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On Derivation Trees of Indexed Grammars

An Extension of the uvwxy-Theorem

By

Takeshi HAYASHI

Abstract

In this paper, the uvwxy-theorem of context-free languages is extended to
the case of indexed languages. Applying the extended theorem, it is shown
that the finiteness problem for the indexed languages is solvable and certain
languages such as {anl\n^l} and {($ w)lwl |w;e {a, &}*} are not indexed
languages.

Introduction

An extension of the well-known uvwxy-theorem (Bar-hillel et al.

to the one-way stack languages has been given by Ogden Q4]. This paper

considers an extension to Aho's [JL] indexed languages, the family of which

properly includes all one-way stack languages.

Our extension is considered to be a kind of intercalation theorem,

following Ogden's terminology. He has called his extended uvwxy-theorem

an intercalation theorem, since it asserts that, given a string % in a one-

way stack language L, it is possible under certain hypotheses to intercalate

other strings into x and still stay in the language L.

This paper, however, treats the derivation trees instead of strings.

Namely we focus our attention on the set &~(G) of all terminal derivation

trees of an indexed grammar G. Now our main theorem states that if a

given terminal derivation tree f in ^(G) is big enough, then we can

generate new terminal derivation trees in 3~(&) by the insertion of other

trees into j.

In Section 1, to treat the derivation trees precisely, we adopt and
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extend the notations developed by Brainerd £3] and Takahashi Q6j. Also

we review Aho's definition of an indexed grammar and give related defini-
tions. Sections 2~4 are devoted to the detailed discussions concerning the

terminal derivation trees of an indexed grammar. In Section 2, we deter-

mine a constant k depending on a given indexed grammar G with the

following property. If the number of maximal nodes of a terminal deriva-

tion tree 7 in ^(G) is greater than k, then there is a decomposition of ?

which assures the existence of parts of r that can be intercalated. Using

the result in Section 2, we prove a lemma in Section 3 which actually

describes how to insert other trees into 7" and get new terminal derivation

trees. In Section 4, making use of the lemma in the previous section,we

give a lemma which asserts the strict growth of the maximal nodes of the

new terminal derivation trees obtained from 7-. Our main theorem is

given in Section 5. Also the applications of the theorem are investigated.

First it is shown that the finiteness problem for the indexed languages is

solvable. Next we give a theorem which states that certain languages

such as {anl\n>l} are not indexed languages. Finally it is shown that

the language Z,^ = {($«;)'^ \w^2*} is not an indexed language, where 21

is an arbitrary alphabet not including $.

I. Preliminaries

In this section we give and review basic definitions concerning trees

and indexed grammars. First we define the trees over an alphabet with

certain operations on them. Newt we review the definition of an indexed

grammar given by Aho Q], and reformulate the related concepts in terms

of trees.

A. Trees

Definition I.I. The universal tree domain /* is the free monoid

generated by /, where / is the set of all positive integers. We denote

the concatenation operator by • and the identity by 0. A finite subset D

of /* is said to be a tree domain if D satisfies the following conditions:

(a) If p-q is in Z), then p is in D.

(b) If p*j is in D and l^i^j, then p*i is in D,
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We call an element of D a node. The condition (a) implies that if

D is not empty, 0 is always is in D. The node 0 is called the root.

Now we introduce two relations < and <^ on /*, representing the ancester-

descendant relation and the left-to-right relation respectively.

Definition 1.2. For p, q in /*,

(a) p^q means that there exists r in /* such that q = p>r;

(b) p<q means that p^q and p^qi

(c) p^q means that there exist r in /*, i in / and j in / such that
i<j, r'i^p and r-j^q.

For p, q&D (D is a tree domain), when p<q holds, a node q is

called a descendant of a node p, and when p<^q holds, q is to the right

of p.

Remark 1.1. It can be easily verified that for p, ge/* (also for D),

one and only one of the followings holds:

p=q, p<q, q<p, p<q, or

Definition 1.3. Let 2 be a set of symbols. A function j: D-*2

is called a tree over 2 ', where D is a tree domain. /(/?) is called the label

of a node p. From now on we denote the domain D of 7 by D7, and

identify a map 7 with its graph {(p, 7"(/0)l p^D7}. We write f ( p ) = a

when (JD, a) is in 7*. J^. denotes the set of all trees over 2 '.

Definition 1.4. For a tree re^5
 tne jfaw* f of 7 is a subset of 7-

such that:

f = {(/?, a)ef| for any z'<E/5 p-i£D7}.

Namely 7 is the set of all nodes of ? which have no descendants in

D7. Such nodes are called maximal nodes (of j). The sequence <(jD0,a0),

(jDi, ttj),..., (pn,an}> of elements of 7 in J^. is called a c/^m o/ 7 if

i = pi-i-ji for some yf-

B. Operations on Trees

Definition 1.5. For feJ^, we set:
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(a) ?/p = {(q, a ) \ ( p » q , a)e7"} for p^D7, which is called the subtree

of r at p;

(b) p-j- = {(p'q,a)\(q9a^r} for joe/*, which defines the operation
to attach 7* under the node p;

(c) r\E={(p, a)^r\q<p for any ge^} for E^D7, whih defines
the operation to take away the subtrees under q^E; and

(d) for p^D7 and EcD7,

(r\E)/p if £^0 and p<q holds for any q<^E,

r<P,E> = T/P if £=0,

{ undefined otherwise, x)

which defines the subtree of 7- at p after taking away the sub-

trees under q^E.

Note that y/p and /\£ are always in A2.

Definition 1.6. For f and r0,..., rn^As and p^D7(i = Q,...9 ri)

satisfying pi<pi+l(i = Q,..., n-1) and rf(0) = r(^-) (i = 0,..., n\ we set

r0,-., r,
,, where E=ipQ9...9pH},

which is the result of inserting r0,..., rn into the places of pQ9..., pn.

Definition 1.7. The yield function g is a function from J^. into

defined recursively as follows 2)

(i)
(2)

Note that the function g makes the string of labels attached to the maxi-
mal nodes of 7 keeping the left-to-right order.

C. Trees of an Indexed Grammar

Definition 1.8. An indexed grammar is a 5-tuple, G = (N9 T, F, P, 5),

1) If £ is a singleton set, say E={q}9 then we write j-\q and f<p9q>instead
of T-\{<?} and r<j°> iq}> respectively.

2) Let I1 be a set. S* is the set of all finite strings of elements of I, including
e, the empty string.
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in which:

(a) N is a finite nonempty set of symbols called the nonterminal

alphabet.
(b) T is a finite set of symbols such that NftT=(j) and called the

terminal alphabet.

(c) F is a finite set each element of which is a finite set of ordered

pairs of the form (A, %), where A is in N and % is in (N(J 71)*. An

element / in F is called an index. An ordered pair (A, %) in / is written

A-+7, and is called an index production in /.

(d) P is a finite set of ordered pairs of the form (A, a) with A in

N and a in (NF* U J1*). Such a pair is usually written A—>a; it is

called a production.

(e) 5, the sentence symbol, is a distinguished symbol in N.

Now we must define a derivation in an indexed grammar G. This is

done merely by translating Aho's original definition into our system.

