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Structure of Some von Neumann Algebras
with Isolated Discrete Modular Spectrum

By

Huzihiro Arak1

Abstract

From a finite von Neumann algebra § with a faithful normal trace and
its normal injective * endomorphism ¢ satisfying ¢(3)=¢(1)FH(1), we construct
another von Neumann algebra M($, ¢) by a method which reduces to group-
measure construction when § is commutative and ¢ is an automorphism. If
¢ satisfies ¢(z)=¢(1)z for all central elements z of § and ¢(1)i=e * for a
positive number a, then M($, ¢) has the following 3 properties: (1) It has a
faithful normal state p whose modular operator 4, has the spectrum {0} U {e*%;
n=0, +1,..} =S.a. (2) The set M, of all elements of M (%, ¢), commuting
with 4, is isomorphic to &. (3) The center of 9, coincides with the center
of M.

Conversely, any von Neumann algebra with a faithful normal state p
such that log 4, has exclusively an isolated point spectrum and the center of
I, coincides with its center is a direct sum of M(%;, ¢;), j=1,..., and possibly
a finite von Neumann algebra, where each ¢; satisfies ¢, (F)=¢;(1) & ¢;(1),
¢;(2)=2z¢;(1) for all central element z of § and ¢;(1)i=e"%.

If p is a KMS state under time translation of a C* algebra, which is
asymptotically abelian with respect to (either discrete or continuous) space
translation and if the spectrum of generator of time translation has exclusively
an isolated point spectrum in the representation associated with p, then the
associated von Neumann algebra has the above structure where the asymptotic
ratio set of §; as well as that of a possible finite summand (if non-zero) is
{1} and 7 (M(F,, ¢;))=Sz; where x;=e%. The last result on asymptotic ratio
set is limited to the case where the representation space is separable.

A generalization of M($, ¢) for a commutative semigroup of endomor-
phisms of a finite von Neumann algebra, instead of one ¢, is given.

§1. Notation and Main Results

Let 9% be a von Neumann algebra, £ be a cyclic and separating unit
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vector, 4 be the modular operator for £, t(¢)Q=4"*Q4-%, J be the modular
conjugation operator for 2 and j(Q)=JQJ.

9, denotes the eigenspace of log 4 belonging to an eigenvalue « and
M, denotes the set of QWM such that r(¢)Q=e***Q. It is known that
M, is a finite von Neumann algebra containing the center B of I and 2
is a cyclic and separating trace vector for 9, restricted to §,. 3, denotes
the center of M, 3,2 3.

We are interested in the structure of Yt and we can analyze it when
log 4 has exclusively an isolated point spectrum and 3,=23.

For any given finite von Neumann algebra ¥ with a faithful normal
trace vector ¥ such as IR, with £ and its normal injective * endomor-
phism ¢ satisfying @(F)=¢(1)FA(1), we present in section 2 a method of
constructing another von Neumann algebra, denoted as M({F, ¢), with a
cyclic and separating vector 2(F, ¢). If (¥, ¢(2)¥)=e (¥, z¥) for all
z €, (the center of ), then the spectrum of modular operator 4 (%, @)
for 2(F, ¢) is

S,a={0}U{e™; n=0, +1,...}.

If ¢(2)=2z¢(1) for z€%,, then 3,=23.

The following main result proved in section 3 gives a converse.

Theorem 1. Let Yt be a von Neumann algebra with a cyclic and
separating vector 2 such that log 4 has exclusively an isolated point spec-

trum
{0, ial, iaz, }, O<a1<az...,

and the center 3, of the set WMy of all elements in M commuting with 4
coincides with the center B of Y.  Then there exists central projections
P, of M, n=0, 1, ... such that

(i) P,LP, forn+m, ), P,=1and P,+0,

(ii) Py is finite if Py+0,

(iii) P, is * isomorphic to M(P,M,, ¢,) for some normal injective
* endomorphism ¢, of P, I, satisfying

¢n(anO) = ¢n(Pn)an0¢n(Pn)
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$a.(2)=¢,()z, zE€P,3B,
¢n(Pn)h=e_anPn

if P,+#0, where Y| is the canonical Y mapping in M.

In a special case where )t is a factor, the spectrum of log4 is neces-
sarily an additive group. (This statement is always true if all subspaces
D) =(Ego— Epr0)® for A=g/1dEx, I=(a, B), is cyclic for M (and
hence separating for I due to JO(U)=9(—1)) even when 4 has a con-
tinuous spectrum.)

Examples where the center of ¢, does not coincide with the center
of M are tensor product of ITPFI of the class S,; (type III or II) with
any finite von Neumann algebra where the vector £ is product of a defin-
ing product vector of the ITPFI with a cyclic and separating trace vector
for the finite von Neumann algebra. Another example for 3,#8 is R,QR
with £=0,Q0 where £, is the defining product vector of R,, R is type
I, and spectrum of modular operator for (R, @) is {y™!, 1, y} with y& S,.

The condition B,=73 is satisfied for a KMS state of an asymptotically
abelian C* algebra. More precisely, a net of operator @, in a von Neu-
mann algebra Y is called strongly central if there exists a weakly total
self-adjoint subset T of Wt such that lim [Q,, w|=0 strongly for every
weW. A subset A of M is called stro;gly T, central relative to a net
7, of x automorphisms of I if 7,Q is strongly central in N for each QL.
We have

Theorem 2. Let M be a von Neumann algebra, v, be a net of *
automorphisms of M, o be a faithful normal t, invariant state of WM and
W be a weakly dense C* subalgebra of I, which is invariant under modu-
lar automorphism < ,(t) for o and is strongly <, central. Assume that
modular operator 4, for o is such that log 4, has exclusively an isolated
point spectrum.

Then By=73 and there exists central projections P, satisfying (i)~ (iii)
of Theorem 1. If the representation space is separable, in addition, then

ro(Pol)=4{1}  if  Py#0,
rw(Prsz)={1} Zf Pn:/:O’
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ro(P, ) =S, if P,+0, where x,=e %, n>0.

This theorem is applicable to a situation where p is a KMS state for
time translation of a C* algebra A, which is asymptotically abelian for
(discrete or continuous) space translation, the generator of time translation
has exclusively an isolated point spectrum in the representation associated
with p and the representation space is separable.

§2. Construction of M({F, ¢)

Let ¥ be a finite von Neumann algebra acting on a Hilbert space &
with a cyclic and separating unit trace vector & and §{, be the center of
%. Let § be the canonical § mapping on $,, Jp be the modular conjuga-
tion operator for ¥ and j,(Q)=JyQJy.

Let ¢ be a normal injective * endomorphism of $, w, be the vector
state by ¥, and ¢*w, be the normal positive linear functional defined by

*wy(Q) = wg(4(Q)).

Both w, and ¢*w, are faithful and tracial.
By the Radon-Nikodym theorem, there exists a strictly positive selfad-
joint operator A,,,:gldE‘,‘} such that E4e$, and

Pm $*op(Arzd)=wy(2), A= A,EL, z€F..
In other words, ¥ is in the domain of ¢(4,)=lim;¢(A4;) and
@1 (B(A4)Y, $(2)(4)¥) =¥, z¥), zEF..
(These equations hold for z€$ as will be seen in the following proof.)

Lemma 1. There exists a unique isometric operator V satisfying
2.2) VO¥7 =¢(Q)¢(4)¥. QB
It satisfies
(2.3) r*r=1,

2.9 rQ=¢@V, V*$@=0V* Q€%
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(2.5) [y, V]=0.
Proof. Because ¢*wy and wy are tracial, we have
6@ (AT ||*=¢*wy(4,.0*QAL)
=¢*0y((4.0%Q4.)")
=¢*0y(4.(Q*Q)'4y.)
—0y((Q*Q)") =0z (Q*Q)=[|Q¥ >, QEI.

Since F¥ is dense in &, there exists a unique isometric V satisfying (2.2).
(2.3) says that V is isometric.

The range of ¥ is the closure of ¢(F)#(4,)¥, which is invariant under
¢(%). Hence VV* commutes with ¢(Q), Q=F. From (2.2), we have for
Qe and Q,EF

V*¢(@) Vo ¥ =V*¢(QQ1)$(4,)¥
= V*VQQ,¥ =00, 7.
Hence
(2.6) V(@ V=0.
Hence
Vo=rr*g@V=¢@VV*V=¢@Q)V,
QV*=V*¢@Q)VV*=V*VT*$(Q)=V*¢(Q).
Since J,Q¥ =Q*¥, we have
VIgQ¥ = VQ*¥ = ¢(Q*)$(4,)¥
=lim §(Q4)*¥ =Jr3(Q)$(4)¥
=T, VQ¥.

Hence (2.5) holds. Q.E.D,
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Lemma 2. If z is a closed operator affiliated with ¥ and ¥ is in
the domain of z, then ¥ is in the domain of ¢(zA,) and Vz¥ =¢(zA,)¥.

Proof. By polar decomposition of z, it is enough to prove the state-
ment for a positive selfadjoint z=gl dEz.
Let z,=2zE%. Then

Vz¥=1lim Vz,¥ = limlim ¢(z,4;)¥.
A oo

1
Ao o0 L

Hence ¥ is in the domain of ¢(z4,) and Vz¥ =¢(24,)¥. (Note that A,
is affiliated with ¥, and hence E? and E4 commute.) Q.E.D.

Lemma 3. Define
Dé,”’=¢(Dés”_1)A¢), n=1,2,...,
D =1.

Then V*¥ =D@¥, D is affiliated with §, commutes with ¢"(Q), Q€F
and its support s(D{”) is ¢"(1).

