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A Spectral Theory for the Reduced Wave Equation
with a Complex Refractive Index

By

Teruo IKEBE*

§ 1. Introduction

The present article develops a spectral theory (with main emphasis

on the continuous spectrum) for the reduced wave equation with a com-

plex refractive index n(x)

over all of R3, the Euclidean 3-space, where tc is the complex frequency

parameter. The n(x) is assumed throughout to be a bounded (measur-

able) function such that

Re 7&(#)^>15 Im 71(3;) SjO, Re /&(#)!> Im n(x\ and 7&(#) — 1 has a

compact support.

In connection with equation (*) the operator — n~2A will be considered

in the Hilbert space H = jL2(R
3), square integrable functions over R3,

whose norm and inner product will be denoted by || || and ( , ). More

explicitly, let HQ be the unique self -adjoint realization of — A in H and

N the bounded operator of multiplication by n(x)~2, and consider the

unambiguous product H = NHQ with domain identical with that of H0:

D(H)=D(Ho), the latter consisting, as is well known, of /GH with

second-order L2 derivatives. Together with H it is convenient to consider

its adjoint H* = H0N* with D(H*) = N*-1D(H0).

Additive non-self-adjoint perturbations of HQ have been investigated,
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for example, by Mochizuki [1] and Goldstein £2] (see also papers cited

in [JQ and [JT], and "Problemy Matematiceskoi Fiziki", Leningrad Univ.

(ed. by M.S. Birman)).1} Here, a simple example of multiplicative pertur-

bation of HQ will be dealt with by the so-called integral equation method

which has been employed by Mochizuki Ql] and by Povzner Q3] and

Ikebe [4] in the self-adjoint case. The results obtained here will possess

much similarity with those of £1], £2], [J3T] and Q4], and, therefore, de-

tails of the argument will very often be left out, and just how to proceed

will be indicated.

The contents of the present paper will be outlined. Section 2, starting

with resolvent equations relating H and H* with HQ, introduces some

auxiliary compact operators, the compactness being useful in exposing the

behavior of the resolvents of H and H* in a neighborhood of the conti-

nuous spectrum (this sort of technique is usually called the limiting ab-

sorption method), and reveals a very rough structure of the spectrum of

H and H*; for instance, the essential spectrum of H and H* is identical

with that of HQ. In section 3 certain classes of generalized eigenfunctions

for H and H* are introduced as well as off-real distorted plane waves, the

former being determined as boundary values of the latter (which is noth-

ing but a limiting absorption technique). Sections 4 and 5 are of a pre-

paratory character, where following the idea of Shenk \Ji~] a convenient

representation of the resolvent involving the off-real distorted plane waves

is given, and spectral measures JE(4) and J?*(J) associated with H and

jy* are defined for appropriate Borel sets A of [X), co) (bounded away

from a certain discrete set of exceptional points). In the final section 6

is expounded a spectral representation for an absolutely continuous part of

H, H(A}=E(A}H, in terms of generalized Fourier transforms that give

rise to a unitary map from jE(4)H onto an L2 space over a domain of

R3 determined by J: For £ €ER 3 let <p(x^ ?) and (p*(x, f) be generalized

1) In [1] has been studied the operator — A-^-q(x) in R3
3 where the complex poten-

tial q(x) has been assumed to behave like | x |"2~", e>0, at infinity. Some re-
sults of [1] have recently been extended by Saito [11] to the case where q(x) =
0(|^|"1~')Je>0. Second-order perturbations of — J, of which the present prob-
lem is a special case, have been treated in [2] from the additive perturbation
view-point.
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eigenfunctions with generalized eigenvalue | f |2 for H and /?*. Then the

generalized Fourier transform is given by

and Hf turns through this transformation into (fl/)"*(f)= |f| 2/*(f),

provided |f |2 lies in a suitable J. The original / may be reinstated by

an inversion formula like (but not precisely the same as)

This situation corresponds exactly to the spectral representation for EQ(d)H0,

where E0 is the spectral measure for HQ, in terms of the ordinary Fourier

transforms.

Now several comments and remarks are due.

No restriction other than boundedness has been placed upon the regu-

larity of the refractive index. Consequently, the entire results here are

applicable to the interface or transmission problem (Beugungsproblem) in

which the refractive index suffers a discontinuity across an interface divid-

ing different media.

The compactness of the support of the function n(x) — 1 simplifies

the discussion in many respects. It would be possible to go without this

compactness assumption, though various technical alterations would have

to be introduced depending on various diminishing orders of n(x) — 1 at

infinity.

The higher-dimensional analogue of the problem treated here seems

to produce no essential difficulties. The operator (?(/c) introduced in the

next section may not be expected to be of Hilbert-Schmidt type as in the

three-dimensional case. The trouble would be overcome by retaining the

(non-Hilbert-Schmidt) compactness of (?(/0> however.

