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A Uniqueness Theorem for Initial-value Problems

By

Masatake MIYAKE*

Introduction

We shall consider in this note the following linear partial differential

operator,

(1) P(x,d/dx}= £ aij(x)di+'/dx[dxs
29

where a#(#) are analytic functions defined in an open set $C^2
? and of

real-valued if i+j=m.

Let £f be an analytic curve defined by <p(x) = (p(xQ\ #°E$5 where

<p(oc) is a real-valued analytic function defined in Q. From now on we

assume that q>Xl(x
0>)=£Q.

Now let us assume that £f is a double characteristic curve of (1)? that

is,

Pm(x,v3\*> = 0, Py(x9^\y = 0 for i = l, 2,
(2)

Pm'j}(x, 0>*)U=£0 for some z,/=l, 23

where Pm(x, f)= E atjW^l P%\x, S") = dPm(x9 f)/9ft and P«-»(*,
*+/=»!

And also we assume that Pm(x, cpx} vanishes at the first order on £f,

that is,

(3)
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Recently, Y. Hasegawa Q3], Q4] has proved the existence theorem of

the initial-value problem with data on a characteristic surface, and the

system case was treated by the author [8]. In those papers, the initial -

value problems were classified in many cases using the lower order terms

of the differential operator P(x9 d/dx). One of the purposes of this note

is to investigate a geometrical meaning of the double characteristic curve

under the assumption (3) which did not appear in J. Vaillant Ql(T] but

appeared in Y. Hasegawa £3] and the author Q8] (see Proposition in § 1).

On the other hand, L. Hormander [5], [6J, F. Treves [9] and E. C.

Zachmanoglou [11], Q12] proved uniqueness theorems of the initialvalue

problems when the initial surface has simple characteristic points under a

convexity condition or modified conditions. And also, J.M. Bony [JT\ and

L. Hormander Q7] proved uniqueness theorems which are extensions of

Holmgren's theorem. Another purpose of this note is to show a uniqueness

theorem of the distribution solution of P(x9 d/dx)u = Q when the initial

curve has double characteristic points (see Theorem in § 1).

Finally, the author wishes his sincere gratitude to Prof. S. Mizohata for

his valuable suggestion and encouragement.

§ 1. Statement of Theorem

At first we note that we have P^'2)(*°, px(x
Q))^Q from the condi-

tion (2) and <pXl(x°)=^Q. And also we have

where 0(#) is a real-valued analytic function defined in Q such that

Without loss of generality, we may assume that sgn^<<px,— —
(/ x

$OU=*°H and sgnQP^'2)(^°5 ^^(^°))H are different. In fact, if they are

the same, we then consider —<p(x) instead of <p(x). Then we have the

following

Proposition Under the assumptions (2), (3) and the above, there

exist two and only two analytic characteristic curves through each point in
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) and sufficiently near Zf such that they are tangent at the

second order to £f. And the other characteristic curves are transversal to £f.

From this proposition we may consider that 5^ is an envelope of

characteristic curves of (1). We remark that if we assume that <#?#,

— — >Pm(x, cO|^ = 0 instead of the assumption (3). we can not obtain a
ox
similar result as in the Proposition.

Let ^ be a regular curve defined by f(x)=f(xQ), tangent at XQ to

the double characteristic curve £f^ where /(#) is a real -valued function of

), and we may assume

Now we impose on 'g' the following conditions:

(4) If x2>x°2 (or *2<*§),/GO</(*°) on yt

(5) for %z>%\ (or x2<x$), it holds

sgn LPi,2'2>(*0, ^(*°))D • Pm(x, /,) U > 0.

Then we have the following uniqueness theorem.

Theorem. Under the assumptions (4) and (5), if u 6 &'(S£) is a

solution of P(x, d/dx)u = Q and vanishes in f(x)<f(x°\ then u = Q in a

neighborhood of XQ.

Remark 1.1. The assumptions (4) and (5) mean the following: the

double characteristic curve SP and the characteristic curve in ^(A;)>^(JC°)

which is tangent at x° to & guaranteed its existence from the Proposi-

tion, lie in the domain where we require that u = Q, when x2> x\ (or

X2<x0z) (see §3).

For the proof of the theorem we use the following lemma due to

L. Hormander [5, p. 125].

Lemma, Let P(x, d/dx)= 2 aa(x}(d/dxY be a differential operator
\a\<m

of order m defined in an open set @CRn with analytic coefficients, and
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assume that the coefficient of (d/dxn)m does not vanish in $. If u £ ^;(

is a solution of P(x, d/dx)u = Q in @c = {x\ x^Q, xn<c} for some c,

then u = Q in J2C provided $cnsupp[^ is relatively compact in Q.

Remark 1.2. We also obtain a uniqueness theorem if we assume that

/(*)>/(*°) on ^, x2>xQ
2 (or x2<x°2) and u = 0 in f(x)>f(x°). We

omit the proof, since it is easier than that of Theorem.

§2. Proof of Proposition

Before the proof of our Proposition,, we shall prove the following lemma.