Proof. By repeated use of Lemma 2, we have V*"¥=D»¥. 1t is
affiliated with ¥ because it is a product of mutually commuting positive

selfadjoint operators
@.7) Dy = 11 ¢*(4,).
E=1

Since spectral projections of 4, is in the center of §§, spectral projections
of ¢*(A4,) is in the center of @*(F)D4"(F) (k<n) and hence D com-
mutes with ¢7(Q), Q€@. Since A, is strictly positive, s(4,)=1. If z=
Sl dFE, is a positive selfadjoint operator, then z=A(1—E,) implies s(¢(z))
gsgp ¢(1—E,)=¢(s(z)). Hence s(¢(z))=¢(s(z)). In particular,

s(DP)=d(ADEVH =4"()
by induction. Q.E.D.

Lemma 4. Assume

(2.8) (&) =d(LT$Q).
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Then D{7¢"(1),. and
(2.9) VryEr=¢n(1) je{g* (L},

where y denotes an operator affiliated with a von Neumann algebra.

Proof. From (2.7), ¢%(4y) 7 #*(@.)=F.#*(1) and Ti gH(1)=4"(1), we
have D{"7¢"(1)F,. The range of V is the closure of

@Y =¢(DF(DY =d(HFJr8(D¥
=D jr{d(}F¥

and hence VV*=¢(1)j,{6(1)}.
By (2.4) and (2.5), we have inductively

Pu Y kn — V¢"‘1(1)j¢{¢”_1(1)} Ve

=¢"(D)jpld" W}V V*
=¢"(1) je{d"(D}.
Q.E.D.
We define

(2.10) ¢' (9 =jeld(Ge(yD}, yEF.
Then from Lemma 1,
(2.11) Ve (n=yV* Vy=8'(nV, yeF'
We also note
(2.12) ¢'"(1) = jp{8"(D}.

We now construct M($, ¢) on a Hilbert space
_1 oo
P=A{@¢""(DR}ID{ §2 (1)K},
namely we have partially isometric mappings p, from & into © such that

¢n(1>9 n—>_:05

(2.13) PrPn=
P2l gma),  nso,
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and subspaces 9,= p,& are mutually orthogonal and span the whole space

o.

Let x€, yeB¥’. We define faithful representations of & and ' by

2.14) n(%) = I puma(*) P

$"(x), n=0,
(2.15) T,(x)=

x, n=0,
(2.16) T'(9)= 2 Pl 5) i

¥s n=0
2.17) 74(y) =

¢"'"'(y), n=0.
We also define partially isometric operators
(2.18) UznizwanUnpf,

1, n=0,
(2.19) U,=

V*, n<o0,
(2.20) U= 3 paaUsphs

V* n>0,
(2.21) U,=

1 n=0.

The von Neumann algebra M(F, ¢) and a candidate for its commutant
are defined by

(2.22) M@, $)={=(®, U, U*}",
(2.23) M (E, )=A{='(¥), U, U*}".

Theorem 3. Assume ¢(F)=¢1)FS(1). L2(F, d)=p ¥ is a cyclic
and separating vector for M(F, ¢), with modular operator A(F, ¢) and
modular conjugation operator J(F, ¢) given by

-1 o0
(2.24) 4@, $)= 2 pajei DY}y i+ 2 Pl DY PY,
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(225) J(%‘, ¢)=Zn: P—nJWPt’

where the inverse in jp{D™}~% is to be taken in ¢*"(1)R=J,¢"(1)K.
M(F, @) satisfies
(2.26) M(F, ¢)' = M'(F, ¢).

If A,>1, then the set of Q€ M(, ¢) commuting with A(F, ¢) is n(F).
If A,=e®'? for a strictly positive number a, then the spectrum of

4(F, 8) is
(2.27) S,={x"; n=0, =1, ...} U{0}, x=e".

If A,>1 and ¢(z)=2z¢(Q1) for all zE€F., then the center of (%)
coincides with the center of M(F, ¢). Under the assumption A,>1, the
center of M(F, ¢) consists of all z€$, such that ¢(z)=z¢(1),

If ¢(2)=2z4(1) for all z€F,, A,={s(1)"} 12

Proof. J(, ¢) defined by (2.25) is antiunitary and satisfies

(2.28) J&, $)*=1, JS, LE, )=2(, 4),
(2.29) J&, B)r(x)J, 8)=7"(ju(x)), €T,
(2.30) J& HUIES, $)=U,
where (2.5) has been used in (2.30).

We obtain
(2.31) M'(F, ) M(3, 8)’

from the following calculations.
[2(x), 7' ()= T pam()( P Pl ) P
=2 ()P ) (2) P
=2 p[7,(x), m,(3)]p5=0,
[U, 7(y)]=3] paeilLs y1P¥
£ 3 P AVHH M) () — 1M1 )¢ 1) VY pf

=0,
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LU, m(x)]=J@@, BLU, 7' (e () (S, ¢)=0,
[U.UT=5 pud Pl Pt V5= V* pls puei} P
+pot V¥ pip-1 = V*ppi} P
+_ij PtV pros pu-1— Prsa Pra V3 P
=0,

LU% U]= }; Pr2iPr-1Pua VE=V* pr_ 1 pu i} i+ p1AVV*— p§po} pf

0
+ 2 PeAV Pi s Pur— PiaPa VP
=0,

where (2.4), (2.11), (2.8) and p, pfpr= pPn Pipeps=p5 for |n|=|k|,
nk=0 are used.

From definitions, we have for n=0
T(F U L2(F, )= p-FDJY.
Since s(Dg")=¢"(1), the closure of p_,FD{*¥ contains
P-x&8" (V¥ = p_,Flpd" (V¥ = p_, jy{8"(D}F¥
=p-3¥
which is dense in _,. We also have for n>0,
Urn(@) L, 8)=p.S¥

which is dense in 9,. Hence 2(F, ¢) is cyclic for M($, @).

(2.29) and (2.30), together with (2.28), imply that £2(%F, ¢) is cyclic
for M'($%, ¢) and hence separating for M({, ¢) by (2.31).

Setting S=J(F, #)4(F, #)''2, we obtain for n=0

Sa(x) U**2(, ¢)= patux D jw(Dg”) ¢ ().

Since (D) 1¢ (DT = I, (D) ¢ ()T = (D) ~1¢"(1)¥, we obtain
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S(x) U*"2(F, ¢)= puJyxd" (¥ = p,x*¥
= Urn(2*)2(3, ¢)-
From (2.24) and (2.25), J(&, $)4(F, ¢)=4(F, ¢) ' J(®, ¢). Hence SZ=1

whenever S is defined. Hence
SUr(%)2(F, ¢)=n(x*)U*"2(F, ¢).

Due to (2.4), we have

oo 0 8
ﬂ(x)U*=; Pn—1¢”(x>P:zk+ _Z°° Pﬂ—‘l pr:

=3 Pt @) P+ a8V i
— (@)U,
m(x) U={ Ura(a*)}* = {m(B(2))* U7}
= Un(¢(x)).
Due to (2.9) with n=1, we have

~o 0
n(x)U*= ; Pur 8N (X) P+ 2 paa 2V P,

=3 puat B pE+ 2 parx$(DV p
= n(xp(1)U¥,
Un(x) = (=(x*) U%)* = Un($(1)),
Ur(x) U* = (¢~ H{p(D2d (DD UT,
UU*2(F, ¢)= p VAV
-2, 9
U*UQ(E, 6)=popt pi¥ =7(B1)L(E, 9).

The last two equations imply

(2.32) UU*=1,  U*U=n(¢(1)).
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Therefore n(F) U** and U*n(F) with varying n together are total in
M(F, ). Hence

(J@B, #)4(S, $)'')QL(F, 6)=0*2(, 4)

for all Qe M(, ¢).
Let D;n>=ngEL and jy{(Dé”’)”lgé"‘(l)}=ngjy(EL/).
Since E;F¥ and

BELDYY =FDy E¥ =SD jo(EDY = jo(ENTDPY

are total sets of analytic vectors in ¢*(1)® and ¢'*(1)R, respectively,
MG, ¢) 2(F, ¢) is a core of 4(F, ¢)!/2.

Hence 4(gF, ¢) and J(F, ¢) are modular operator and modular conjuga-
tion operator for 2(§F, ¢).

By (2.29) and (2.30), we have

If 4,>1, then ¢"(A4,)>¢"(1) and hence D{ >¢"(1). Then 9, is the
eigenspace of 4({F, ¢) belonging to 1. If Qe M(, ¢) is invariant under
modular automorphisms for 2(F, ¢), then Q leaves 9, invariant and hence
the restriction of Q to ©, must be in the von Neumann algebra generated
by E,M(%, ¢)E, where E, is the projection on 9,. Since #(F)U*”* and
Urn(F) are total in M($3, ¢) and En(F)U*"E,=E,U"n(F)E,=0 for n+0,
we have E,M(F, ¢)E,=n(F)E,. Hence QE,=n(x)E, for some xeg.
Since R(F, ¢) is separating, Q=n(x)en(F)E,. Conversely, all elements
in 7({¥) commute with 4(F, ¢), which is most easily demonstrated by

{4@@, #)a(2) 4@, )7 —n(2)}2(F, 6)=0.

If Ay=e*%, then D{” =e"/2¢"(1) and hence 9, is the eigenspace of
4(F, ¢) belonging to an eigenvalue e”¢ and hence the spectrum of 4(g, @)
is S,, x=e

If z is in the center of M(%, @), then by a general result it is in the
center of the set of elements in M(F, ¢) commuting with 4({F, ¢). Under
the assumption A,>1, z=7(z), z€P,. It is in the center of M(, ¢) if
and only if
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Un(z)=n(z)U.