Namely, let G = (N, T, F, P, S) be an indexed grammar, and let V be

equal to 7VF* U ru{e}, then we consider Av (all the trees over V) and

define a relation on Av whose reflexive and transitive closure

responds to the derivation.3)

T^r COr-

Definition 1.9, Let G = (N, T, F, P, S) be an indexed grammar, 4)

a relation - on JF(F=7VF*U ru{£» is defined as follows. For r,<J<

we write r br <J if either:

(1). there exist (p, A^^f and a production A->Xl7/lX27i2'--^k'rlk m

P such that d = r(J W {(/>•/» ^-/f/)} where, for 1^/^/c, #, = •>?/£

if Xj<^N, or ^y = e if Zye T, but ff = / U {(/>•!, e)> when & =
holds (namely^

or

3) We write 7- gd if and only if either f=d or there exist r o 5 - - - » r n such that

4) We use the following symbolic conventions, unless otherwise stated: Nonte-
rminals: A, B&N; Terminal: oeT; Terminal or Nonterminal: %&N\J T\ In-
dex: /eF; Strings of Indexes: 27, £, /^eF*; Positive Integers: i, y'e/; Strings of
Positive Integers: p, q, re/*.
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(2). there exist (p, AfS)^f and an index production A-+X1X2--Xk

in the index / such that 5 = ̂ 11 \J{(p']\ Xj&j)} where, for

!</<&, {ij = g if Xj<=N, or #j = e if Xj^T, but d = r U {(/?•!, e}
when & = 0 holds (namely A-+s^f).

In the case 2 the index / is said to be consumed by the nonterminal
1 -x- I

^4. Let ho- be the reflexive and transitive closure of h^r. Now we can
I Or \Lr

formally define important subsets of Av. We set

-r(G)={re^K(o, s)} f r,
which is called the s0£ o/ terminal derivation trees of G. Note that

L(G) = g(&~(G)) is the language generated by G. We also set

@(G) = {r^Mr=A, or {(o, ATJ)}
which is called the set ofderivation trees of G, where A is a map from

0 into V, called the empty tree. Clearly ^(G)c0(G) holds.

Here we notice that for any derivation tree 7-e«^~(G) and a node

7, there holds exclusively ?(p) = Ay^NF* or ?(p) = a^. T U {e}.

D. Definitions concerning the Trees of an Indexed Grammar

In the following we assume that an indexed grammar G = (N, T, F,

P, 5) is given.

we define the functions

by setting

if

if 7T2r(p) = £, where ZeJVu T, ^eF* and

The functions 7Tlr and 7T2r can be considered as the projections of 7*,

and 7T2r ^s tne function which picks up the leftmost index of 7T2r(p). ^2r(

is called the indexed part of a node JD in D7. Hereafter the subscript 7*

of these functions is dropped whenever / is clearly understood. Next we
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define relations ^ and <• on F* which are convinient to describe the

situation of consuming indexes.

Definition 1.11. For /*, ?yeF*,

(a) y^Lp. means that there exists £ in F* such that jU=gy;

(b) ??<•/* means that T?^'/* and

Now we define operations on the indexed part (i.e. 7T2 (/>)), where

there needs to note that (p, ay) in ^e^(G) implies /* = £, when a is in

Definition 1.12. First we define the operation to place indices 7]

under the indexed parts of a derivation tree ^e^(G) by setting 5)

r, where £ = e if

or £ = /^ if

To erase indices 97 from the indexed parts of a derivation tree 7*

there needs to hold the condition that for each p^D7, we have 7j<±

or 7T1(j9)e jTu{£}; for such 7 and 7? we set

r, where f = e if

otherwise £eF* such that ju =£?]}.

Next we introduce a fundamental notion which plays an important

role in our proof of our main theorem.

Definition 1.13. For r<E^(G), a function e7: D7->2Dr, called the

end of scope function, is defined as follows:

for any reD7 such that p<r<q, and n2(

TC2(p) for any ye/ such that q>j^D7}.

Intuitively, e7(p) is the set of those nodes which are descendants of

5) Hereafter, we use the term indexes instead of saying a string of indexes.
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p and occupy the places where the leftmost index of 7T2(/0 is erased for

the first time. (Of course, if no such nodes exist, e7(p) is the empty set.)

The subset scope 7(p) of D7 whose elements are the nodes from p to

an element of e7(p) is called the scope of p. Namely scope 7(p) =

{r^D7\p<r andq<r for any q<=e7(p)}.

Remark 1.2. If e7(p)^$9 then by the defintion of e7(/?), we can

well-order the elements of e7(p) by <^.

The following function is also important.

Definition 1.14. A function n7: D^>2N is defined as follows:

where ?&@(G) and N is the nonterminal alphabet of G.

n7(p) is the set of nonterminals which label the nodes in e7(p).

Finally we define the concatenation of special trees as follows. This opera-

tion is used to express our main theorem more briefly.

Definition 1.15. For r,#e^(G) such that g(r}tET*AyT* and

8 = A or 8(0) = Ay, r-ffe^(G) is defined as follows:

I f if 8 = A, where A is the empty tree,

TUp-S if 8(Q) = A-q9 where (p,

2. Decomposition of Derivation Trees

The aim of this section is to determine a constant k depending on a

given indexed grammar G with the following property. If the number of

maximal nodes of a terminal derivation tree 7* in &~(G) is greater than

k, then there is a decomposition of 7 which assures the existence of parts

of 7 that can be intercalated.

Definition 2.1. For each indexed grammar G = (N, T, F, P, 5), we

define r(G), the rank of G, by setting

= max{|a| \A-^a is a rule in Pu U /}. 6)

feF

6) | x denotes the length of x.



ON DERIVATION TREES OF INDEXED GRAMMARS 69

If r(G)^l, then each production in P has one of the following forms

A^B, A-»a, A-*s.

Therefore such a grammar G is context-free and the language generated

by G is finite. For such a simple grammar, our extended uvwxy-theorem

which we will develop hereafter will hold trivially. Thus in the following

we may assume without loss of generality that the rank of a given index-

ed grammar G — (N, T, F, P, 5) is greater than or equal to two.

Definition 2.2. Forfe^G), a node p^D7 is called a productive

node (abbreviated as P-node), if its branching number, max {i \ p'i^D7,

ie/}, is greater than or equal to two. This is the node which increases

at least one element in the front f .

Definition 2.3. For 7"eS(G), a pair (p0» PI) °f distinct nodes in

D7 is said to be CF-like if pQ and pl satisfy the following conditions:

(1) p0<pl.

(2) There exists at least one P-node p such that Po^

(3)

Lemma 2.1. For a terminal derivation tree 7*e^~(G), if there exists

a CF-like pair (p0, p^) of nodes in D7, then there exists a decomposition

Y = a'@-8 satisfying the conditions (i) and (ii):

(i) For each n^Q,rn =
n t imes

(ii) For each n^l, %(f J<

Proof. Let a = f\p0, @ = y<pQ9 pl> and d = ?/pl. Since the condition

(3) of Definition 2.3 implies T(PQ} = T(PI) = ̂  (say), we have /3(0) = Ay

and g($}sET*A7]T*. Therefore we have @n(Q) = Ay and g($n}<^ T*AyT*

for each n^l , where {3n = @-@ ..... #. The facts g-(a)er*^r* and
n t imes

= Ay assure that r0 = a-ffe^"(G) and 7 'n = a- @n !-8 '<= & "(G) for each

ft^l. Thus the condition (i) is verified. By the condition (2) of Definition

2.3, a P-node exists in /9. Therefore we have 2^#(£)^#(|?). On the

7) If A is a set, %(A) denotes the cardinality of A,
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other hand, for each ra^O, we have #(fn+i)-#(f») = #(^)-1- Thus the

condition (ii) is verified.

