A Uniqueness Theorem for Initial-value Problems

By

Masatake MIYAKE*

Introduction

We shall consider in this note the following linear partial differential operator,

(1)
$$P(x, \partial/\partial x) = \sum_{i+j \leq m} a_{ij}(x) \partial^{i+j}/\partial x_1^i \partial x_2^j,$$

where $a_{ij}(x)$ are analytic functions defined in an open set $\mathcal{Q} \subset \mathbb{R}^2$, and of real-valued if i+j=m.

Let \mathscr{S} be an analytic curve defined by $\varphi(x) = \varphi(x^0)$, $x^0 \in \mathscr{Q}$, where $\varphi(x)$ is a real-valued analytic function defined in \mathscr{Q} . From now on we assume that $\varphi_{x_1}(x^0) \neq 0$.

Now let us assume that $\mathscr S$ is a double characteristic curve of (1), that is,

(2)

$$P_{m}(x, \varphi_{x})|_{\mathscr{P}} = 0, \qquad P_{m}^{(i)}(x, \varphi_{x})|_{\mathscr{P}} = 0 \quad \text{for } i = 1, 2,$$

$$P_{m}^{(i,j)}(x, \varphi_{x})|_{\mathscr{P}} \neq 0 \quad \text{for some } i, j = 1, 2,$$

where $P_m(x,\xi) = \sum_{i+j=m} a_{ij}(x)\xi_1^i\xi_2^j$, $P_m^{(i)}(x,\xi) = \partial P_m(x,\xi)/\partial\xi_i$ and $P_m^{(i,j)}(x,\xi) = \partial^2 P_m(x,\xi)/\partial\xi_i\partial\xi_j$.

And also we assume that $P_m(x, \varphi_x)$ vanishes at the first order on \mathscr{S} , that is,

(3)
$$\langle \varphi_x, \partial/\partial x \rangle P_m(x, \varphi_x)|_{\mathscr{S}} \neq 0, \quad \langle \varphi_x, \partial/\partial x \rangle = \sum_{i=1}^2 \varphi_{x_i} \frac{\partial}{\partial x_i}.$$

Received September 21, 1972.

Communicated by S. Matsuura.

^{*} Department of Mathematics, Faculty of Science, Kanazawa University, Kanazawa, Japan.

Recently, Y. Hasegawa [3], [4] has proved the existence theorem of the initial-value problem with data on a characteristic surface, and the system case was treated by the author [8]. In those papers, the initialvalue problems were classified in many cases using the lower order terms of the differential operator $P(x, \partial/\partial x)$. One of the purposes of this note is to investigate a geometrical meaning of the double characteristic curve under the assumption (3) which did not appear in J. Vaillant [10] but appeared in Y. Hasegawa [3] and the author [8] (see Proposition in §1).

On the other hand, L. Hörmander [5], [6], F. Trèves [9] and E. C. Zachmanoglou [11], [12] proved uniqueness theorems of the initialvalue problems when the initial surface has simple characteristic points under a convexity condition or modified conditions. And also, J.M. Bony [2] and L. Hörmander [7] proved uniqueness theorems which are extensions of Holmgren's theorem. Another purpose of this note is to show a uniqueness theorem of the distribution solution of $P(x, \partial/\partial x)u=0$ when the initial curve has double characteristic points (see Theorem in §1).

Finally, the author wishes his sincere gratitude to Prof. S. Mizohata for his valuable suggestion and encouragement.

§1. Statement of Theorem

At first we note that we have $P_m^{(2,2)}(x^0, \varphi_x(x^0)) \neq 0$ from the condition (2) and $\varphi_{x_1}(x^0) \neq 0$. And also we have

$$\operatorname{sgn}\left[P_m^{(2,2)}(x^0,\,\varphi_x(x^0))\right] = \operatorname{sgn}\left[\sum_{i,j}P_m^{(i,j)}(x^0,\,\varphi_x(x^0))\psi_{x_i}(x^0)\psi_{x_j}(x^0)\right],$$

where $\psi(x)$ is a real-valued analytic function defined in \mathscr{Q} such that $\partial(\varphi, \psi)/\partial(x_1, x_2)|_{x=x^0} \neq 0$.