Since UU*=1 and Urn(z)U*=n(¢"{4(1)z4(1)}), this condition is equiva-
lent to ¢(2)=¢(1)z¢(1)=2¢(1). Hence the center of M(, ¢) consists of
w(z) such that z€%, and ¢(z)=2z2¢(1).

If ¢(z)=2z¢(1) for all z€,, then

&, d(DF) =T, 26(VF) =T, z2¢(1)'¥).

Since ¢ and } are faithful, ¢(z)'=z¢(1)"+0 for z€$,, z#0.
Hence s(¢(1)")=1 and (#(1)*)! exists. Then

¥, p(AzAD¥)=, 2¥)

if A={4(1)"}71'2. Since such 4 in §, is unique, we have A,=(g(1)")"'2
Q.E.D.

Remark 1. If ¢(z)=2z¢(1) for all z€F,, then the condition A,>1
is equivalent to the condition that ¢ is a proper injective endomorphism
of z%, for every central projection z+#0, as is seen by the following argu-
ment.

If A,=1, then (¥, (1-¢(1))¥)=0. Since ¥ is separating, ¢(1)=1
and ¢ is an automorphism. If p is the projection on the eigenspace of
A, belonging to 1, then the same argument shows p=¢(p) and hence ¢
is an automorphism on p%. Since p= pd(1)=¢(p) for every central
projection, A44,=1 and hence A,>1 is equivalent to ¢ not being an auto-
morphism on 2z for every central projection z=0.

Remark 2. If § is commutative and ¢ is an automorphism, then
M($, ¢) is the von Neumann algebra obtained by group-measure construc-
tion with the additive group of integers.

§3. Proof of Theorem 1

We consider the von Neumann algebra 90t on a space  in Theorem
1. We start with preliminary analysis.

In [3], we have considered the set 90!, of operators Q in 9 satisfy-
ing QO()cO(I+J) for every finite open interval I where ((«, B))=
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(Eg—o—E,.o)H, E, is the spectral projection of logA=Sl dE, and J is a
finite open interval. We assume that the spectrum of logd is {0, *logx,,
+logx,,...}.

If the spectrum of log 4 contained in J is just one point «, then
HU)=9, Let QM; for such J. Then

{(£)Q}2 = 41Q R = Q2.

Since £ is separating, r(¢)Q=¢€*!Q and Q<.
Hence I;=IN,.
By Lemma 7, Lemma 5 and (2.1) of [ 3], we have

(3.1) WMy My g,
(3.2) ME=_,,
(3.3) M, 2=9,.

Lemma 5. UM, is total in M.
a

Proof. Let J,=(log x,-,, log %,,,), n=0, +1,... where x,=1. Let
6,,, n=0, +1, ... be non-negative C> functions with a compact support in
J, such that Egi'n:l. Let f be any C= function with a compact support.
Let

f(t)=(27r)‘1g F(We-da,

fuy= @ FOF, (e da.

Then f=3} f, (finite sum) and Q(f,)EMe,, by Lemma 6 of [3].
Hence Q(fn)e VIR,.

Let & be ; non-negative C~ function with a compact support such
that Z(0)=1 and g(t)=(27r)'1ge"'“g(/l)dl. Let g,(t)=ng(nt) and
&,(A)= g(4/n). It is then easy to see 1‘1_13 Q(g,)=0Q. Since Q(g,,)e&a/im,,,

we have the lemma. Q.E.D.
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Lemma 6. (M,), ; D0=9,, where (M), ; is the set of all partial
isometries in M, and the bar denotes the strong closure.

Proof. Let ¥ =9, and ¢>0 be given. By (3.3), there exists Q= Wk,
such that ||Q2 —¥||<e/2.

Let Q*Q:Sldex. Since Q*QeM, by (3.1) and (3.2) and since I,
is a von Neumann algebra, e,eM,. Let 0>0 be such that Q;=Q(1—e;)
satisfies [|Q;2—0Q82||<e/2. Let |Q|;=(Q*Q)'2(1—es)+es. Then |Q];
has a bounded inverse |Q|;'eM,, U=0Q;|Q|;'e(My),.:, P=|Q|;2€9D,
and U0 =Q;8 satisfies ||UO—T||<e. Q.E.D.

We need 2 Lemma on the mapping FZ® introduced in [2]].

Lemma 7. If Z is a center of a finite von Neumann algebra R and
0 is a trace on R, then

(3.4) FIRQ)=Q's*(0).

Proof. As proved in [2], FZR is Z-linear, positive normal mapping
from R onto Zs?(p), vanishing on (1—s%(0))R+ R(1—s%(p)) and strictly
positive on sZ(p)R. Since p is a trace state, we have

0(Q1022) =0(Q,2Q2) =0(Q20: 2)

for zeZ. Hence FZR(Q,Q,)=F?%(Q,Q,), which implies FZR(UQU*)=
FZR(Q) for all unitaryU in R. Hence FZR js the canonical § mapping of
Rs%(p) and we have (3.4). Q.E.D.

Proof of Theorem 1

Step 1. Let be s, the support of §, in I, namely the smallest projec-
tion in MM satisfying (1—s,)9,=0. We prove s, 3.

Since 9, is invariant under 4% (as a set), [s,, 47 ]=0 for all real t.
Hence s, M,.

Since MO, =9,, any QM, commutes with s,. Hence s, 3,.

By assumption 8=73,, we have s, & 3.

Step 2. sup{UU*;Uc(I,), ;. } =5,
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Since U2e9,, (1—s,)UL=0 which implies (1—s,)U=0. Hence
52 UU* for all Us(M,),. ;..
By Lemma 6, {U9,} is dense in §,. Hence

{UU*0}={UD} ={(UI'D)~} ={(W' UDy) "}
is dense in (M'Y,) =s5,9.

Step 3. sup{U*U; Uc(IN,),.;. } =5,

Since J4d=4"1], we have J9,=9_,. Hence s_,=j(s,) where s, is
the support of §, relative to M. Since s_,Z by Step 1, s, =j(s_,)=
s_oZ. We now have 9,Cs,9 and hence s,9=I'Y,Cs,D, which implies
5,<s),. At the same time $,Cs,9. Hence s,9=MY,Cs,H which implies
s’ <s,. Hence s,=s,,=s_,. By (3.2) and Step 2, we obtain Step 3.

Step 4. For Us(IMN,), ;..
(3.5) (UU*)i=ex(U*U)".
Proof. For z€8,, we have
(2, UU*z22)=(2, UzU*Q) (by 83=30)
=(8, UzJ4*2UQ)
=(82, Uzj(U)R)ex'2  (by URED,)
=(j(ULR, UzQ)e~'?
=(82, U*Uz82)e".
Hence
F3To(UU*) = e*F3:M(U*D).
By Lemma 7, we have (3.5).

Step 5. There exists U,e(M,), ; such that U,U%=s, for a>0.

Consider a maximal family of U,&(M,),; such that U,U¥ are
mutually orthogonal and U#*U, are mutually orthogonal. Then U,=2U,
e(M,),.;.. Assume s,— U, U%+#0. By Step 2, there exists Ugy&(My),..-
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such that c¢(s,— U, U¥)U, U%,#0 where c(+) denotes the central support.
By the comparability theorem, there exists a projection e in 3, and partial
isometries u,; and u, in W, such that ufu,=e(s,—U,U%), v uf=s
eUnUs,, ufu,=Q—e)(UnUf,) and uuf<(1—e)(s,—U,U%). Due
to c(s,— U, UH) U U, #0, we have either u,#0 or u,#0. If u,#0, we
set U'=eufUyy. Then U'U*=ufu,<s,—U,U%, U +#0 and U'e(M,), ;..
If u,#0, we set U'=(1—e)uyUy. Then UU*=u,uf<ss,—U,Uf,
U'#0 and U'e(M,), ;..
By Step 4,

(sa—UgU) =5, —e (U, UL
ze (s, — U, UD!
Ze (U U =(U*U)\
Hence there exists ue(N,), ; such that
wu*=U*U, u*u<s,— UXU,.
Setting U” =U'u, we have U” €(IM,), ; and
U U"=u*u<s,— U*¥U,,
Urgm*=U0U*<s,—U,U%.

We also have U"U"*=U"U"*+0 and hence U” #0. This contradicts with
the maximality of {U,}.

Step 6. Fix U, such that U,€(M,), ;, U,Uf=s,. Then (ULU,)'=
e %s,. Such U, exists for >0 by Step 5. Define an injective endomor-
phism ¢, of s, by ¢.,(Q)=U%QU,. Then

(3.6) Ba(Weo) = $o(1)WMoB,(1),
(37) ¢a(z) = z¢a(1)9 z Er80’
(3.8) d., (1) =es,.

(3.8) is the same as (UXU,)l'=e s, (3.7) follows from 5,=25,
which implies U¥z2U,=2U0%U,=2¢,(1) if z€8,. Let e be a projection
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in ¢,()M$,(1). Then e<d, (1)=UXU,. Let ¢=U,eU¥csM,. Then
e=U*e'U,=¢,(e’). Hence ¢,(1)IM6,(1) . (W,). Conversely ¢,(W,)
Ba(1)8(M)d.(1) C 6, (1)IM,p,(1). Hence (3.6) holds.

