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On Types over von Neumann Subalgebras
and the Dye Correspondence

By

Marie Cuopba

The family of abelian projections of von Neumann algebras plays an
important role in the theory of types (discrete and continuous). An abelian
projection E of a von Neumann algebra 7/ is defined by the requirement
that each projection P in & dominated by E is written as P=QFE for
some Q in the center & of &«/. We have taken an interest in generalizing
this definition of an abelian projection by using a general von Neumann
subalgebra of & in place of the center Z.

In [17], we defined a projection abelian over a von Neumann subalgebra
(see Definition 3 below) and proved that some elementary properties of
abelian projections are preserved under the generalization. Those results
lead us to a natural generalization of continuous von Neumann algebras.
In [2], we have extended the definition of continuous von Neumann
algebras (Definition 10 below) and proved that a von Neumann subalgebra
% of a von Neumann algebra & contained in the center has a useful
property relative to an expectation (that is, £ is a strong Maharam
subalgebra of & in the sense of Definition 15) if &/ is continuous over %
(Theorem A).

In this note, we shall define a von Neumann algebra .« discrete over
a von Neumann subalgebra #. We prove that & splits into the direct
sum of the part continuous over % and the part discrete over & if # is
contained in the center of & (Theorem 14 in §2).

When a von Neumann subalgebra # of a von Neumann algebra &
satisfies some conditions, # is discrete (resp. continuous) over the center
of & if and only if o is discrete (resp. continuous) in the usual sense
(Theorem 22 in §3).

Communicated by H. Araki, September 18, 1972.



46 Marie CHODA

In §4, we shall apply theorems in §3 to the crossed product G®.</
of a von Neumann algebra &/ by a freely acting automorphism group G
of o with the following results:

One of main results in Dye’s paper [5] is that if & is a non-atomic
abelian von Neumann algebra, then there is a 1:1 correspondence between
full subgroups of the full group [G| determined by G and intermediate
von Neumann subalgebras of GQR./. Haga-Takeda have extended, in their
paper [7], this result to a d-finite finite von Neumann algebra . On the
other hand, Dye has introduced the types (I and II) for a freely acting
automorphism group on an abelian von Neumann algebra, and shown that
the correspondence in the above counserves the type; if an intermediate
von Neumann algebra is discrete (resp. continuous), then the correspon-
ding subgroup is of type I (resp. type II).

We shall define types (discrete type and continuous type) for auto-
morphism groups of von Neumann algebras in Definition 23. This defini-
tion is a generalization of that due to Dye. And we shall show that the
correspondence of intermediate von Neumann subalgebras of G®« and
full subgroups of the full group [ G| determined by G, due to Haga-Takeda,
preserves the type in the sense of Dye (Theorem 24 in §4).

The author would like to express her appreciation to Prof. Y. Haga
and Prof. Z. Takeda for giving her the opportunity to see pre-publication
copy of their paper, to which she is indebted deeply, and to Prof.
Y. Nakagami for taking the pains reading her manuscript carefully and
giving her valuable comments.

We shall use the terminologies and notations due to Dixmier [3]
throughout this note without further explanations.

2. In the sequel, let & be a von Neumann algebra and & a von
Neumann subalgebra of /. Denote by #° the relative commutant &' N &
of # in &, #? the set of all projections of & and E the #-support of
Eeo?, that is,

E=inf {Pe®?; P=E}.
Lemma 1. Let (E),c; be a family of projections in L, then

sup, E,=sup,E,.
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Proof. By the definition, sup,E, >sup,E,, so sup,E, >sup,E,. Conversely

sup,E, = E,, which implies that sup,E,=sup,E,. Therefore sup E,=sup,E,.
For completeness we include a proof of the following Lemma, which

is proved in [17].

Lemma 2. If EP is a projection for ES(%°)? and P B?, then
EP=EP.
Proof. EP<EP is clear by the definition. If EP+EP, then there
exist two projections 0 and R in & such that
EPZQzEP
and that
E(I-P)2RzE(I-P).

