
Publ. RIMS, Kyoto Univ.
9 (1973), 1-44

Structure of Some von Neumann Algebras
with Isolated Discrete Modular Spectrum
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Huzihiro ARAKI

Abstract

From a finite von Neumann algebra f$ with a faithful normal trace and
its normal injective * endomorphism $ satisfying 0(S) = 0(1)$0(1), we construct
another von Neumann algebra M(3f, 0) by a method which reduces to group-
measure construction when % is commutative and <j> is an automorphism. If
$ satisfies 0(z) = <f>(l)z for all central elements z of % and 0(l)"i = e~0 for a
positive number <z, then M(f$, 0) has the following 3 properties: (1) It has a
faithful normal state p whose modular operator Jp has the spectrum {0} U {ena;
n=Q, ±l,...} = Sea. (2) The set 90£0 of all elements of M(g, 0), commuting
with Ap is isomorphic to 2f. (3) The center of 3#0 coincides with the center
of 9#.

Conversely, any von Neumann algebra with a faithful normal state p
such that log Jp has exclusively an isolated point spectrum and the center of
5D?0 coincides with its center is a direct sum of M(%j, 0^), y = l,..., and possibly
a finite von Neumann algebra, where each $j satisfies <j>3 (%) = 0j(l) % 0 j ( l ) ,
<f>j(z) = z(?>j(l) for all central element z of % and $j(l)* = e~aj.

If p is a KMS state under time translation of a C* algebra, which is
asymptotically abelian with respect to (either discrete or continuous) space
translation and if the spectrum of generator of time translation has exclusively
an isolated point spectrum in the representation associated with p, then the
associated von Neumann algebra has the above structure where the asymptotic
ratio set of f£j- as well as that of a possible finite summand (if non-zero) is
{1} and roo(Af(Sfy, <pj)) = SXj where Xj = eaj. The last result on asymptotic ratio
set is limited to the case where the representation space is separable.

A generalization of Jf(f5, <f>) for a commutative semigroup of endomor-
phisms of a finite von Neumann algebra, instead of one 0, is given.

§ 1. Notation and Main Results

Let 3Ji be a von Neumann algebra, Q be a cyclic and separating unit

* Received August 4, 1972.
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vector, A be the modular operator for Q, r(t)Q = A^QA"1*, /be the modular

conjugation operator for J2 and j(Q) = JQJ.

$Qa denotes the eigenspace of log A belonging to an eigenvalue a and

3Wa denotes the set of @e2ft such that r(t)Q = eitaQ. It is known that

2J£0 is a finite von Neumann algebra containing the center Q of Wl and J2

is a cyclic and separating trace vector for 2J10 restricted to £>0. 3o denotes

the center of 2TC0. 3o ^3-

We are interested in the structure of 5K and we can analyze it when

log A has exclusively an isolated point spectrum and 3o—3-

For any given finite von Neumann algebra ff with a faithful normal

trace vector W such as 5F10 with Q and its normal injective * endomor-

phism 0 satisfying </>($) = 0(1)^0(1), we present in section 2 a method of

constructing another von Neumann algebra, denoted as M(£?, 0), with a

cyclic and separating vector fi(f$, 0). If (F, <f>(z)¥) = e~a(¥, z¥) for all

regc (the center of g)» then the spectrum of modular operator J(§, 0)

for fl(g, 0) is

Sea = {Q}\J{ena; 71 = 0, ±1,...}.

If 0(*) = *0(1) for ^egc, then 30 = 3.
The following main result proved in section 3 gives a converse.

Theorem I. Let 971 be a von Neumann algebra with a cyclic and

separating vector Q such that log A has exclusively an isolated point spec-

trum

{0, ±al9 ±a2, ...}, 0<a1<a2...,

and the center 3o °f the set 9ft0 of all elements in 2Ji commuting with A

coincides with the center 3 of Wl. Then there exists central projections

Pn of 3H, 7i = 0, 1, ... such that

(i) Pnl_Pmforn*m,E Pn = l<wdPl*0,

(ii) PQm is finite if P0^0,

(iii) PnWl is * isomorphic to M(PW9J10, 0W) /or s0m# normal injective

* endomorphism <j>n of PnW,Q satisfying
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if Pw^0, where \ is the canonical tl mapping in 2ft0.

In a special case where 2ft is a factor, the spectrum of logJ is neces-

sarily an additive group. (This statement is always true if all subspaces

tQ(I^ = (E/3-Q — Ea+0)fQ for 4 = \AdEx.> I=(a, /?), is cyclic for 2ft (and

hence separating for 2ft due to /§(/) = §( — /)) even when J has a con-

tinuous spectrum.)

Examples where the center of 2ft0 does not coincide with the center

of Tl are tensor product of ITPFI of the class 501 (type III or II) with

any finite von Neumann algebra where the vector & is product of a defin-

ing product vector of the ITPFI with a cyclic and separating trace vector

for the finite von Neumann algebra. Another example for 3o^3 is RX®R

with @ = QX§§® where Qx is the defining product vector of Rx, R is type

12 and spectrum of modular operator for (R, 0) is {y~ l , 1, j} with y£ Sx.

The condition 3o—3 *s satisfied for a KMS state of an asymptotically

abelian C* algebra. More precisely, a net of operator Qa in a von Neu-

mann algebra 2ft is called strongly central if there exists a weakly total

self-adjoint subset SB of 2ft such that lim \jQa, uT\ = Q strongly for every
a

we26. A subset §1 of 2ft is called strongly ra central relative to a net

ra of * automorphisms of 2ft if raQ is strongly central in 2ft for each @e§J.

We have

Theorem 2. Let 2ft be a von Neumann algebra, ra be a net of *

automorphisms of 2ft, p be a faithful normal ra invariant state of 2ft and

SI be a weakly dense C* subalgebra of 2ft, which is invariant under modu-

lar automorphism r p(t) for p and is strongly ra central. Assume that

modular operator A p for p is such that log A p has exclusively an isolated

point spectrum.

Then 3o—3 and there exists central projections Pn satisfying (i)~(iii)

of Theorem 1. If the representation space is separable, in addition, then

{1} if Po^O,

= {1} if Pw^0,
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SXn if Pn*Q, where xn = e~a«, n>Q.

This theorem is applicable to a situation where p is a KMS state for

time translation of a C* algebra A, which is asymptotically abelian for

(discrete or continuous) space translation, the generator of time translation

has exclusively an isolated point spectrum in the representation associated

with p and the representation space is separable.

§2. Construction of M(g, 0)

Let f$ be a finite von Neumann algebra acting on a Hilbert space ^

with a cyclic and separating unit trace vector W and %c be the center of

%. Let \ be the canonical \ mapping on $c, Jw be the modular conjuga-

tion operator for W and jw(Q}=JyQJ^.

Let $ be a normal injective * endomorphism of ££> &w be the vector

state by 3F, and 0*<% be the normal positive linear functional defined by

Both <% and $*<% are faithful and tracial.

By the Radon-Nikodym theorem, there exists a strictly positive selfad-

joint operator A^=\kdE^ such that E£^$c and

lim <t>*u

In other words, W is in the domain of 0(^) = limz0(^4z) and

(2.1) WGW 0(*)?K^)20 = (F, *F), *EE&.

(These equations hold for ze£5 as will be seen in the following proof.)

Lemma 1. There exists a unique isometric operator V satisfying

(2.2)

It satisfies

(2.3) V*V=\,

(2.4)
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(2.5) C/r, F>0.