Definition 2.4. A derivation tree re^(G) is called a non-CF-like

tree if f has no CF-like pairs of nodes in D7.

What we want is a decomposition of a non CF-like terminal deriva-
tion tree fe«^"(G) which assures the existence of parts of f that can be

intercalated. For this purpose there needs to verify the existence of two
nodes pQ and pl in a chain C of 7 such that 7tl(pQ) = nl(pl), 7t2(pQ) =

n*(p\\ KI(PQ) = KI(PI)I n7(p0) = n7(pl) and scope 7(Pl} c scope 7 ( p Q ) ,
where p{ is the node of e7(pi}(e7 is the end of scope function) which is

also in C(i = 0,l). Fig. 1 is an illustration. We will show that if #(j)>
k, then there exist such nodes pQ and pl satisfying a bit more conditions,
where k is a constant depending on G. We examine the details afterward.

Proposition 2.1. For ?^@(G), if $(j}>mkl~l, then there exists a

chain C of r which contains at least kl P-nodes, where m = r(G).

Proof. Since the branching number of any node in D7 is less than or

equal to m, if each chain of 7 contained at most k1 — l P-nodes, we would
have $(f)<;77i*1~1. Therefore, if $(f)>m k l~ l , then there exists a chain C

of f containing kl P-nodes at least.

Definition 2,5. We set
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Namely j</(G) is the set of derivation trees each of which has only a

nonterminal as its root label and a nonterminal, a terminal or £ as the

label of each maximal node. Evidently we have ^(G)^s^(G}c:^(G).

It will be clarified later in the proof of Lemma 2.2 why we introduce the

new set

Definition 2.6. For a tree fej^(G) and for a chain

C= <(gr0 , X0??0),..., (qi9 Xtf^,..., (qm, Xmf]m)

of 7% we set

and

Let gio, g^,..., gin be the elements of Mc where i 0 < i 1 < - - - < i n . Now we

define a moutain Mj of C by setting

and

The mountain which contains at least one P-node is called a productive

mountain (abbreviated as P -mountain).

Proposition 2.2. If a chain C of a non-CF-like tree j^.s#(G) has

more than vk2 P -nodes, then there exists a P -mountain M which contains

at least k2 P -nodes where v

Proof. If there exist v 4- 1 P-mountains of C, then there exist qjo and

qh in Mc such that 7r1(5ryo) = 7r1(gyi)eJV, and n2(qh) = n2(qh} = z. There-

fore we have T(qj0) = T(qj1\ and since Mjo is a P-mountain, (qjo, gyi) is a

CF-like pair. This leads to a contradiction. Thus 7" has at most v P-

mountains. Since fej/(G), we have 7r2r(0) = e, therefore each P-node

belongs to some P-mountain. Thus if M is one of the P-mountains

which contain the largest number of P-nodes, then there exist at least
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k2 P '-nodes in M.

Definition 2.7. For a node q in a mountain M of a chain C of

fejaf(G), we set e(g) = Mfi e7(g), where e7 is the end of scope function.

e(q) is the node in M which occupies the place where the leftmost index

of 7T2(g) is erased. Therefore e(g) is a singleton set or 0 (this arises

either when q is the first element of M or when M is the last mountain

of C and all the indexes of 7T2(g) are not erased.). 8) Next we define a

function Is: M— »2M by setting

{r*EM\^r and r^e() if

The set ls(q) of nodes is called a local scope of q. Notice that we have

7T2r(^r) = 7r2r(
r) ^or anv r^ls(q). If #(Z5(^r)) = l then ^ is called a descend-

ing node. Note that e(q) equals {q} or ^ is the last node of M if q is

a descending node.

Let ' be the successor function for elements in M concerning the

relation <. Namely for each q^M9q
/ = q-j^M for some j^J. We

can form nodes in M into a tree T*M, considering whether qf is in ls(q)

or not. Using this tree, we can prove the existence of nodes in M which

expand indexes and also increase P-nodes, provided that M contains enough

P-nodes. Now we begin to work formally by constructing the following

function maketree.

Definition 2.8. For /?e/* and geM, we set

)} if *(**(?)) = ! ........................ (0

, q)} (Jmaketree< />•!, ls(qf)>

if S(/5(?)^2 and

maketree < p, ls(q)> = ( ^((Z) — 7r2r(?0 ..................... 00
WQ

» #)} U U maketree < p-i, ls(q{)>

if # (Z 5 ( ) ) ^2 and

8) We write e(q)=p instead of e(7) = {p> when
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The case (i) occurs when q is a descending node. The case (ii) occurs

when qr is in Is(q^) and indices don't change. The case (iii) occurs when

qr is in ls(q) and indices are expanded. In the case (iii), m0 and q{ are

determined as follows. Beginning with setting qi = q', we want to let

q.+l = q'i where e(qi) = qi for i = l, 2 , . . . . qi+l is defined so long as e(q^

is nonempty, assuring that the index fi is consumed later, and is not a

singleton containing the final element of M. If there appears some i

such that e(q^ is empty, or is a singleton containing the final element of

M, then let mQ be that i. Otherwise let mQ = m + l. Note that each

index y,- will be consumed at e(gr,-) so that the expanded indices f\-'fm

will be consumed completely at e(qm) when mQ = m + l. See Fig. 2. Now

we define the desired tree YM by setting

TM — moketree <0, Zs(r)>, where r is the first element of M.

nodes mM: q
H _ _

This part corresponds to the dotted subtree.

The maketree function

Fig. 2.

Remark 2.1. TM nas tne following properties derived from its con-
struction.

(a) For any (p9 g)erM, we have seZs(g) if and only if (r, s)^ru/ P
for some re/*.

(b) Subtrees ?M/P'i anc* YM/P'J where i=£j correspond to the dis-
joint intervals of the mountain M of "f as shown in Fig. 2. In

addition the interval corresponding to TM/ P' i appears first if

In the following definition, a node p of DJM is called a AfP-node if,

for (p, q)^?M, q is a P-node of r
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Definition 2.9. A node q in a P-mountain M of 7*ej/(G) is called

a branching node (B-node) if one of the following conditions is satisfied,

where p is the unique node in D7M such that (p, q ) & f M .

(i) g is a P-node of 7- and there exists y"e/ such that TM/P'J

has at least one .MP-node.

(ii) There exist at least two distinct j\ and y"2 in / such that TM/ P'ji

has at least one MP-node (i = l, 2).

For (p, q)^Yu-> ^ 9 is a ^-node, then the node p in D7M is called

a MB -node.

Proposition 2.3. For the tree ?M, the fallowings hold:

(1) The youngest ancestor common to the two incomparable MP -nodes

is an MB-node.

(2) If two comparable nodes are MP -nodes, then the one being the

ancestor of the other is an MB-node.

(3) The youngest ancestor common to two incomparable MB -nodes

is an MB-node.

(4) The totality of MB-nodes of TM forms a tree with respect to the

ancestor-decendant relation induced by fM.

(5) For (p, g)efM , if q is a B-node of f, then q is not a decending

node, and for any other B-node reZs(g), there exists at least

one P-node in ls(q) — ls(r).

Proof. The conditions (1), (2) and (3) are immediate consequences

of Definition 2.9. The condition (3) implies (4). Definition 2.9 and the

condition (a) of Remark 2.1 assure (5).