Therefore Q+ Re #? satisfies £ ZQ+ R=E, which contradicts the defini-
tion of E.

The following definition is introduced in [1] as a generalization of the
notion of abelian projections.

Definition 3. A projection E€.«f is called abelian over # if Ec %#°¢
and for every projection P&/ with P<E, there exists a projection Q€ %
such that P=QE.

Lemma 4. Let E be a projection in </ abelian over #. A projection
F in #° is abelian over # if FXE.

Proof. Let P be a projection in & with P<F. Then there exists a
Qe #? such that P=QF because P<E and E is abelian over #. Hence

P=PF=QEF=QF.

For a general form of Lemma 4, see [1; Lemma 3].

The following lemma, proved in [27], gives an alternative algebraic
definition of projections abelian over 4%.

Lemma 5. Ecwf? is abelian over # if and only if E€ % and
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M E=— .@ E-
Now, we shall extend the definition of discrete von Neumann algebras

as the following:

Definition 6. A von Neumann algebra 7 is called discrete over %
if there exists an E€&/? which is abelian over # and EF=1.

Remark. Let Z be the center of a von Neumann algebra . Then
if o is discrete over %, & is discrete in the usual sense cf. [3]. If &
is an abelian von Neumann algebra and discrete over #, then % is called
by Dye [4], a type I subalgebra; cf. Corollary 12 below.

Example. Let # be a von Neumann algebra and % a discrete factor,
then ZR¥ is discrete over ZXI.

In fact, let P be a minimal projection in ¥. Clearly IQP is abelian
over #QRI and A& I-support of IQP=IQI. Therefore, ZR¥ is discrete
over ZR1.

Theorem 7. Let # be a von Newmann subalgebra of & contained
in the center & of /. Then & is discrete over % if and only if each
nonzero projection in % dominates a nonzero projection abelian over Z.

Proof. If each nonzero projection in & dominates a nonzero projection
abelian over &%, by Zorn’s lemma, we have a maximal orthogonal family
(G,).e; of nonzero projections in & satisfying the following properties:
for any ¢, there exists an E,&./? which is abelian over # and E,=G,.
Put G=2,G,. If G#1, there exists a nonzero Fe./? which is abelian
over # and F<I—G because -G #?. Since F<I—G, F is orthogonal
to each G,, which contradicts the maximality of (G,),e;. Therefore, we
have G=1. Put E=J3E,. Since (E)),; is an orthogonal family, £=
Y E,=36G,=G=1I by Lemma 1. On the other hand &z=2 ,DFBr, =%y
because E, is abelian over 4, (G,),c; is an orthogonal family of projections
in # with 2 G,=1 and & is contained in the center of & (cf. [3. p.22])).
Hence E is abelian over #. Thus there exists an E€.«/? which is abelian
over # and E=1.

Conversely, suppose that there exists a projection E which is abelian
over & and E=1. For a nonzero P %?, put Q=EP. Then Q<P and



On TypPEs OVER VON NEUMANN SUBALGEBRAS AND THE DYE CORRESPONDENCE 49

Q=EP=EP=P+0 by Lemma 2, so Q+0. Since # is contained in the
center of &, Qe %°. Therefore, by Lemma 4, Q is abelian over £.
Thus each nonzero projection in &% dominates a nonzero projection abelian

over 4.

Proposition 8. Let # be a von Neumann subalgebra of a von Neu-
mann algebra o containing the center of Z. Assume that o is discrete
over A.

(1) o is discrete if and only if # is discrete;

(2)  is continuous if and only if B is continuous;

(3) « is a factor if and only if # is a factor,

(4) If o is a hyperfinite factor, then & is a hyperfinite factor.