Without loss of generality, we may assume that $\operatorname{sgn}[<\varphi_x, \frac{\partial}{\partial x}>P_m(x, \varphi_x)|_{x=x^0}]$ and $\operatorname{sgn}[P_m^{(2,2)}(x^0, \varphi_x(x^0))]$ are different. In fact, if they are the same, we then consider $-\varphi(x)$ instead of $\varphi(x)$. Then we have the following

Proposition. Under the assumptions (2), (3) and the above, there exist two and only two analytic characteristic curves through each point in

 $\varphi(x) > \varphi(x^0)$ and sufficiently near \mathscr{S} such that they are tangent at the second order to \mathscr{S} . And the other characteristic curves are transversal to \mathscr{S} .

From this proposition we may consider that \mathscr{S} is an envelope of characteristic curves of (1). We remark that if we assume that $\langle \varphi_x, \frac{\partial}{\partial x} \rangle P_m(x, \varphi_x)|_{\mathscr{S}} = 0$ instead of the assumption (3), we can not obtain a similar result as in the Proposition.

Let \mathscr{C} be a regular curve defined by $f(x)=f(x^0)$, tangent at x^0 to the double characteristic curve \mathscr{S} , where f(x) is a real-valued function of $C^1(\mathscr{Q})$, and we may assume

$$f_x(x^0) = \varphi_x(x^0).$$

Now we impose on $\mathscr C$ the following conditions:

(4) If
$$x_2 > x_2^0$$
 (or $x_2 < x_2^0$), $f(x) < f(x^0)$ on \mathscr{S} ,

(5) for $x_2 > x_2^0$ (or $x_2 < x_2^0$), it holds

$$\operatorname{sgn}\left[P_m^{(2,2)}(x^0,\,\varphi_x(x^0))\right] \cdot P_m(x,\,f_x)|_{\mathscr{C}} > 0.$$

Then we have the following uniqueness theorem.

Theorem. Under the assumptions (4) and (5), if $u \in \mathscr{D}'(\Omega)$ is a solution of $P(x, \partial/\partial x)u = 0$ and vanishes in $f(x) < f(x^0)$, then u = 0 in a neighborhood of x^0 .

Remark 1.1. The assumptions (4) and (5) mean the following: the double characteristic curve \mathscr{S} and the characteristic curve in $\varphi(x) > \varphi(x^0)$ which is tangent at x^0 to \mathscr{S} guaranteed its existence from the Proposition, lie in the domain where we require that u=0, when $x_2 > x_2^0$ (or $x_2 < x_2^0$) (see §3).

For the proof of the theorem we use the following lemma due to L. Hörmander [5, p. 125].

Lemma. Let $P(x, \partial/\partial x) = \sum_{|\alpha| \leq m} a_{\alpha}(x)(\partial/\partial x)^{\alpha}$ be a differential operator of order *m* defined in an open set $\Omega \subset \mathbb{R}^n$ with analytic coefficients, and

assume that the coefficient of $(\partial/\partial x_n)^m$ does not vanish in Ω . If $u \in \mathscr{D}'(\Omega)$ is a solution of $P(x, \partial/\partial x)u = 0$ in $\Omega_c = \{x; x \in \Omega, x_n < c\}$ for some c, then u = 0 in Ω_c provided $\Omega_c \cap \text{supp}[u]$ is relatively compact in Ω .

Remark 1.2. We also obtain a uniqueness theorem if we assume that $f(x) > f(x^0)$ on \mathcal{S} , $x_2 > x_2^0$ (or $x_2 < x_2^0$) and u = 0 in $f(x) > f(x^0)$. We omit the proof, since it is easier than that of Theorem.