Proof. Because $*a)¥ and o)¥ are tracial, we have

-«¥((<?*<?)<) = «V(<2*<?) = HOT2, <? eg.

Since $¥ is dense in S, there exists a unique isometric V satisfying (2.2).

(2.3) says that V is isometric.

The range of V is the closure of (p(^f)(f>(A^)¥ ', which is invariant under

0©). Hence VV* commutes with 0(@), <?eg. From (2.2), we have for

Q eg and 0ieg

Hence

(2.6)

Hence

Since JWQ¥ = Q*W, we have

= JVVQ¥.

Hence (2.5) holds. Q.E.D,
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Lemma 2. // z is a closed operator affiliated with f? and W is in

the domain of z, then W is in the domain of (j)(zA^ and Vz¥ =

Proof. By polar decomposition of z, it is enough to prove the state-

ment for a positive selfadjoint z = \

Let z = zE Then

Vz¥ = lim

Hence ¥ is in the domain of <j>(zA^ and VzW = (j)(zA^)¥. (Note that A^

is affiliated with f$fc
 and hence ££ and Ef commute.) Q.E.D.

Lemma 3. Define

Then Vn¥ = D(f]¥, D(£] is affiliated with g, commutes with (f>n(Q), (?eg

and its support s(D(£]} is 0W(1).

Proof. By repeated use of Lemma 2, we have Vn¥ = Dfi}¥. It is

affiliated with g because it is a product of mutually commuting positive

selfadjoint operators

(2.7) D? = ft 0 W-
£ = 1

Since spectral projections of A^ is in the center of f$, spectral projections

of $k(A^ is in the center of 0*(f$) D ̂ n(S) (k^n) and hence D^w) com-

mutes with 0W((?), (?egf. Since y4^ is strictly positive, s(^) = l. If z =

is a positive selfadjoint operator, then z^k(l—E^) implies s(0(*))

£'x) = 0(5(^)). Hence 5(^(2:)) = ^(5(2:)). In particular,

by induction. Q.E.D.

Lemma 4.

(2.8)
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Then ^n)^ff(l)gc and

(2.9) V*V** = <I>*(V]W{<I>*W},

where f\ denotes an operator affiliated with a von Neumann algebra.

Proof. From (2.7), 0*(^) y 0*(gc) = gctf*(l) and n^*(l) = ̂ (l), we

have Aj,n)^0w(l)?5c- The range of F is the closure of

and hence

By (2.4) and (2.5), we have inductively

Q.E.D.

We define

(2.10) 0'(7) =

Then from Lemma 1,

We also note

(2.12) ^'"(l)=/r{

We now construct M(f5, 0) on a Hilbert space

$={00""l(i)fl}e{00"(i)ffl}>-~ 0

namely we have partially isometric mappings JOB from $ into § such that

(2-13)
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and subspaces $Qn = pn$ are mutually orthogonal and span the whole space

Let x^$, y^W- We define faithful representations of % and ^ by

(2.14) TT(*) = £ Pnnn(x}p*,
n

{ <t>»(

(2.15) »„(*) =
{ x,

(2.16) *'(?)= X pn
n

f y,
(2.17) <(/) =

I 0'""(j),

We also define partially isometric operators

(2-18) U= £ Pn+lUnp*,
n=-oo

i,
(2.19) &„

F*, n<0,

(2.20) £/'= f pn^U'np*,

(2.21) Ui

The von Neumann algebra M(f5, ^) and a candidate for its commutant

are defined by

(2.22)

(2.23)

Theorem 3. ^55^m^ 0(F) = 0(1)^0(1). fi (& $) = p Q¥ is a cyclic

and separating vector for M(§, 0), w;^ modular operator

modular conjugation operator J(g, 0) ^

(2.24)



STRUCTURE OF SOME VON NEUMANN ALGEBRAS

(2.25)

where the inverse in j¥{D(^}~2 is to be taken in (f>'n

5, 0) satisfies

(2.26)

// -40 >1, //zgw Z/&0 s^ o/ @e.M(f$, 0) commuting with J(g, 0) zs ft®).

// A^ = eal2 for a strictly positive number a, 2/^n the spectrum of

) is

(2.27) £* = {**; ^ = 0, ±1, ...

If A^>1 and 0(z) = z0(l) for all z^$C9 then the center of TC($)

coincides with the center of M(%9 0). Under the assumption ^>1, the

center of M(%, 0) consists of all z^%c such that

If 4>(z) = z<f>(l) for all *GE&, A

Proof. /(f5, 0) defined by (2.25) is antiunitary and satisfies

(2.28)

(2-29)

(2.30)

where (2.5) has been used in (2.30).

We obtain

(2.31) M'(

from the following calculations.

x'(y)l= Pn+10., yip*

= 0,



10 HUZIHIRO ARAKI

ru1, *(*)>/(&

= 0,

0

E Pn-2i ^Pn-lPn-1 ~ Pn-lPn-l V} Pi
—

where (2.4), (2.11), (2.8) and pnp*pk = pn, pipkp* = p* for n\^\k\,

are used.

From definitions, we have for n^

Since s(D£") = 0"(l), the closure of p.n%D(£}¥ contains

which is dense in &-„. We also have for

which is dense in §n. Hence ^(^j 0) is cyclic for
(2.29) and (2.30), together with (2.28), imply that J2(g, 0) is cyclic

for Mr(g, 0) and hence separating for M(g, 0) by (2.31).

Setting S = /(3f, 0)J(g, 0)1/2, we obtain for n^O

Since jr(Dp})-lp*(l)¥ = J¥(D™)-1f*(W we obtain
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From (2.24) and (2.25), /(& 0)J(g, 0) = 4(g, tf)-1/®, 0). Hence S2 =
whenever S is defined. Hence

Due to (2.4), we have

(*) f/= { t/*7T(^*)}* = {7r(?5(^))* £/*}*

Due to (2.9) with re = l, we have

7r(*)^*=L^_1^-i(a;) ̂ +1; Pm_lXr P*

) £/•*)*=

The last two equations imply

(2.32) [/£/* = !,
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Therefore 7r(F) U*n and Un7i(F) with varying n together are total in

, n). Hence

for all (?

Let Z?^ = irf£L and ;V

Since EL%¥ and

^»> F = %Dp> Ef
LW = %Dp j¥(E[)W = yr (£*) W} ¥

are total sets of analytic vectors in 0M(1)$ and 0/w(l)$, respectively,

M(%, 0) fl(& 0) is a core of J(g, 0)1/2.

Hence J(£$, 0) and /(g, 0) are modular operator and modular conjuga-

tion operator for fi(f?, 0).

By (2.29) and (2.30), we have

If A+>19 then 0»(^)>0>l(l) and hence ^^^(l). Then §o is the

eigenspace of ^(f?, 0) belonging to 1. If Q&Mffi, 0) is invariant under

modular automorphisms for G($, 0), then Q leaves §0 invariant and hence

the restriction of Q to §0 must be in the von Neumann algebra generated

by E0M(i$, <t>)EQ where EQ is the projection on §0. Since 7t(F)U*n and

Unn(F) are total in M(%, 0) and EQn(F)U*nEQ = EQUn7t(F)E0 = Q for

we have EQM(^, ^)E0 = n(^)E0. Hence QE0 = n(x)E0 for some

Since &($, 0) is separating, Q = x(x)&n($)E0. Conversely, all elements

in 7r(g) commute with J(g, 0), which is most easily demonstrated by

If A^ = eal2, then D(^n} =enal2(f>n(l) and hence §w is the eigenspace of

) belonging to an eigenvalue ena and hence the spectrum of J(g, ^)

is Sx, x = ea.