Avila and Haggerty Q6] have reduced a sort of multiplicative pertur-

bation problem to an additive one for the acoustic equation with a vari-

able density. Such a device does not seem successful as things stand in

the present case. And no attempts are made here toward this kind of



582 TERUO IKEBE

approach.

§2. Resolvent Equations, Eigenvalues and Exceptional Points

The resolvents RQ(z) = R(z: HQ) and R(z) = R(z: F) are by defini-

tion the bounded operators (HQ — z)~l and (H—z)~l whenever they exist,

i.e., when z is in their respective resolvent sets p(Ho) and p(H). The

(second) resolvent equation interconnecting RQ(Z) and R(z) is the starting

point of the whole development that follows, and is most easily obtained

by looking at the equation

(H-z}R(z}f=f or NHQR(z}f-zR(z}f=f.

The resulting resolvent equation reads as follows:

(2.1) R(z}-RQ(z}N-l = zRQ(z}N-l(l~N)R(z'} for

Here it is of course assumed that p(H0)r\p(H) is not empty. Similarly,

one can obtain for R*(z) = R(z: H*)

(2.2) R*(z) - N^R0(z}

for zep(HQ)r\p(H*).

Observing the easily obtainable relation R*(z) = R(z)* gives in virtue of

(2.1) and (2.2)

(2.3) R(z)-RQ(z)N-1=zR(z)(l~N)RQ(z)N-1 for z€p(HQ)Kp(H)

and

(2.4) R*(z) - tf *-' JZoGO = zR*(zXl - N^N^R0(z)

for

Equations (2.1)-(2.4) are the desired resolvent equations.2)

Introducing multiplicative operators A and B by

2) No use of equations (2.3) and (2.4) will be made in subsequent discussions, how-
ever.
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so that N-\l-N) = BA = AB and l-N* = AN*B*, one obtains in view

of (2.1) and (2.2)

(2.5) AR(z) = AR0(z)N~l + zAR0(z)BAR(z\

(2.5)* N*B*R*(z) =

where sgna^i — r if a^O and =0 if a = 0. In order to investigate equa-
\a I

tions (2.5) and (2.5)* one introduces

K2)B and Q*(fc) = f

at first for tceC with Im/c>0. Obviously Q(K) K?*(/OU is an integral

operator with kernel

With this explicit form of the kernel the operator-valued function Q(K^)

C()*(/OI] can be extended to the entire £ -plane C and the following lemma

may be proved without difficulty once the compactness of the supports of

A(x} and B(x) is noted.

Lemma 2.1. Q(fc) K?* )̂!! ^ ̂  C, z's « compact linear operator on H

o/ Hilbert-Schmidt type, and is an entire holomorphic function of K.

In passing it should be noted that when (2.5) C(2.5)*H is viewed as

an equation for the unknown AR(z) ^_N*B*R*(zy]J it is uniquely solvable

if and only if l — Q(*Jz) [_l — Q*(^z)~^ is invertible, where and hereafter by

\iz is meant that branch of the square root of z which has positive

imaginary part. And in this case R(z^) E^*(-2r)H can be expressed as

(2.6) R(z) = RQ(z)N

(2.6)* [^*(^) = JV*-1J?o(

Definition 2,2. A complex number K is said to be Q- \jQ*-~2 excep-
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tional if 1 is an eigenvalue of Q(K,} K?*(/c)H O'w which case l-

Cl~~(?*(£)H is n°t invertible).

Lemma 2.3e The Q- [Q*-] exceptional points form a discrete set

(having no finite accumulation point).

The above lemma follows directly from lemma 2.1 and a well-known

theorem concerning holomorphic families of compact operators (see Kato

[7], p. 370).

The following lemma gives an interrelation between the exceptional

points and the eigenvalues of H or H*, and can be proved in a standard

way (see, e.g., [1], p. 430 ff. and [4], p. 15).

Lemma 2.4. Let Im/e>0. Then fc is Q- [(?*-] exceptional if and

only if K2 is an eigenvalue of H [_H*~] of finite multiplicity.

The set of all Q- E@*-U exceptional points will be denoted by 2

[-?*], while 2 [^*H will designate its intersection with the closed upper

half -plane (Im/c^O). The next lemma provides a little more detailed in-

formation about the location of the exceptional points than lemmas 2.3

and 2.4, but will not be made explicit use of in the sequel. The proof

is not hard, but is the only place where one has to make explicit use of

the conditions Im n(x)l>Q, Re7i(^)^l and Re n(x) I> Im n(x), and will

be sketched in the appendix.

Lemma 2.5. /c 1 0 <; arg ic <: -- or -- <arg

<-2~ or -^r-7T<Jarg K<^n? r\2*=<j>. //", in addition, the

support of Imn(x) contains an open set, then <K arg/c^-g-v has no inter-

section with 2 or J£*, and, in particular, there exist no negative eigen-

values of H or H*.

