Lemma 7.3. U(t) maps D into itself and U(t + s)=U(t}U(s) on I)

for t, 5^0. Furthermore, N'(fi(f)x)<,emtN'(x) for t^>0 and xeD.

Also, in the same way as in Lemma 7.2 and Feller Q3 ; Section 3],

we obtain the following (cf. Q6; Propositions l°-5°]):

Lemma 7.4. (i) R(k- A)^ D and R(^x=(°°e-xtU(t)xdt for /l>
A J°co and x€. D.

(ii) RWID^CD and R(X)-R(ji)=-(i-p)R(X)R(fi) on D for

(iii) N'(x) = mpn^>(a\\(l-a)yR(Wx\\ and

\\ for x

Lemma 7.4 states that the pair of A and D satisfies conditions (ai)-

(a3) with Y=D and M\H\ = N'(*). We then define a linear subset 2



546 I. MIYADERA, S. OHARU AND N. OKAZAWA

^ '"VX '•Ŝ

and a norm N(°) on S by (5.1) and (5.2); 2 is a Banach space under

#(•) by Lemma 5.3. Then ^CS and N/(x}=N(x} for x € D by
^^»^

Lemma 7.4 (iii). Since the pair of A and 2 satisfies also (ai)-(as)

with Mi-Ill = N(*\ we see applying Remark 5.5 that there exists a semi-

group {7(0; ^0} of class (C0) on the #(->closure (Si)~ of Si such

that #(?(0*)^e°'#G*0 for #e(Si)~ and ^0 and also that its infini-

tesimal generator is A=(A\ S^T^I -^WKSiri where Zi = {^^2;

Ax€Z}, Z2 = {xe Si; ^e Si} and where G*| Sf2)~ denotes the #(•)-

closure of -4|S2. Therefore, it follows that D(A)C£> and T(i)\D(A)C

U(t) for ^^0. Consequently, we have

(7.7)

Since N'(x} = N(x} for #eA Lemma 7.3 yields that each U(t) can

be uniquely extended to an operator £7(0 on the ^(0-closure D of £)

such that N(U(t)x}^e<atN(x} for A;e5. It is clear that U(t) maps D

into itself. The relationship between {7(0 5*^0} and {U(t); ^0} is

stated as follows:

Theorem 7.5. U(t) = T(t) for t^Q and { U(i) ; t^ 0} forms a semi-

group of class (Co) on the Banach space D ivhose infinitesimal generator

A coincides with A\fi.

Proof. Lemma 7.3 implies that {U(t)',t^>Q} has the semi-group

property. Let x ^ f ) . Since \\e~m* $"(0^11 -^0 as £-»oo3 We see from the

same argument as in Theorem 2.2 that N'(ff(t)x — x) = fI'(ff(i)x — x)->Q

as £-»0 + . Hence, {C/tO; ̂ ^0} forms a semi-group of class (C0) on D.

Let A i be the infinitesimal generator and let /l>o). Then (A— AI)~~IX =

( e'MU(t)xdt for x 6 D. Since R(Z)x = ( e~xtU(t)xdt for x E 1> by
Jo Jo
Lemma 7.4, J?(/0* = (/l— -^"i)"1^ for ^>o) and x€D. So that ^ = (A — A)

(Z—Ai)-lx for ^>co provided x^D(A^). Since

^i)"1^-^^!^ as A-> + oo3 the closedness of A yields that ^=

This also means that />G?i)CSi and hence flC(Si)^- But,
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for £j>0; hence U(f)=T(f) for t^>Q. Consequently, AI =

. Next, we show that A=A\D. Let £0>0 and

let xzfi. Then h^lU^x-x^-h^^U^x-x^e D for A,A'e(0,A0).

We want to show that N('}Aimh^QJi~l[_UQi)x — x~] exists and is equal to

^4^. Noting that

we obtain

Since Note^su^^^e-*30* A U(s)x\\ < + <*=> ,

+ as 5-> + oo.