Proof. If o is discrete over &, there exists an E€(#°)? with o5
=%y and E=1. Since E€ %’ and the # N #’'-support of E=1, it follows
that #=ABr=5 [3. p. 19, Prop. 27]. Therefore, (4) and the ‘‘only if’”’
parts of (1), (2) and (3) are obvious (see, for instance [ 37]). Conversely,
' =l =Ry because E€ o/ and the central support of E=1 by # D the
center of . If # satisfies the condition of (1) (2) (3) respectively, then
%' does so (see, for instance [37]). Therefore & does so.

Proposition 9. Let & be a 0-finite infinite factor. If o is discrete
over B, then o is isomorphic to BRQL(K) for some Hilbert space R,
where (&) is the factor of all bounded operators on K.

Proof. If o is discrete over &%, there exists an Ee(%°)? with &=
#r and E=1. Since .« is a o-finite infinite factor, it follows that & is
spatially isomorphic to &;®.Z(8) for some Hilbert space & [ 6. Lemma 3.
127]. On the other hand, the # N #’-support of £=1, so &y is isomorphic
to # by the condition that E€ %’ [3. p. 19]. Therefore & is isomorphic
to ZRQL(R).

Remark. Proposition 9 is extended to the following:

If a von Neumann algebra 7 is discrete over a von Neumann subal-
gebra & containing the center of &7, then & is isomorphic to (ZQRZ(®))g,
for some Hilbert space & and a projection E in #R.Z(&K).

The proof is clear from [3; p. 58, Theorem 3.
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The following definition is introduced in [2].

Definition 10. A von Neumann algebra & is called continuous over
a von Neumann subalgebra & if & contains no nonzero projections abelian

over 4.

Proposition 11. Let # be a von Neumann subalgebra of of. If o
is discrete (vesp. continuous) over &, then g is discrete (resp. continuous)
over By for each nonzero Ec (%N B')*.

Proof. By the definition 10, it is clear that if & is continuous over
%, then &5 is continuous over %y for every nonzero E€(#NAF')r. If
& is discrete over #, there exists a Fe(#°)? which is abelian over %
and F=I. For each nonzero E€(#N%)?, G=FE is abelian over &
by Lemma 4 and

G=FE=FE=E
by Lemma 2, so that &y is discrete over %j.

Corollary 12. If &/ is an abelian von Neumann algebra, then o is
discrete over a von Neumann subalgebra % if and only if # is a type 1
subalgebra of & in the sense of Dye [4]), that is, each mnomzero projection
in o dominates a nonzero projection abelian over X .

Proof. By Theorem 7, the ‘“if”” part is clear. Conversely, if there
exists a nonzero projection which does not dominate any nonzero projection
abelian over #, then we have a nonzero E<%? such that &y is conti-
nuous over By (cf. [4. p. 124]). By proposition 11, this is a contradic-
tion.

Proposition 13. Let # be a von Neumann subalgebra contained in
the center of o and (E),c; be an orthogonal family of projections in R
with ¥ E,=1. If oy, is discrete (vesp. continuous) over By, for each ¢,
then o is discrete (resp. continuous) over 2.

Proof. Assume that &7, is discrete over %, for each ¢. Let F, be
a projection abelian over # and F,=F, then by the proof of Theorem 7
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F=2XF, is abelian over # and F=JX E =1 Therefore & is discrete
over 4.

Assume that &/, is continuous over %y, for each ¢. If & is not
continuous over &%, then there exists a nonzero Fe(%¢)? abelian over £.
Let E, be a projection in (E,),c; such that FE,#0. FE, is a nonzero
projection abelian over # by Lemma 4, which contradicts the assumption

that &/, is continuous over %g,.

Theorem 14. Assume that & is contained in the center of . Then
there exists a unique E< B? satisfying the following:

(1) oLy is discrete over By,
and

(2) ;g is continuous over &i_g.

