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A Uniqueness Theorem for Initial-value Problems

By

Masatake Mryage*

Introduction

We shall consider in this note the following linear partial differential

operator,
€)) P(x,0/0x)= Y, a;j(x)0""7/0xidx},
i+j=m

where a;;j(x) are analytic functions defined in an open set 2CR? and of
real-valued if i+j=m.

Let & be an analytic curve defined by ¢(x)=¢(x°?), x°c £, where
¢(x) is a real-valued analytic function defined in £. From now on we
assume that ¢, (x°)=0.

Now let us assume that & is a double characteristic curve of (1), that

is,

Pm(xs ¢x)ly=03 P;'f)(xy ¢x)|9’=0 for i=19 2’
(2
P (%, ¢p)| o0 for some i, j=1, 2,

where  Pp(x, )= 3 ay(2)é{e], PiP(x, §)=0Pu(x, £)/06: and P9 (x,
1Tj=m
$)=02Pm(x, 5)/06165‘7.

And also we assume that P,(x, ¢,) vanishes at the first order on %,
that is,

2
@) <n 0/0x>Pulx, 0o 0, <ps 0/05>= 3 0z

Ox,- )
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Recently, Y. Hasegawa [ 3], [4] has proved the existence theorem of
the initial-value problem with data on a characteristic surface, and the
system case was treated by the author [8]. In those papers, the initial-
value problems were classified in many cases using the lower order terms
of the differential operator P(x, 8/0x). One of the purposes of this note
is to investigate a geometrical meaning of the double characteristic curve
under the assumption (3) which did not appear in J. Vaillant [10] but
appeared in Y. Hasegawa [ 3] and the author [ 8] (see Proposition in §1).

On the other hand, L. Hérmander [5], [6], F. Tréves [9] and E.C.
Zachmanoglou [117, [127] proved uniqueness theorems of the initialvalue
problems when the initial surface has simple characteristic points under a
convexity condition or modified conditions. And also, J.M. Bony [27] and
L. Hormander [ 7] proved uniqueness theorems which are extensions of
Holmgren’s theorem. Another purpose of this note is to show a uniqueness
theorem of the distribution solution of P(x,8/0x)u=0 when the initial
curve has double characteristic points (see Theorem in §1).

Finally, the author wishes his sincere gratitude to Prof. S. Mizohata for

his valuable suggestion and encouragement.

§1. Statement of Theorem

At first we note that we have P2?(x° ¢.(x°))==0 from the condi-
tion (2) and ¢, (x°)=<0. And also we have

sgn[PZ2(x° ¢.(x°)]=sgn[ ,Z_,: P (%, ¢x(xo))¢x;<xo)¢xj(xo)]a

where ¢(x) is a real-valued analytic function defined in £ such that 9(g,
$)/0(x1, %2)| 2220 70.

Without loss of generality, we may assume that sgn[ <g,, 5%>Pm(x,
@) |z=20] and sgn[P2?(x° ¢.(x°)] are different. In fact, if they are
the same, we then consider —¢(x) instead of ¢(x). Then we have the

following

Proposition. Under the assumptions (2), (3) and the above, there
exist two and only two analytic characteristic curves through each point in
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o(x)>@(x°) and sufficiently near & such that they are tangent at the

second order to . And the other characteristic curves are transversal to <.

From this proposition we may consider that & is an envelope of
characteristic curves of (1). We remark that if we assume that <g¢,
%>Pm(x, ¢s)| =0 instead of the assumption (3), we can not obtain a
similar result as in the Proposition.

Let ¢ be a regular curve defined by f(x)=f(x°), tangent at x° to
the double characteristic curve &, where f(x) is a real-valued function of

C'(8), and we may assume

f+(2")=0(2").
Now we impose on % the following conditions:
(4) If  x>x9 (or %,<xY), f(x)<f(x%) on &,
(5) for x3>x% (or x2<«9), it holds
sgn[P22(x%, ¢:(x°)) ] Pu(x, f2)|¢>0.
Then we have the following uniqueness theorem.

Theorem. Under the assumptions (4) and (5), if ue2'(®) is a
solution of P(x,0/0x)u=0 and vanishes in f(x)<f(x°), then u=0 in a
neighborhood of x°.