Therefore, e^l [^£/"(5+M)^-^£/"(s + /i/<9)A;]^->0 as A, A'->0, uniform-

ly for 5^0, Le., N\h-l[Q(h)x-xl-h'-llftWx-x'])-+0 as A, A7->

0 + . From this we see that

^(O-lim^o+A-1:^)^ - ̂  = ̂  e D = (2 x)-.

Since Jf is the infinitesimal generator of the semi-group {£7(0; ^^0} of

class (C0) on D, we have that I)CD(A). Combining this with (7.7), we

obtain fi = D(A} and hence A = A\D. Q.E.D.

Remarks. (1) The main results announced in Krein-Laptev-Cvetkova

Q6; p. 766^] are obtained from Lemmas 7.2, 7.4 and Theorem 7.5.

(2) We showed that N'(x) = fi(x) for x € t>. Also, the assertion of

Theorem 7.5 states that q(x) = N(Ax). Therefore, we can let q(x) =

JIW — 0)*JRU)n^#ll m Lemma 7.4 (iii).

(3) Let A be the complete infinitesimal generator of a semi-group
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{TO); *2SO} of class (@A) and let us consider ACPi for A. Then D =

D(Ak+1) is a normed space under ||| • ||| = || • \\k and p(x) = \\Ax\\k> x

define a seminorm on D, Also, Theorem 6.2 states that {17(0;
defined by U(t)= T(t) \D(Ak+l), t^Q, satisfies (7.4) and (7.5). Hence,
the maximal domain D of solution operators of ACPi for A contains D.
But, in virtue of Theorems 2.6, 6.1 and 7.5, we see that f) coincides with
the domain D(J2) of the infinitesimal generator in the sense of Feller of
{T(t}\ t^>Q}. That is, ACPi for A is Hadamard correct with type o)Q

on D(J2). See also Theorem 7.7.
Next, we consider some particular cases. Let A; be a positive integer

and assume the following conditions which are treated in Theorem 6.3 :

(dO R(l-A)^D(Ak) for J>0,

(d2) there exists a constant M>0 such that \\R(X)nx\\<,M(l — ri)-n

\\x\\k for x€D(Ak\ l>a) and n^Q.
We first note that R(^)n[_D(Ak^\CD(Ak+n} for A>o> and n^l and

that the pair of A and QD(^f*)] satisfies conditions (ai)-(as). Now, let
Y=lD(Ak^ in Remark 5.5; then Yl = D(Ak+l) and Y2 = D(Ak+2). Hence,

there is a semi-group {T(t); £^>0} of class (C0) on the N(°) -closure

D(Ak+lY of D(Ak+l) such that f (t)x = N(-)-limn^I — J-^)""* and

N(T(t)x}<,ecatN(x} for ^0 and x£D(Ak+l). Also, its infinitesimal
generator A coincides with A\R(Z)[_D(Ak+ly~] and R(X)\D(Ak+ly is the
resolvent of A at /l>a). We then set

U(t)=T(t)\D(Ak+l) for z^O.

Then it is easily seen that {U(t)\ t^Q} CB([D(Ak+l^, X) and

(7.8) for every x€D(Ak+l\ U(t)x is ||-| | -continuous in *I>0 and

(7.9) U(t)x-x=(t U(s)Axds for x€D(Ak+1+1) and *;>0,
Jo

(7.10) A"U(t')x=U(t')A1>x for *6D(^*+1+*), «^0 and ja^l,

(7.11) tf(t + a)* = #(*)£/(*)* for ^6D(^2(*+1)) and 5, t^O,
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(7.12) R(X)x=("e-MU(t)xdt for x<=D(Ak^ and J>o>.
Jo

If D(Ak+l) is JV~0)-dense in D(A*\ where JV(0 is defined on D(Ak) by

(4.3), then the semi-group {T(t)} is constructed on D(Ak)~ by Theorem

5.4, from which it follows that (7.8)-(7.12) hold for k + l replaced by k.