Proposition 2.4. If a P-mountain M of a chain C of

has more than k2 P -nodes, then there exists a chain C of ?M which con-

tains at least k3 MB-nodes, where

-1
 and 5 = max { \ - q . \ \ A

Proof. Using the condition (4) of Proposition 2.3, we let TM be the

tree consisting of MB-nodes. Since s indices may be expanded at a time,

YM
 m&y have at most 5 + 1 branches. Therefore TM has also at most
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branches, because it preserves the ancestor-decendant relation of ju. If the

length of any chain of TM were less than k3, then YM would have less

than k 2 MP -nodes, since a MB-node may be a MP-node and A; 2 = 1 +

(s + l) + 0 + l)2 + - - - + ( s + l)*3. But TM has more than k2 MP-nodes,

therefore there exists a chain of f M whose length is greater than or equal

to &3. We put this chain back on the original tree yM, and let C be the

returned chain, which is the desired one.

Definition 2.10. For a P-mountain M of a chain C of /e

we define a function h:M->Nx (F\J {e}) X (JVc{$» x 2N by setting

if

where $ is a new symbol. Namely, for each node 9eM, the value h(q)

consists of the nonterminal symbol labelling it, the top index of its indexed

part, the nonterminal symbol of e(q) (if it exists), and a set of nonterminals

labelling the nodes in e7(q). This function is called the h-f unction.

Lemma 2.2. Given an indexed grammar G = (N, T, F, P, S), there

exists an integer k with the following property. For any non-CF-like

terminal derivation tree j-^^~(G) such that $(j) is greater than k, there

exists a chain C of j in which there exist two nodes pQ and p1 satisfying

the following conditions:

(i) pQ<pi and both are B-nodes.

(ii)

(iii)

(iv)

(v) There exists at least one P-node r in ls(pQ) — ls(pl).

(vi) #(r')^*» where r' = < PQ, e7(p0)>/7i2(p0).

Proof. We note that the h-f unction of Definition 2.10 has at most

v(v + l)(t + l}2v distinct values, where v = $(N) and t = $(F). We set a

constant &3 = 2v(t; + !)(£ + 1)2* + !, and let the constant k of this lemma
f c-J- 1 ̂ *3-f 1 _ 1

be equal to mkl~l
9 where m = r(G), kl = vk2 and k2= ^ } - -(s =
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Let C be one of the chains which contain the maximum number of

P-nodes. By Proposition 2.1, C has at least kl P-nodes. From those

P-mountains of C which contain the largest number of, we select the

P-mountain M which is the nearest one from the front. M has at least

k2 P-nodes (Proposition 2.2). Next we apply Proposition 2.4 to this M,

and let C be one of the chains of YM which contain the muximum number

of MB-nodes, then C has at least A3 MJ5-nodes. We set

M' = {q^M\(p, q)^C and p is a MB-node.},

Then %(M')>k3 = 2v(v+ !)(* + l)2y + l and M' is a set of 5-nodes of r«

We can order the nodes in M' by <. In the k3 5-nodes in Mr counted

from the maximal node of M1', there exist three 5-nodes p_l9 pQ and pl

whose A-function values are the same (p~i<po<pi}-

These pQ and pl satisfy the conditions of this lemma except (vi).

Evidently conditions (i) and (ii) are satisfied. The condition (iii) follows

from (a) of Remark 2.1 and (v) follows from the condition (5) of Proposi-

tion 2.3. As for the condition (iv), since 7r2(/>0) = ^2(^1) already holds

(because pl^ls(pQ)\ we show that 7r2(/>0) — ̂ 2(^1) does not occur. Since

pQ and p1 are 5-nodes, if we had ^2(^0) —^2(^1)? then there would exist

a P-node q such that p0 ^ q < pl because of the condition (b) of Remark

2.1 and (5) of Proposition 2.3. Therefore a pair (pQ, p^) would become

a CF-like one. This is a contradiction.

Now we examine the condition (vi). Since jo_ l s p0 and p1 are select-

ed among k3 I?-nodes in M' counted from the maximal node of M7, and

they are located on the chain C of YM which contains the maximum

number of MJ2-nodes, TM/q contains at most k2 MP-nodes, where <jre/*

such that (q, p_1)e7M. This means that there are at most kz P-nodes

in ls(^p-^) (Remark 2.1). Since p_1 is a 5-node and a 5-node p0 is in

Is^p-i), there exists a P-node in Is(p-1) — ls(p0) ((5) of Proposition 2.3).

Therefore the part C' of C from p0 to e(/?0) (or to the last node of C

if e(j00) = 0) corresponding to I s ( p 0 ) contains at most k2 — l P-nodes.

Since we have A(_p-i) = A(jD0) = A(jp1), there holds that e(p-i), e(/?0) and

e(p^) are simultaneously empty or nonempty. Thus two cases arise. We

recall that fr is equal to 7</?os e7(/?o)>/7r2(jDo) m the condition (vi).

Case I: e(-l) = e(0) = e ( 1 ' ) = <f>
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In this case G becomes a chain of the subtree Y/pQ containing most

the P-nodes in f/pQ because C is so in 7. Since C' contains at most

k2 — 1 P-nodes, we have %(a)^mk2~~l^mkl~l = k, where a = ?/ pQ. Since

f is obtained from a part of a, we have $(/0^ $(<*) = &• Thus the
condition (vi) holds in this case.

Case II: e _ 1 ) ^ ^ , e(o0)^0 and e(

In this case though the part of G of C from p0 to e(/?0) contains at

most k2 — l P-nodes, it doesn't necessarily become a chain of f which

has most the P-nodes in f. Therefore %(j')^k is not always guaranted.

If it holds, it is all right. We must consider the case that it doesn't hold.

Since 7 is a non-CF-like tree, /' is also a non-CF-like tree. In addi-

tion f is in sf(G) because we have f(G)^N and g(jr)^(N\J 7*)*. There-

fore, if S(fO>^ holds, Propositions 2.1~2.4 and related definitions are
valid for ?' . Thus we can apply the procedure up to the present in this

proof to Yr again. Now we obtain new p'_i, p$ and p[, and do the case

analysis. If Case I arises, it is all right. If Case II arises and the condi-

tion is not satisfied again, we repeat this process again.... This process

halts without fail. Since there exists a P-node in I s ( p ^ l ) — ls(p0}9

%(f')<%(f) always holds. The cardinarity of the front is decreased every

time the process is repeated. The jB-node p_1 is used for this purpose.

Thus the process eventually reaches the stage where either Case I or Case

II with the desired situation arises and it halts.

When our process halts, we finally obtain the desired three nodes p_l9

p0 and pl positioned in a chain C of r after the renaming if necessary,

and these pQ and p1 satisfy the conditions (i)~(vi).

3. Intercalation Lemma

Using Lemma 2.2 in the previous section, we prove the following

lemma which throws light upon how terminal derivation trees increase.

Lemma 3.1. For each indexed granmar G9 there exists an integer k

with the following property. For any non-CF-like tree j^^(G) such that

$(j)>&, we can effectively construct a and v and, for each z'^0, #f+1, #,-

and ri+l in @(G), and f is decomposed into a^^d^Ti^ and the follow-
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ing conditions (i)~(iii) are satisfied.

(1) ro = <2'<Vye<^"(£) and for n^l

(2) For orcA ii^l,

(3) For £#£& ra^l, 0zYA0r @n or rn has at least one node whose label

is a terminal or s.

Proof. The internal structure of a, @i+l, d{9 r,vi and v is given in

this proof. The constant k of this lemma is as in Lemma 2.2. Therefore

we apply Lemma 2.2 to T and get two nodes pQ and pl satisfying the

conditions of Lemma 2.2. We use the notations y = 7t2(pQ) and ^^ = ^2(^1)

in the following (cf. the condition iv). 9) Note that the leftmost index of

??, say f, is the same as that of n (the conditions ii and iv). Therefore

jU and T] can be rewritten as f/JLf and frf respectively.