If z is in the center of M($9 0), then by a general result it is in the

center of the set of elements in Af(f$, 0) commuting with J(§, 0). Under

the assumption A^>1, z = n(z), z^%c. It is in the center of M($9 0) if

and only if
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Since UU* = I and Z77r(5)17* = 7r(0-1{0(l)*0(l)}X this condition is equiva-
lent to 0(5) = 0(1)50(1) = 50(1). Hence the center of M(g, 0) consists of
TT(Z) such that z^^c and 0(z) = 2r0(l).

If 0(*) = *0(1) for all *egc, then

Since 0 and t| are faithful, 0(z)^ = z0(l)"^0 for *<Egc,

Hence 5(0(1)") = ! and (0(1)0~1 exists. Then

if ^ = {0(l)ll}~1/2. Since such ^4 in f£c *
s unique, we have ^4^ =

Q.E.D.

Remark 1. If 0(z) = z0(l) for all ^e§c, then the condition ^>1
is equivalent to the condition that 0 is a proper injective endomorphism
of z$9 for every central projection z^O, as is seen by the following argu-
ment.

If A+=l, then (¥, (1-0(1))3F) = 0. Since W is separating, 0(1) = 1
and 0 is an automorphism. If p is the projection on the eigenspace of
A^ belonging to 1, then the same argument shows p = $(p) and hence 0
is an automorphism on p$. Since p^ p0(l) = 0(p) for every central
projection, A^l and hence ^>1 is equivalent to 0 not being an auto-
morphism on *£$• for every central projection z^Q.

Remark 2. If % is commutative and 0 is an automorphism, then
M(f5, 0) is the von Neumann algebra obtained by group-measure construc-
tion with the additive group of integers.

§3. Proof of Theorem I

We consider the von Neumann algebra 2J£ on a space § in Theorem
1. We start with preliminary analysis.

In pT|, we have considered the set Wlj of operators Q in TO satisfy-
ing QtQ(I)c:$Q(I+J) for every finite open interval / where $Q((a, #)) =
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(Eg-Q — Ea+Q)H, Ex is the spectral projection of logd = \AdEx and / is a

finite open interval. We assume that the spectrum of logJ is {o, ±logxl9

±10g*2,...}.

If the spectrum of log J contained in / is just one point a, then

= $«. Let Qt=Wlj for such /. Then

Since Q is separating, r(t)Q = eiaiQ and

Hence W,j = W,a.

By Lemma 7, Lemma 5 and (2.1) of £3], we have

(3.2) 2K* = 3H_B,

(3.3) ^G=£v

Lemma 5. W2JL. is total in 9JI.

. Let /„ = (log ^W_ l 3 log xn+l), n = 0, ±1,... where o;0 = l. Let

^WJ 7i = 0, ±1, ... be non-negative C°° functions with a compact support in

Jn such that 2(j>n = l. Let / be any C°° function with a compact support.

Let

Then f=Efn (finite sum) and Q(fn)^mlogXn by Lemma 6 of

Hence (?(/)eU2fta.
a

Let ^ be a non-negative C°° function with a compact support such

that £(0) = 1 and g(t) = (2n)-l\e-ixtg(A)dt. Let gn(t)=ng(nt) and

gHW=g(A/n). It is then easy to see lim()(#,) = (>. Since ^(^)ew9Jiw,
w-»oo a

we have the lemma. Q.E.D.
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Lemma 6. (2Jta)j., •.£<) = §«» where (3JOj>.». is the set of all partial
isometrics in Wla and the bar denotes the strong closure.

Proof. Let Fe£>a and £>0 be given. By (3.3), there exists

such that \\QQ-¥\\<e/2.

Let Q*Q=(ldex. Since Q*Q^mo by (3.1) and (3.2) and since 2K0

is a von Neumann algebra, ex£TO0. Let 8>Q be such that Q8 = Q(l — es)

satisfies ||<?8fl-(?fl||<e/2. Let \Q\ s = (Q*Qy'2(l-es) + es. Then |<?|s

has a bounded inverse l^l^eSD^, ^(^ICI^eCSDU,./., ®=\Q\s®^&o

and U® = Qz® satisfies ||£/^-r||<£. Q.E.D.

We need a Lemma on the mapping F^R introduced in |J2].

Lemma 7. If Z is a center of a finite von Neumann algebra R and

p is a trace on R, then

(3.4) ***«?) = <?'*Z(P).

Proof. As proved in Q2], Fjf* is Z-linear, positive normal mapping

from R onto Zsz(p), vanishing on (1— 5z(p))^ + J!?(l — sz(p)) and strictly

positive on sz(p)J?. Since p is a trace state, we have

for zeZ. Hence Fz
p

R(QlQ2) = Fz
p
R(Q2Ql\ which implies Fz

p
R(UQU*) =

FZR(Q) for all unitary Z7 in ^?. Hence FZR is the canonical i| mapping of

^5z(p) and we have (3.4). Q.E.D.

Proof of Theorem 1

Step 1. Let be sa the support of §a in 3Ji, namely the smallest projec-

tion in 9Ji satisfying (1 — 5tt)§a = 0. We prove sae,3-

Since $Qa is invariant under Alt (as a set), ^5^, J'Q = 0 for all real £.

Hence s^eSD^Q.

Since SD^o^a^^a? any Q^W,Q commutes with sa. Hence sa^QQ.

By assumption 3 — 3o» we have sa^Q.

Step 2.
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Since Uti<=$a9 (l-sa)UQ = Q which implies (l-sa)U=0. Hence

sa^UU* for all UeQOlJp^.

By Lemma 6, {£7§0} is dense in §a. Hence

is dense in

3. sup{U*U;

Since JA = A~1J, we have /§a = £)_a. Hence 5_a = </(5o) where sr
a is

the support of £>a relative to 5U17. Since s_aeZ by Step 1, s'a = j(s-a) =

s-a^Z. We now have §ac^§ and hence 5a§ = SK7^ c 5^§, which implies

sa^s'a. At the same time §«C5a§). Hence 5«§ = SDi§a c ja§ which implies

s'a^sa. Hence sa = s'a = s-a. By (3.2) and Step 2, we obtain Step 3.

Step 4. For 17e (SDU,. ,-. .

(3.5)

Proof. For 2re3o5
 we have

(fl,

'2 (by

, Uzti)ea'2

= (fl, U*UzQ}e«.

Hence

Fg»«o( C7£/*) = ea:F|̂ o( [7* IT).

By Lemma 7, we have (3.5).

5. There exists f/a e (9Wa)^. f- . such that UaU* = sa for

Consider a maximal family of Z/v e (9Jla)^ f- such that f/vC/* are

mutually orthogonal and U*UV are mutually orthogonal. Then Ua =

,.f.. Assume sa-UaU**Q. By Step 2, there exists ^o)
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such that c(sa— UaU*)U(0)UfQ} ^0 where c(«) denotes the central support.
By the comparability theorem, there exists a projection e in 3o and partial
isometries ul and u2 in 3J£0 such that u f u l = e(sa—UaU*), ulu^^

eUwU?m, «Ju8 = (l-e)(tf<0)fffo>) and u2u^(l-e)(sa-UaU*). Due
to c(sa-UaU*)UwU^i=Q, we have either u^O or u23=0. If w^O, we

set J7 = enfl7 (0). Then U'Ul*=ufu1£sa-UaU*, U'=f=0 and C7X3K „),. ,-. .
If w2^0, we set U' = (l-e)u2Uw. Then U'U'*=u2u$£sa-UaU*,

U'=tQ and

By Step 4,

Hence there exists u e (3I10) .̂ ,-. such that

uu*=U'*U', u*u^sa-U*Ua.