It is noted here that H and H* are densely defined, closed linear

operators in H, and that the residual spectrum of a closed linear operator

H, o~s(H\ is characterized by
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and z£

where o~p(H) denotes the point spectrum of H. Consequently, by using

lemma 2.4 it can be easily shown that both ffr(H) and ffr(H*) are empty.

In this case a point A £ o~(H), the spectrum of H, can be characterized by

the existence of a normalized sequence {fn} such that

+Q as n-+°o.

If there exists a non-(relatively) compact such sequence, A is said to be-

long to the essential spectrum o~e(H) of H9 and otherwise, A is said to

belong to the discrete spectrum <Td(#) of H. Thus ff(H)=ffd(H)^Jffe(H)

and <7rCff)=0.

In the above-mentioned case the proof of Weyl's theorem which as-

serts the invariance of the essential spectrum under compact perturbations

in the self -adjoint case remains valid with some elementary reduction such

as the one done in [4], p. 19. Thus with lemma 2.1 one can conclude

that (Tc(ff)=<Tc(ff*) = (Tc(fl"o).
Lemmas 2.3 and 2.4 and the discussion made in the preceding para-

graphs enable one to prove the

Theorem 2.6. i) p(H) and p(H*) are non-empty and contained in

P(HQ). z€p(Ho) belongs to p(H) [jo(#*)H tf and only if ^ z is not Q-

CQ*-H exceptional.

if) If z € p(H) [p(#*)], then R(z} [#*(*)] is given by (2.6) [(2.6)*].

iif)

iv) UW* = JR*(z) for z e p(H).

v) fft(IT)=ff£H*)=4.

vi) (Tc(ff)=(Tc(

vii) z is an eigenvalue of H if and only if z is an eigenvalue of

jfiT*. Neither H nor H* has no non-negative eigenvalues. (Hence^ every

eigenvalue of H [#*] has its square root Q- \jQ*-~] exceptional.) Every



586 TERUO IKEBE

eigenvalue of H [_H*^\ has finite multiplicity.

Concerning vii) of the above theorem it should be remarked that 0

is non-exceptional, hence 0 cannot be an eigenvalue of H or H*, and that

the non-existence of positive eigenvalues follows from a result of Kato

[JQ, for instance. But the latter does not exclude possible (non-zero) real

exceptional points.

§ 3* Generalized Eigenfunctions

It is known that H0=—d has generalized eigenfunctions (p$(x, $) =

e*<f,*>3 where <f3 #> denotes the usual scalar product of 3-vectors f

and x, coresponding to generalized eigenvalues | f 1 2, in terms of which

the ordinary Fourier expansion is possible. Here, particular types of gene-

ralized eigenfunctions will be constructed for H and H* which are asym-

ptotically equal to <pQ(x, f).

Let $ 6 R3. Consider the functions #?(#, f , K) C^*(A;, f , /c)] satisfying

the equation

(3.1) OVHo-*2M*, f, *) =

(3.1)*

so that ^?(^, f , /c) C^*(^5 f j £)H is expected to turn into an eigenfunction

of H [H*l with eigenvalue |f |2 when A;= |?|2. If ^U, f, A;) [^*(^, f,

A;)] has the form

<p(x, £, K} = (pQ(

E<p*(x, £, K)=N*-lv<>(x, f) + x*U, f, A;)],

then %(A;, f, A;) C%*(^3 ?, ^)H must satisfy the equation

(3.2) (NHQ-ic2)x(x, f, A:)= |

(3.2)* [(jy0^*-^2)%*(^3 f, ic) = K

Operating formally with #(£2) [^*(/c2)U from left and utilizing (2.6)
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[(2.6)*] yield

%(*, f, A;) = ] £ 1 2RQ(K2)BA<p0(x, € )

( X , f )

In view of the above heuristic consideration a series of functions are

defined as follows.

Definition 3.1. Let x G R3, £ € R3 fl«d /c ^ J [/c <£ J *].

, f, A:),

%i(^3 f, yc) [%*(^3 fj ^)D is well-defined for (^, f, / c )€R 3 xR 3 xC, be-

cause #>o(#3 f) is bounded and A{x) and B(A;) are bounded and of compact

support. %2(#3 <?, A:) E^fC^s^s^)!! is well-defined for (x, $, A:) € R3 x R3

x(C —J) [GR 3 xR 3 x(C —J5*)], because, as can be seen easily, C4*i)