§2. Proof of Proposition

Before the proof of our Proposition, we shall prove the following lemma.

Lemma 2.1. Let us consider the following algebraic equation in z,

(6)
$$x_1 z^m + x_1 a_1(x) z^{m-1} + a_2(x) z^{m-2} + \dots + a_m(x) = 0,$$

where $a_i(x)$ are real-valued analytic functions defined in a neighborhood of the origin $\Omega \subset \mathbb{R}^2$. Assume that $a_2(x) < -\delta$ in Ω for some positive constant δ , and let $z = z_i(x)$, i = 1, ..., m be roots of (6) at $x_1 \neq 0$. Then there exist two and only two real-valued analytic roots in $\{z_i(x)\}_{i=1}^m$, say $z_i(x)$, i = 1, 2, in $\Omega_{+,\varepsilon} = \{x; x \in \Omega, 0 < x_1 < \varepsilon\}$ such that

$$z_i(x) = c_i(x) \cdot x_1^{-1/2} \quad \text{as} \quad x_1 \downarrow 0,$$

where $\varepsilon_1 < |c_i(x)| < M$ for some positive constants ε_1 and M, $c_1 \cdot c_2 < 0$ and ε is a sufficiently small positive constant. And the other roots satisfy $|z_i(x)| = O(1)$ uniformly in x_2 as $x_1 \downarrow 0$, $i=3, \dots, m$ in $\Omega_+ = \{x; x \in \Omega, x_1 > 0\}$. In $\Omega_- = \{x; x \in \Omega, x_1 < 0\}$, all the real roots satisfy $z_i(x) = O(1)$ uniformly in x_2 as $x_1 \uparrow 0$.

We prove the lemma by using the following classical result concerning algebraic equation.

Lemma. (Laguerre) Let us consider the following algebraic equation with real coefficients,

$$f(z) = a_0 z^m + a_1 z^{m-1} + \dots + a_m = 0, \quad a_0 \neq 0.$$

And now let N be the number of roots which are greater than a given positive number α , and M be the number of variation of signs of

$$f_k(\alpha) = a_0 \alpha^k + a_1 \alpha^{k-1} + \cdots + a_k, \qquad k = 0, \cdots, m.$$

Then it follows that N=M-2l, where $l \in \{0, 1, \dots, \left\lfloor \frac{m}{2} \right\rfloor\}$.

Proof of Lemma 2.1. Let N be a sufficiently large positive constant satisfying

$$N \ge \max_{i \ne 2} \{ \sup_{a} |a_i(x)| \}, \quad \delta N^{2(k-2)} - \sum_{i=3}^k N^{2(k-i)+1} > \delta_{1} \}$$

for k=3,...,m, where δ_1 is a positive constant less than δ . Then we see that there exists one and only one real root $z=z_1(x)$ of (6) greater than N^2 in $\mathcal{Q}_{+,\varepsilon}$, where $\varepsilon = \delta_1/(N^{2m} + N^{2m-1})$ in view of the above lemma. In fact, let