Setting U" = U'u, we have ?7" e (5Uia)^. ,-. and

U" U" *=U' U'* ^sa-UalI*.

We also have U" U" * = U' U'* * 0 and hence U" 3=0. This contradicts with

the maximality of {?/„}.

Step 6. Fix C/-B such that I^sCUR,, ),.,., tfa #* = ««. Then (C/*f/J» =
e~asa. Such f/a exists for a>0 by Step 5. Define an injective endomor-
phism 0a of saW.0 by <t>a(Q)=U*QUa. Then

(3.6) 0a(2«0) = ?5a(l)a«o95a(l),

(3.7) 0a(«) = ̂ a(l), «e3o,

(3.8) 0a(l)* = C-'Sa.

(3.8) is the same as (^Z7a)* = e-a5a- (3-7) follows from Q0=3,
which implies U*zUa = zU*Ua = z<j>a(\) if zeQ0. Let e be a projection
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in 0a(l)2M«(l). Then e^<t>a(l}= U*Ua. Let e' = UaeU*a^mQ. Then

c = tf *e' Ua = 0a(e')- Hence ^(I)2ft0^(l) c ^(5W0)- Conversely 0fl(3K0) c

#a(l)#a(SW0)^(l)c:#a(l)SWo0«(l). Hence (3.6) holds.
0a is injective on 9Jl05a because 0a((?) = 0 implies 0= Ua$a(Q)U* =

saQsa = Q for <2esa2ft0. 0a is a * homomorphism because <f>a(Qi)<f>a(Q2) =

*) = *a(QiQ2) *™ <?ls (?2 e 5cK5W0 and

,.,. for r^O and

U*w for Ti^O, where [7a is from Step 6.

Let 7i>0 and re^CSK,,^.,.. By (3.1) and (3.2), w=

and t7* ti; = 5a F= F. w; is a partial isometry because ww* = </>%( W*}

and w*w = saV*V are both projections. Hence sa(mna)p.L c Z7j(5IWoVi.-

Taking adjoint and using (3.2), we have s«(9Kw J/,./. c(2H0)M. C^*^1 for

7j<0. The case 7i = 0 is trivial.

8. Let {0, ±a l5 ±a2,...} be spectrum of logJ such that 0<a1<

a2<"-. Let

n=l

By definition and Step 1, Pn are mutually orthogonal central projections
00

with the sum 2 Pk = l- Pi = sa^^- On P0§, J has no eigenvalue
k = 0

larger than 1 and hence J = l. (Each Pn$Q is invariant under / and A

because Pwe30 Consequently, PQ& is a cyclic and separating trace vector

for PQm.

Let Un = PnUan, tin = Pn$, %n = PnWQ. gw is known to be a finite von

Neumann algebra with @n as a cyclic (in Pn$Q) and separating trace vector,

Let 0w = 0aJSw ^ satisfies (3.6)~(3.8), where $a is replaced by 0W, 2ft0

by S,,, 3o by the center gwc of §•„, a by aw, and 5a by PM.

Sfe/> 9. UffinQn and gw(f/*)OT^w, ire = 0, 1, 2,... span the whole space

Pn&
By Step 7 and (3.3), they span £ Pw§OTflw. Assume that Pw£6^0,

7W = — °°

n for any integer TTI. Since PnfQ-b = PnJ$)b = JPn!Qb^Q, we may
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assume 6>0. There exists a non-negative integer m such that man<b<

for Ur
b = PnUb. We define W=(U%)*U'b. W^Pnmb^man. We also have

Hence 0^ WQn^Pn§b-man. Since 0<b-man<an, this contradicts the

definition of Pn.

Step 10. PnyH, Qn, %n and Un are unitarily equivalent to Af(gn, 0n),

^(S»j 0w)> ̂ (Sw) and ^ °f Section 2, where F is to be taken equal to Qn.

U%%ntin, m = 0, 1,... and ^(Z/*)"7^, m' = l, 2,... are orthogonal

family of subspaces of Pw§ because they belong to different eigenvalues

of J. They span the whole space Pw§ by Step 9.

We have for x, y&$n and

where we have used (C7*)'"[/rm = 7r(0;?(l)) which follows from (2.32) and

(x)U=Tt(<l>(x)). For m>0,

Since Un<t>n(l-)=UnU*Un=Un, U*=Un

Hence f/«a;* y(U*)m= Uy<f>y(l)x* j^(l)(C/*)m. There exists <?egB such

that ««?) = ̂ (l)**^r(l). Then U
= . Hence

Therefore there exists a unitary mapping p from § of Section 2 to

> such that for all x^%n,
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n}=u%xan, m=o, i,...,

n, *n)=x(u*)~an, m=i, 2,....

It is then immediately seen that

p*xp = n(x),

p*Unp=U.

By Lemma 5 and Step 7, gw and Un generate 2JiPw. Hence %JlPn =

Q.E.D.

§4. Isomorphism among M(§, 0)

Theorem 4. Different choices of cyclic and separating trace vector ¥

yield unitarily equivalent M(f$, 0).

Proof. Let p' be another faithful tracial state of g. Then there exists

a strictly positive selfadjoint operator a, affiliated with %c such that the

vector state by W =a¥ is p7. It is sufficient to show that PQW, 7r(f$) and

U have exactly the same structure as in the construction in section 2

where W is to be replaced by W '.

Let A't=(]idE$', E^f^%c be defined similar to A^:

Let a = U d jE1^, aL = aJ^f. Then

Hence (j>(^A)W is in the domain of a and

for positive z in gc
 and hence for any z in gc- Since aJ^ and or1 are

strictly positive, $(aA^a~l is strictly positive on 0(1)^ and hence there

exists a positive selfadjoint operator
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affiliated with gc such that ^ ( A f ) = (f)(aA(i^a~l and hence

From the uniqueness of A'$ = (Radon-Nikodym derivative)1'2, we have

A = A' and

Hence

f = \imVQaL¥

This shows that V for W is the same as V for W. Hence U and TT(#)

constructed relative to ¥ and ¥r coincide. Q.E.D.

Corollary. Let 00 be * automorphism of $ and <fif = $Ql<f><f>Q. Then

, 0') ts unitarily equivalent to M(^f, 0).

Since the triplet F, 0, o)r is isomorphic to 0o1S — S> $'» 0o<%> the
triplet g, 0, 5T is unitarily equivalent to g, 07, W if o)r, = 0f<% and JT' is

cyclic and separating. Since ¥f = a¥ for strictly positive selfadjoint a

affiliated with gc is cyclic and separating, we have Corollary from Theorem

4. Q.E.D.

It is also obvious that Jf(f§» 0) is unitarily equivalent to M(f5, 00o)
for any inner * automorphism 00. (If <f>Q(x}=uxu*, then consider 7i(u*)U

instead of [/.)

Theorem 5. L0£ gi tt?2^ f$2 ̂  ^w/te von Neumann algebras on ^1

and $2 w^* cyc//c «n^ separating unit trace vectors ¥l and ¥2. Let (f>l and

02 be injective endomorphisms of f^i and ^2 swc/z ^«^ (f>k(^k) = ^kW^kfikW*
$k(z) = z<fik(l) for all z in the center of %k and ^k(l^ = e~a, k = l, 2, a>0.