Remark 1.1. The assumptions (4) and (5) mean the following: the
double characteristic curve & and the characteristic curve in ¢(x)>¢(x°)
which is tangent at x° to & guaranteed its existence from the Proposi-
tion, lie in the domain where we require that u=0, when x;>x3 (or
x< %) (see §3).

For the proof of the theorem we use the following lemma due to
L. Hérmander [5, p. 125]].

Lemma. Let P(x, 6/0x)=' ]Z a,(x)(0/0x)" be a differential operator
al=m

of order m defined in an open set 2 CR" with analytic coefficients, and
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assume that the coefficient of (0/0x,)" does not vanish in 2. If ue 2'(2)
is a solution of P(x,8/0x)u=0 in L.={x; x€ 8, x,<c} for some c,
then u=0 in 2. provided 2.\ supp[ u_] is relatively compact in L.

Remark 1.2. We also obtain a uniqueness theorem if we assume that
f(x)>f(5%) on &, x3>x) (or %,<x9) and z=0 in f(x)>f(x°). We

omit the proof, since it is easier than that of Theorem.

§2. Proof of Proposition
Before the proof of our Proposition, we shall prove the following lemma.
Lemma 2.1. Let us consider the following algebraic equation in z,
(6) 212"+ x101(x) 2™ T+ ag(x)z2™ 2+ -+ an(x) =0,

where a,(x) are real-valued analytic functions defined in a neighborhood of
the origin 2 CR®. Assume that ay(x)<—0 in £ for some positive con-
stant 0, and let z=z/(x),i=1,.-., m be roots of (6) at x1~0. Then
there exist two and only two real-valued analytic roots in {z;(x)}7—,, say
zi(x), i=1,2, in 2, .={x; x€ 2, 0<x1<e} such that

2

zi(x)=ci(x) 27 as x1}0,

where e, < |ci(x)| <M for some positive constants €1 and M, c1°c2<0 and
e is a sufficiently small positive constant. And the other roots satisfy |z;(x)|
=0(1) uniformly in %3 as %1} 0,i=3,-., m in 2,.={x; x€ 2, x1>0}.
In 8_={x;x€ 8, x1<0}, all the real roots satisfy z;(x)=0 (1) uniformly

in xg as %1 10.

We prove the lemma by using the following classical result concerning

algebraic equation.

Lemma, (Laguerre) Let us consider the following algebraic equation

with real coefficients,

f@)=aez"+aiz" '+ +a,=0, ao70.



INITIAL-VALUE PROBLEMS 611

And now let N be the number of roots which are greater than a given

positive number o, and M be the number of variation of signs of

fle)=ad +adt 4 tay, k=0, m.

Then it follows that N=M—2l, where L€ {0, 1,..-, l:—rg]}

Proof of Lemma 2.1. Let N be a sufficiently large positive constant
satisfying

k .
NZ=>max{sup|a;(x)|}, ONZE-D)_ 3 N2k-D+1% 5,
i+2 @ i=3
for k=3,..., m, where 0; is a positive constant less than d. Then we
see that there exists one and only one real root z=2z,(x) of (6) greater
than N? in 2, ., where e=0;/(N*"+ N?"~1) in view of the above lemma.

In fact, let
falx, 2)=x12"+ x10:(x)2* 1+ aa(2) 224 -+ ap(w),

for £=0,1,...,m, then we have that fi(x, N?)>0, k=0,1 and fi(x, N?)
<0, k=2,...,m in £, . Since the number of variation of signs is one,
there exists one and only one real root of (6) greater than IN%. Interchang-
ing z by —z in (6), it also follows that there exists one and only one
real root z=2z,(x) of (6) smaller than —N? in 2, .. In order to see
that z;(x)=c(x)-x7% as x; 0, where ¢;>0 and ¢;<0, it sufficies to
see that al/\/x—1<z1(x)<M/\/-x—1 and —M/Vx_1<z2(x)<—61/4;1 if ;>0
and x; is sufficiently small, where &; and M are constants satisfying &7
+ax(x)e?72<0 and M™+ay(x)M™ %2>0 in £. The analyticities of them
follow immediately from the implicit function theorem. And also it follows

that the other roots in £, . are smaller than N? in absolute value from
01

NZm + N2m—1

of (6) are smaller than N? in absolute value, in view of the above lemma.

Rouché’s theorem. In 2_= {x; 0>x%,>— }, all the real roots

This completes the proof.