Consequently, we obtain

Theorem 7.6. If (di) and (d^) are satisfied for some k^>l., then

ACP\ for A is Hadamard correct with type a) on D(Ak+2). If in addi-

tion, D(Ak+l) is N(>)-dense in D(Ak\ then the ACPi is Hadamard correct

on D(Ak+l).

Remarks. (1) If D(Ak+l) is #(•) -dense in D(Ak\ then so is D(Ak+n)

for nl>2.

(2) In order that D(Ak+l} is JV(0 -dense in D(A*\ it is sufficient

that D(Ak+l) is dense in [JD(^*)]. If A is densely defined and if p(A)

=^= 0, then D(Ak+l) is dense in \JO(Ak)^\. Hence, our result extends those

of Sova [13; Theorem 2.6] and Oharu [9; Theorem 4.3].

(3) A linear operator A in a Banach space X is the infinitesimal

generator of an exponential distribution semi-group if and only if A is a

densely defined, closed operator in X with p(^4)=V0 and satisfying (di)

and (d2) for some &;>0, see [14; Theorem 3.2 j and [9; Theorem 5.5].

Before concluding this subsection, we exhibit an example of an opera-

tor satisfying (di) and (d2). Let X=L2(K)xL2(R\ and let A be a dif-

ferential operator of the form

Applying the Fourier transform, the equation (d/dt)u(t^ s) = A(D)u(t, s) is

reduced to the ordinary differential equations with f as a parameter

where u denotes the Fourier transform of u, and
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(7.13) (XE

E being the 2x2 unit matrix. Moreover,

(7.14)

(7.13) states that R(A-A) = D((t-A)-l)=D(A) for A>0. By virtue of

(7.14), we have that Un(l-Aynx\\<,\\x\\ + (n/$\\Aoc\\ for A>0, ra^O

and x^D(A). Therefore, A satisfies (di) and (d2) with k=1. On the

other hand,

(7.15) eM(f) = E + tA(S\ S^R.

The solution operator U(f) is obtained by taking the inverse Fourier trans-

form of etA(S\ note that {U(t)i t^>Q} can not be extended to a semi-

group on X. (7.15) states that 17(0 map D(A) into itself and that (d/dt)

U(t)x = Ax for x€D(A) and t^>Q. Hence, DX*)C#(0 for t^Q and

^CZd>U)CA and so, D(A) = D = D=^=D(A). Consequently, in

this case, {U(f)\ ^^0} forms a semi-group on the Banach space D(A)

endowed with the norm N(>) and A is its infinitesimal generator.

7.2, In this subsection we restrict ourselves to a densely defined,

closed linear operator A and discuss the construction of solution operators

of ACP2 for A.

Theorem 7.7. Let -6 be the maximal domain of solution operators

of ACPi for A and {U(t)\ t~^>Q} be the family of solution operators on

6. Let {U(t)\ ^^0} be the semi- group obtained by Theorem 7.5 and A

be its infinitesimal generator. Assume that 6 be a core of A and

(C) for every £>0 there is an Mt>Q such that

||#(0*ll^»ll*ll for x*b.

Then A{ — A\ff) is the infinitesimal generator in the sense of Feller and A

is the complete infinitesimal generator both of which are of a semi-group

{T(i)m
9 *I>0} on X such that
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(a) T(t)\D=U(t) for t^>Q and D is the continuity set,

(b) AT(i)x=T(t)Ax and T(t)x- T(s)x=( T($}Axd<J for x
J s

D(A) and t:>

Therefore, V(t)=T(t)\t)r\D(A\ t^>Q, form a family of solution

operators of ACP2 for A.