The pairs M(gl9 0J, ^(g^ 0X) flwd M(g2, 02), fi(g2, 02) are unitarily

equivalent if and only if there exists a unitary mapping w from ^ onto

$2 and a unitary operator v in g2
 suc^
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^^^v^w^i^w* is an inner * automorphism of f^i where <fiu(x)=uxu*.

Proof. Let w be a unitary mapping such that

and ®M(%19 <f>1)w* = M(%29 02). Since /(g, 0) and J(f$, 0) are denned by

a polar decomposition of the closure s of S defined by SQQ($, $) =

Q*Q(%, 0), (?eJlf(f$, 0), we have »J(gls ^)»* = J(g2, 02). Hence

M>M(gi, 0i)o^* = ^(S2> $2)0- Hence £; restricted to the eigenspace £>0 of
^(Si» 0i) belonging to an eigenvalue 1, gives a unitary mapping from the
pair M(&, 0^0, S(glf 00 (~gls Fx) to M©25 02)05 fl(g2f 02) (^g2, r2).

Let w be the corresponding unitary mapping from $19 §1? ^ to ^2, ̂ 23

Let M77r(01(l))fl;* = e1, ^(02(l)) = e2- By assumption, e[ = e\ = e~a where
b denotes the canonical tj-mapping in M($2, 02)0. Hence there exists a

unitary v^M(j§2, 02)0 such that i)e1t>* = e2. Let V = K(V\ t;eg-
By construction, there exist isometric operators Uf in M(£$i, 0i)_fl

and C/"f in M(g2, 02)-a
 sucn th^t Ufn(x)Ul = n((/>1(x)) and U%n(x)U2 =

7r(02(^)). Then U=U2vwU1[w* is a unitary operator in M(^2j $2)0 an<^
we have u7t(x)u* = K{$2

1<f>v<f>w$l(f)w*(x)}. Hence $2
l<t>v<f>w<t>i<f>w* is inner.

The converse is immediate. Q.E.D.

Theorem 6. L#£ ^5 ^ « yimfe von Neumann algebra with a cyclic

and separating trace vector and $19 $2 be two injective endomorphisms of $

such that ^(S) = 0,(l)g^(l), ^(2r) = z^(l) for all z^c and ^(l)^
02(l)" = e-

fl
5a>0. TM;O triplets %, 01? SFj a^zJ %, (f>2, W2 for some cyclic

and separating trace vectors Wl and W2 satisfy the relation in Theorem 5

if and only if there exists a * automorphism 00 of % such that

is an inner * automorphism of % where v is any unitary element in

satisfying

Proof. The "only if" part follows from the condition stated in

Theorem 6 because <j)w* is a * isomorphism of % if §1 and f?2 are both *

isomorphic to §. The "if" part is also immediate because x^$ and its
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cyclic and separating trace vector W is mapped unitarily to 0o1(^)e

W if W1 is another trace vector such that 0J<% = <%'. Q.E.D.

§5. Asymptotic Abelian System

Proof of Theorem 2

Notation The Hilbert space, representation of Wl and a cyclic and

separating unit vector associated with p are denoted by !Qp, np and Gp.

Modular operator and modular conjugation operator for @p are denoted by

Ap and Jp. ?,(*)(? = ^'<?J;", JP(Q) = JPQJP. •£« denotes the eigenspace

of log Ap belonging to an eigenvalue a and 3Ra is the set of () e 3JJ = 7r(2ft)

satisfying fp(t)Q = eia*Q. Ua is a unitary operator satisfying Uanp(ff)@p

= np(raQ}$p for all Q^m. ra(Q)=UaQU*.

Step 1. Ua commutes with A p.

For Sp=JpA
l
p

12 and Qt=Wl, we have

Sp Uanp(Q)Qp = xp(raQ)*Op = Ua Spxp«fiOp,

which implies ^Ua, SP~] = Q and hence [Ua, 4^ = 0.

Step 2. Let sa be the support of £a in SK. Then 5ae3(c3o) and

5-fl-Sfl.

Since §a is invariant under J1'', sae2R0. Since C7a commute with J^,

§a is invariant under Ua and hence sa commutes with Ua.

Let sa = nl(sa\

It is a normal positive linear functional on TO. By using the mapping

of [2], we have

By Theorem 1 (6) of [2],

Hence for @e2l, we have by Lemma 9 of
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= lim Q(sa?aQ} = lim

This implies

Since p is faithful, we have

By the same argument as Step 3 of the proof of Theorem 1, we have

Step 3. Let sQ(Q) denotes the support in go of @e9Jl, namely the

smallest projection eego such that eQ = Qe = Q. Then 50(£/rfC71)±

sQ(U%U2) is equivalent to s^U^f^s^UzU^ for Ul9 U2^(^ta\if

Assume that s^U^U^ Ls^U^U^ and $0(^1^*) A50(C/2?7f)^0. Then

there exists we(Sff lo) />. i . sucn tnat U^uUl^O. However by (3.1) and

(3.2), D^ziE^eaRo and sQ(U^U2)U^uUlsQ(U^U^=U^uU^^ which is a

contradiction. Hence sQ(UfUi)±s0(U^U2) implies sQ(U1U¥)_LsQ(U2U$).

Similarly the converse is proved.

Step 4. s0(£f?E/i) = s0(£7fC72) is equivalent to s^U
for U19 U2<E(ma\.L.

Assume that a projection ee3o satisfies

Then u2= U2e^(^la)pi, u*it,2 = eU*U2e=£Q, SQ(u*uz} = e. By Step 3,

50(^2w*)±50(Z71[7f). We also have s 0 (& 2 ^2) = 5o(^2e^2) = 5o(^2^2)-

Similarly, eeBo, 50(^1^2)16 and 50(C7f C/O^e^O imply s0(£72£7f)_L
nd 50(17"! [7f)^50(z^1uf)^0 for ul = Ule. Hence

7*^72) implies 50(^i^f)^*o(^2^f).
The converse is similarly proved,
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Step 5. Let #>(*) = 50(Z7C/*) whenever Z76=(2Ra)M. and z = s0( £/*£/).

Then 0° is a lattice automorphism of projections in sa$0.

By Step 4, 0° is single-valued. By Step 3, zl±z2 and <f>Q
a(z i) ±. $°a(z 2)

are equivalent,

If Z7€=(2R f l)/>.,-. , then Utip = saUtip and hence UU*^sa. We also have

f7*e=(3R_a)M. and hence £/*£/^s_fl = sfl.

Let {/„ be a maximal family of elements in (2ft f l)/>.». such that

sQ(U*Uv} is mutually orthogonal. Then sQ(UvUf) is mutually orthogonal

by Step 3 and hence U=^VUV is in (3Ra)M.. If s0(U*U)<sa, then there

exists non-zero u^(^la)p { with s0(w*&)j_s0( £/*£/), by Step 3 of Section 3.

By Step 3, s0( a w*)_l_s0( £/£/*). This contradicts the maximality. Hence

s0(U*U) = sa. Similarly s0(UU*) = sa by Step 2 of Section 3, Step 3 and

maximality.

For any projection e e $Qsa, Ue <E (2Ra)j. ,-. , e t/"e (5Dlfl)^. ,-. , 50(( C7e)*( f/e)) -

es0(U*U)e=-e and sQ((eU)(eU)*} = esQ(UU*)e = e. Hence the domain and

range of 0° is all projections in sa$0.