Proof. If o is not continuous over £, then there exists a nonzero
projection in 7 abelian over #. Put E=sup,E,, where each E, is a
nonzero projection abelian over &%. It follows that E€%? and &/ is
discrete over #g. In fact, take a nonzero P=%? with P<E, then we
have PE,+0 for some ¢, which implies E=PE,+0 and PE,=(%°)? because
% is abelian. Since E,=PE,, PE, is abelian over &4 by Lemma 4. Thus
by Theorem 7 7y is discrete over #Z5. If &/; p is not continuous over
#;_g, there exists a nonzero G .o7? which is abelian over # and GL<I—E.
By the definition of E, we have GG <E, which implies that G=0. This
is a contradiction. Therefore &/; 5 is continuous over #;_g.

Assume that, for G %?, o is discrete over %F; and &, ; is con-
tinuous over %#;_ g, then there exists a Qe &? which is abelian over &
and Q=G. By the definition of E,G<E. If E+G, then E—G domi-
nates a nonzero projection abelian over #. On the other hand, E—G<
I—G. Therefore I—G dominates a nonzero projection abelian over 4,
which contradicts the assumption that &7; ; is continuous over %#; .
Thus E=G, which shows the uniqueness of E.

Remark. As a corollary of Theorem 14, we have the following ([3.
p. 121, Cor. 17)); there exists a unique central projection E such that &7
is discrete and that &7, p is continuous.

3. Let # be a subalgebra of a von Neumann algebra /. A positive
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linear mapping e of & onto &% is called an expectaion of o onto # if e

satisfies the following conditions;
@) Ie=1
and

(i) (AB)t=A*B for all A&/ and for all B %

(cf. [107] and [147)).
The main result in [27] is that concerning e-strong Maharam subalge-

bras:

Definition 15. Let e be a normal expectation of & onto #. &£ is
called an e-strong Maharam subalgebra of </ if for any P€ A? and any
Be# such that 0<B<P° there exists a Q=&? such that Q<P and
that Q¢=B.

Theorem A. ([2. Corollary 117). Let # be a von Neumann suba-
lgebra of a von Neumann algebra < contained in the center of &/ and e
a normal expectation of & onto B. If & is continuous over &, then %
is an e-strong Maharam subalgebra of <.

In this section, we shall discuss two von Neumann algebras % and &

satisfying the following conditions;
(*) ¥oA and F=ANL' DX, =FNF,
or
(%) oo and =L NL'=FNL'.
Remark that if Z=¢ N’ then DO Z,,.

Theorem 16. Let € and of be two von Neumann algebras satisfying
the condition (x). If € is finite and discrete, then £ is discrete over Z .

Proof. If o is not discrete over Z,, then there exists by Theorem
14 a nonzero projection F' in %, such that &/ is continuous over (Z,)p.
%r and o satisfy the condition (%) and % is finite and discrete because
Fe(2,)?. So we shall assume that & is continuous over Z.
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Since % is discrete, there exists a projection E in €% such that
€r=(Z,)r and Z,-support of E=1. Since % is finite, there exists a
normal faithful expectation e of ¥ onto %,, that is, canonical natural
mapping of % (cf. [3]). On the other hand, D%, and & is con-
tinuous over &,. Therefore, by Theorem A4 &£, is an e-strong Maharam
subalgebra of .o/, that is, there exists an Fe/? with E¢=F¢. Applying
the comparability theorem to E and F, we have a G&(Z,)? such that
EG<FG and that E(J-G)<F(I-G). If EGZFG, then EG+F°G
because e is positive and faithful, which contradicts the property that
Ec=Fe¢, Hence EG~FG. Similarly, E(I—G)~F(I-G).

Therefore E~F. Since E is abelian over &, F is abelian over &,
cf. [1. Lemma 3]. So that ¥y=(Z,)p, which implies &r=(Z¢)p.
Thus & contains a nonzero projection F abelian over &,. This is a
contradiction.

Corollary 17. Let € and o be two von Neumann algebras satisfying

the condition (x). If € is finite and & is continuous over &, then € is
continuous.