$$f_k(x, z) = x_1 z^k + x_1 a_1(x) z^{k-1} + a_2(x) z^{k-2} + \dots + a_k(x),$$

for k=0, 1, ..., m, then we have that $f_k(x, N^2) > 0$, k=0, 1 and $f_k(x, N^2) < 0$, k=2, ..., m in $\mathcal{Q}_{+,\varepsilon}$. Since the number of variation of signs is one, there exists one and only one real root of (6) greater than N^2 . Interchanging z by -z in (6), it also follows that there exists one and only one real root $z=z_2(x)$ of (6) smaller than $-N^2$ in $\mathcal{Q}_{+,\varepsilon}$. In order to see that $z_i(x)=c_i(x)\cdot x_1^{-1/2}$ as $x_1 \downarrow 0$, where $c_1>0$ and $c_2<0$, it sufficies to see that $\varepsilon_1/\sqrt{x_1} < z_1(x) < M/\sqrt{x_1}$ and $-M/\sqrt{x_1} < z_2(x) < -\varepsilon_1/\sqrt{x_1}$ if $x_1>0$ and x_1 is sufficiently small, where ε_1 and M are constants satisfying $\varepsilon_1^m + a_2(x)\varepsilon_1^{m-2} < 0$ and $M^m + a_2(x)M^{m-2} > 0$ in \mathcal{Q} . The analyticities of them follow immediately from the implicit function theorem. And also it follows that the other roots in $\mathcal{Q}_{+,\varepsilon}$ are smaller than N^2 in absolute value from Rouché's theorem. In $\mathcal{Q}_{-} = \left\{x; 0 > x_1 > -\frac{\delta_1}{N^{2m} + N^{2m-1}}\right\}$, all the real roots of (6) are smaller than N^2 in absolute value, in view of the above lemma. This completes the proof.

Proof of the Proposition. Let us transform the coordinates as follows,

MASATAKE MIYAKE

(7)
$$y_1 = \varphi(x) - \varphi(x^0), \quad y_2 = \psi(x) - \psi(x^0)$$

in a neighborhood of x^0 , where $\psi(x)$ is a real-valued analytic function defined in \mathscr{Q} satisfying $\partial(\varphi, \psi)/\partial(x_1, x_2)|_{x=x^0} \neq 0$. Let $\tilde{P}(y, \partial/\partial y)$ be a differential operator transformed by (7) defined in a neighborhood of the origin $\tilde{\mathscr{Q}} \subset \mathbb{R}^2$, then the coefficients of $\partial^m/\partial y_1^{m-k} \partial y_2^k$, k=0, 1, 2 of $\tilde{P}(y, \partial/\partial y)$ are

$$P_m(x, \varphi_x), \sum_{i=1}^2 P_m^{(i)}(x, \varphi_x) \psi_{x_i} \text{ and } \frac{1}{2} \sum_{i,j} P_m^{(i,j)}(x, \varphi_x) \psi_{x_i} \psi_{x_j}$$

respectively. We note at first that we can represent $P_m(x(y), \varphi_x(x(y))) = y_1 \tilde{a}_0(y)$ since $P_m(x(y), \varphi_x(x(y))) = 0$ when $y_1 = 0$, and we have easily

$$\tilde{a}_0(0, y_2) = \left[\frac{1}{|\varphi_x|^2} < \varphi_x, \frac{\partial}{\partial x} > P_m(x, \varphi_x)\right]|_{y_1=0}$$

And also we can represent $\sum_{i} P_m^{(i)}(x(y), \varphi_x(x(y)))\psi_{x_i}(x(y)) = y_1\tilde{a}_1(y)$, since $P_m^{(i)}(x(y), \varphi_x(x(y))) = 0$ when $y_1 = 0$. Thus the characteristic polynomial $\tilde{P}_m(y, \eta)$ of $\tilde{P}(y, \partial/\partial y)$ is represented as follows,

$$\begin{split} \tilde{P}_{m}(y, \eta) &= y_{1}\tilde{a}_{0}(y)\eta_{1}^{m} + y_{1}\tilde{a}_{1}(y)\eta_{1}^{m-1}\eta_{2} + \\ &+ \tilde{a}_{2}(y)\eta_{1}^{m-2}\eta_{2}^{2} + \sum_{k=3}^{m} \tilde{a}_{k}(y)\eta_{1}^{m-k}\eta_{2}^{k}, \end{split}$$

where $\tilde{a}_{2}(y) = \frac{1}{2} \sum_{i,j} P_{m}^{(i,j)}(x, \varphi_{x}) \psi_{x_{i}} \psi_{x_{j}}$.