Case I : n7(p0) = n7(pl) = 0, (namely e7(p0) = e7(pl) = 0).

This means that the string of indexes /* isn't consumed. Therefore

there exists a P-node in T*<JDO, p1> which increases a terminal or e (the

condition v), so that this case is similar to Lemma 2.1 except for the

treatment of indexes. We set

<x = r/Po, for each i^l, 0l = 0o^-^9 where 0 = r<pQ, pi>/y, for

each j^O, d — d^jU^, where 8 = ( r / p i ) / f t i j , for each i'^l, r{ = A9 and

v = A9 where A is the empty tree.

Then we have $/(0) = A /*'~19? and g(@i) = Ajttii] for each z^l , where

A = nl(pQ) = 7rl(p1) (the condition ii). the fact that g-(a)e T*ArjT*, dt(0)

= Ayiij for each z'^0, and indexes y, isn't consumed, implies the condition

(1). Since 0 has a P-node, each #,• contains a P-node. Thus the condi-

tion (3) is verified. For each i^l, we have $(^) = #(/?)< :tf(r) and

= *(*)<*(f). Therefore we have *(f»+i)-#(f,) = *(^)-l for each

Thus we have #(f*)<*(f»+i)<(» + l)t(r) for each 7l^1- Since

is greater than 1, the condition (2) is verified.

9) In this proof, the conditions within parentheses are those of Lemma 2.2 which
are used to verify the claim to which they are attached.
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Case II: n7(pQ)=n7(pl) =£(/).

This means that e7(pQ)=£(j) and eT(p1)^0. Therefore for each

i), let eq = {rGe7(po)\q<r}, epQ = e7(pQ}- \J eq, and T0 =
q^er(pi)

^e7(pQ)}. See Fig, 3. The Case II is divided into two subcases.

Case II-I: e D 0 ) ^ 0 and

Let e(p0) = pQ, e(p1) = p1,E0 = {r<q, eq>/y\ q ̂ e7(p^}9 and for each

^{ro^""1^^^^}. Each tree p in TQ consumes indexes 77,

because 7T2p(0) = 7? and ^-(p)e r*. In addition the common leftmost index

/ of ju and y is consumed first. Namely we have 7r2p(0) = /y and 7T2p(0^^/

for each i&Dp, where y=fyf. Each tree p in £0 consumes indexes ,«,

because 7T2p(0) = 7y and g-(p)e(7Vll T)*. In addition we also have 7T2p(0)

=/^x and n2p(i)^juf for each i^Dp, where &=//!'.

The condition n7(p0) = n7(p1) (the condition ii) means that for each

nonterminal labelling a maximal node of a tree in E0, there always exists

a tree in .E^ whose label of the root node is that nonterminal. Namely

we have

This and the fact that the leftmost index of jj. is identical to that of TJ

assure that indexes jLtny expanded on a tree in En can be consumed by the

appropriately selected trees in En_l9 J£w_2 , . . . , El and TQ joined properly to

it in this order. Namely for each p0^En such that g(pQ^)&T*, we have

A{tn7] for some A^N and g(pQ)^T*A0ju
n-lyT*...T*Am/jtn-17]T*9
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and there exist ffQ9...9 ffm^EH_1 such that o"i(Q) = Ai/i
n-l(Q^i^m). Then

we get a new tree p1=pQ\ 9 o > - - - » ?w I where (qi9 ^4^w~1^)e]60. Further-|_CTO,.. ., umj
more for pl with g(p-^)$.T*9 we can insert proper trees in En_2 into the

places of the maximal nodes of pl whose labels are not terminals or s.

Thus we get a new tree p2. Unless g(pi)^T^9 we continue this process

and finally get a tree pn_1 the yield g(pn,1) of which is in T*AQ-qT*...

T*Ar
m>7}T*. Then there exist tQ9...,tm^T0 such that t f(fy = Afr(Q £ i ^

TTiO, because we have {^eJV|(p, ̂ 4)et, feE'oJ-c 7i7(/?0)=:{7rir(
0)lre ^o}-

Thus indexes ^? can be consumed, and we get a tree pn = pn_1\ ^ Q y " ' 9 %m/ I
LJo » • • • » *?w' J

where (jj, ^^)e/&w_ l 9 which is called a complete tree because g(pn)&T*a

If we have g(pj)&T* for some ^ such that O^i^zi — 1, we also call this

pz- a complete tree. Note that for each p^En there may exist several

complete trees depending on the choice of trees taken from En_1,...9E1

and T0. For each n^l9 let Tn be the set of all complete trees obtained

from all the trees in En.

Now the desired decomposition is a = r//>o» #1 = 7" < PQ> Pi > > ^i = T < PI,

Pi>-> ri— T<pi, PQ> and v = f / p 0 . Next we must determine 0i98i9'Ci

0'^2) and ff0. For this purpose, let @ = T<PQ, Pi U epQ>/f)9 8 = T<PI,
e
7(pi}>/W an^ T = Y<pi, €$!>/?! (cf. Fig. 3), then /? expands indexes

A, r has nothing to do with ju9 and r which is an element in E0 con-

sumes fj.. They have the following structures:

(1) 0(0) = A and g($}<^T*AlT*...T*AvT*...T*AtT*9 where

^ = ffiO>o) = ffiCpi);
(2) S(Q) = A and g(d}^T*A[T*...T*BT*...T*AjnT*9 where

(3) r(0) = 5/« and g(r) e T* J? T*...T*BT*...T*A^T*.

Next we set #/ = #o/*'"~1^, 8^ = 8°^^ and r^r^^'1^, for each

then we have

(!') /9{(0) = ̂ '-^ and

(27) ^(0) = ̂ ^ and g(d'i)E:T*Af
ly

irjT*...T*B{JLi'riT*

...

(30 r{(0) = B^ and
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Since {Al,..., At}^n7(pQ), there exist p l 5 . . . , pt^Ti_l such that
ra # 1^ = A j f j L i ~ l 7 ) ( l ^ j ^ t ) . Thus we set /?,. = /?(., ̂ l 5 '" ' ^ L where (gy, ^#

0^#J , then we have @i(b) = A{j.i~lf] and g(/3,-)e T*A/jti-qT*. Since

P!), for 5^, there exist p^- , . . . , p^e T^ such that Py(0) =

fa' a H • \ s/Thus we set 5,- = 5;| ^ ^ |> where (gy, Aj/j.*i])G.8i,

then we have di(Q) = A/ti7] and g(d{)^ T^B^Tj J1*. In the same manner,

we can get r,- such that -ci(Q) = BjUi7] and g(ri)^T*Bjui~17]T*, by insert-

ing proper trees in T^ because {^J,..., A'^}^n7(pQ).

By the above construction, we can set Tn
 = a'0i902 0n'^n'^na^n-i'

), for /i^l. Set SQ = (d°^)\ Y-f^'>"-'>"™ !? where 0-ero such

that 6j(0) = Aj7j(l^j^m), then we also have 7-0 = a"50«ve5r(G:), becaues

g(a)er*^r*,<yo(0) = ̂ , ^(50)er*S^r* and v(0) = S^ hold. Thus

condition (1) of this lemma is verified. Note that @{, di and ri have not

been uniquely determined, since there may exist another proper trees in

T{_l9 T { and Ti_l which can be inlaid into $(, dj and rj respectively.