Proof of the Proposition. Let us transform the coordinates as follows,
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Q) y1=0(x)—¢(x%),  y2=¢(x)— (")

in a neighborhood of x° where ¢(x) is a real-valued analytic function

defined in £ satisfying 0(¢@, ¢)/0(x1, %2)|z-2050. Let P(y, 0/0y) be a
differential operator transformed by (7) defined in a neighborhood of the
origin 2 CR? then the coefficients of 0"/0yT 0 vk, k=0, 1, 2 of P(y,
0/0y) are
2 .
Pz, ¢2), Z P(x, (ax)ﬁ[)xz and ';— 'Pf,f")(x, ¢x)¢xi¢x1
1

i=1 27

respectively. We note at first that we can represent Pun(x(y), ¢:(2(y)))

= y180(y) since Pn(x(y), ¢.(x(y)))=0 when y;=0, and we have easily

ﬁo(o, }’2)=[T1l2‘<¢x, 5@; >Pm(x; ¢x):1|y1=o-

And also we can represent Y PY(x(y), ¢.(2(y))¢=(2(y)= y18:1(y),
since P (x(y), ¢:(%(¥)))=0 when y;=0. Thus the characteristic poly-
nomial P,(y, 7) of P(y, 8/dy) is represented as follows,

Pu(y, 1)= y1ao( )2+ yra:( )y n+

+a()77r 95+ kZ=]3dk( V7T k95,

where 4;(3) =5 %, P4z, 000,

Now we remark that if a curve defined by g(y)=c, (g,,70) is a
characteristic curve of B( y, 0/0y), it must satisfy P.( Y, &)=0. And
also it follows that g(y)=c is a solution of the following ordinary differ-

ential equation,

d m d m—1
F(y, dyz/dyl)Eylﬁo(yK—d—ﬁ) + 310 - dﬁ) +

®

+as)(— )+ B —42) =0

in view of —dy/dy1=g,/8y, on g(y)=c. Conversely it is obvious



INITIAL-VALUE PROBLEMS 613

that the solutions of (8) are also characteristic curves of P( y,0/0y). Let
us consider the ordinary differential equation (8) instead of considering the
partial differential equation Pn(y, g,)=0.

In view of the assumptions that @,(0, y2)70, and sgn[a,(0)] and

sgn[ a2(0)] are different, we may assume

ax(y)/do(y)< —0

in £ for some positive constant 8. From Lemma 2.1, there exist two and
only two real-valued analytic roots of (8) with respect to dy;/dy; in .Q+,€
for a sufficiently small ¢, say dyz/dy1=fi(y),i=1,2, such that f;=c,(y)
~y1M% as 31| 0, where &,<|c;(y)| <M for some positive constants &;
and M, and c¢;°c2<0. Let us consider the following ordinary differential

equations in £2% .,

dyy _ . -
(9) dyz '—fi (y): Z"—la 2>

where ﬁi,e is a closure of §+,g. Obviously the solutions of (9) are also
characteristic curves of P( y,0/0y). From the theory of ordinary differen-
tial equation, it follows that every solution of (9) is tangent to ;=0
in view of f7'(y)=c7(y):y1'"* as 3 0. In order to see that they are
tangent at the second order to y;=0, it suffices to show }’111310 d*y1/dy}==0.

Now we use the following relation,
d*y1/dyt=—[(fy/fi+(f0/fE].
Since fi(y) satisfies F(y, f)=0 in 2, ., we have
(fdy,=—Fy (3, f)/FLy, £,
(f)y,=—Fy (3 [/ FLy, £,

where F, (y, 2)=0F(y, z)/0y, k=1, 2 and F.(y, z)=0F(y, z)/0z. Now
we shall consider F.(y, f;) and F, (y, f1), k=1, 2;
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—Fy f=myiao(—f)" ' +(m—1) yra:(—f:)"
+(m =D~ )"+ 5, (m— R~ ",
Fy(y, f)=ao(— )"+ y1(@0)y,(— f)" + (yrea)y,(— fi)"
+ 5 @ (=,
Fy (3 = 51(80)y,(—f )"+ y1(a1),,(—f)"
+ @ (— £ B @~
Considering f;(y)=c{y)y1!* as y1 | 0, we have
F(y, f)=di(y2)y1™ 24+ 0(y7"32) as 5,0,
where di(y;)#0. And also we have
Fy (y, f=ey2) y1™2+o(y1™?%) as 3110,
Fy(y, f)=0(y1" 2'2) as y,]0,
where e(y;)7=0. Thus we have
im(f2),,/ 10,

(f)y,/ f3=0(y1'%) as 41 0.