Proof. 1f % is not continuous, there exists a nonzero projection E in
%, such that € is discrete by Theorem 14. Then %y and &y satisfy
the conditions of Theorem 16. Therefore &y is discrete over (Z2,)g.

Due to Proposition 11, this contradicts with the assumption that & is
continuous over % .

Lemma 18. Let € and o be two von Neumann algebras satisfying
the condition (xx). If & is discrete, then L/ =€ NZ'.

Proof. Let # be a von Neumann algebra generated by %’ and Z,
then Z=(¥NZ’) and ' DFDZF. If o is discrete, then &’ is discrete,
cf. [3, p. 123, Theorem 1.7].

Therefore # is normal in &/’ that is,

Br=(B'NA)YNA' =2,

cf. [3, p. 307, exercise 137]. In fact, if o/’ is discrete, then &/’ is isomor-
phic to a von Neumann algebra & such that 2’ is abelian, cf. [3]. Let
% C s/’ be isomorphic to #,Cc 9. ZC«’ is isomorphic to 2ND ' =P’.
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Hence #,2%’. Therefore
¢“=(B{ND2YND=B,ND=2A,.

Therefore #¢°=4.
On the other hand,

Be=(BNLYNL =(ENZ' NL') N A
=(Z'NZ)YnL'=2"'nA’
=7,
Hence #=«7’, that is  =HB'=¢¥NZ’.

Lemma 19. Let € and o be two von Neumann algebrvas satisfying
the condition (xx). If of is discrete and € is continuous, then « is con-

tinuous over Z ..

Proof. If & is not continuous over %, then there exists a nonzero
E in &/? such that &/;=(2,)g, which implies & z=2=(Z,)z.
Since Ee«c¥nNZ’, it follows that

On the other hand, .« is discrete, and so ¥NZ' =« by Lemma 18.
Therefore €=, so that €z=(Z%,)z. Thus ¥ contains a nonzero

abelian projection, which is a contradiction.

Theorem 20. Let € and of be two von Neumann algebras satisfying
the condition (xx). If € is continuous, then & is continuous over Z,.

Proof. There exists a projection E in £ such that o7y is discrete
and that of; p is continuous. Since %, is abelian, it follows that &/;
is continuous over (Z,);_g, cf. for instance [2. Example 4.

On the other hand, /5 and % satisfy the conditions of Lemma 19
because E€ =% N «/’. Therefore o/ is continuous over (Z,)g. So that
by an analogy with the proof of Proposition 13, we have & continuous

over Zg.
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Corollary 21. Let ¥ and & be two von Neumann algebras satisfying
the conditon (¥x). If & is discrete over &, then ¥ is discrete.

Proof. If % is not discrete, there exists a nonzero Ee(Z,)? such
that €y is continuous, by Theorem 14. Then % and &/  satisfy the
conditions of Theorem 20 because F€Z,Cc¥ N&’. Therefore & is con-
tinuous over (Z,)g, which contradicts the assumption that & is discrete
over &, by Proposition 11.

Theorem 22. Let € and o be two von Neumann algebras satisfying
the condition (**). Assume that € is finite. Then € is discrete (vesp.
continuous) if and only if o/ is discrele (vesp. continuous) over % ..

Proof. If ¥ is discrete, & is discrete over %, by Theorem 16. If
% is continuous, &7 is continuous over %, by Theorem 20. If & is dis-
crete over Z,, ¥ is discrete by corollary 21. And if o is continuous over
%,, ¥ is continuous by corollary 17.

4. Let G be a countable group of (*-) automorphisms of a von Neu-

mann algebra /. An automorphism « of & is called freely acting on <
when

AB=B>A for all Be.«
implies
A=0

([90D). G is called freely acting on o if g#1 (the unit element) in G is
freely acting on .

In this section, we are concerned with a finite von Neumann algebra
& with a faithful normal G-invariant trace ¢.