But the following discussion holds for any choice.

Since pQ is a 5-node, there exists at least one P-node in /9 or r (the

condition v). Therefore either 0{ or r,- has at least one node whose label

is a terminal or e. Thus the condition (3) is satisfied. Consequently, if

we can choose {dn} skillfully so that for n^l, JKO^K^i) may hold>

then %(fn)< S(^»-ri) holds for n^l. Concerning this point, we will

discuss later at Lemma 4.1.

Now let's clarify the condition (2) of this lemma. First of all, since

every tree in T0 is a subtree of 7% we have

0}^AT , where A7 = *(f).

Since every tree in E0 is contained in f' = f<pQ, e7(jp0)>/7j? and $(

(the condition vi), we have max {$(£)|pejEI
0}<; k. Therefore we have

max {#(p)|0e Tn}^k---k>k7 = k7k
n, because Tn is obtained through the

n t imes
use of En9 £"„_!,..., E1 and TQ successively. In the same manner since

/9, d, r are also obtained from f7, we have
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Since we make /?„, dn and rn of /?, 5 and r by using proper trees in Tn_l9

Tn and TH^ respectively, there hold $(&„)£ k-k7k*~l = k7k
n

9 ^(8n)^k7k
n+l

and #(fw)^&7&w . Since a and y are subtrees of f, we have #(#), $(P)^&7.
Therefore we get

#(f „) =
1=1

< A
\ k — 1

= 3k7k
n+l.

Thus the condition (2) is verified.

Case II-II: e(Po) = e(Pl) = <f>.

This case can be treated in the same manner as Case II-I, except for

the fact that r,- = -/l(f 2^1), and v = A, where A is the empty tree.

4. Strict Growth of Fronts

Lemma 3.1 throws light upon how terminal derivation trees increase.

But the strict growth of the fronts (i.e. S(f»)<ft(f»+i) f°r ^^1) is not
necessarily guaranteed. We give an assurance by the following lemmaa

We notice that our proof depends heavily on the notations used in the
proof of Lemma 3.1.

Lemma 4,1. For each indexed grammar G = (N, T, F, P, 5), there

exist integers k and c with the following property. For any non-CF-like

tree 0e«^~(G) such that #(#)>&, there exist trees p, a), o~i9 X; and ^e^(G)

(for each i^l), and 0 is decomposed into p-d^-x^-fl) and the following

conditions (i) and (ii) are satisfied:

(i) For each

(ii) #(#„)< #(0M+1)<C0CW+1 (for each n^l), where ce is a constant

depending on 6.
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Proof. The constant k is the same one as in Lemma 3.1. c and ce

will be calculated to satisfy the lemma, using k and other constants.

Applying Lemma 3.1 to 6, we get the decomposition 6 = a * f l * l * d l ' T 1 * v .

Therefore we set p = a, o~l = @l, %i=8l9 ^i = rl and u) = v.

Next we look for <7,-, xf and 0;(i^2) to satisfy this lemma, using

Lemma 3.1. For the case I of Lemma 3.1, this lemma has already been

satisfied, if we set ff{ = 0i9 xf- = fff. and 0, = rf{i>2). There holds $(#«)<

%(dn+i)<(n + V%W<C0Cn+l (for re^l) if we take the integers c and ce

to be greater than c>l and $(0) respectively. Explicit formulas for c

and ce will be given later. It is sufficient to consider only the case II of

Lemma 3.1. An outline of our construction is as follows.

Let {?„} be a sequence of terminal derivation trees obtained from 6,

using Lemma 3.1. Since jn is constructed by removing dn^ from T"W_I

and intercalating @n*dn*rn instead, the construction of ?„ from Tn-i *
n tm*s

way is called the n-th stage. We pick up the v-th stage especially,

where v = #(^V), and give an algorithm to construct a sequence of trees

{Sj} starting from <^( = £0'). This is Step 1. Using this Sj instead of Sn.

(where nj = jv! + v) at the n^-th stage, we will determine {6n} to satisfy

the conditions of this lemma. This is Step 2.

Step 1: We construct {dfi to satisfy the following conditions." For

72=0,

(1) <y;.(0) = <yw/0), where nj = jvl + v;

(2) #(0;)e T*BjunJyT*, where B^N such that g(8v)^ T*Bjuv7]T*;

(3) #(fy^ ((fy.!) and *(

We recall that ffo = ̂  = (*° /<^) 1 ' ' " ' m in the case n» where <^ =
L t i » • • • » f w J

ee(pl)>/^9 {pi-gi,.-, ^i'9»} = efl(jpi)-{pi} and ti = dv/qiGT9

(I^J^TTI). Starting from each ff, we construct sequences of terminal

trees Wy)}(/^0, *J0) =*„ I^I '^TW) such that JC^O^JK^")- Using these

W>>, we set ff^Cffo^^rjj;-;-?^"]. Then we have S(^.)
l_ 1 J ' " * J 7W _|

Therefore we must prove the following assertion

Assertion: For each t^{ti9...tm}, there exists a sequence of tree
(0) = z) satisfying the following conditions. For /^O,
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(a) t('\Q) = AfjL>vl+v-q9 g(t(»)^T* and t(j^Tjvl+v where

(b)

Proof of the assertion. Since t is in TV9 t is formed by joining proper

trees in EV9 Ev_l9...9 El and T0, and it consumes indexes fj.vfi. Therefore

we set Kv = {0} and Ki = {p^Dt\(p, A^f^^t, A^N, p is used as a

joint node to connect a tree in Ei+l with one in E{(T0 when i = Q).} (for

0<*i<*v — 1). Two cases arise depending on whether KQ = $ or not.

Case I: K0±$

We set K= \J Ki9 and each element in K is called a M-node.
Q^i^v

Noting ^ = {0}, we consider all paths from 0 to each element in KQ and

let Kf be the set of all M-nodes on these paths. The subtree t/p of t

at p^K—Kf forms a terminal tree (i.e. g(t/p)^T*) without consuming

indexes jUvy completely. For each p^Kf ', let Dp = {q^K'\ p<q} and

for each i(Q^i^v\ let K^K^K'.

We define a set R<^Kf xK' by using the following algorithm 1.

Algorithm Is (1) Initially set H:={Q} and i: = v, where H is a

set variable.

(2) Set Hf = {p^H\ there exists at least one node

q^Dp such that 7Tlt(/?) = 7rlt(gr)}. For each p&Hf, select

one such node q^Dp, and let \^p, q^ be an element of the

set R.

(3) If H=Hf, then halt. Otherwise reset H:= U
/jeZf-If7

(D^n^--!) and i: = i-l, go to (2).

The algorithm 1 always halts without becoming i = Q9 since v + l elements

of K! are located on each path from 0 to an element in KQ. The set R

thus obtained has the following properties derived from its construction.

(i) If QJD, q^\ is in R9 then [>, qf^\ is not in R for any r^Kf satisfy-

ing r<p and for any element qf^Dr.

(ii) For each path C between 0 and an element in ^0, there exist

a M-node p on C and q^Dp such that [JD, q^\^R,

Depending on whether R = {[$, r]} for some re^7 or not, two subcases

arise. The former is the case I-I and the latter is the case I-II. (Clearly
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R is nonempty.)

Case I-I: -R = {[0, r]} for some r^Kr.