Since 2 i^^ 2 is equivalent to z2\_z for all z _ L £ l 5 z^z2 and 0°(^i)

^02(^2) are equivalent. Hence 02 ^s a lattice automorphism.

6. If z = ldex + ilde^E^a, then define 02(*)=

—
\0- Then 02 is an automorphism of Q0sa, which follows from

Step 5.

Step 7. If zeB05fl and f/e(9Jia)^z,, then <j>°(z)U=Uz.

It is enough to prove the equation for a projection ze^o^a- We have

Since 0° *s a lattice automorphism, we have

Since s0(UU*)U=U, we have

Similarly we have
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= <j>°a(z)Uz=Uz.

Step 8. (f>°(z) = z if ze=8sa.

It is enough to prove it for a projection z.

Let z<=gsa, sQ(U*U) = z. Then Uz=U=zU. Hence

Let *-50( tftf*) = e, (^-^EEC'. Let z*£E(2Ra)/>.*., i**^ = e7, Mi** = e. Since

z^e and ze,35 u = zu = uz. Hence e'^z. On the other hand eJL^SC*)

implies e'j.*. Hence e' = 0. Hence z =

Step 9. fa leaves Q0sa invariant and commutes with <fi°.

Since Ua commutes with dp, Q0 remains invariant (as a set) under

fa. sa commutes with Ua as we have seen in Step 2. fa also leaves

(jBla)p,i, invariant as a set. We now have

because TO0 is also invariant under ra as a set. This implies fa ^a = ^a^a-

Step 10. (Op9 $l(z)tip) = (®p, z®p} for z^Q0sa.

By Radon-Nikodym theorem, there exists a strictly positive selfadjoint

operator A°a affiliated with $Qsa such that

Since fa commutes with 02 an(^ /° ^s invariant under fa, AQ
a must be

invariant under fa, namely ^4°— \^^ ex 5 C
e\5 ̂ aH — 0- By the same argu-

ment as for sa in Step 2, we obtain exe3- Namely (^4°)2 is the Radon-

Nikodym derivative of (0°)*p by p relative to Q where p = p°7T~1. Since

02 = 1 on $sa, we have ^2 = 1-

Step 11.

Let .zego Then
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( S f , U*Uzaf) = (af,U*<l>l(z-)Uaf) (by Step 7)

-<* (by

= (af, (UU*y<t>»a(z-)8p}e-* (by Lemma 7)

- (by Step 10).

Hence

12. There exists Uaf=(ma)t.,. such that UaU* = sa if o>0.

The proof is the same as Step 5 of Section 3, except the inequality is

now proved using Step 11 as follows:

^ e-"(<t>°a)-
l{( U' C/'*)1} = ( U'* U')*.

Step 13. There exists ^^(fJJ^.,.. such that NaN*a+N*Na=sa,

For any T^sag,0, O^T^l , there exists a projection ere(2Jl0sa) such

that (er)*=r. Let e(0) be a projection in (SOioO such that (e(0))* =

-0)-1^- Let Uw-ewUa. Then £^(0)^*0) =e(0) and hence

,*o,

There exists ^^(SRoO^ suc^

Setting U(^u = Na9 we have ^eCS

N*Na=u*u=sa-ew,

Hence ^*^fl + AraAr* = s-a. We have
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Step 14. z^Q0sa commutes with

Let Q,Q' ^np(%l\.

Then Qf~l(N*')^3R0, it commutes with z. We have

(Q'Qf, Qfa1(N^zf-^Na)ap)

The functional f(Q) = ( Q f , QN*NaQp~) satisfies

(5.1)

for Q<=18l, Q^O and

for

Since the functional (Qp,saQQf} = (Qfl, SyQSyQ^ is invariant under ra

and since (^^^^J^ is weakly ra-central in SK0, we have by Lemma 9 of

[3J,

On the other hand, we have Q*Q'Sp = jl>(Q*Q')*Sf by Q*Q'

Hence

The * subalgebra generated by Kp(yV)0 and 3o is strongly fa central

in 2J10. We now prove that this algebra is strongly dense in 2Ji0. Let

Q<E$R0, 0?-e£>, i = I,..., n and £>0. Let / be a C°° function such that its
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support is in \_-aj2, Ol/2j and /(0) = 1. Let

Q(f} = ((r(t)Q)f(t)dt and c = J|/(*)| cM(^/(0) = l). Since Qf is separat-

ing for 3K0, there exists ^,-eS?^ such that H^-^^H <(4|!^||c)-1e. Since

21 is weakly dense in 3JZ, the unit ball of 7^(21) is strongly dense in the

unit ball of 2R and there exists (^7^(21) satisfying ||(>f||^||(?|| and \\(Qe

-Q^p\\<(2cmax\\Qi\\r
le. Then \\{Q£(f)-Q(f»®p\\<(2 max \\Qt\\)-1**

Since @e-JR0 , we have (?(/) = (?. Due to the assumed support of /,

&(/)£„ e£0 and hence {t(t)Q6(f)}Qp = Qe(f)ap. Hence

We have

Hence 7^(21)0 is dense in 2J10.

We can now use Lemma 1 of Q3] to obtain

We now have

By Lemma 5 of pT]s ^
7^ is dense in £>a. Since £_z, Q~]sa@P^$dai we

have

Since saG& [_z, Q]pa = [zSa, Q1 = [z, Qj by assumption ze30sfl. Since Qp

is separating Qz, ̂ H = 0.

Step 15. So = B-

By the same proof as that of Lemma 5, U7r^(2l)a is total in Si.

Since QQps=$a for (?e2fta, (1-O^ = 0 and "hence (l-sj<? = 0 for

§Ja. Hence (2e7r/)(2l)a commutes with (l-sa}z trivially and
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with saz by Step 14 if z^$Q. Hence z^QQ commutes with np(^V)a for

any a and hence belongs to 3-

Step 16. roo(PnM)=SXn.

Since the spectrum of modular operator for Pn@ is SXn, xn = e~an =

<t>n(l)\ we have by

We now show that PnM has the property L(n with An = (I + xn)~
lxn which

shows

by Ql], if the space is separable.
The same computation as (5.1) shows

(5.2) (fl

for all ^eSDl. Since p is ra invariant, we have

Therefore

For any ^eff (SI), let

where gn is given in the proof of Lemma 5. It belongs to 7 (̂31) and

lim Q( gn) = Q. Furthermore

for real z and the right hand side has an analytic continuation to all

complex z as 7r/3(St)-valued function. We have
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which can be proven by analytic continuation.
Let W j, y = l,..., k be a finite collection of vectors in !Qp. Then there

exist Qj^np(A) and n for any given e>0, such that (?/ = (?/#») satisfies

(5.3) \\Fj\Wi-QP,. <e/4,

Then

)* - jp(f ,

If ze3, then

= e-(Op,NaN*zSp) (by (5.2))

Since tOsasp is fa invariant, we have by Lemma 1 of

lim a)Wafl.(fB(Z)) = (l + e«)-1(^, J.-XB,
a

Hence there exists a such that N/
£ = r~l(Nan) satisfies

(5.4) ||S

(5.5)

where the second inequality is obtained in a similar manner as the first.

Let o)1---o)k be normal states of P^ffll. Since 7Tp(Pn),Qp is cyclic and

separating for PnWl on np(Pn}$p, there exists ¥j^7rp(Pn)^p such that
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(jD¥jonp = o)j. For Q<=PnWl and Nf = Pnn~lN'£, we have from (5.2) ~ (5.5)

= l,...9 k. N£ is a partial isometry in Pw2ft satisfying

Hence it also satisfies N^ = Q. This proves the property L(n.