Proof. Since D is dense in X, each U(t) admits a unique extension

T(t)eB(X}. In view of the fact that (2i)^ = 5, we have T(t)\D =

U(t\ *;>0. Hence, Theorem 7.5 and condition (C) imply that {T(t)\ £j>

0} forms a semi-group on X. Let x£D(A). Since D is a core of A,

there is a sequence {xn}C_D such that ||A;W — x\\ + \\Axn — Ax\\— »0; hence

AT(t}xn=AU(t}xn=U(t}Axn=T(t)Axn-^T(t}Ax for £>0. From this

it follows that AT(t}x=T(t)Ax and T(t)x—T(s)x={ T($}Axda for
J s

x£D(A) and £2>s>0. Thus, we have (b). Next, we show that A is

equal to the infinitesimal generator in the sense of Feller & of {T(t)]

*:>()}. Let Y=B, A=I and let #(•) = #(•) in Theorem 6.1. Theorem

7.5 states that those F, A and JV(0 satisfy (ci)-(c3). Also, since {T(t)'9

^^0} is a semi-group on X, (c4) is easily verified. Hence, Theorem 6.1

yields that A = @ and that D coincides with the continuity set of {r(£);

£^0}. Finally, to prove that A is the complete infinitesimal generator

of {T(0; ^O}, let F=5, |||-|ll = ^(0 in Theorem 6.2. Then by assump-

tions, A satisfies (ai) and (a 2). Also, Theorem 7.5 states that (as) and

(a4) are satisfied. (ae) follows from the fact that T(t) \D= U(t), ^0,

and (a7) is a part of the assumption. Hence, Theorem 6.2 implies that

A is the complete infinitesimal generator of { Tf(Q; £>Q}.

Q.E.D.

Remarks. We note that D(^ = )CD(A^CDr\D(A) in the above

theorem, see also Lemma 3.2. According to Krein Q5], condition (C) is

called the condition of correct posedness of ACP. As is seen from Sec-

tion 6, (C) is equivalent to the condition of Feller type,

Theorem 7.8e Let A be a densely defined, closed linear operator in

X and k be a positive integer. Suppose conditions (di), (d2), (ds) (stated
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in Theorem 6.3) and

(d/) D(Ak+1) is dense in [Z>U*)] and D(Ak} is dense in X.

Then there exist a one-parameter family {U(t)\ t^>Q} CB([D(Ak)1, X)

and a semi-group {T(t)\ £^£0} on X such that

(a) T(t}\D(Ak}=U(t} for t^O and D(Ak) is contained in the

continuity set,

(b) ApT(t}x=T(t}Apx for xeD(Ak\ t>Q and p=l, 29.~k,

rt
(c) T(t)x—T(s)x = \ T((J)Axd(J for x€D(Ak) and t^s>Q.

Therefore, {U(t)\ t^>Q} becomes a family of solution operators of

ACP2 for A.

Proof. As was stated in Remark (2) after Theorem 7.6, (d/) implies

that D(Ak+1) is 7V(B)-dense in D(Ak). Hence, as is shown in the proof

of Theorem 7.6, a semi-group {?XO; ^^0} °f class (Co) is constructed

on D(A*Y. We then put U(t)=T(t)\D(Ak) for £^0. Then {U(t};

t:>Q}CB(LD(Ak)~3, X). On the other hand3 the pair of A and [D(AkJl

satisfies conditions (ai)-(a6) with Y = [_D(Ak^ and 111-111 = | | - |U; hence by

Theorem 5.6 and Theorem 7.6, a semi-group {T(t)\ z2>0} can be found

such that T(t)\D(Ak}=U(t} for t^Q. In order to show (b), we ob-

serve that D(Ak+n} is dense in [_D(Ak}~] for n^>2. In view of this3

given an x^D(Ak\ a sequence {xn}(CD(A2k)) can be found such that

xn-+x and Ajxn-*A3x^ j=l,2,--k, from which it follows that U(t)xn

->r(0^and AjU(t)xn=U(t)AiXn-*T(t)AJx9j=l92,-..,k, for each t^Q.