We have 7Tlt(Q) = nlt(r} = A (say) and t(r) = AjUv~s7j, where s is an

integer such that s<v. Namely indexes jus are consumed between 0 and

r because t(Q) = AjUv7]. Thus there exists an integer h such that vl = sh.

We set u = (t\Kv_s)/jU
v~s7] and Ui=u°jasi+V7i (for each j>0). Then we

have that u consumes indexes #s, u{(Q) = A/jis(i+l)+v^ and g-(z^-)e T*

A^si+vyT*---T*Ay.si^v'fiT*---T*AmiJ.si*v-riT*. We can change H,- into

z/,z- by attaching a proper tree in rs/+?; to each node labelled Aj&si+v7] so

that ui(Q) = AJu
s(i+i:>+v7} and g(u{)<EE T*Ajusi-rv7]T*. Since we have

g(uo)^T*A{j.v7]T* and t(Q) = A/jtv7j, we can set £ (1 )= uh_l^uh^2 ..... ̂ o"^

so that t(l\Q) = A/ish+vy = A/jtvl+v7], g(t(l^)^T* and £(1)e ru!+v. In gene-

ral we set t(^=nflj_1-uhj^2' •••5 / i (y_1 )-J ( y~1 )(7^1, *(0) = 0» then we have

tW(fy = A#'vl+v-q9 g(t(»)<^T* and t^^Tjvl+v. Thus the condition (a) of

the assertion is satisfied. Since t ( j } is embedded in t(j+l^ whenever indexes

juvl is increased, we have the condition (b). Thus {t^} is the desired

sequence.

Case I-II: U^O, r]} for any

Let ^^iplTp, gH^jR}. By the properties (i) and (ii) of R, t is

decomposed into t\E and W ^/p, and the same situation as Case I-I
p^E r

arises for each t/ p. The precise description is as follows.

For each [>, q^&R, we have 7rlt(p) = nlt(q) = B(say), t(p

and t(q) = BjUs~s'7], where s and s' are integers such that l^s'

These mean that indexes juv~s are consumed between 0 and p, and jj.s/

are consumed between p and q. There exists an integer hr such that

vl = s'hf. Therefore we can apply the construction method of Case I-I to

t/p and we get a sequence of trees {a(j}} such that a(Q^ = t/p, a(j\ty =

Bjujvl+s^, ^(a(^)er* and a(j^TJvl+s, for y^O. Note that a(» is

embedded in a°'+1) for ;^0.

Now let E={p0,..., pn}, t(Q) = AjUv7], t(pi) = BiJu
s^(Q^i^n), and

w = (t\E)/y, then we have a sequence of trees {(%IJ}} constructed by the

above method for each t/p^ Next we set Wj = w°jUJ'vly, then we have

wj(tt) = AfjL>vl+v-q and g(wj)^ T^B-u.jvl+s^ I7*- •• T^Bn^
v[+s-f]T^, for each
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y^O. Therefore we can set t^ = Wj\ ^?yV"' ^n m ^or each /^O so that
[_tt0 5- • -J £*» J

t(^) = A^vl+v7j, g(t(»}<=T* and t(»<=Tjvl+v. Since each a& is em-
bedded in alJ+l\ we have the condition (b) of the assertion. Thus we

get the desired sequence {^c-7)}.

Case II: KQ = <f>

In this case indexes p." are not consumed completely, therefore we

can set t(fl=-(t/ii)°fi*v'"q (;^0) so that t(j'\Q) = A^'vl+v7] (where A =

#0(y))er* and t(j}^Tjvl+v. Thus we obtain the desired sequence

of trees such that #(J(y)) = iK*(y+1)) for 7^0. Thus we have verified
the assertion. We return to the determination of {Sj}.

Using the assertion, we get a sequence {t^} for each

By the condition (a) of the assertion we can set d'j = (d°j^jv{+viff)

O'^O) so that <y;.(0) = <Jw/0), where nj = jv\ + v9 g(dfitET*BjUnJ7]T*, where
5eEJVsuch that g(8v)(ET*BjUv7]T*. Since each zjy) is in T^, we have

#Wy>)^#(^)A^(cf. the proof of Lemma3.1)and K^)^*^)*'*11^*^)*^1.
We also have #(^)^#(^y+i) (/^O) because of the condition (b) of the
assertion. Thus the obtained {£y} satisfies the properties (1)~(3) of Step

1.

Step 2: The construction of {On} (n^2).

First we notice that we can use Sj instead of dn. at the 7iy-th stage

because of the properties (1) and (2) of {$/}.

Now we determine 62. It is necessary to satisfy ^(S1^<^(62)- For this

purpose, 0*2, %2 and 02 are to be determined such that l(fi)<tf(^2"^2'02)-
Let »^ = C#(/i)A!H + 2, then we have ne^2 and #(^)< nevl< nevl + v.1^

Considering the n^!+t;-th stage, we set (T2 = /? 2
8 ^3 ..... @ngvi+v> 02 =

rwet? ,+y ..... r3-r2. Since either /9f or r/ increases at least one terminal

or £ (the condition (3) of Lemma 3.1), we have K^iXSC^HK^)-1-

Therefore we set xz = ̂ , = (ffo^«'^«)r?(i';)- • » ? « ] , and we have #(%!><
L*i »•• •' *« J

S(t5"2"f2'02)- Setting 62 = p'ffl'ff2'^2'02'^i'a)^ we have 02G&"(G) and

In general, for each ;^3 we set %y = ff;^y_2, ffj = 0h+i'0h+2

10) [*] denotes the greatest integer less than or equal to x,
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and 0y = r A ^ r : - r A + l , , _ 1 ..... rA+1, where h = (ne + j-3)vl + v. Since we can

use %y instead of dm at the m-th stage, where m = (n0
Jrj — 2)vl + v, we

have 0j = p'0~i*o~2 ..... ^j'^j'^j ..... 02'0i°^e^r(^:) f°r eacn 7 = 3. Thus the
condition (i) of this lemma is verified. We also have #((?y)<#((9y+1) (y ^2)

because of the condition (3) of Lemma 3.1 and the fact that #(#/)^#(*/+i)
holds (the property (3) of {fly}). Thus we obtain the former inequality.

Now we clarify the latter inequality. We have #(*/) = #(ffi,+/-2)^ *(^)*w+1

by the property (3) of {flj}, where m = (ne + j — 2)vl + v. Since p and co

are subtrees of 6, we have #(p), %(cb)^ke, where ke = #(0). The constitu-

tion of fly and 0y implies that we have ffi*ff2 ..... 0/ = 0i'02e""^ma</}j .....
02'0i — rw' rw-i ..... ri- Therefore, using the condition (2) of Lemma 3.1,
we obtain

S(^-

1=1

Now set the constant ce = ̂ (d)k(ns-^vl + v+2>^(0) (because ne^2) and

c = kvl>l (because A;>1), then we have $(dj)<cec
j. Thus the condition

(11) is satisfied.

5. Main Theorem

In this section, combining Lemma 4.1 with Lemma 2.1, we obtain

our main theorem (Theorem 5.1). Next we give its applications.

Theorem 5.1. Given an indexed grammar G = (N, T9 F, P, 5), there

exist integers k and c with the following property. For any 6 e &~(G) such

that $($)>&, there exist trees p and a), for each i^l, 0~i9 %^ and 0z-e^(G),

and 6 is decomposed into p - o " l ' X l ^ l ' ( j ) and the following conditions (i) and
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(ii) are satisfied'.

(i) For each n^l,

(ii) %(6n)<%(0n+l}<cec^ (for each n^l\

where ce is a constant depending on 0.