3) Here and in the sequel integrals with integration domain unspecified are extended
over R3,
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( -, f, K) [(£*%*)( - , f, A;)] is in H and (1-QOO)-1 [(l-^W)-1] is a

bounded operator for ^eC — S [>6C — 1*] (see lemmas 2.3 and 2.4). It

may be checked by straightforward calculation that %i(x, f, /c) [%*(#, f, A;)]

and its first-order A;-derivatives are continuous in (#, f, A;). Similarly for

%2(#3 f5 A:) DC*(*9 f> £)j- Moreover, X i ( x , f9 K) [%? (x, f, A;)] has locally L2

(distribution) derivatives in A; of second order, which follows from the

fact that %i(x9 f 5 A;) [%*(#, f 5 A;)] is essentially a Newtonian potential due

to an L2 density distribution. Similarly for %2(#, f, A;) C%*(^> ?? ^)H-

From the above observation a more precise statement will follow in

the form of the following

Theorem 382. In this theorem Kx and K% will denote arbitrary

compact domains of R3, D an arbitrary compact domain of C — S CC — l5*],

and j will stand for 1 and 2.

%j(x, S5 &) C%y (x9 $, A;)] fs (uniformly) continuous for (x, f, /c) E K^ x

X"| xD. %i(#5 f. A;) C^*(^3 ?5 &)~] is smooth in f and /c. X2(x, ?, A:) E^fC^s

f, A;)] w 5mw/A m S and K for (f, /c)eR3 X (C- J) [R3 x (C - J5 *)].

The first-order x-derivatives of %j(x, f, A;) C^K^j f3 ^)H flr^ (uniformly)

continuous for (x, $, K)£KxxKgX D. Xj(x, f, A;) H%*(A;, f, A;)] ^5 locally

L2 x-derivatives in the distribution sense which are continuous in the local

L2 topology for (?? A;) 6 JQ x D. < p ( x , g , K ) [_9*(x, $XG and x(x, f, A;)

[**(#, f, A;)] 5^5/j equations (3.1) a^J (3.2) [(3.1)* «^J (3.2)*;], re5-

pectively, in the distribution sense.

The eigenfunction ^o(^3 £) is a plane wave with £ the wave vector.

The functions p(x, S, /c) and ^*(A;? f, /c) for non-real /c represent what

has been referred to in the introduction as the off-real distorted plane

waves, as is clearly suggested in definition 3.1. The distorted plane waves

(p(x, £, K) and $?*(#, f, A;) with A^i \£\ may deserve a special notation

in the light of the role played later by them in spectral representation.

Definition 3.3.

£) = ?(*,£, ± |£ I) for ±\$

£) = ?*(*, f, ± |f |) /or ± |f
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As is seen from equation (3.1) £(3.1)*] with K= ± |f |, (p±(x, f)

C^±(^5 ?)H is a generalized eigenfunction with eigenvalue | f | 2 of £T =

NHQ=-n-24 [H* = H0N*=-dn-2^, and may well be called a distorted

plane^wave.

§4B Representation of the Resolvents

This section derives a representation for R(z) and R*(z) in terms of

Fourier transforms in line with Shenk [JT].

Let K be such that Im/c>0 and K2€p(H) [p(£T*)]. Let / 6 CJ(R3),

i.e., let / be of class C°° with compact support, and let f0 denote the

Fourier transform of /:

Define the functions

Since /o(f)3 as the Fourier transform of a Q5 function, is smooth and ra-

pidly decreasing, and since, as is seen from definition 3.1, <p(x, f , ic) and

^*(^c, f , /c) are at most of polynomial growth in | f | , the above functions

are well-defined. Moreover, Im/c>0 implies 0(°, A:,/) G D(H) and ̂ *(8,

/c, /)^jD(jEf*) on account of theorem 3.2 and of the fact that %y and %^,

as set forth in definition 3.1, have RQ(K2) as the leftmost factor. Equa-

tions (3.1) and (3.1*) fulfilled by <p(x, ?, /c) and <p*(x, ?, A:) (theorem 3.2)

and the inversion formula for Fourier transforms give rise to the equa-

tions

(H-ic2)0(x, *,/)=/(*) and (ff*-yc2)«*(a?, A;, /)=/(«).

The preceding argument yields the following
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Theorem 4.1. For / G C7(R3) and ic such that Im/e>0 and /c2

( | f 1 2-*2)- V(*. f ,

§50 Spectral Measures

Let £0 be the spectral measure (resolution of the identity) associated

with the unperturbed self-adjoint operator HQ so that (E0(4)/> g) with J

a bounded Borel set of R1 and /, g 6 H may be given the form

(5.1) (

7T

where and in the sequel the (first) resolvent equation R(zi) — R(z2) =

(zi — zz)R(zi)R(z2) is used without explicit mention. The purpose of the

present section is to define a (not necessarily orthogonal projection valued)

spectral measure E [_E*~^\ for H [_H*~} in analogy with formula (5.1) by

the following relation:

(5.2)

£10 it

(5.2)

£40 7T

where theorem 2.6, iv) has been used, If these definitions make sense,
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then clearly

(5.3)

For a moment (5.2) will be considered exclusively, for (5.2)* may be ob-

tained by the complex conjugation of (5.2) with / and g exchanged. By

use of (5.1) and the resolvent equation (2.1) the right-hand side of (5.2)

can be rewritten as

(5.4)

- rZni

According to Kato ^9] and Mochizuki (JL] the following lemma holds.