Step 17. r4

By the proof of Step 16 applied to a = 0, 2ft0 satisfies the property

L{i2. Hence P2ft0 with any central projection P satisfies the same pro-

perty. Since r00(9t)c{l} for any finite von Neumann algebra 91Q4], we

have r00(P09^) = r00(PM2J^0) = {l} if the space is separable by [1].

Q.E.D.

§ 6. Discussions

For a von Neumann algebra 2ft, the relation ^(Sft) = 5(9Jl) implies

that 2ft is Too-pure where 5(2ft) is Connes 5 set Q5]. Namely, for any

central projection p of 2ft,

where the second inclusion is because A p for Wlp is always a restriction

of J? for 2ft for some p. Hence

The decomposition 2ft = 2*Pw2ft in Theorem 2 is a partial central

decomposition according to asymptotic ratio set into r^ pure parts [7].

By exactly the same method as the proof of Theorem 2, we can

analyze a von Neumann algebra 2ft with a cyclic and separating vector $,
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such that logJ has exclusively an isolated point spectrum and each $Qa is

cyclic for TO. The last assumptions imply that each §a is separating for

TO because J^a = ̂ -a and replaces Step 2 of the proof of Theorem 2. We

can proceed up to Step 8 without any further assumption. However Step

10 no longer holds and hence one finds a formula

( U* tO* = e-(A*)*W)-\( UU*M.

If we make a further assumption that e~a(A%)2^l, then we can

complete the analysis and we obtain the same conclusion as Theorem 1

except that <j)n no longer satisfies 0w(z) = 0w(l)2r and M(PWTO0, $„) corres-

ponds to the case A<j>n = eanl2 in Theorem 3.

If e~fl(^42)2 = l does not hold, we are left with an isomorphism from

a subalgebra of TO onto another subalgebra of TO. It will be of interest

to generalize M($$9 0) for such 0.

The construction of M(g, 0) in Section 2 can be generalized to the

case where TO has a commutative semigroup G of injective endomorphisms,

which we shall briefly sketch. This situation is relevant to R^Ry^R^

when log x/log y is irrational. We assume that

0(S) = 0(1)80(1), 0^G.

If 0l5 02 and 0 are injective endomorphisms of TO, then 0o01:=0o02

implies 0i = 02. Hence a commutative semigroup G of injective endomor-

phisms of TO has an envelopping group G such that GD(? and G generates

G. Elements in G is a pair (0a, 06) of elements 0a, 0&eG with an

equivalence relation (00a, 00&) = (^/0a, 0'0&) for any 0, 07eG, where we

include an identity mapping 1 of f§ in G. The multiplication in G is

and (0, 1) is identified with 0eG. 1 = (0, 0) is the identity in G.

For each g^G, we make a fixed choice 0a(g) and 0fr(g) such that

g=(*a(g), 0*(*)), where 0a(l) = ̂ (l) = l and 0a(^-1) = 06(^), 0,(^1) =
0a(g

r) for convenience sake.

The space £>, on which M(g, G) is to be defined, is spanned by

mutually orthogonal subspaces
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where pg is a partially isometric mapping from ^ into § such that

(6.1)
where <l>r(y) = jv$]v(y) as before.

In section 2, we have G = {<t>n, n = Q, 1, ...}, G is the additive group of

integers, <t>a(n) = <S>n for ra^O, $a(ra) = l for Ti^O, (j)b(n) — \ for ra^O and

(f>b(n) = (f>lnl for n^O.

Faithful representations of g and g7 are defined by

(6.2)

(6.3)

is defined by (2.1) for each 0eG and F of Lemma 1 is denoted

It satisfies

(6.4)

(6.5)

(6.6)

(6.7)

(6.8)

From (6.4) and (6.8), we have

(6.9)

Operators ?7(g) and U'(g) are defined by

(6.10) u(g)=zPee,v(<t>b(g'»*r(<fil,(gg'»P*<,

(6.11) £/'(r1) = S
g'

They satisfy
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(6.12) u(g)*=u(g-^, u'(g-^*=u'(g\

(6.13) U(g)U((l, £))= U(g(l,

(6.14)

(6.15)

(6.16)

Taking adjoint and using (6.12), we also have

(6.13)'

(6.14)'

(6.15)'

(6.16)'

The von Neumann algebras are defined by

(6.17)

(6. 18) M'(g, C) = { '̂(

Then

(6.19)

and the vector J2(g, G} = p^ is cyclic and separating for M(g, G) with
modular operator and modular conjugation operator given by

(6.20)

(6.21)

If ^0>1 for all 0eG, then the set M(g, G)0 of (?eM(g, G) commuting

with J(g, G) is 7r(g) and its center is all *egc such that <f*(z) = z<f>(l)

for all

Sketch of proof We shall present proofs of computations later, /(g, G)

is an antiunitary involution (the choice <f>a(g~l) = <f>b(g) and <f>b(g~1) =
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simplifies the expression of /) and satisfies

(6.22) /(& GX*)/(3, G) = ff'(;r(*)), *

(6.23) /(& G) E%)/(& G) = tf'(#), #e C,

(6.24) /(& G) J(g, G)/(8, G) = //(& G)-1.

We have Af(g, G)cM(g, G)' from

(6.25) [>(*), 7r'(y)>0, *

(6.26)

(6.27)

(6.28)

J2(g, G) is cyclic for Jlf(g, G) because

(6.29)

is dense in p^^K. By applying /(g, G) and using (6.22) and (6.23),

we see that J2(g, G) is cyclic for M'(g, G) and hence is separating for

M<8, G).

By setting 5 = /(g, G)J(g, G)1'2, we have

(6.30) Sff((0, 1)X*)Z7((1, «)fi(8, G)

In any monomial of 7r(g) and Z7(G), we make the following reordering.

First factor any U(g) as Z7((0, 0))=Z7((0, 1))^((1, 0)) by (6.13). Bring
all Z7((l, ^)) to the right using (6.14)7 with g=l and (6. 14)' with x = l,

where £/((!, 0)g) ^s again decomposed. Similarly bring all £/((0, 1)) to
the left using (6.14) with g=l. Collect all Z7((l, 0)) into one using (6.13)

in the form U((l, 00) Z7((l, 02)) =[/((!, 0i-#2))- Similarly collect all
C/((F. 1)) into one by using (6.13)7. We then see that J7((0, I))TT(A?)

£/"((!, ^)) are total in M(g, G). As we shall show after the following

computations, U((G9 l))7r(g)Z7((l, G))J?(g, G) contains a total set of analytic

vectors for J(g, G)1/2. Hence (6.30) shows that /(g, G) and J(g, G) are
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modular conjugation operator and modular operator for S^(^,G).

From (6.22), (6.23) and M'(g, G)cAf(g, G)', we have (6.19). The

assertion for the case A^>1 is proved in the same way as the proof of

Theorem 3.

Computations. We present proof of those formulas which require more

complicated computations.