Lemma 2.1. Let us consider the following algebraic equation in z^

(6)

where a/(#) are real-valued analytic functions defined in a neighborhood of

the origin @C.R2. Assume that a2(x)<—d in Q for some positive con-

stant d, and let z = zi(x\ z = l 3 - - - 3 m be roots of (6) at xi=^Q. Then

there exist two and only two real-valued analytic roots in {zi(x)}f=1, say

Zi(x\ i = I, 2, in @+ie={x°.> x E $? 0<#i<e} such that

Zi(x} = Ci(x)oXill2> as xi 4 0,

where £i< |c,-(#)| <M for some positive constants £1 and M5 ci°c2<0 and

e is a sufficiently small positive constant. And the other roots satisfy \ z^x) \

= O(1) uniformly in x2 as x\ \ 03 z° = 3 , - - - 3 m in @+ = {x; x£,Q, #i>0}.

In $-. = {x; x£ @, #i<0}3 all the real roots satisfy Zi(x} = O(\} uniformly

in x2 as x\ t 0.

We prove the lemma by using the following classical result concerning

algebraic equation.

Lemma. (Laguerre) Let us consider the following algebraic equation

with real coefficients,
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And now let N be the number of roots which are greater than a given

positive number a, and M be the number of variation of signs of

& = 0,.-., m.

Then it follows that N=M-2l, where Ze{0, I ,- .- ,

Proof of Lemma 2.1. Let N be a sufficiently large positive constant

satisfying

for i = 3 , - - - , 77i, where Si is a positive constant less than d. Then we

see that there exists one and only one real root z = zi(x) of (6) greater

than N2 in Q+t69 where e=di/(N2m + N2m~1) in view of the above lemma.

In fact, let

for & = 0, l,...,77t, then we have that fk(x,N2)>0, A = 0, 1 and fk(x, N2)

<0, A; = 2,... 5 77i in Q+,6* Since the number of variation of signs is one,

there exists one and only one real root of (6) greater than N2. Interchang-

ing z by —z in (6), it also follows that there exists one and only one

real root z = zz(x) of (6) smaller than —N2 in Q+,s- In order to see

that Zi(x) = Ci(x)*Xi112 as x\ 4 0, where ci>0 and c2<03 it sufficies to

see that Si/^xi<zi(x)<M/\Hx~i and — M/^xi<z2(x)< — £i/V^i if #i>0

and xi is sufficiently small, where Si and M are constants satisfying ef

+ a2(^)£f-2<0 and Mw + a2(^)Mw"2>0 in a. The analyticities of them

follow immediately from the implicit function theorem. And also it follows

that the other roots in Q+tS are smaller than N2 in absolute value from

Rouche's theorem. In S, = lx;0>xi> — 2m
 x

 2w-1 J- , all the real roots

of (6) are smaller than N2 in absolute value, in view of the above lemma.

This completes the proof.

Proof of the Proposition. Let us transform the coordinates as follows,
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(7) yi = ?(*)-?(*°), J2 = 000-00*°)

in a neighborhood of A;°, where 0(^0 is a real-valued analytic function

defined in Q satisfying d((p, </))/d(xi, #2)U=*o:?^0. Let P(y, d/dy) be a

differential operator transformed by (7) defined in a neighborhood of the

origin SCR2, then the coefficients of dm/dy1f~kdy^ & = 05 1, 2 of P(y,

d/dy) are

Pm(x, <p,\ E Pi»(*, p,)0*< and -i-LPi^C*, ̂ fM,,
i = i ^ f , j

respectively. We note at first that we can represent Pm(x(y\ <px(x(y)'))

) since Pm(x(y), <px(x(y))} = Q when yi = 03 and we have easily

And also we can represent £ P^'(a;(y), <px(x(y)))0x.(x(y)~) =
i

since Pw)(^(j)5 ^*Wj))) — 0 when ji = 0. Thus the characteristic poly-

nomial Pm(y, T?) of P( j, d/dy) is represented as follows,

where a2(j)-- S P^'}(^ ^)0,,0,r
^ i>j

Now we remark that if a curve defined by g(y) = c, (g>2^0) is a

characteristic curve of P(y, d/dy\ it must satisfy POT(j, ^)=z:0- And

also it follows that gCy^c is a solution of the following ordinary differ-

ential equation,

(8)

in view of —dy2/dyi = gyi/gy2 on gCy)11^. Conversely it is obvious
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that the solutions of (8) are also characteristic curves of P( y, d/dy). Let

us consider the ordinary differential equation (8) instead of considering the

partial differential equation Pm(y, gy} = ®-

In view of the assumptions that <z0(0, j2) =^=0, and sgn^o(O)] and
are different, we may assume

in S for some positive constant 8. From Lemma 2.1, there exist two and

only two real-valued analytic roots of (8) with respect to dy2/dyi in S+>£

for a sufficiently small £, say dy2/dyi=fi(y), i = l, 2, such that /,- = c,-(j)