@, is injective on W,s, because ¢,(Q)=0 implies 0=U, 6, (Q)U%=
$,05,=0Q for Qes,M,. ¢, is a * homomorphism because ¢,(Q,)9.(Q,)=
Ba(Q15.02) =6,(Q1Q2) for Qy, Q€ 5,y and B,(Q)*=B,(Q%).

Step 7. 5u(Daep.s, C UMDY, ;. for n20 and su(Wye)y.s. € (W)
U%® for n<0, where U, is from Step 6.

Let n>0 and Ve€s,(M,a),:. By (3.1) and (3.2), w=UkVe(M,)
and U%w=s,V=V. w is a partial isometry because ww*=g¢2(VV*)
and w*w=s,V*V are both projections. Hence s,(M,,), ;. € UZ(Mo),.i.-
Taking adjoint and using (3.2), we have s,(M,,), ;. C(My), ; UL for
n<0. The case n=0 is trivial.

Step 8. Let {0, *a,, *a,,...} be spectrum of logd such that 0<a, <
a2<---. Let

-1
P,,=san”H (I=s,,), n=1,2,..,
Bo1

P,=1— % P,.
n=1

By definition and Step 1, P, are mutually orthogonal central projections
with the sum i P,=1. P;=s5,#0. On PyD, 4 has no eigenvalue
larger than 1 al:d0 hence 4=1. (Each P,9 is invariant under J and 4
because P, B.) Consequently, Py is a cyclic and separating trace vector
for P,

Let U,=P,U, , 2,=P,2,F,=P,M,. T, is known to be a finite von
Neumann algebra with £, as a cyclic (in P,9) and separating trace vector.
Let ¢,=9¢,, |8, It satisfies (3.6)~(3.8), where ¢, is replaced by ¢,, W,
by %, 8¢ by the center {,. of &,, & by a,, and s, by P,.

n?

Step 9. Urg,L2, and §,(UH™R,, m=0, 1, 2,... span the whole space

P.D.
By Step 7 and (3.3), they span _f} P,9p,,. Assume that P,9,+0,
b+#ma, for any integer m. Since P,9_,=P,JD,=JP,9,+0, we may
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assume 6>0. There exists a non-negative integer m such that ma,<b<
(m+1a,.

Up(Up)* =P,z Uy Uy*
for U;=P,U,. We define W=(Ur)*U;. WeP,W_,,,. We also have
W*W=U;*P,U;=U;*U; +0.

Hence 0+ WQ,€P,Dy—p,,. Since 0<b—ma,<a,, this contradicts the
definition of P,.

Step 10. P, M, £,, %, and U, are unitarily equivalent to M(%F,, 8,),
2(Bus ), 7(F,) and U of Section 2, where ¥ is to be taken equal to £2,.

urg,2,, m=0,1,... and §,(UH™L,, m=1,2,... are orthogonal
family of subspaces of P,9 because they belong to different eigenvalues
of 4. They span the whole space P,9 by Step 9.

We have for x, y€g, and m =0,

(Upx8,, Up y2,)=(2,, x*¢7(1) yL2,)
=(Umn(%)L(Bns b0), Urn( ) 2(Fun))

where we have used (U*)"U™=n(¢7(1)) which follows from (2.32) and
U*n(x)U=n(¢(x)). For m>0,

(U™ 82y y(UD™2y)=(2yy Upx*y(UN)"R,).

Since U,4,()=U0,U3U0,=U,, Up=U,8,(HUz*=Uy¢7(1).

Hence Urx* y(UN)m=Ur¢r(1)x* y¢r(1)(U¥)™. There exists Q€, such
that ¢7(Q)=@r(Dx*yg7(1). Then Uzgp(QUUH"=Un(UN"QUI(UDH™
=P,QP,=Q. Hence

(U™ 2y, y(UD"2,) =2y, 85" {87V 2* yo7(1)}2,)
= (2B 84), Urn(x* ) U*"2(Fr ¢,))
= (@) U*"L(Fns $a)s () U™ L(F 60))-

Therefore there exists a unitary mapping p from  of Section 2 to
P,D such that for all x=%,,
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pUR(2)8(Fn 60)=UzxL2,, m=0, 1,...,
pr(R)U*mAF,, ¢,)=2(U)"2, m=1, 2,....

It is then immediately seen that

prxp=n(x),
p*U,p=U.

By Lemma 5 and Step 7, §, and U, generate IMP,. Hence MP,=
PM(F,, 8. p*. Q.E.D.

§4. Isomorphism among M(F, ¢)

Theorem 4. Different choices of cyclic and separating trace vector ¥

yield unitarily equivalent M(, ¢).

Proof. Let o’ be another faithful tracial state of §. Then there exists
a strictly positive selfadjoint operator « affiliated with §, such that the
vector state by ¥'=a¥ is o’. It is sufficient to show that P, ¥, n(g) and
U have exactly the same structure as in the construction in section 2
where ¥ is to be replaced by Z”.

Let A;:Sl dEY, E{' €, be defined similar to 4,:

(B(A4)Y, ¢(2)¢(A)¥) =¥, z¥'), zE€F..
Let a=Sl dEs, a;=aE§. Then
|20, Z2=]|¢(z1a, AT z:EP..
Hence ¢(A,)¥ is in the domain of & and
@, 2¥")=(3()$(A4)¥, ¢(2)p()d(A)¥)

for positive z in ., and hence for any z in §,. Since a4, and a™! are
strictly positive, ¢(ad,)a! is strictly positive on ¢(1)® and hence there
exists a positive selfadjoint operator

4= 2,2,25 4By, dEL, d{9 (B, gL}
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affiliated with &, such that ¢(4")=d¢(ad,)a " and hence
(T, z2¥")=(¢(AN¥’, d(2)p(ANF).

From the uniqueness of A)=(Radon-Nikodym derivative)!’?, we have
Ay=A" and

(A a=¢(ad,).

Hence
VoY’ =lim VQa,¥
=lim Q@ )¢(4,)¥
= Q@A = H(QH AT

This shows that V for ¥’ is the same as V for ¥. Hence U and n(x)
constructed relative to ¥ and #’ coincide. Q.E.D.

Corollary. Let ¢, be = automorphism of F and ¢’ =¢5léd,. Then
M(X, ¢') is unitarily equivalent to M(F, ¢).

Since the triplet F, ¢, wp is isomorphic to ¢35 F=F, ¢’, dfws, the
triplet &, @, & is unitarily equivalent to §, ¢/, ¥’ if wy, =¢Ffwy and ¥’ is
cyclic and separating. Since ¥’'=a¥ for strictly positive selfadjoint «
affiliated with $, is cyclic and separating, we have Corollary from Theorem
4, Q.E.D.

It is also obvious that M($, ¢) is unitarily equivalent to M(F, ¢d,)
for any inner x automorphism ¢,. (If ¢o(x)=uxu*, then consider #(u*)U
instead of U.)

Theorem 5. Let §, and F, be finite von Neuwmann algebras on R,
and K, with cyclic and separating unit trace vectors ¥, and ¥,. Let ¢, and
@, be injective endomorphisms of F, and [, such that ¢,(F,) = 0,(1)Td:(1),
¢.(2)=20¢,(1) for all z in the center of ), and ¢,(1)'=e"% k=1, 2,a>0.
The pairs M(F1, 61), 21, 61) and M(Fs, ¢2), 2T, ¢2) are unitarily
equivalent if and only if there exists a unitary mapping w from &, onto
&, and a unitary operator v in F, such that wFw*=F,, w¥ =¥, and
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$3'0,6,010,+ is an inner * automorphism of F, where ¢, (x)=uxu*.

Proof. Let @ be a unitary mapping such that @2(%F;, ¢,)=92(F2, 92)
and @ M(F,, ¢,)@* = M(F,, ¢,). Since J(F, ¢) and 4(F, ¢) are defined by
a polar decomposition of the closure 5§ of S defined by SQL(F, ¢)=
Q*2(B, ¢), Q= M(F, ¢), we have @wA(F,, ¢)w*=4(Fz, #;).  Hence
W M(F1, ¢1)o@* = M(F,, 6,)o. Hence @ restricted to the eigenspace 9, of
4(%., ¢,) belonging to an eigenvalue 1, gives a unitary mapping from the
pair M(F1, $1)0s 2(F1 61) (~B1, 1) to M(Fa, b2)os 2(Fzs B2) (~Fzs Z2)-
Let w be the corresponding unitary mapping from &;, &, 71 to K, Fe»
v,.

Let wn($,(1))w*=e,, 7(¢,(1))=e,. By assumption, e} =e}=e"* where
b denotes the canonical f-mapping in M(F,, @,),. Hence there exists a
unitary 7€ M(F,, ¢2), such that ve;p*=e,. Let v=7(v), vEF.

By construction, there exist isometric operators UF in M(%F:, ¢1)-a
and U¥ in M(,, ¢5)-, such that Ufn(x)U,=n(¢,(x)) and U¥n(x)U,=
n(¢y(x)). Then z=U,pwU¥w* is a unitary operator in M(F,, @), and
we have an(x)i*=n{$;'0,8,6:0,(x)}. Hence ¢3'¢,0,6,6, is inner.

The converse is immediate. Q.E.D.