Now we remark that if a curve defined by g(y)=c, $(g_{y_2}\neq 0)$ is a characteristic curve of $\tilde{P}(y, \partial/\partial y)$, it must satisfy $\tilde{P}_m(y, g_y)=0$. And also it follows that g(y)=c is a solution of the following ordinary differential equation,

(8)

$$F(y, dy_2/dy_1) \equiv y_1 \tilde{a}_0(y) \left(-\frac{dy_2}{dy_1}\right)^m + y_1 \tilde{a}_1(y) \left(-\frac{dy_2}{dy_1}\right)^{m-1} + \tilde{a}_2(y) \left(-\frac{dy_2}{dy_1}\right)^{m-2} + \sum_{k=3}^m \tilde{a}_k(y) \left(-\frac{dy_2}{dy_1}\right)^{m-k} = 0$$

in view of $-dy_2/dy_1 = g_{y_1}/g_{y_2}$ on g(y) = c. Conversely it is obvious

612

that the solutions of (8) are also characteristic curves of $\tilde{P}(y, \partial/\partial y)$. Let us consider the ordinary differential equation (8) instead of considering the partial differential equation $\tilde{P}_m(y, g_y)=0$.

In view of the assumptions that $\tilde{a}_0(0, y_2) \neq 0$, and $\operatorname{sgn}[\tilde{a}_0(0)]$ and $\operatorname{sgn}[\tilde{a}_2(0)]$ are different, we may assume

$$\tilde{a}_2(y)/\tilde{a}_0(y) < -\delta$$

in $\tilde{\mathscr{Q}}$ for some positive constant δ . From Lemma 2.1, there exist two and only two real-valued analytic roots of (8) with respect to dy_2/dy_1 in $\tilde{\mathscr{Q}}_{+,\varepsilon}$ for a sufficiently small ε , say $dy_2/dy_1 = f_i(y)$, i=1, 2, such that $f_i = c_i(y)$ $\cdot y_1^{-1/2}$ as $y_1 \downarrow 0$, where $\varepsilon_1 < |c_i(y)| < M$ for some positive constants ε_1 and M, and $c_1 \cdot c_2 < 0$. Let us consider the following ordinary differential equations in $\tilde{\mathscr{Q}}^a_{+,\varepsilon}$,

(9)
$$\frac{d y_1}{d y_2} = f_i^{-1}(y), \quad i = 1, 2,$$

where $\tilde{\mathcal{Q}}_{+,\epsilon}^{a}$ is a closure of $\tilde{\mathcal{Q}}_{+,\epsilon}$. Obviously the solutions of (9) are also characteristic curves of $\tilde{P}(y, \partial/\partial y)$. From the theory of ordinary differential equation, it follows that every solution of (9) is tangent to $y_1=0$ in view of $f_i^{-1}(y)=c_i^{-1}(y)\cdot y_1^{1/2}$ as $y_1\downarrow 0$. In order to see that they are tangent at the second order to $y_1=0$, it suffices to show $\lim_{y_1\downarrow 0} d^2 y_1/d y_2^2 \neq 0$. Now we use the following relation,

$$d^{2} y_{1}/d y_{2}^{2} = -[(f_{i})_{y_{1}}/f_{i}^{3} + (f_{i})_{y_{2}}/f_{i}^{2}].$$

Since $f_i(y)$ satisfies $F(y, f_i) \equiv 0$ in $\tilde{\mathcal{Q}}_{+,\varepsilon}$, we have

$$(f_i)_{y_1} = -F_{y_1}(y, f_i)/F_z(y, f_i),$$

$$(f_i)_{y_2} = -F_{y_2}(y, f_i)/F_z(y, f_i),$$

where $F_{y_k}(y, z) = \partial F(y, z)/\partial y_k$, k=1, 2 and $F_z(y, z) = \partial F(y, z)/\partial z$. Now we shall consider $F_z(y, f_i)$ and $F_{y_k}(y, f_i)$, k=1, 2;