Note that Aj commutes with U(f) on D(Ak+J). Hence, we first have that

T(t}x^D(A) and AT(f)x=T(t)Ax for t>0 and then obtain the asser-

tion (b) inductively. Now, let x^D(Ak} and {xn}^D(A2k) be a se-

quence as above. Then we see from the same argument as in (7.9) that

U(t)xn— U(s)xn=\ U(o~)Axndo" for £[>s>0. Passing to the limit as

7i-»oo3 we obtain

(7.16) T(t)x - T(s)x = f T((j)Axd(J, x € D(Ak).
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Since T(f)Ax is ||-||-continuous in s>0, (7.16) means that T(t)x is a

solution of ACP 2 associated with the initial value x. Q.E.D.

Remarks. (1) If x€D(Ak\ then u(t)=T(t)x gives a unique solu-

tion of ACP2 for A in the sense that u(t)eD(Ak) for £>0. In fact, let

Q<s<t. Then (d/ds)rT(t-s + e)u(sy]= - T(t-s + e)Au(s) + T(t-s + e)

= Q. Integrating this from s = d>Q to s = t — d, we obtain T(S + e)

d)=T(t — d + e)u(d). Now, letting 5->0 + , we obtain T(e)u(t) =

e)x; hence it follows that u(t)=T(t)x for ^0.

(2) Let A be a densely defined, closed linear operator and suppose

that there exists a family of operators U(t\ defined on a core D of A^

such that for any x 6 D, u(t)=U(t)x is a unique solution of ACPi for

A with the initial value x and u(t)€.D for £>0. When each U(t) is

bounded on D, £7(0 admits an extension T(t)€.B(X') and {T(0; ^^0}

becomes a semi -group on JT. In this way, if there is a semi -group {T(t)\

^0} on X such that T(t)\D=U(t) for *2£0, then we say that ACP

is well-posed in the sense of semi-group on X (simply, S.G.-well-posed).

If the semi-group is of class (@&) for some nonnegative integer &, then

we say that the ACP is (@fe)-well-posed. Theorem 7.7 gives a sufficient

condition for ACP to be S.G.-well-posed and Theorem 7.8 gives a suffici-

ent condition for ACP to be (@^)-well-posed. The (Q^-well-posedness

and the well-posedness in the sense of distribution semi-group are similar-

ly defined (cf. Remark (3) after Theorem 7.6); for details, see Takahashi-

Oharu [16; Section 4].

Finally, we make mention of an example of the operator satisfying

(diXcUO- Let X=L2(R)xL2(R) and A be a differential operator of the

form

D=i(d/ds),

where r is a nonnegative integer. Applying the Fourier transform, A(If)

is converted to a multiplication operator in X



554 I. MIYADERA, S. OHARU AND N. OKAZAWA

,
V o -f2 /

Then, for each /l>03 AE — A(g) has the inverse

(7.17)

Hence, if r^>3, (A — ̂ 4)~1 is not bounded for /l>0 and p(A) = 0. But we

see from (7.17) that R(l-A) = D((l-A)-l)^)D(A) for A>0. On the

other hand, for a fixed f €^, we have

(7.18)

where ^— (n A)- Hence, we have

for ^>0, n^>r and ^ 6 X; this estimate shows that (ds) holds. Moreover,

(7.18) can be written as

(HE- A($))~n = [( * + l)f 2 + JQU + f 2Y*~1E + n(H + S2)-*~

and hence we have that Un(A-A)-nx\\^\\x\\ + (n/^\\Ax\\ for

and x € D(A). To see that condition (d/) holds, it suffices to observe

that C^(R}xC^(R) is contained in D(A2) and dense in DDU)H- Thus,

we obtain a semi-group {T(t); t^O} on X of class (@i) such that A is

the complete infinitesimal generator and such that || T(t)\\^l + (r/eYtl~r

for *>0 and ||r(0a;||^||a;|| + «||̂ || for xeD(A) and t^O.
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