Lemma 5.1. Operators A and B are H0-smooth, i.e., if T stands for

A or B, then for any f 6 H

where C is a constant independent of s and f. If A is a bounded Borel

set of Q), oo ) such that ±\l A = {±VT"| ^€ A} is at a positive distance

from 2, then T=A, B is H-smooth:

where C is a constant independent of e and f.

By the above lemma it follows that if the Borel set A is chosen as

indicated in the lemma, then each term of (5.4) is meaningful, and, in

particular, the last term vanishes. Thus expression (5.4) or the right-

hand side of (5.2) defines a bounded bilinear form on H, which in turn
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implies by virtue of F. Riesz' theorem the existence of a unique bounded

linear operator E(A} such that equation (5.2) is valid. E(A} is called the

spectral measure associated with H. As remarked before, the spectral

measure E* associated with H* also turns out well-defined so that (5.2)*

holds.

In quite a similar way one can define bounded linear operators &±(^)

and V±(A} by

(5.5)

(5.6)

The reason why E(A) and E*(A) bear the name of spectral measure

will be clarified more in the following section.

Summing up, one arrives at the

Theorem 5820 Let A be a bounded Borel set of [J), oo) such that

both V A and — V A are at a positive distance from 2 (or, what comes to

the same thing, ^*).4) Then the right-hand sides of (5.2), (5.2)*, (5.5)

and (5.6) make sense for any /, g 6 H, and hence define unique bounded

operators £(J), E*(J), U±(A) and V±(A\ and relation (5.3) holds.

§6. Spectral Representation

It is well known that a spectral representation for H0 is furnished

in terms of Fourier transforms by the formula

, g)= \JA^-T Vj'

where A,/j = {$GR3| |f | eV^~}. In order to establish a similar formula

for E(A) [\E"*(J)] a few function(al)s are to be defined first.

4) In fact I and J?*, a fortiori 2" and I1*, are symmetric in the origin 0, which is
a consequence of the relation Q*(K) = Q(—7£)* (see below (2.5)*).
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Definition 6,1. Let f e C °°Q (R3). Let <p(x, $ , A;), <p*(x, $ , K), <p±(x,

>±(#, f) &£ <zs z"« definitions 3.1 <zw<i 3.3. Define

Lemma 6.2. Lrf /gCo(R3), ««^ /^ /c 6e SMC/Z ^/z«^ I m K > 0

[/c2

Proof. Theorem 4.1, definition 6.1 and the Parseval formula for ordinary

Fourier transforms enable one to write

Taking into account the arbitrariness of g£ CJJ'CR3) yields the lemma.

Q.E.D.

Let A be as in theorem 5.2. It is then possible by virtue of theorem

5.2 and the above lemma 6.2 to calculate (E(A}f, g\ f, g <E C?(R3), as

follows :
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«JO 7T J

In view of theorem 3.2 and the fact that /, g are smooth with compact

support one can see that /*(?, -vT^is) and (1+ I?!2)"1 g(f, — V* + ie)

are bounded continuous functions of f , A and e for (f 3 ^5 e) 6 R3 X A X Q),

£o)(£o>0). It can also be checked that these functions are square in-

tegrable for large |f| uniformly in (/I, e) 6 A X [J)3 £0)0 Therefore, one can

freely interchange the order of limit and integration in the above expres-

sion, and then make use of the symbolic relation

€ 1 0 7 t / ^ - £

d denoting the Dirac delta function, to obtain by definition 6.1

(For a more detailed argument see pQ or E4].) One can also obtain a

similar formula for (l?*(J)/5 g-) in view of theorem 5.2. Thus the fol-

lowing lemma results.

Lemma 6.3. Let f , g € = . C^(R3) and let A be as in theorem 5.2.

Then

If in /±(?) or /±(f ) the argument ? is restricted to ^>/j3 then ^± or

^$ may be regarded as a linear operator from C^(R3)CH to L2(Asj).

Its boundedness is not yet known, however.

Lemma 6.4. Let A be as in theorem 5.2. Then the operators *±
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and ~± are (able to be extended to} bounded linear operators on H to

1,2(^1/7)5 and

/±(£) = (0±(4)*/ro(f) for a.e. f

/*(f)-(F±(J)/)%(f) for a.e.

where the f/±(J) and F±(J) are bounded linear operators on H introduced

in the preceding section.