$$-F_{z}(y, f_{i}) = m y_{1}\tilde{a}_{0}(-f_{i})^{m-1} + (m-1) y_{1}\tilde{a}_{1}(-f_{i})^{m-2} + (m-2)\tilde{a}_{2}(-f_{i})^{m-3} + \sum_{k=3}^{m-1} (m-k)\tilde{a}_{k}(-f_{i})^{m-k-1} F_{y_{1}}(y, f_{i}) = \tilde{a}_{0}(-f_{i})^{m} + y_{1}(\tilde{a}_{0})_{y_{1}}(-f_{i})^{m} + (y_{1} \cdot \tilde{a}_{1})_{y_{1}}(-f_{i})^{m-1} + \sum_{k=2}^{m} (\tilde{a}_{k})_{y_{1}}(-f_{i})^{m-k}, F_{y_{2}}(y, f_{i}) = y_{1}(\tilde{a}_{0})_{y_{2}}(-f_{i})^{m} + y_{1}(\tilde{a}_{1})_{y_{2}}(-f_{i})^{m-1} + (\tilde{a}_{2})_{y_{2}}(-f_{i})^{m-2} + \sum_{k=3}^{m} (\tilde{a}_{k})_{y_{2}}(-f_{i})^{m-k}.$$

Considering $f_i(y) = c_i(y)y_1^{-1/2}$ as $y_1 \downarrow 0$, we have

$$F_z(y, f_i) = d_i(y_2) y_1^{-(m-3)/2} + o(y_1^{-(m-3)/2})$$
 as $y_1 \downarrow 0$,

where $d_i(y_2) \neq 0$. And also we have

$$F_{y_1}(y, f_i) = e_i(y_2) y_1^{-m/2} + o(y_1^{-m/2}) \text{ as } y_1 \downarrow 0,$$

$$F_{y_2}(y, f_i) = O(y_1^{-(m-2)/2}) \text{ as } y_1 \downarrow 0,$$

where $e_i(y_2) \neq 0$. Thus we have

$$\lim_{y_1 \downarrow 0} (f_i)_{y_1} / f_i^3 \neq 0,$$

$$(f_i)_{y_2} / f_i^2 = O(y_1^{1/2}) \text{ as } y_1 \downarrow 0.$$

Therefore the solutions of (9) are tangent at the second order to $y_1=0$. Finally, it is obvious that the other characteristic curves of $\tilde{P}(y, \partial/\partial y)$ are transversal to $y_1=0$, because the other real roots of the algebraic equation F(y, z)=0 in z at $y_1\neq 0$ are O(1) as $y_1\downarrow 0$ or $y_1\uparrow 0$ (Lemma 2.1). This completes the proof.

§3. Proof of Theorem

It suffices to prove our Theorem for the partial differential operator $\tilde{P}(y, \partial/\partial y)$ in $\tilde{\mathcal{Q}}$ considered in the previous section. Let $\tilde{P}(y, \partial/\partial y)$ be

INITIAL-VALUE PROBLEMS

(10)
$$\tilde{P}(y, \partial/\partial y) = \tilde{P}_{m}(y, \partial/\partial y) + Q(y, \partial/\partial y),$$

where $\tilde{P}_m(y, \partial/\partial y) = y_1 \tilde{a}_0(y) \frac{\partial^m}{\partial y_1^m} + y_1 \tilde{a}_1(y) \frac{\partial^m}{\partial y_1^{m-1} \partial y_2} + \tilde{a}_2(y) \frac{\partial^m}{\partial y_1^{m-2} \partial y_2^2} + \sum_{k \ge 3} \tilde{a}_k(y) \frac{\partial^m}{\partial y_1^{m-k} \partial y_2^k}, \quad \tilde{a}_0(y) \cdot \tilde{a}_2(y) < 0 \text{ in } \tilde{\mathcal{Q}}, \text{ and } Q(y, \partial/\partial y) \text{ is a differential operator of order } m-1.$