Therefore the solutions of (9) are tangent at the second order to y;=0.
Finally, it is obvious that the other characteristic curves of P(y, 8/0y)
are transversal to y,=0, because the other real roots of the algebraic
equation F(y, z2)=0 in z at ;%<0 are O(1) as 51} 0 or y; 10 (Lemma
2.1). This completes the proof.

§3. Proof of Theorem

It suffices to prove our Theorem for the partial differential operator
B(y,0/0y) in £ considered in the previous section. Let P(y, 9/6y) be
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(10) P(y, 0/0y)="Pu(y, 0/05)+Q(y, 8/0y),
where Po(y, 0/09) = 3130 92 + 1181(3) 5 —ioim—+ a2 y) gy +

m\Y> Y Yido\ Y. ayrln ¥ Y ayyln-—lay aym—zay
+k§3dk(y)—b@170_—w, do(y)+a2(y)<0 in 2, and Q(y, 0/0y) is a differen-
tial operator of order m—1.

Let € be an image of ¢ by the transformation (7), and set

%: F()=F0), (,0), fr,(0N=(1, 0), F(5) e C* (D).

Then the conditions of Theorem become as follows,

( FQO, ¥)<F(0), >0 (or y2<0),
11) o
sgn[@2(0) 1 Pu(y, f3)1e>0, y2>0 (or y2<0).

At first we note the meaning of these conditions. From the Proposi-
tion, there exist two and only two characteristic curves through each point
in QJ,,S which are tangent at the second order to y;=0, and they are
represented by the solutions of the ordinary differential equations (9).
Without loss of generality, we may assume that f7'>0 and f3;'<0 in
2. Then it follows immediately from (11) that

_f~y2/f~y1>fi_1 on (2’ y2>0,

(12) o N
t —fy/fyn<fi' on %, y:<0).

These have a geometrical meaning as stated in Remark 1.1 in §1.

We shall prove the theorem only in the case where —f, /f, >f1!
on ‘;”, y2>0, since the proof is the same in the other case. We may
assume that f7'(y) is monotonically increasing with respect to y; in 2. .
because of f1!(y)=ci*(y)-y}'? as 51} 0. Now let us consider the fol-
lowing ordinary differential equation,

d ~
(13) yl =[Nt ) in Lo,

where « is a sufficiently small positive constant (¢<¢) and 2, is defined
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by !?az{y;(yl-i-a, y2) € 2. . y1>—a/2}. Since the right hand of (13)
is analytic in the domain £,, (13) has not any singular solution, and the
solutions of (13) are not characteristic curves of P( y,0/07y) in 8., because
of the assumptions that f7!(y) is monotonically increasing with respect
to y; and the other characteristic curves are transversal to y1=0. And

now let
(aa(y)=c in ‘Q~a

be solutions of (13), then in view of (12) it follows that the domain
enclosed by % and Fo(y)=,(0) is relatively compact in @, if we choose
a sufficiently small. In fact, #,(y)=¢,(0) is sufficiently near to the solu-
tion of dy;/dy,=f71'(y) which is tangent at the origin to ¥ =0 if «

is small. Thus we see that

{_'y: @a(}’)=¢a(03 yZ): y2>—'6}f\5upp[:u]

is relatively compact in .Qa if we choose a sufficiently small positive con-
stant 0, since u=0 in Qam{y;f(y)<f(0)}.

Now let us transform the coordinates in £, as follows,
Zl—’:fﬁa(}’); 22=Y2.

Then it is obvious that 8(z1, 2)/8(y1, y2)7=0 in 2,. Let P(z,/0z)
be a partial differential operator transformed by the above transformation.
Then the coefficient of (8/0z,)" of ﬁ(z, 0/0z) does not vanish in the
domain considered, since z;=const. is not characteristicc And obviously
the assumption of Lemma in §1 is satisfied for the equation lﬁ(z, 0/0z)u
=0, therefore z=0 in {z;2:=@,(0, y2), y2>—0}, that is, u=0 in
{ye 8. .(y)=04(0, y3), y2>—0}. This completes the proof.
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