Proof. First let /, g£ C^(R3). Arguing as in the proof of the preced-

ing lemma brings forth

Since the Fourier image of CjJ*(R3) is dense in L2(R-3)5

(U±(A)*fT0(t) = f±($) for S€Asj ; =0 for £ $ Asj.

From this follow the assertions concerning ~± owing to the boundedness

of I7±(J) and the Fourier transformation and to the density of C^(R3) in

H. The assertions concerning ^$ can be proved similarly. Q.E.D.

Incidentally in the above proof has been shown the next

Lemma 6.50 Let A be as in theorem 5.2. Then for /GH

f /±(f) for a.e. f e A^j
(Kt(^)*/)%(« =

[ 0 /or a*. £ £ A^j,

(/*(?) far a.e. f
(r±(wrQ&=\

{ 0 for a.e. $

From lemmas 6.3 and 6.4 (or 6.5) and the Parse val formula readily

follows the expression for £(J) in terms of C/±(J) and F±(J).

Lemma 6.6B E(A) = U±(A)V±(A), where A is as in theorem 5.2.
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The following lemma is not very hard, and can be proved by using

lemmas 6.3 and 6.4, the closedness of H and H* and the properties of

the generalized eigenfunctions (p±(x, £) and <p±(x, £) stated in theorem
3.2.

Lemma 6.7. Let A be as in theorem 5.2. If f € D(H}

(HfTl= I • 1 2/S l(H*fr±= I ' 1 2/±] in L2(A

(j£(e)/, g) [_(E*(e}fi g)], where /, g^H and e varies over all Bore! sub-

sets of A, is a bounded signed measure absolutely continuous with respect

to the ordinary Lebesgue measure, and if in addition f€D(H)

(E(e)Hf, g) = ( WEWf, g) = (H2/£ g±)A^=(HE(e}f, g)
J 6

l(E*(e)H*f, g) =

the last two equalities holding without the assumption f^D(H}

and hence H \^H*~} and E(e) E^*(e)D commute.

Using the above lemma one can define a bounded linear operator

H(A) = HE(A) which coincides with H on the range of E(A}. Similarly,

a bounded linear operator H*(A) = H*E*(A) is defined. One can also

consider functions of H(A) and £T*(J). Let a be a bounded Borel function

on A. Define a(H(A}) [a(#*(J))I] by

Then on the basis of lemma 6.7 the following result obtains immediately.

Lemma 6.8. Let A be as in theorem 5.2. Let a and 0 be bounded

Borel measurable functions on A. Then
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For a Borel set eCA 7,e(H(A))=E(e) and %e(H*(A}}=E*(e\ where x. de-

notes the characteristic function of e. Hence for any

=E(el)E(e2) = E(e2)E(e1) and E\elr\e2)=E*(el)E

and, in particular, E(e)2=E(e) and E*(e)2=E*(e\ i.e., E(e) and

are (not necessarily orthogonal) projections.

In passing it is remarked that lemmas 6.7 and 6.8 and the discussion

in between justify naming E(A) [_E*( A)~] the spectral measure for H Off*].

At present it is not known whether ~± and ^$ map onto L2(Ayj).

To settle this problem is important in order to establish a unitary spectral

representation map.

Lemma 6.9.5) The operators ~± and ~J map H onto L2(A^j), where

A is as in theorem 5.2.

Proof. Suppose ~± is not onto L2(A^j). Then there exists a non-

zero element ueL2(A^j) such that for any / 6 Q(R3)(/±5 u)Av,- = Q.

This implies

Now apply NH0= — n~2d and use theorem 3.2 to obtain

A justification of this may be provided by Fubini's theorem. Repeating

this procedure gives

J£!•>*(*, £)«(£)#=0

for all non-negative even integers m, which in turn yields

5) The lemma may be proved by the method of Mochizuki [1], which consists in a
direct verification of lemma 6.12, from which it is easy to deduce the lemma.
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= 0 for a.e.\ 2 <P±(x> $)u2

or, definitions 3.1 and 3.3 being noted,

for a.e. AGVZ". It is easy to see that %(#, f, ± |f |) satisfies the radia-

tion condition. Then it is possible to argue as in Ikebe [[10] (note that

&(£) may be assumed to be 0 outside A^j) to the effect that u = Q, which

is a contradiction. This proves that ^± maps onto L^Ay^-f). A similar

argument applies to "!£. Q.E.D.

It follows from lemmas 6.3 and 6.8 that

for JiC^2- This equation combined with lemma 6.9 gives the following

Lemma 6.10. Let A be as in theorem 5.2. Then

( /£(£) for a.e. |€^j
(?)=

I. 0 for a.e. $

{ /±(f) for a.e. f
(& = \

[ 0 for a.e. $

From lemmas 6.3, 6.4, 6.9 and 6.10

The following assertion is entailed by the above equation and the corres-

ponding one involving F±(J).