Theorem 6. Let i be a finite von Neumann algebra with a cyclic
and separating trace vector and ¢,, ¢, be two injective endomorphisms of F
such that $,(F)=d,()FB:(1), Bu(2)=28,(1) for all z€F. and ¢,(1)'=
¢,(1)'=e"%a>0. Two triplets §, ¢,, ¥, and F, ¢,, ¥, for some cyclic
and separating trace vectors ¥, and ¥, satisfy the relation in Theorem 5
if and only if there exists a * automorphism ¢, of § such that

$316,96516,b0

is an inner * automorphism of [ where v is any unitary element in F

satisfying
o[ @5 (1) Jo* = d,(1).
Proof. The ‘‘only if”” part follows from the condition stated in

Theorem 6 because @+ is a * isomorphism of § if §; and , are both *
isomorphic to . The “if” part is also immediate because x &% and its
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cyclic and separating trace vector & is mapped unitarily to ¢5l(x)eF and
¥’ if ¥’ is another trace vector such that @Fwy=ws. Q.E.D.

§5. Asymptotic Abelian System
Proof of Theorem 2

Notation The Hilbert space, representation of 9t and a cyclic and
separating unit vector associated with o are denoted by Fpp, 7, and £2,.
Modular operator and modular conjugation operator for £, are denoted by
4, and J,. 7,(0)Q=47Q4;", j(Q)=J,QJ,. D, denotes the eigenspace
of log 4, belonging to an eigenvalue a and I, is the set of Q&M =n(M)
satisfying 7,(t)Q=e’*'Q. U, is a unitary operator satisfying U,7,(Q)%,
=7,(c,Q)82, for all QeM. 7,(Q)=U,QU}.

Step 1. U, commutes with 4,.
For S,=J,4}'2 and QeM, we have

S, Uam (Q)2,=7,(t.0)*2,=U,S,7,(Q)2,,

which implies [U,, S, ]=0 and hence [U,, 4,]=0.

Step 2. Let 5, be the support of ®, in M. Then 5,€3(c3,) and

5_,=5

a a*

Since 9, is invariant under 4, 5,&M,. Since U, commute with 4 P
9, is invariant under U, and hence 5, commutes with U,,.
Let s,=7,1(5,).

0. (Q)=0(s,Q0)=0(s,0s,), Q&M

It is a normal positive linear functional on 9. By using the mapping
F3% of [2], we have

0(s,Q)=0(F3™(s,)Q), QB
By Theorem 1 (6) of [27],

TaF8%(s) = F™(ta5s) = F3™(s4).

Hence for Q& , we have by Lemma 9 of [3]
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0(s,Q) =0((r315,)Q) = 0(s,7aQ)

=lim 0(s,7,Q)=lim p(F8%(s,)c,Q)
=1im p(FF™(s,)Q) = p(FP™(5,)Q)-

This implies
m A F3%(s,)—s,}2=0.
Since p is faithful, we have
5,=F8%(s,) € 8.

By the same argument as Step 3 of the proof of Theorem 1, we have

Sg=S5_4.

Step 3. Let s5,(Q) denotes the support in 3, of Q€ M, namely the
smallest projection e&B, such that eQ=Qe=Q. Then s,(U%U,)L
s5o(U$U,) is equivalent to s,(U,U¥) Lso(U,U%) for Uy, U,e(M,),.;.

Assume that sq(UTU;) Lso(UFU,) and so(U, UF) Aso(U,U¥)#0. Then
there exists ue(M,), ; such that U¥uU;#0. However by (3.1) and
(3.2), UfuU,e M, and so(UsU,)UfuU,s,(U¥U,)=U¥fuU,+0, which is a
contradiction. Hence so(UFU;) Lso(UFU,) implies s,(U,U¥) Lso(U,U¥).
Similarly the converse is proved.

Step 4. so(UFU,)=s,(U%U,) is equivalent to so(U,U¥)=s,(U,U%)
fOI‘ U17 UZ = (gjea)p. i.*
Assume that a projection e€ 3, satisfies

so(UtUL) Le, so(UFU;) ze+0.

Then u,=Usec(M,),;, uvfu,=eUfU,e+#0, so(ufu,)=e. By Step 3,
so(uuf) Lsg(U,U¥). We also have so(u,uf)=s,(U,eU¥)<s,(U,U¥).
Similarly, e€3B,, sq(UfU,)Le and so(UFU;)=e+#0 imply s,(U,U%) L
so(uu¥) and so(U,UF)=so(u,u¥)#0 for u,=U,e. Hence so(UFU,)+
so(U%U,) implies so(U,UF)+5,(U,U¥).

The converse is similarly proved,
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Step 5. Let ¢3(z)=so(UU*) whenever U (I,), ; and z=s,(U*U).
Then ¢? is a lattice automorphism of projections in 5,3,.

By Step 4, ¢° is single-valued. By Step 3, z; 1 z, and ¢%(z;) L ¢2(z,)
are equivalent,

If Us(M,),.;, then U2,=5,U8, and hence UU*<5,. We also have
U*e(M_,),. ; and hence U¥*U<s_,=5,.

Let U, be a maximal family of elements in (ima)p_,-_ such that
so(U*U,) is mutually orthogonal. Then s,(U,U%¥) is mutually orthogonal
by Step 3 and hence U=3,U, is in (M,), ;. If s(U*U)<5,, then there
exists non-zero u € (M,), ;. with s(u*u) Lso(U*U), by Step 3 of Section 3.
By Step 3, so(uwu*)Lso(UU*). This contradicts the maximality. Hence
so(U*U)=5,. Similarly sq(UU*)=5, by Step 2 of Section 3, Step 3 and
maximality.

For any projection e € 3,5,, Uee (M,),.;., eUc(M,),.;., so((Ue)*(Ue)) =
esg(U¥U)e=¢ and so((eU)(eU)*)=es,(UU*)e=e. Hence the domain and
range of @9 is all projections in 5,3,.

Since z,=z, is equivalent to z, 1 z for all z1 z,, z;, 2z, and ¢%z;)
= ¢%(z,) are equivalent. Hence ¢? is a lattice automorphism.

Step 6. If z=Sldeh+iSlde{egosa, then define ¢2(z)=gld¢2(ex)+

igld¢2(ex’). Then ¢° is an automorphism of 3,5, which follows from
Step 5.

Step 7. If z€3,5, and Ue(IM,), ;, then ¢2(z)U="U-=.

It is enough to prove the equation for a projection z< 3,5,. We have
so((U2)*(Uz))=zs(U*U)z2=5o(U*U) A z.
Since ¢9 is a lattice automorphism, we have
so((Uz)(Uz)*)=so(UU*) A $3(2).
Since so(UU*)U=U, we have
Uz=5,{(Uz)(Uz)*}Uz=¢%2)Uz.

Similarly we have
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$3(2)U=¢3(2)Uso{(83(2)U)*(93(2)U)}
=¢3(2)U{(82)193(2) Aso(U*U)}

=¢%z)Uz=Uxz.

Step 8. ¢%(z)=z if ze&3s,.

It is enough to prove it for a projection z.

Let z€35,, sq(U*U)=z. Then Uz=U=2U. Hence so(UU*)<z.
Let z—s,(UU¥)=e, (¢2) te=e’. Let uec(M,), ;, u*u=e, uu*=e. Since
zze and z€8, u=zu=uz. Hence ¢/<z. On the other hand el ¢J(z)
implies ¢’ 1 z. Hence e¢’=0. Hence z=s,(UU*)=¢3(z).

Step 9. 7, leaves 3,5, invariant and commutes with ¢0.
Since U, commutes with 4, B, remains invariant (as a set) under
T commutes with U, as we have seen in Step 2. 7, also leaves

a* ga
M,), ; invariant as a set. We now have

~

Taso(U*U) =s5,((T. U)*(T U))
Taso(UU*) =5,((T UNTU)¥)
because M, is also invariant under T, as a set. This implies 7,03 =¢7,,.

Step 10. (£2,, #3(2)8,)=(2,, z82,) for z2E Bo5,
By Radon-Nikodym theorem, there exists a strictly positive selfadjoint
operator A9 affiliated with 8,5, such that

(2,, 33(2)2,)=(432,, z439).

Since 7, commutes with ¢2 and p is invariant under 7., A must be
invariant under 7,, namely A2=S/1 de,, [ e,, U,]=0. By the same argu-

ment as for 5, in Step 2, we obtain e, 3. Namely (49)? is the Radon-
Nikodym derivative of (¢2)*p by g relative to B where p=p-n~1. Since

#°=1 on 35, we have A%=1.

Step 11. (UU*)'=e2g0{(U*U)"} for Us(M,),. ;..
Let z€3y5,. Then
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(2,, UxUz8,)=(2,,U *¢%()UR,) (by Step 7)

=(82,, U*¢3(2)j ,(U*)L,)e ' (by U*2,€9_,)

=(j,(U)82,, U*¢3(2)2,)e '

=(2,, UU*$Y(2)2,)e™

=(82,, (UU*)'$%(2)2,)e" (by Lemma 7)

=(2,, {(@D " (UU*)'}28,)e” (by Step 10).

Hence
(U*U)'=e(¢3)"{(UU*)'}.

Step 12. There exists U,&(IM,), ; such that U,U¥=s, if a>0.
The proof is the same as Step 5 of Section 3, except the inequality is
now proved using Step 11 as follows:

(50— UFUp)' =3, (43 {(UU*)'}
2 e~ (43) (s, — UU*)'}
2 e=($9) (U U} =(U*U)

Step 13. There exists N,e(M,),; such that N,N*+N*N, =3,
(NAN) = (1+ )5,

For any T€5,3,, 0= T<1, there exists a projection er&(M,5,) such
that (e;)'=T. Let ey, be a projection in (IMy5,) such that (e))'=
(14+e ) 15,. Let Uygy=eqU,. Then U, U, =eqy and hence

(U Uyt =e () H{edt =(1+e*)'5,=(5,—eo))"
There exists uE(‘mOEa)p.,-, such that
wu*=Uf, Uy, u¥u=35,—e().
Setting Ui yu=N,, we have Nae(m,,)p.,-.,
N¥iN,=u*u=5,—e), N,N¥=UnUf =€)

Hence N¥N,+N,N¥=s5,. We have (N}N,) =5,—(eq))'=1+e?) 15,



28 HuziHiRo ARAKI

Step 14. z€8,5, commutes with 7,(2),=M, N7, 2X).
Let Q, Q' en,(2),.
Then Qz;1(N¥)e,, it commutes with z. We have

(Q'8,, QT M (NH2T N (N)L,)
=(Q'2,, zQT;'(NFN,)L,).
The functional £(Q)=(2,, QN*N,2,) satisfies
(5.1) f@)=(L,, ON}J,4,'*N¥2)
=(L2,, ON¥j (NHL,)e 2
=(j,(N)2,, QN%L e ?