Let $\widetilde{\mathscr{C}}$ be an image of \mathscr{C} by the transformation (7), and set

$$\widetilde{\mathscr{C}}: \widetilde{f}(y) = \widetilde{f}(0), \ ((\widetilde{f}_{y_1}(0), \widetilde{f}_{y_2}(0)) = (1, 0), \ \widetilde{f}(y) \in C^1((\widetilde{\mathscr{Q}})).$$

Then the conditions of Theorem become as follows,

(11)
$$\tilde{f}(0, y_2) < \tilde{f}(0), y_2 > 0 \quad (\text{or } y_2 < 0),$$
$$\operatorname{sgn}[\tilde{a}_2(0)] \cdot \tilde{P}_m(y, \tilde{f}_y)|_{\tilde{q}} > 0, y_2 > 0 \quad (\text{or } y_2 < 0).$$

At first we note the meaning of these conditions. From the Proposition, there exist two and only two characteristic curves through each point in $\tilde{\mathcal{Q}}_{+,\varepsilon}$ which are tangent at the second order to $y_1=0$, and they are represented by the solutions of the ordinary differential equations (9). Without loss of generality, we may assume that $f_1^{-1}>0$ and $f_2^{-1}<0$ in $\tilde{\mathcal{Q}}_{+,\varepsilon}$. Then it follows immediately from (11) that

(12)
$$\begin{aligned} & -\tilde{f}_{y_2}/\tilde{f}_{y_1} > f_1^{-1} \quad \text{on } \widetilde{\mathscr{C}}, \ y_2 > 0, \\ & (\text{or } -\tilde{f}_{y_2}/\tilde{f}_{y_1} < f_2^{-1} \quad \text{on } \widetilde{\mathscr{C}}, \ y_2 < 0). \end{aligned}$$

These have a geometrical meaning as stated in Remark 1.1 in §1.

We shall prove the theorem only in the case where $-\tilde{f}_{y_2}/\tilde{f}_{y_1} > f_1^{-1}$ on $\tilde{\mathscr{C}}$, $y_2 > 0$, since the proof is the same in the other case. We may assume that $f_1^{-1}(y)$ is monotonically increasing with respect to y_1 in $\tilde{\mathscr{Q}}_{+,\varepsilon}$, because of $f_1^{-1}(y) = c_1^{-1}(y) \cdot y_1^{1/2}$ as $y_1 \downarrow 0$. Now let us consider the following ordinary differential equation,

(13)
$$\frac{dy_1}{dy_2} = f_1^{-1}(y_1 + \alpha, y_2) \quad \text{in } \tilde{\mathcal{Q}}_{\alpha},$$

where α is a sufficiently small positive constant ($\alpha < \varepsilon$) and $\tilde{\mathcal{Q}}_{\alpha}$ is defined

MASATAKE MIYAKE

by $\tilde{\mathscr{Q}}_{\alpha} = \{y; (y_1 + \alpha, y_2) \in \tilde{\mathscr{Q}}_{+,\varepsilon}, y_1 > -\alpha/2\}$. Since the right hand of (13) is analytic in the domain $\tilde{\mathscr{Q}}_{\alpha}$, (13) has not any singular solution, and the solutions of (13) are not characteristic curves of $\tilde{P}(y, \partial/\partial y)$ in $\tilde{\mathscr{Q}}_{\alpha}$, because of the assumptions that $f_1^{-1}(y)$ is monotonically increasing with respect to y_1 and the other characteristic curves are transversal to $y_1=0$. And now let