Lemma 6.11. Let A be as in theorem 5.2. Then
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E( A} U±(J) = U±(A\ V±( J)£( J) = V±( A).

As a direct consequence of the above lemma one obtains the

Lemma 6.12. Let A be as in theorem 5.2. Then

V±(A-)U±(A\ U±WE0(.f) = U±W and

Lemma 6.13,, The operators ^^. and ~± viewed as mapping from

and E*(d)H, respectively, to L^A-/^) are one-to-one and onto,

where A is as in theorem 5.2. (Note that E(d}H. and £'*(J)H are closed

linear subspaces of H because of E(A) and £'*( J) being projections (lemma

6.8).)

Proof. The ontoness has been proved already (lemma 6.9). So, only

the one-to-one-ness has to be checked, in which case one may limit him-

self to the operator ~±, for the other can be dealt with similarly.

Assume f^E(A)H and f± = Q as an element of L2(A^j). One has

to show f=Q. From lemma 6.4 or 6.5 it follows that (F±(J)/)"0^0 in

L2(Asj), and hence (£'o(J)F±(J)/)"0-05 i.e., £0(^)fr±(^)/=0. By lem-

ma 6.12 F±(J)/ = 0. But lemmas 6.6 and 6.12 show that U±(A) [F±(J)]

maps £'o(J)H [£'(J)H] one-to-one onto £'(J)H [£f
0(J)H]3 and U±(A) and

V±(A} are inverse to each other. Therefore, /=0. Q.E.D.

The inverses of *± and ~± are now to be determined. This may be

accomplished by looking at lemma 6.3. If / is smooth, from lemma 6.3

follows

<p±(x,

In view of the above equation, which is nothing but an inversion formula,

one defines
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The above integrals retain their significance for any u£L2(A1/j) because

of theorem 3.2 and the boundedness of A^j. It is now clear from the

above consideration that v
± and v$ are inverse to ^* and ~±, respec-

tively. In accordance with the above notation the Fourier inversion will
be denoted by VQ, which is of course understood to be restricted to

Lz^A^-j). Further, taking account of lemmas 6.5 and 6.11 one is led to

the following lemma. Notice in what follows that by ids, ids*? idsQ and

id A are meant the identity operators on the respective Hilbert spaces

, E*(J)H, £0(^)H and L2(Asj). (The inner products in

and J?o(4)H are induced by the one in H.)

Lemma 6.14. Let A be as in theorem 5.2. Then the operators v
±

and v± map L2(Asj) one-to-one onto £"(J)H and 1?*(J)H, respectively,

and

.:==: ± ±-

f/±(J) wo£s t« a one-to-one manner £0(^)H ow/to £(J)H, F±(J)

onto £0(/OH, ?7±(J)* £*(J)H onto E0(^H, and V±(A)* £'o(J)H

= idEa, u±w* v±( j)* = »•<**„,

£/r±(^)5 V±(d} and £/±(^)*, f^±(^)* twe inverse to each

other^ respectively.

With the above lemma in regard one defines transformation operators

T± and T± as follows: Let ^€^2(^7) and form ^±6^(^)11 and 2^G

£'*(J)H. Further, regarding these u± and w$ as elements of H, form

(u±T± = (E*(^u±T± and (u^)^ = (E(^u*r± by means of lemma 6.10,
which lie in L^Ay-j). Set T^ii-=(u^f^. and T^u = (u^)^±. Symbolical-
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ly, these may be written r± = ~±
v

± and T$ = ^$v$. It should be noted

here that T$. is not defined to be the adjoint of T±.

Lemma 6.15. Let A be as in theorem 5.2. Then the transformation

operators T± and T$ defined above are positive-definite, non-degenerate

bounded linear operators on L2(A^j) (and hence they are one-to-one and

onto\ and

(u±, v±\ (u, T%.v}Av/J=(ut, ?±) for u, v

, 8) = Cfe T±£±^j far f,ge £( J)H,

A for f,g£ E*( J)H.

Proof. Let /, ^G^(J)H. Then by lemmas 6.3, 6.9 and 6.10 and

the definition of T±

for any /, g'Ei'CJ)!!. Since "$ is one-to-one and onto from U(J)H to

L2(A^j) (lemma 6.13)5 this shows that T± is bounded, linear, positive-

definite and non-degenerate, while the last equation but one of the lemma

has been already shown. The first equation can be obtained from this by

replacing /| and g%. by u and v so that f=u± and g=v± in virtue of

lemma 6.14. The assertions concerning T± may be verified similarly.

Q.E.D.

Fixing an admissible Borel set A as in theorem 5.2, one can define

new Hilbert spaces H± and H±, which are identical with L2(A^j) as a

linear space, by introducing new inner products in Lz(A^j)

(u, v)± = (u, T±V)AV- and (u, v)t = (u,

That H± and HJ equipped with these inner products are Hilbert spaces

is clear from the above lemma 6,15.
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Summarizing and supplementing in an obvious manner what has been

discussed so far, one can now state the following theorem.