Formula (6.13). Setting ^ = ̂ (^'), 02 = ^((1, <figr\ <f>3 = <

'), we have

(6.31) U(g)U((l,

where we have used (6.1), (6.5), (6.6), (6.9) and (6.8). e(0j) is absorbed

into (^102)'(1)(^10)(1) because ^(1)^(0(1)) = 0^(1) and #Kl)#i(0'a

There exist f and 77 eG such that

(6.32) 7^((

Then

which implies 020B(s')(l) = 0i0(0(l)). Since ^8(
(^0(l) = 020a(gO(l)^2) and 0^(1)0^(0(1)) = ̂ 0(0(1)), 0i(0(l)) is
absorbed into ^ in (6.31). Similarly ^(1,^^3(1) = ̂ (i,*^'. ^(<M2)*
f(03)(02?5i)/(l) = ?53(l)^(0i02)*f(03) and hence W^2)'(l) is absorbed
into Pgllt»g>. Using r(02)*r(02) = l,

Formula (6.14). Setting ^ =
-') and 0 = 0a((0, 1)^'), we have
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, 1))

= s
g

As before, e(0i) is absorbed into 0i0(^)(0i^2)/(l) an^ (^i02)7(l) is then
absorbed into pg(^ti^gf- By an equation similar to (6.32), we have

Hence

,l)) = J?A(^^

Formula (6.26). Setting 0i = $&(#') and <t>2 = <t>b(g8(\ we have

- = o

where E(g') and E(gg') are absorbed into jry and jo??' respectively.

ForwW/« (6.28). Setting ^ = <t>t(g'\ 0i = ̂ .(«r'), 4>2 = <J>i,(g2l g'),

<{>2 = <f>a(g2lg'^ 43 = 4t(glg'\ </>3 = <f>a(glg')> 04 = 06(^lg21g''

4>a(gig2lg''), we have

Since 02(1)^(00* ̂ 2) =^0i)*^(02)0i(l) and Wl)^*^^, 02(1)
is absorbed into /?*'. Likewise, 03'(1) is absorbed into p*>, 02(1) and ^3(1)
are absorbed into pglg-ig'. By (6.9), we have

IU( g-i), ^'(
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Since 01(l)/>*' = jp*-, r(02)0i(l) = 020i(l)P(02) and 01(1)01(02(1))

= 0i02(l)> 0i(l) in e(0i) is absorbed into pp. Likewise, 0i(l) in e^)
is absorbed into p*', 0i(l) in e(0) and 0i(l) in e(00 are absorbed into

pglg-ig'. We now have

Let

^102=^1^(^2 ̂ 01, ^102 =

^204=?206(^21)03^204 =

Then

= ^1^202040103-

Hence 02040i03 = 02040i03j which implies

103)* ̂ (0403).

Hence we have (6.28).

(6.29) Setting 01 = 06((1, 0)), 0i = 0a((l, 0)), 02 = 0»((0, 0))

and 02 = 0a((0, 0)), we have

(6.33) C/((0, l)X*)tT((l, 0))£(g, G) =

where 0i(l) has already been absorbed into 0i(#) and 0i(l) can be

absorbed into p^,,^)- Since 0i = 0i0 (which follows from (6.32) with

g' = l) we have

(6.34)
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where we have used

Let

Then ???020 = ???002
 and hence 0$ = 0$2. Hence

Hence

, C)

Since ^402 is positive definite, support of 02(^2) — ̂ 2(1)- Since

r is dense in the closure of

which is 0J(l)ffl. Therefore (6.29) is dense in p^

Formula (6.30) By (6.33) and (6.34), we have

, C)

By multiplying ^(f?, G)1/2, we obtain
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Hence

G)

Since 020 = 002, we have

1, 0)))

where we have used 0j((l, 0)) = 03((1, 0))0 in the last equality.

Hence

G)

, G),

where 02 = 0a((0, #)) = ^((^, 0)) is used. Q.E.D.

We now prove that £/((£, l))7r(g)£7(l, G))£(g, G) contains a total set

of analytic vectors for J(g, G)112. Let 0, 0eG, 02 — 0a((0> 0)X 02 — 0&((05

0)). Let E1^ denote the spectral projection of ^4X, %eG, It is in the

center of ^. Let p(A) = </)(E^2), q(r) = (l)(\ — E^). Then lim jo(^) = l,

lim cr(r) = l. Since 020 — 002? we have 02(p(^)) — 0{02(^t2)}- Hence

, G)
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which is obviously an analytic vector for ^(^5, G)112 for A

Hence we have a total set of analytic vectors for J(g, G).112

Group-measure construction. If G is a commutative group of ^auto-

morphisms, then we see that M(f5, (?) defined above is unitarily equivalent

to an ordinary group measure construction in the following manner.

G is now isomorphic to G with g^G corresponding to g =

We have 0(1) = 0'(1) = 1, p*pg = l and F(0), 0eG is a

unitary representation of G. We denote V(g}=V(.<t>a(gy)V(.$b(g))*( =

)-1)). Since #&) = &, 0(^,) is affiliated with &.

We define

(6.35)

which is a unitary operator on £>. Then

(6.36)

(6.37)

(6.38)

(6.39)

(6.40)

(6.4i) r/(g, G) r* =

(6.42)

Here J^ = ^f| and satisfies

(6.43) (g(^l
g
l2W, |(

V(g) is defined as a unitary operator satisfying

(6.44) V(g)x¥ = g(xAl
g

l*}W.

The formulas on the right hand sides of (6. 37) ~ (6. 40) are usual
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group-measure construction (at least for a commutative §) and works even

when G is non-commutative. Formulas (6.41) and (6.42) give modular

conjugation and modular operators also for non-commutative G.

Example. Let Rx= (x) (Rg, S } where G is a countable set for the
g<=G

moment, Rg is a type /2 factor and Sg has a spectrum ^ and (1 — I)

relative to Rg (independent of g) where A(l — A)~1 = x. Since the modular

operator for S = ®Sg has a spectrum at ^ = {0} U {xn; n = 0, ±1,...} and

R is asymptotically abelian relative to any one parameter non-compact shift

of G, the condition 3 — 3o is satisfied by Theorem 2 and (Rx, fi)~(M(f5, 0),

•S(f§» 0)) f°r a hyperfinite finite factor g and its endomorphism (p. The
hyperfmiteness of g i§ easily seen by expressing it by a group measure

construction where the group is generated by an ascending sequence of

finite groups.

Now let G be a group and V(g), g^G is a unitary operator on

fl^O which shifts indices gr^G by left multiplication, namely

where all Rg, Sg are identified with a single /2 factor R0 and a vector

J20, TT^ is a natural representation of R~Rglc on (x)(^, Sg) and Qk^RQ.

Then V(g)Q = Q9 V(g)RxV(g)* = Rx and hence F(^)(/Z,)0fr(^)* = (/Z,)o
because F(g) commutes with modular operator A for J2. It also commutes

with the modular conjugation / for S.

Consider M(RX, G) constructed in exactly the same way as M(g, G)

by (6.36)^(6.40) and M(g, G) = (7r(S), Z7(G))". Then (6.41) and (6.42)

give modular conjugation operator and modular operator for S(RX, G)

where J¥ and Ag are to be replaced by / and A. In particular A(RX, G)

has a spectrum 5 .̂.

The set M(RX, G)0 of modular invariant elements of M(RX, G) is

M((RX\, G). An isometric operator U^RX inducing an injective endo-

morphism 0 such that (Rx, &)~(M((RX)0, 0), S((RX\, 0)) also induces an

injective endomorphism of M(RX, G)0 by

The pair, M(RX, G) and ^2(^^, G), is then unitarily equivalent to the pair,
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M(g, <£) with %=M((RX), G)0~M((RX\, G) and Q(%9 0). The case where

G is a free group of two generators is given by Pukanszky. Since M(RX, G)

for this case does not have property L its asymptotic ratio set is {0}.
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