Proof. The constants k, c and ce are as in Lemma 4.1. If 0 is a

non-CjF-like tree, we apply Lemma 4.1. If 6 has a CF-like pair of nodes,

we apply Lemma 2.1 to 6. We set p = a, for each z^ l , o"i — j39 x^—fl and

</>i = A, and c<) = /i, where /i is the empty tree and a, /? and d are the
trees obtained by applying Lemma 2.1. Since the constant ce is larger

than $(0) and c>l, the conditions (i) and (ii) of this theorem are satisfied
when we use the coresponding conditions (i) and (ii) of Lemma 2.1.

As an immediate corollary of Theorem 5.1, we obtain the solvability

of the finiteness problem about indexed languages. This fact has already

been proved by Rounds p>]. But here we give another proof following
our formulation.

Corollary 5.1. Given any indexed grammar G, the question of whether

L(G) is finite or not is solvable.

Proof. Given an indexed grammar G = (N, T,F,P, 5), an e-free u)

indexed grammar Gf = (Nf, T, Ff, Pf, Sf) such that £,(G') = £(G)-{e}, can
be effectively constructed from G (Aho Q], p661). Clearly L(G) is finite
if and only if L(G'} is finite. Calculate the constant k of Theorem 5.1
for G' . We now show that if there is a string w^L(Gr) with \w\>k,

there are infinitely many strings in L(Gf). To see this we apply Theorem

5.1 to 0e«r(G') such that g(6) = w. Since G' is e-free, we have #(f) =

| #00 1 for any ^^^"(G')- Therefore the condition (ii) of Theorem 5.1

guarantees | g(dn)\ < \ g(0n+i)\ for n^I.
To decide whether there exist strings w^L(Gf} with \w >k, we let

11) An indexed grammar G = (N, T, F, P, S) is called e-free, if A-*e<£PU W /.
f^F
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R(k) be the regular set of strings #e T* such that \x\ >k, and we con-

sider whether R(k)r\L(G') is empty. This question is decidable, because an

indexed grammar G" =(N" , T, P" , F" , S") such that L(G") = R(k)nL(Gf)

can be effectively constructed (Aho Ql], p.656). The emptiness problem

for indexed grammars is solvable (Aho Ql], p. 658).

Next we establish a result which states that certain languages are not

indexed languages.

Theorems. 2. Let f be a function from J into J such that /(TI)^

,^1) and limf(n)lln = oo, then Lf = {af(n)\n^l} is not an
n~*°°

indexed language.

Proof. Without loss of generality, we suppose there is an e-free

indexed grammar G such that Lf = L(G). Let k and c be integers which

satisfy Theorem 5.1. Since lim f(n)lln= oo, there exists an integer n0
?2-»oo

such that f(n0)> k. For the one of such nQ, we may select 0^&~(G)

satisfying a*(n^ = g(6). Since G is e-free, tf(0)= | #(0)| =f(n0)>k. There-

fore we apply Theorem 5.1 to this 0, and calculate an integer ce. There

exists an integer t^l such that f(nQ + t)ll(no+^>c0c
2, because we have

limf(nyln= oo. Using the condition (ii) of Theorem 5.1, we have the
»-»•»
following inequalities :

Since f is a monotone function, there are at most t + 1 distinct elements

in Lf whose lengths are between /(ft0) and /(^o + O- On the other hand,

the above inequalities tell us that at least 2t + l such elements exist. This

is a contradiction. Thus L(G)i=Lf.

Theorem 5.2 tells us that such languages as {anl n^l} and {ann \ n^>l}

aren't indexed languages, because lim (n !)1/K = lim (nn)lln= oo. On the
#-»oo W-»°°

other hand, if p^J^X^ is a polynomial and if &z-e/, then the language

{a*(w) | TZ,^!} where (D(x)= 2 p{(x)k*, is an indexed language. Taking

this point into consideration. Theorem 5.2 may be thought to give a good
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limit of the indexed grammars about their generative powers.

Using the proof techniques developed for Theorem 5.1, we get the

following theorem.

Theorem 5.3. For an alphabet 2, a language L2 = {(%w)lwl \w^2*}

is not an indexed language , where $ is a special symbol not in I, '.

Proof. It is sufficient to show that the existence of an e-free indexed

grammar G = (N9 I U {$}, P, F, S) such that Ls - {e} = L(G) leads to a

contradiction. For this purpose we use the similar construction method

developed for Theorem 5.1. It is tedious to repeat the similar definitions

and lemmas, we state the necessary alterations.

First the definition of P-node (Definition 2.2) is changed as follows.

For 7*e^(G), a node p^D7 is called a P-node when there exist at least

two distinct integers il and z"2 such that each f/p'ij contains at least one

node whose label is $. We can show that there exists a constant k'

depending on G with the following property. For any non-CF-like tree

fe^(G) such that #$(/)>&', (#$(f) is the number of nodes in / whose

labels are $.), there exists a chain C of f in which there exist seven B-

nodes p-5< p-±-m <p~i< p$<pi whose A-f unction values are the same.
s _

The constant kr is equal to mkl~l, where k1 = vk2, k2=- - —^ - and
s

&g = 617(0 + !)(£ + 1)2" + 1. The constants m, v9 s and t depending on G are

as follows: m = r(G); v = %(N); 5 = max{|^f| A— ̂ X17i1X2^2--- ^k^k^ P}>

t = $(F). To verify the above claim, we have only to repeat the same

construction method up to Lemma 2.2. Namely for j^3~(G) such that

S$(f)>^ / , let C be one of the chains which contain the maximum number

of P-nodes, then there exist at least kl P-nodes in C. Let M be one

of the P-mountains which have most the P-nodes, then there are at least

k2 P-nodes in M. We form a tree rM whose labels consist of elements

in M. Let C be one of the chains of TM which contain the maximum

number of J5-nodes, then there exist at least k 3 .5-nodes in C. Since the

A-function has at most v(v + l)(t + l)2y distinct values, there exist seven

5-nodes p-5<p^^---<p,1<p0<pl whose A-function values are the same.

Using only p0 and pl9 we get the decomposition of ^ = a«jS1-ff1-r1-v.

The existence of the other five 5-nodes j0_5,..., p^.l implies that either a

or v has at least three P-nodes. When we apply the algorithms described
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at Lemma 3.1 and Lemma 4.1 to 7% we get a sequence of trees {On} in

F(G) such that #(£„)< #(0»+i) (for n^\\0^r and each 6n has a and

v as its components.

Given an arbitrary integer j, there are infinitely many elements in

Ls which have more than i occurrences of $. we have j^3~(G) such that

j f $ ( f )>yfc / . We fix such a 7*. If f is a non-CjF-like tree, we can get the

above sequence of trees {6n}. Then we have a sequence {g(0n)} of ele-

ments in L2 such that \g(On)\<\g(pn+J\(n>\\ Let g(r)= g(dl) =

($WO) I M ' O | J then there exists a substring • • • $ w 0 $ - - - in g(a) or g(v) because

either a or v has at least three P-nodes. This leads to a contradiction

since each 6n has a and v as its components.

If 7* has a CF-like pair of nodes, apply Lemma 2.1 to 7". Since /?]_ is

repeated in this case and @i has at least one P-node, we have an element

in L2 which has a substring •••(w1$w2)
n'" f°r each n^l. This leads to

a contradiction again. Therefore L2 —

This theorem is also interesting, since the languages Lm = {($w)m \ w
OO

and L= \J Lm are indexed languages.
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