Theorem 6.16. Let A be a bounded Borel subset of Q03 oo) such

that both ±\/J are at a positive distance from 2 (0r3 equivalent^ J?*).

Then the following assertions hold. In the following e, e\ and e2 will

denote arbitrary Borel subsets of A.

i) There exist absolutely continuous spectral measures E and £"* as-

sociated with H and H* such that E(e) and £*(e) are (bounded) idempo-

tents^ i.e., projections on H3 E(eir\e2} = E(e i)E(e2) and E*(eiP\e>f)=E*

(ei)E*(e2\ and E(e) C^*(e)j commutes with H [_H*^\.

if) There exist one-to-one bounded linear operators *± and ~± from

Hilbert spaces E(d)H and E*(J)H onto L2(A^j) which reduce to

ft (?) - (27r)-3/2

when f 6 J?( J)H and g 6 .ff *( J)H can be extended to elements of H as

C^(R3) functions^ where <^±(^5 f) and (p±(oc, f) are generalized eigenfunc-

tions of H and H* with generalized eigenvalue \ £2 1 6 A introduced in sec-

tion 33 such that for any f, g in £"(J)H and in

(E*(e)g, f ) =

where a is any bounded Borel function defined on J3 H(A} and

are the restrictions of H and H* to J?(J)H and £*(J)H3 i.e., H(4) =

HE(A\H*(A) = H*E*(A\ and a(H(A)} and a(H*(AJ) are functions of

H(A} and #*(J) defined by

Hi) The bounded inverses of ~± and ^±3
 v

± and ^$3 are given by
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For f 6 E( J)H and g ^ £"*( J)H there hold inversion formulae

iv) The operators ^$ and ~± are unitary when regarded as mapping

from E( J)H and E*(A)~M. to H± and H$? and for any bounded Borel

function a on A and for /G£"(J)H and g-6

The inversion formulae stated in Hi) are also valid in this case. (Thus the

operators H(A\ .U*(J) and HQ(A) are mutually unitarily equivalent^ where

HQ(A) is the restriction of H0 to the Hilbert space £"0(J)H0)

v} There are operators U±(A) and F±(J) such that U±(A} [F±(J)j

maps £T
0(J)H [E(J)H] one-to-one onto E(A)W [£0(4)H1 and

[£7±(J)*] maps £0(J)H [£*(J)H] one-to-one onto £*(J)H [^

operators are given explicitly by

operators mentioned above in v) have the intertwining proper-

ty in the following sense :

r3 more generally^ for any bounded Borel function a on A

(These operators may be called "wave operators" for good reasons.)
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Appendix,, Proof of Lemma 2.58

Let K be a ^-exceptional point. Then there exists a non-trivial

H such that

If Im/c^O, the function

is a bounded continuous function, and can be seen to satisfy

(A.I)

Note that 0 is non-trivial, for the triviality of 0 implies that of <p.

Now suppose 0 <J arg £ <J - , which implies, if /c =KI + IIC^

(A.2) £i>0 and 0<^2^£i.

Consider two cases: (1) £2 = 0, (2) £2>0.

Case (1). Multiply (A.I) by 0 and its complex conjugate by 0, sub-

tract, and integrate over the ball | x <Jr, using Green's formula, to obtain

(A.3) ^
\x\ = r \Or Or

Since the integrand of the first term of (A.3) is rewritten

and since 0 is easily seen to satisfy the radiation condition

one obtains
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lim( | 0 | 2 dS+ic(lm TzO)2 I 0 1 2dx -0.
r-»ooj| *|

The second term of this equation is never negative,, because, by assump-

tion, Imn(x)2^>Q. In consequence, the first term must vanish, which in

turn implies </) = o( - J. In this case, however, according to a result of

Kato [[8], 0 must vanish identically outside some ball. Then by the uni-

que continuation theorem one must have 0 = 0 on all of R3, a contradic-

tion. So in case (1) /c is not @- exceptional.

In case (2), by multiplying (A.I) by 0, integrating and taking the

imaginary part one is led to

(A.4) (Im/i;

(A.2) and the inequality /C2>0 imply Im/c2>Q and Re£22>0. Therefore,

from the above equation

from which one can conclude that 0 vanishes identically outside a ball,

since n(x) — 1 has a compact support by assumption. Arguing as in the

preceding paragraph yields 0 = 0 on R.3, a contradiction.

The first half of the first assertion of the lemma has been proved.

The latter half can be verified in a way similar to the one adopted

for case (2) above.

Quite similarly, the assertion involving 2** may be demonstrated.

The last assertion can be proved by looking at (A.4), where the first

term vanishes in the present case, and by a unique continuation argument.
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