$$\tilde{\varphi}_{\alpha}(y) = c$$
 in \tilde{Q}_{α}

be solutions of (13), then in view of (12) it follows that the domain enclosed by $\tilde{\mathscr{C}}$ and $\tilde{\varphi}_{\alpha}(y) = \tilde{\varphi}_{\alpha}(0)$ is relatively compact in $\tilde{\mathscr{Q}}_{\alpha}$ if we choose α sufficiently small. In fact, $\tilde{\varphi}_{\alpha}(y) = \tilde{\varphi}_{\alpha}(0)$ is sufficiently near to the solution of $dy_1/dy_2 = f_1^{-1}(y)$ which is tangent at the origin to $y_1 = 0$ if α is small. Thus we see that

$$\{y; \tilde{\varphi}_{\alpha}(y) = \tilde{\varphi}_{\alpha}(0, y_2), y_2 > -\delta\} \cap \operatorname{supp}[u]$$

is relatively compact in $\tilde{\mathcal{Q}}_{\alpha}$ if we choose a sufficiently small positive constant δ , since u=0 in $\tilde{\mathcal{Q}}_{\alpha} \cap \{y; \tilde{f}(y) < \tilde{f}(0)\}$.

Now let us transform the coordinates in $\tilde{\mathcal{Q}}_{\alpha}$ as follows,

$$z_1 = \tilde{\varphi}_{\alpha}(y), \qquad z_2 = y_2.$$

Then it is obvious that $\partial(z_1, z_2)/\partial(y_1, y_2) \neq 0$ in $\tilde{\mathcal{Q}}_{\alpha}$. Let $\tilde{P}(z, \partial/\partial z)$ be a partial differential operator transformed by the above transformation. Then the coefficient of $(\partial/\partial z_1)^m$ of $\tilde{P}(z, \partial/\partial z)$ does not vanish in the domain considered, since $z_1 = \text{const.}$ is not characteristic. And obviously the assumption of Lemma in §1 is satisfied for the equation $\tilde{P}(z, \partial/\partial z)u = 0$, therefore u = 0 in $\{z; z_1 = \tilde{\varphi}_{\alpha}(0, y_2), y_2 > -\delta\}$, that is, u = 0 in $\{y \in \tilde{\mathcal{Q}}_{\alpha}; \tilde{\varphi}_{\alpha}(y) = \tilde{\varphi}_{\alpha}(0, y_2), y_2 > -\delta\}$. This completes the proof.

References

- Bony, J.M., Sur la propagation des maximums et l'unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés du second ordre, C.R. Acad. Sci. Paris, 266 (1968), 763-765.
- [2] _____, Une extension du théorème de Holmgren sur l'unicité de problème de Cauchy, C.R. Acad. Sci. Paris, 268 (1969), 1103-1106.

- [3] Hasegawa, Y., On the initial-value problem with data on a double characteristic, J. Math. Kyoto Univ. 11 (1971), 357-372.
- [4] _____, On the initial-value problem with data on a characteristic plane, to appear.
- [5] Hörmander, L., Linear Partial Differential Operators, Springer.
- [6] _____, Uniqueness theorems and wave front sets for solutions of linear differential equations with analytic coefficients, Comm. Pure Appl. Math. 24 (1971), 671-704.
- [7] _____, A remark on Holmgren's uniqueness theorem, J. Diff. Geom. 6 (1971), 129-134.
- [8] Miyake, M., On the initial-value problems with data on a characteristic surface for linear systems of first order equations, *Publ. R.I.M.S. Kyoto Univ.* 8 (1972/73), 231-264.
- [9] Trèves, F., Linear Partial Differential Equations with Constant Coefficients, Gordon and Breach, New York, 1966.
- [10] Vaillant, J., Données de Cauchy portées par une caractéristique double..., J. Math. Pures Appl. 47 (1968), 1-40.
- [11] Zachmanoglou, E.C., Uniqueness of the Cauchy problem for linear partial differential equations, *Trans. Amer. Math. Soc.* 136 (1969), 517-526.
- [12] _____, Propagation of zeros and uniqueness in the Cauchy problem for first order partial differential equations, *Arch. Rat. Mech. Anal.* 38 (1970), 178-188.