=(N38,, ON12,)e 220

P’
for Qe M, Q=0 and
fw)=(2,, w(NFN,)'2,)=(1+e")" (L, 5,wL,)

for we 3,.

Since the functional (£,, 5,02,)=(£,, 5,05,%2,) is invariant under 7,
and since Q’*zQ5, is weakly t,-central in 9t;,, we have by Lemma 9 of

(3],
Q'%,, zQTH(NZN)L,)
=(£2,, 710205, }(NZN)2,)
—(1+e?)(L,, 0*205,2,).

On the other hand, we have Q*Q'2,=;,(Q*Q)*2, by 0*Q e M,.

Hence
Q'8,, QT' (VD 2T H(NDR,) = (N2, To(],(Q*Q)2)N,L,).

The * subalgebra generated by z,(), and B, is strongly T, central
in imo. We now prove that this algebra is strongly dense in Emo. Let
QeM,y, 0,€9,i=1,..., n and e>0. Let f be a C~ function such that its
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support is in [ —a;/2, a,/2] and f(0)=1. Let f(i):(2n)*1gf(},)e-mdp’

o( f)=S(f(t)Q)f(t)dt and czgl ()| dA(=F(0)=1). Since £, is separat-
ing for M, there exists Q,& M} such that ||@;—Q,2,]|<(4|lQ{|c)~e. Since
A is weakly dense in I, the unit ball of 7,(A) is strongly dense in the
unit ball of I and there exists Q. ,(U) satisfying [|Q.||<|/Q|| and ||(Q;

—Q)2,]|<(2¢ max||Q;])'e. Then [{Q.(f)—Q(fI}L,||<(2 max ||Q;]|) e
Since Qe M, we have Q(f)=Q. Due to the assumed support of f,

Qe(f)!)ﬁe@o and hence {7(¢)Q.(f)}2,=0Q.(f)2,. Hence Q(fHer,(A),.
We have

1Q(f)— QMNP = (RN IQIDI; — Q2|
+1QilllQe(f)—Q(MNL,lI <.

Hence 7,(U), is dense in M.

We can now use Lemma 1 of [3] to obtain
(N, 7a(j,(Q*Q)2)NL2,)
—(1+e)7(2,,5,/,(0*Q)z4,)
=(Q'2,, Qz5,2,)(1+e*) .
We now have
@'2,, 2, QFa2,)=0.

By Lemma 5 of [3], Q'2, is dense in ,. Since [z, Q]5,2,€9,, we
have

[z, QJs,2,=0.

Since 5,€38, [z, Qs,=[25,, Q]=[2, Q] by assumption z& 35,. Since 2,
is separating [ z, Q]=0.

Step 15. Bo=23.

By the same proof as that of Lemma 5, Un/,(%l)a is total in 9.
Since Q&,€9, for Qe M, (1-5,)Q2,=0 and ‘hence (1-5,)0=0 for
Qen,,(%[)acima. Hence Qem,(U), commutes with (1—5,)z trivially and
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with 5,z by Step 14 if z€3,. Hence z€3, commutes with m,(A), for

any a and hence belongs to 3.

Step 16. ro.(P,M)=S,,.
Since the spectrum of modular operator for P, is S, , x,=e %=
#,(1)!, we have by [6]

ro(P,M)C S, ..

We now show that P, M has the property L; with 1,=(1+x,) 'x, which

shows
r(P,M)=S,,

by [[17, if the space is separable.
The same computation as (5.1) shows

(5.2) (£,, ON,2,)=(2,, N,02,)e*
for all QM. Since p is r, invariant, we have
(8,, 071 (N)L2,)=(L,, T.(QN.L,)
=e %(2,, N,T.(Q)2,)=e"%(L,, T} (N,)QL,).
Therefore
(1=2,)(L2,, QT 1 (N,,)2,) = 2,(&,, T.H(N,,)08,).

For any Qen, (), let

0= 7,00 g0 de

where g, is given in the proof of Lemma 5. It belongs to 7,() and
lim Q(g,)=Q. Furthermore
i

2,()0(g0) = [7,()Qg(n(t— 2)nds

for real z and the right hand side has an analytic continuation to all

complex z as w,(U)-valued function. We have
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Q(g)2,=17,4}"20(8.)*2,=7,(%,(i/2)Q(g.)*L,

which can be proven by analytic continuation.
Let ¥, j=1,..., k be a finite collection of vectors in %P. Then there
exist Q;€7,(4) and n for any given >0, such that Q;=Q,(g,) satisfies

(5-3) 11175 — Q52,11 <e/4, 11Q72,II=1Zl.
Then
IENG, T2(Q) 12,112 =(2,, NiT.(X)N,2,),
X=Q7%Q;— Q5] (%,(i/2)Q)* — j (7 ,(i/2)Q7)Q;
+J(F,(/2)Q7) ] (T,(i/2)Q)*.
If ze3, then
oy,0,(2)=(2,, NiN,z82,)
=e %(2,, N,N§z2,)  (by (5.2))
=(1+e) (&, 5,28,)
=(1+e) w5,0,(2).
Since ws,g, is 7, invariant, we have by Lemma 1 of [3],
m oy, 0,(T(X))=(1+e)7(2,, 5,X2,)=0.
Hence there exists « such that N,=z;1(NV, ) satisfies
(5.4) 17 ;][[|VeQ;2, — QiNeL, |
=1Z5l[ICNG, T2(Q@ 12,11 <e/2,
(5.5) 1[I Ve*Q38, — QiN7*L||
=[[Z;IIIENE, 72(@ 12,1l <e/2.

where the second inequality is obtained in a similar manner as the first.
Let w;---», be normal states of P,IR. Since 7,(P,)2, is cyclic and
separating for P, on 7,(P,)9,, there exists ¥;en,(P,)D, such that
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wg;on,=w;. For Qe P,M and N,=P,n,*N;, we have from (5.2) ~(5.5)
| 2,0;(NQ)—(1—2,)0,(QN,)|
=[2,00,(N7 () — (1= 2,) 05 (7,(QON) | <¢[|Qll,
j=1,..., k. N, is a partial isometry in P, satisfying
N%N.+N.N*%=P,.
Hence it also satisfies N2=0. This proves the property Lj .

Step 17. 1 (Py) =r.(PM,)={1}.

By the proof of Step 16 applied to a=0, 9, satisfies the property
Li,,. Hence PYi, with any central projection P satisfies the same pro-
perty. Since r.(R)c {1} for any finite von Neumann algebra R[4], we
have r.(PyI)=r.(P,,)={1} if the space is separable by [1].

Q.E.D.

§6. Discussions

For a von Neumann algebra 9, the relation r.(9¢)=S(IM) implies
that N is r.-pure where S(I) is Connes S set [5]. Namely, for any
central projection p of IR,

To(W p) Dro.(I),
S(Tp)  S(W),
r(p)c S p),

where the second inclusion is because 4, for Mp is always a restriction

of 4, for P for some p. Hence
r-(M p)= S(M p) =r.(WM).

The decomposition M=2XP,M in Theorem 2 is a partial central
decomposition according to asymptotic ratio set into r. pure parts [7].
By exactly the same method as the proof of Theorem 2, we can

analyze a von Neumann algebra )t with a cyclic and separating vector £,
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such that logd has exclusively an isolated point spectrum and each , is
cyclic for 9. The last assumptions imply that each O, is separating for
M because JO,=9_, and replaces Step 2 of the proof of Theorem 2. We
can proceed up to Step 8 without any further assumption. However Step
10 no longer holds and hence one finds a formula

(U*U) =e~2(4)*(6) 7 ((UTSM).

If we make a further assumption that e %(A49%<1, then we can
complete the analysis and we obtain the same conclusion as Theorem 1
except that ¢, no longer satisfies ¢,(z)=¢,(1)z and M(P,IN,, ¢,) corres-
ponds to the case Ay, =e?'2 in Theorem 3.

If e79(A%)2<1 does not hold, we are left with an isomorphism from
a subalgebra of Yt onto another subalgebra of 1. It will be of interest
to generalize M($, ¢) for such ¢.

The construction of M(E, ¢) in Section 2 can be generalized to the
case where Yt has a commutative semigroup G of injective endomorphisms,
which we shall briefly sketch. This situation is relevant to R,QR,~R.
when log x/log y is irrational. We assume that

$(@=e(L)Js1), ¢<6C.