-ji1/2 as yi 4 0, where ei< |c,-(y)| <M for some positive constants £1

and M, and ci«c2<0. Let us consider the following ordinary differential

equations in •£+,£,

where G+,e is a closure of O+f€. Obviously the solutions of (9) are also

characteristic curves of P( y, d/dy). From the theory of ordinary differen-

tial equation, it follows that every solution of (9) is tangent to ji = 0

in view of /71(y) — C71(j)"yi/2 as Ji I 0- In order to see that they are

tangent at the second order to yi = Q, it suffices to show limJ2

y i l o
Now we use the following relation,

dz yi/dyl = -

Since //(j) satisfies F(y,fj) = Q in -2+ff , we have

where F,t(y, z) = 9F(y, z)/9y*, & = 1, 2 and ,Fz(j, z)=dF(y, z)/dz. Now

we shall consider Fz( j, /,-) and Fyie(y, f i ) , k = l, 2;
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k — 3

s
« — 2

Considering fi(y) = Cj(y)yl112 as ji | 05 we have

FZ(J, /,)=^^)yr
("-8W8+o( jr'"'8"2) as 7l i o,

where ^•(y2)¥
::0- And also we have

( , , - ) -e I . ( 2 ) j r / 2 + o(jr'By2) as j^O,

m-2)!2) as UO

where el-(j2)
r?^0. Thus we have

2) as

Therefore the solutions of (9) are tangent at the second order to ji^O.

Finally, it is obvious that the other characteristic curves of P(y, d/dy)

are transversal to ji = 0, because the other real roots of the algebraic

equation jF(j, *) = 0 in z at ji=^=0 are 0(1) as y\ \ 0 or ji f 0 (Lemma

2.1). This completes the proof.

§3. Proof of Theorem

It suffices to prove our Theorem for the partial differential operator

P( j, d/dy) in J2 considered in the previous section. Let P( j3 d/dy) be
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(10) P(y,

where Pm(y, 0/9 j) =
„

. 30(y)-a2(y)<0 in £, and Q(y,9/dy) is a differen-, 9 f-Ag >.

tial operator of order TTI — 1.
Let ^ be an image of ^ by the transformation (7), and set

= (1, 0),

Then the conditions of Theorem become as follows,

/(O, J2)</(0), J2>0 (or J2<0),
(11)

sgn[«2(0)]-Pm(y,/,)l*>0, J2>0 (or J2<0).

At first we note the meaning of these conditions. From the Proposi-
tion, there exist two and only two characteristic curves through each point

in S+i£ which are tangent at the second order to ji = 0, and they are
represented by the solutions of the ordinary differential equations (9).

Without loss of generality, we may assume that fil>Q and /i"1<CO in
fi+,6. Then it follows immediately from (11) that

1 on V, J2>0,
(12)

(or -/„//„< .ft1 on If, J2<0).

These have a geometrical meaning as stated in Remark 1.1 in §1.

We shall prove the theorem only in the case where — f y 2 / f y i > f i l

on ^, j2>0, since the proof is the same in the other case. We may

assume that /I1( j) is monotonically increasing with respect to ji in fi^,£5

because of fil(y) = cll(y)ayl12 as y\ \ 0. Now let us consider the fol-
lowing ordinary differential equation,

(13) * =fil(yi^~°^y y%) m ^aj

where a is a sufficiently small positive constant (a<e) and Sa is defined
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by Sa = {y9(yi + a9 y2')€G+,£, ji> — a/2}. Since the right hand of (13)

is analytic in the domain J2a, (13) has not any singular solution, and the

solutions of (13) are not characteristic curves of P( y, d/dy) in Say because

of the assumptions that fil(y) is monotonically increasing with respect

to yi and the other characteristic curves are transversal to ji = 0. And

now let

#a(y) = c in Qa

be solutions of (13), then in view of (12) it follows that the domain

enclosed by ^ and $a(y) = 0a(0) is relatively compact in Qa if we choose

a, sufficiently smalL In fact, ^a(y)=$a(0) 1S sufficiently near to the solu-

tion of dyi/dy2=fil(y) which is tangent at the origin to yi = Q if cc

is small. Thus we see that

{j; 0«(y)=0«(o, 72), y2>

is relatively compact in Qa if we choose a sufficiently small positive con-

stant <J, since u = Q in Sar\{ y\ /(j)</(0)}.

Now let us transform the coordinates in Qa as follows,

Then it is obvious that 9(*i, z2)/d(yi> 72)^0 in Qa. Let P(z9 d/dz)

be a partial differential operator transformed by the above transformation,

Then the coefficient of (d/dzi)m of P(z, d/dz) does not vanish in the

domain considered, since z i= const, is not characteristic. And obviously
A2

the assumption of Lemma in §1 is satisfied for the equation P(z, d/dz)u

= 0, therefore u = 0 in {z; zi=<pa(Q, j2)3 J2>— 5}? that is, u = Q in

{j6fi«; <pa(y) = Va(Q, 72), y2>—8}. This completes the proof.
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