Now, we shall review briefly the concept of crossed product ([11]]
and [127]). Denote by X,c;g8® A4, an operator valued function on G where
A e is the value of the function at g&G. Let 2 be the set of all
operator valued functions on G such that 4,=0 up to a finite subset of G.
Then 2 is a linear space with the usual operation of the addition and

scaler multiplication, and becomes a *-algebra by the following operations;
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(Z‘gEGg@Ag)(EhEGh@Bh) = E',gr,hEGg'h®14gB&i:—1
and
(EgEG g®Ag)* = ZgEG g_1®A;kg-

And ¢ is extended to a faithful trace ¢ on 2 by

(2 ec g®Ag) =¢(4,).

Let © be the representation space of o by ¢ (cf. for instance [37]), then
G®Y, in the sense of Umegaki [147], is the representation space of 2 by
@. Define operators I® 4 and U,(geG, A=) on GRD by

I®A(2hEGh®Bh) = ZhEGh®ABh
and
U,(21ech®B;) =2 4ccghQ@B5 Y,

for any X ,cch@®B,€2, where 2 is considered as a dense linear subset
of GRP. Then U, is a unitary operator with

UxIQ AU, =1 45.

Hereafter, we shall identify I® A with A since .2/ is isomorphic to I®.s7.

The crossed product GR« is the weak closure of 2 on GRP, where
2 is now considered as a x-algebra of operators on G®, that is, a von
Neumann algebra generated by & and {U,: g€G}. Then GQ« is a
finite von Neumann algebra with a faithful normal trace ¢.

Haga-Takeda [7] have extended the definition of full group (due to
Dye) as in the below and proved Theorem B.

For two automorphisms « and 8 of &, let F(«, 8) be the maximum
central projection such that o' is an inner automorphism on &p(,, g
(cf. [7] or [97]). Consider the set

[G]={automorphism « of &: sup ,cF(a, g)=1I}.
Then each €[ G] induces the unitary U, of GR« with

UsAU,=A* for A,
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[G] forms a group containing G and G is called full if [G]=G. By the
fixed algebra of G, we mean the algebra

Z(G)={Adev; A=A for all geG}.

A subalgebra of G containing  is called an intermediate von Neumann
algebra of GR«.

Theorem B ([7. Theorem 27]). Let G be a countable group of auto-
morphisms freely acting on . Suppose that < is a finite von Neumann
algebra with a faithful normal G-invariant trace. Then the lattice of all
intermediate von Neumann algebras € of GQ L and the lattice of all full
subgroups K of [ G are isomorphic by associating with each full subgroup
K the intermediate von Neumann subalgebra €

% =the von Neumann algebra generated by [U,; a=K]
and with each intermediate von Neumann subalgebra € the full subgroup K
K={ae[G]; U, e%}.

Now, we shall extend the definition of types of automorphism groups
as follows:

Definition 23. A {ull subgroup K of [ G ] is called to be discrete type
(resp. continuous type) if o is discrete (resp. continuous) over the fixed
algebra Z(K) of K.

Remark that the fixed algebra of a full group is contained in the center
of o because a full group contains all inner automorphisms of 7.

Mixed types can occur, but by Theorem 14 a full group K can be
devided into purely discrete type and continuous type parts. That is, for
the projection E€Z(K) in Theorem 14, each of 7 and &; p reduces
K, so that K splits into the direct sum Kz+K;_j of two groups, the first
a discrete type of automorphisms of &/, the second a continuous type of

automorphisms of o;_p. The summands are obviously uniquely determined.

Theorem 24. Let G be a countable group of automorphisms freely
acting on L. Suppose that « is a finite von Neumann algebra with a

faithful normal G-invariant trace. Let € be an intermediate von Neumann
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algebra of GR.« and K a full subgroup of [ G| which corresponds to €
in the sense of Theovem B. Then € is discrete (vesp. continuous) if and
only if K is discrete type (resp. continuous type).

Proof. By the assumption of G and &, GR.« is finite, and so ¥ is
finite. Furthermore, by (8. Lemma 4.1, we have ¥N&'=Z =N .