If ¢,, ¢, and ¢ are injective endomorphisms of Wi, then @og,=¢og,
implies ¢, =¢,. Hence a commutative semigroup G of injective endomor-
phisms of 9t has an envelopping group G such that GO G and G generates
G. Elements in G is a pair (@,, ¢,) of elements ¢,, ¢,€G with an

equivalence relation (¢@,, ¢@,)=(¢'d,, ¢'d,) for any ¢, ¢’€G, where we
include an identity mapping 1 of § in G. The multiplication in G is

(¢a: ¢b)(¢aa ¢b)=(¢a¢)a’ ¢b¢b)

and (@, 1) is identified with ¢G. 1=(¢, ¢) is the identity in G.
For each geG, we make a fixed choice ¢,(g) and ¢,(g) such that
&=(9.(8), $:,(g)), where ¢,(1)=0,(1)=1 and ¢,(g71)=0,(8), ¢,(g )=

¢,(g) for convenience sake.
The space 9, on which M(F, G) is to be defined, is spanned by
mutually orthogonal subspaces
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O, =p R

where p, is a partially isometric mapping from & into § such that
(6.1) E(g)= pfp.=93.(80)6:(8)' (1),

where ¢'(y)=jz9jz(y) as before.

In section 2, we have G={¢", n=0, 1, ...}, G is the additive group of
integers, ¢,(n)=¢" for n=0, ¢,(n)=1 for n<0, ¢,(n)=1 for n=0 and
é,(n)=¢'" for n<0.

Faithful representations of § and {’ are defined by

(6.2) n(x)=2 p,b,(g)(x)p¥, x €,

(6.3) () =2 p, (&) (N pE,  yeF.

Ay is defined by (2.1) for each ¢=G and ¥ of Lemma 1 is denoted
by V(¢). It satisfies

(6.4) V(e)y*V(¢)=1, V(¢)V(¢)*=e(8)=¢(1)¢'(1),

(6.5) V(#)Q=8Q)V(¢), V(8)*¢(Q)=QV()*, QEB,
(6.6) V($)Q' =¢'(Q)V(¢), V(¢)*¢'(Q)=Q'V($)*, Q' €%,
(6.7) [Je, V($)]=0,

(6.8) V(6)V(g2)=V(4:8,), Y1)=1.

From (6.4) and (6.8), we have
(6.9) V(g V($2)*=V($2)* V() V(1) V(d2)*
= V() V(d1)e(d2).

Operators U(g) and U'(g) are defined by

(6.10) Ulg)= gZ Pea V(6:(8))* V(8:(g8N) P get,
(6.11) U(gh)= gZ Pee V(9.(gN)*V(.(g 8N PF, g<6.

They satisfy
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(6.12) U(g*=U(g™), U(g)*=U(g,

(6.13) Ul U1, ¢))=U(g(, ¢)), U1)=1,

(6.14) U(g)m(x)U((¢, 1)) =U(g(¢, )m(¢(x)), x €T,
(6.15) U(eU(Q, ¢)=U(g(, ¢), U()=1,

(6.16) U (nU (4, D)=U'(g($, D)7 (¢'(y), yF

Taking adjoint and using (6.12), we also have

(6.13) U((¢, D) U(g)=U((4, 1) &),

(6.14) U((A, $))a(x)U(g)=n($(x)) U((1, ¢) g),
(6.15)’ U4, MU (&)=U(¢, 1) g),

(6.16)’ UL, ) (NU(g=n"(¢"(y U (A, ¢) -

The von Neumann algebras are defined by

(6.17) M@, 6)={z(®, UG)}",
(6.18) M'(F, 6)={n'(F), U'(G)}".
Then

(6.19) M(E, 6) =M (B, G)

and the vector 2(F, G)= p,¥ is cyclic and separating for M(F, G) with
modular operator and modular conjugation operator given by

(6.20) A, 6)=2 pAB.(8) s, )} Te(B:(8) Asy(0))} * Pi>
(6.21) J(@, 6)=2 p,-1Jy pf.

If 4,>1 for all =G, then the set M(F, G), of Q€ M(F, G) commuting
with 4(F, G) is w(F) and its center is all zeP, such that ¢(z)=24(1)
for all ¢=6G.

Sketch of proof We shall present proofs of computations later. J(F, G)
is an antiunitary involution (the choice @,(g™!)=¢,(g) and ¢,(g ) =¢,(g)
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simplifies the expression of J) and satisfies

(6.22) J@, O)n()J(F, 6)=1'(jp(x)), xE,
(6.23) @ OU(»JEF 6)=U(g), <6,

(6.24) J(@@, ) A(S, )R, 6)=4(F, &)

We have M'(F, G)c M(F, G)' from

(6.25) [7(x), #'(]=0, x€F, yeF,
(6.26) LU(gs 7' (y)]=0, yF, g6,
(6.27) [7(x), U(g)]=0, xR, g=C,
(6.28) [U(g), U(g)]=0, g1€C, g,€C.

2(F, G) is cyclic for M(, G) because
(6.29)  U((¢, @ U1, $)L(E, G)2pyy, &V (8P, HHNT

is dense in p,4®. By applying J(, G) and using (6.22) and (6.23),
we see that 2(F, G) is cyclic for M'(F, G) and hence is separating for
M@, G).

By setting S=J(§, G)4(F, G)''%, we have

(6.30) SU(¢, D)m(x)U((, $)2(F, &)
=U((8, D)n(x*)U((1, ))2(S ).

In any monomial of 7(%) and U(G), we make the following reordering.
First factor any U(g) as U((¢, ¢))=U((¢, 1))U((1, ¢)) by (6.13). Bring
all U((1, #)) to the right using (6.14)" with g=1 and (6.14)" with x=1,
where U((1, ¢)g) is again decomposed. Similarly bring all U((¢, 1)) to
the left using (6.14) with g=1. Collect all U((1, ¢)) into one using (6.13)
in the form U((Q, ¢.))U((Q, ¢,))=U((Q, ¢,-$,)). Similarly collect all
U((#.1)) into one by using (6.13). We then see that U((¢, 1))7(x)
U((1, ¢)) are total in M({, G). As we shall show after the following
computations, U((G, 1))7(F)U((1, G))L2(F, G) contains a total set of analytic
vectors for 4(§, G)''2. Hence (6.30) shows that J(F, G) and 4(g, G) are
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modular conjugation operator and modular operator for 2(%,G).
From (6.22), (6.23) and M'(§, G)c M(F, G)’, we have (6.19). The
assertion for the case 4,>1 is proved in the same way as the proof of

Theorem 3.

Computations. We present proof of those formulas which require more
complicated computations.

Formula (6.13). Setting ¢1=¢b(g,), bo=,((1, ¢)gl), ¢3=¢b(g(1,
#)g") and ¢=¢,((1, ¢)g"), we have

(6.31)  U(pU(Q, ¢))

=§ Pt 0ye V(62)*V(63)b2(1)(1) V($1)*V(62) pg
=§ Pe(1,¢)e” V(6162)*V(d3)e(d1)(d162) (1)h:14(1) V(¢2)P}k’a

where we have used (6.1), (6.5), (6.6), (6.9) and (6.8). e(¢,) is absorbed
into (4,6,)'(1)(¢:¢)(1) because ¢,(1)¢;(¢(1))=¢,¢(1) and ¢{(1)¢i($2(1))
=($162)'(1).

There exist ¢ and 76 such that

(6.32) 18.((1,8)8")=68.(8"), 18:((1, #)g) =E¢,(8")¢.

Then
&16,((1, 8) 8N0.(8)(1)=E&14,((1, ¢) g"NPs(gN($(1))

which implies ¢,8,(g)(1)=¢:1¢(6(1)). Since 4,(8)(V)p§ = p§, V(d2)é,
(801 =¢:6,(8Y DV () and ¢,6(1)$:¢(¢(1))=14(8(1)), ¢:1(4(1)) is
absorbed into p¥ in (6.31). Similarly p, 4 #35(1)= Py, ees V(b162)*
V($:)(6:61)' (1) =¢35(1)V (¢162)*V(43) and hence ($,6;)'(1) is absorbed
into py1,4),- Using V($)*V(d,)=1,

U, 6)) =§ Paci,e)e” V(6)*V(83) ppr=U(g(1, 8)).

Formula (6.14).  Setting ¢,=0,(8"), ¢.=6¢,((¢, 1)g"), b3=0,(g(¢,
1)g") and ¢=4¢,((4, 1)g"), we have
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U(g)n(x)U((4, 1))

=§ Pets, g’ V(92)*V(62)9(2)82(1) V($1)* V(82) py-
=§ Pe(s.1)g” V(g,62)* V(¢3)e(¢1)¢1¢(x)(¢1¢2)’(1)V(¢z)p;"/.

As before, e(¢;) is absorbed into @,¢(x)(@,8,)' (1) and (B;4,)'(1) is then
absorbed into p,(4 1),-- By an equation similar to (6.32), we have

¢1¢<x)=¢z¢a(g')¢(x)-

Hence

U(g)n(x)U((8, 1))=5Pg<¢.1>g' V($.)*V(3)8.(8)8(%) P
=U(g(, 1))m($()).
Formula (6.26). Setting ¢, =4,(g’) and ¢,=4,(gg’), we have
[UC8), w(y)1=2, perLV(8:)* V() E(8)81(5)

— 6 NE(gg )V *(6:1)V(2)1py =0

where E(g') and E(gg’) are absorbed into p,- and p,,- respectively.

Formula (6.28). Setting ¢,=¢,(g"), $1=0.(8"), ¢.=0:(g3'8")
0r=0.(82'8"): $:=0(818"): $:=08.(818"), $i=0(g182'8") and ¢,=
6.(g1821g"), we have

LU(&1), U(g2)]=2 paig;1a L V($)* V(B0)85(1) (1) V(4 )*V(¢2)
= V(@) V($)65(1)h3(1) V(. )* V($3)] p-

Since ¢o(1)V(1)*¥V(h2)=V($1)*V(h2)¢:(1) and ¢’1(1)Pg’=P;k’, $,(1)
is absorbed into p¥. Likewise, ¢3(1) is absorbed into p¥, ¢5(1) and ¢3(1)
are absorbed into pgg-1,-. By (6.9), we have

LUCgD), U(g2)1=2 peye;1aL V(b0  V($4)e(h) V ($2)
- V(¢3¢1)* V(§b4)e(¢1)V(¢3)]p2,".
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Since ¢’1(1)Pg’=P2:’, V()9:1(1)=¢,0.(1)V(¢,) and 1 (11 (95(1))
=010:(1), ¢;(1) in e(¢,) is absorbed into p¥. Likewise, ¢;(1) in e(¢;)
is absorbed into p¥, ¢1(1) in e(¢) and ¢,(1) in e(d,) are absorbed into
Peig;te’- We now have

[U(gx), U'( gz)]= ZPglgglg’[ V($20:1)*V(da2)— V(s )* V(¢4¢3):|P§’-

Let
1P2=610,(821)%1, MP2=610.(821)01,
7201 =820,(871) 3, 1204 =620.(821)¢3.

Then
MN7202B4%195=616:0.(82)6,(821)B3016:193
=7172$2019195.
Hence ¢,0,6,03=0:0,0,¢;, which implies
V(9201 V(shs)=V(62016:1905)* V($1038492)
=V($103620)* V($20190463)
=V($:195)*V($46s).

Hence we have (6.28).

Formula (6.29) Setting ¢;=0,((1, ), $1=0,((1, ¢)), 8:=¢,((¢, $))
and ¢2=¢a((¢y ¢))’ we have

(6.33) U((¢, D)n(x)U((1, $))2(B, G)=
P, 9) V(g)*V($2)91(1)1(2)V(d1)¢

where ¢;(1) has already been absorbed into ¢;(x) and ¢7(1) can be
absorbed into p(, ). Since ¢;=¢;¢ (which follows from (6.32) with
g'=1) we have

(6.34) V(.7 V($2)h1(2) V(1) =V(8)*o(2)V($) V($2)
= ¢ (d(Lga()$(1)) V(82)
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where we have used
V(g x V()= V($)*¢(1)x(1)V($)
=3~ ((Vxd()V(6)*V($) =g (¢(1)x4(1)).
Let
19.((¢, $)) =60, 76,((¢, 8))=§¢.
Then &7¢,¢=87¢¢, and hence ¢,¢=¢¢,. Hence ¢,(F)DPd,(F) implies
¢ (8(1)B2(F)B(1)) =87 (8(1)82(1)T#2(1)8(1))
D¢ H(B(1)(PB:)(1)F(662)(1)$(1)) = 2(1)¢ ((1)FS(1))¢2(1)
=05(1)F2(1).
Hence
U((¢, D@ UL, 6)2(F, 6)
2Py, 0b2(DFS(DV (8)¥
= P63 V(827

Since Ay, is positive definite, support of ¢,(As,)=¢;(1). Since
Jed,(V)¥ =¢,(1)¥, FV($,)¥ =F$:(As,)¥ is dense in the closure of

FB2(VF =Fju(:(1)¥ = d2(1)F¥
which is ¢5(1)®. Therefore (6.29) is dense in p, 5%
Formula (6.30) By (6.33) and (6.34), we have
U((¢, D)a(x)U((1, 6))R(3, &)
= P, 0y (B(D)2(5)6(1))B2(As,)¥ .
By multiplying 4(§, G)}'?, we obtain
P y192(4y)} 871 (B(1)bo(%)6(1))62(As,) jr($2(Ap,)) ¥
= P 02( A} BV S



STRUGTURE oF SOME vON NEUMANN ALGEBRAS
Hence
SU((¢, D)m(x)U((1, $))2(5: &)

= Peo,p® (B(1)(2*)B(1))ho(Ap,)¥
= Peo.iy V(B)*G2(2*)V($4)¥ .

Since ¢,¢6=¢¢,, we have

V(@) bo(x*)V(B)=V(h2)*had:(x*) V($P32)

=V()2)*b:0:(x*)V()5)
=V()*(x*)V ()
=V(8,((1, $2))*¢26.((1, PV (35((1, $)))

where we have used ¢,((1, ¢))=6,((1, ¢))¢ in the last equality.
Hence

SU(¢, D)m(x)U((1, $))2(F, &)
= P,y V(8s((1, 9))*V(h3)6.((1, I )V (8,((1, 9IN¥
=U((¢, D)r(x*)U((1, ¥)L(F, G)
={U(¢, D)m(x)U((1, $N}P*L(F, G),
where ¢, =¢,((¢, $))=¢,((¢, ¢)) is used.

41

Q.E.D.

We now prove that U((G, 1)z(F)U(1, G))2(F, G) contains a total set

of analytic vectors for 4(F, G)''2. Let ¢, 3G, ¢y =08,((¢, 8)), =8:((¢,
®)). Let EY¥ denote the spectral projection of A,, x€G, It is in the

center of §. Let p(A)=¢(E$2), g(r)=¢(1—E?). Then lim p(2)=1,
Ao

lim q(r)=1. Since ¢;¢=¢¢,, we have ¢;(p(2))=@{$,(E{)}. Hence

U((¢, D)m(p(2)xq(@) UL, 6)2(F, G)
= P oy EXDG (B o(2)3(1))$5(Ap,)$5(1— EL)E
= P(q,,¢)|:¢z(E(>€2)]'yf{¢z(l_E?’)}]¢_l(¢(1)¢z(x)¢<1))¢z(14¢2)¢a
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which is obviously an analytic vector for 4(§, G)'/2 for A< + oo, r>0.

Hence we have a total set of analytic vectors for 4(%, G).1/2

Group-measurve construction. If G is a commutative group of *-auto-

morphisms, then we see that M($, G) defined above is unitarily equivalent

to an ordinary group measure construction in the following manner.

G is now isomorphic to G with gEC corresponding to Z=¢,(8)%,
(g)'eG. We have ¢(1)=¢'(1)=1, pfp,=1 and V(4), 4G is a
unitary representation of G. We denote V(g)=V (¢, ())V($,(&)*(=

V(d.(8)d:(g)71)). Since ¢(F,)=F., #(4,) is affiliated with §F,.
We define

(6.35) W=2 p V(38" P}

which is a unitary operator on . Then

(6.36) WA, G)=2(%,6),

(6.37) Wa(=)W*=3 px pls x <,

(6.38) W' (DW*=2 pg ()pg: yE€Fs
(6.39) WU(HW*=2 peeV(8)* P} €6,
(6.40) WU (g HYW*=3, per Pir £<C.
(6.41) WIS OW*=X pe1 V(8)Jr Py
(6.42) WA, OYW*=3 ped,p}

Here 4,= A} and satisfies
(6.43) (B4, g(xdV)¥)=(¥, x¥),xEF.
7( g) is defined as a unitary operator satisfying

(6.44) V(g)x¥ =g(xdL)¥.

The formulas on the right hand sides of (6.37)~(6.40) are

usual
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group-measure construction (at least for a commutative ) and works even
when G is non-commutative. Formulas (6.41) and (6.42) give modular

conjugation and modular operators also for non-commutative G.

Example. Let R,=  (R,, £,) where G is a countable set for the
moment, R, is a type I:E{f;actor and £, has a spectrum 4 and (1—4)
relative to R, (independent of g) where 4(1—4)"'=x. Since the modular
operator for 2=@®4%, has a spectrum at S,={0}U{x"; n=0, £1,...} and
R is asymptotically abelian relative to any one parameter non-compact shift
of G, the condition 3=23, is satisfied by Theorem 2 and (R,, £)~(M(F, ¢),
2(F, ¢)) for a hyperfinite finite factor § and its endomorphism ¢. The
hyperfiniteness of & is easily seen by expressing it by a group measure
construction where the group is generated by an ascending sequence of
finite groups.

Now let G be a group and V(g), g€G is a unitary operator on
gp(f@gg £,.) which shifts indices g'€G by left multiplication, namely

V(@)7g,(Q1).- g, (Qn)2=75g,(Q1)- T5,(0n)%,

where all R,, £, are identified with a single I, factor R, and a vector
£, mg, is a natural representation of R~R,, on @(9,, £,) and Q,=R,.
Then V(g)2=2, V(g)R,V(g)*=R, and hence V(g)(R,)V(g*=(R,)
because V(g) commutes with modular operator 4 for £. It also commutes
with the modular conjugation J for £2.

Consider M(R,, G) constructed in exactly the same way as M(§, G)
by (6.36)~(6.40) and M(EF, G)=(n(F), U(G))”". Then (6.41) and (6.42)
give modular conjugation operator and modular operator for 2(R,, G)
where Jp and 4, are to be replaced by J and 4. In particular 4(R,, G)
has a spectrum S,.

The set M(R,, G), of modular invariant elements of M(R,, G) is
M((R,)q, G). An isometric operator U R, inducing an injective endo-
morphism ¢ such that (R,, £)~(M({(R,)e 8), 2((R,)s, ¢)) also induces an
injective endomorphism of M(R,, G), by

T(U)*Qm(U)=¢(Q), Q€ M(R,, G),.

The pair, M(R,, G) and 2(R,, G), is then unitarily equivalent to the pair,
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M(E, ¢) with F= M((R,), G)o~ M((R,),, G) and 2(F, $). The case where
G is a free group of two generators is given by Pukanszky. Since M(R,, G)
for this case does not have property L its asymptotic ratio set is {0}.
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