Therefore ¥ and « satisfy the conditions of Theorem 22. On the
other hand, Z(K)=%2,, the center of ¥ by [8. Corollary 4.37]. Hence
we have this theorem.

In [87], Haga has proved the Dye correspondence in the different form

from Theorem 24.

Corollary 25. ([5. Proposition 6.17). Suppose that o is abelian,
that G is freely acting automorphism group on & and that o has a
faithful normal G-invariant trace. Then the corrvespondence of intermediate
von Neumann subalgebras of GQ and the full subgroups of [ G in the
sense of Theorem B (that is due to Dye [5)) comserves the type.

Especially assume that & is continuous in Theorem 24, then & is
continuous over each abelian von Neumann subalgebra of . Therefore
by Theorem 24, we have the following corollary.

Corollary 26. Let G be a countable group of automorphisms freely
acting on . Suppose that & is a finite continuous von Neumann algebra
with a faithful normal G-invariant trace. Then each intermediate wvon
Neumann subalgebra of GRZ is continuous.

5. Prof. Y. Nakagami pointed out the following variants of Proposi-
tion 9.

Proposition A. Let o be a finite discrete factor. If o is discrete
over a von Neumann subalgebra %, then < is isomorphic to BRQL(K) for
some Hilbert space 8.

Proof. If o is discrete over %, then # is a discrete factor by Pro-
position 8 and finite. Therefore, & is isomorphic to ZQL(RK) for some
Hilbert space £.
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Proposition B. Let o be a von Neumann algebra discrele over a
von Neumann subalgebra % containing the center % of . If o is
properly infinite, then o is isomorphic to XD (Bg,RQL(D,)), where E,
runs over a partition of I in & and O, is a Hilbert space for each ¢.

Corollary. Let o be a properly infinite factor discrete over a wvon
Neumann subalgebra &, then o is isomorphic to BRQL (D) for some Hilbert
space 9.

Poof of Proposition B. At the first, we shall show that there exists
a nonzero E€Z? such that &/  is isomorphic to #;®.Z(9) for some
Hilbert space 9.

Since & is discrete over %, there exists a F&(#°)? such that F=1
and that &/y=%y. Since there exists a projection P jn % such that EP
is finite and that F(I— P) is properly infinite in &/, we may assume that
F is finite or properly infinite. Let {F,; c€I} be a maximal family
of equivalent and mutually orthogonal projections in .« such that F=F,
for some ¢=l. Then there exists a nonzero central projection E in &
satisfying

(I—2 e/ F)E<LFE.
If F is finite and [ is finite, then the central projection
E=ZLEIFLE+(I_ZLE[FL)E

is finite, which contradicts that ./ is properly infinite. If F is properly
infinite, for each F,, there exists a family of countable projections in &
which are equivalent to F,. Therefore we may choose I as an infinite
set. Since

E=ZLE]FLE+(I_ZLEIFL)E<2LE[FLE§E’

it follows that E~2 c,F E. Therefore &y is spatially isomorphic to
L ppQRQL(D) for some Hilbert space © with dim. 9=card. I. Since
FE=E, #5 is isomorphic to #yz=pp. Thus there exists a nonzero
projection E in £ such that <7y is isomorphic to Z;®Z(D).

Let (E,),c; be a maximal orthogonal family of projections in & such
that for each ¢, E,#0 and that &/, is isomorphic to %5 ,®.Z(9,) for some
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Hilbert space ©,. If 2 c;E,#1, then G=1—2 ;E, is a nonzero projection

in &. By the assumption, &7 is properly infinite and .o/ is discrete over

% by Proposition 11. Therefore, there exists a nonzero projection @ in
Z such that Q<G and that &/, is isomorphic to Z,RZL(RK) for some
Hilbert space &, which contradicts the maximality of {E,}. Hence
2 erE, =1, that is, & is isomorphic to 2 ,c;P A, =2 ,c;D(Z5,RZL(D,).
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