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The family of abelian projections of von Neumann algebras plays an

important role in the theory of types (discrete and continuous). An abelian

projection E of a von Neumann algebra j/ is defined by the requirement

that each projection P in ^ dominated by E is written as P = QE for

some Q in the center Jf of $£. We have taken an interest in generalizing

this definition of an abelian projection by using a general von Neumann

subalgebra of jaf in place of the center 3f.

In Q], we defined a projection abelian over a von Neumann subalgebra

(see Definition 3 below) and proved that some elementary properties of

abelian projections are preserved under the generalization. Those results

lead us to a natural generalization of continuous von Neumann algebras.

In [J2], we have extended the definition of continuous von Neumann

algebras (Definition 10 below) and proved that a von Neumann subalgebra

38 of a von Neumann algebra j/ contained in the center has a useful

property relative to an expectation (that is, ^ is a strong Maharam

subalgebra of jaf in the sense of Definition 15) if j/ is continuous over 3%

(Theorem A).

In this note, we shall define a von Neumann algebra j/ discrete over

a von Neumann subalgebra ^. We prove that «£/ splits into the direct

sum of the part continuous over ^ and the part discrete over ^ if 38 is

contained in the center of $0 (Theorem 14 in §2).

When a von Neumann subalgebra & of a von Neumann algebra stf

satisfies some conditions, 88 is discrete (resp. continuous) over the center

of j/ if and only if jaf is discrete (resp. continuous) in the usual sense

(Theorem 22 in §3).
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In §4, we shall apply theorems in §3 to the crossed product G®jtf

of a von Neumann algebra j& by a freely acting automorphism group G

of stf with the following results:

One of main results in Dye's paper p>] is that if jaf is a non-atomic

abelian von Neumann algebra, then there is a 1:1 correspondence between

full subgroups of the full group QGQ determined by G and intermediate

von Neumann subalgebras of G(x)j3f . Haga-Takeda have extended, in their

paper [7], this result to a (T-finite finite von Neumann algebra ja^. On the

other hand, Dye has introduced the types (I and II) for a freely acting

automorphism group on an abelian von Neumann algebra, and shown that

the correspondence in the above conserves the type; if an intermediate

von Neumann algebra is discrete (resp. continuous), then the correspon-

ding subgroup is of type I (resp. type II).

We shall define types (discrete type and continuous type) for auto-

morphism groups of von Neumann algebras in Definition 23. This defini-

tion is a generalization of that due to Dye. And we shall show that the

correspondence of intermediate von Neumann subalgebras of G®30 and

full subgroups of the full group £G] determined by G, due to Haga-Takeda,

preserves the type in the sense of Dye (Theorem 24 in §4).

The author would like to express her appreciation to Prof. Y. Haga

and Prof. Z. Takeda for giving her the opportunity to see pre-publication

copy of their paper, to which she is indebted deeply, and to Prof.

Y. Nakagami for taking the pains reading her manuscript carefully and

giving her valuable comments.

We shall use the terminologies and notations due to Dixmier Q3]

throughout this note without further explanations.

2. In the sequel, let s# be a von Neumann algebra and & a von

Neumann subalgebra of $4. Denote by &c the relative commutant @f {\$t

of @ in jaf, &p the set of all projections of ^ and E the ^-support of

*, that is,

Lemma 1* Let (Et)lGl be a family of projections in jtf, then
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Proof. By the definition, supt£t^sup,J?t, so sup^^sup^. Conversely

suptE4^I^, which implies that suptJ£4^suptl?t. Therefore sup4£t = supt£4.

For completeness we include a proof of the following Lemma, which

is proved in [1].

Lemma 2. /f £P is a projection for E<=(@c)p and P&&*, then

EP=EP.

Proof. £P^£P is clear by the definition. If EP^EP, then there

exist two projections Q and R in ^ such that

and that

Therefore Q + R<=&P satisfies E^Q + R^E, which contradicts the defini-

tion of E.

The following definition is introduced in [1] as a generalization of the

notion of abelian projections.

Definition 3. A projection E^jtf is called abelian over & if

and for every projection Pej/ with P^E, there exists a projection

such that P =

Lemma 4. L££ E be a projection in jtf abelian over 3$ . A projection

F in £%c is abelian over 3$ if F<^E.

Proof. Let P be a projection in «£/ with P^F. Then there exists a

such that P = QE because P^E and E is abelian over ^. Hence

For a general form of Lemma 4, see Ql ; Lemma 3].

The following lemma, proved in Q2], gives an alternative algebraic

definition of projections abelian over ^.

Lemma 5. E^J&P is abelian over 3$ if and only if E&&° and
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J*E = £E.

Now, we shall extend the definition of discrete von Neumann algebras

as the following:

Definition 6e A von Neumann algebra j/ is called discrete over &

if there exists an E ^ j t f p which is abelian over 38 and E — I.

Remark. Let 2£ be the center of a von Neumann algebra J3^. Then

if J3^ is discrete over J*, stf is discrete in the usual sense cf. []3]. If stf

is an abelian von Neumann algebra and discrete over 38, then 38 is called

by Dye [T], a tyPe I subalgebra; cf. Corollary 12 below.

Exampleo Let ^ be a von Neumann algebra and ^ a discrete factor,

then 38®^ is discrete over 38 ®I.

In fact, let P be a minimal projection in <& . Clearly J(x)P is abelian

over #(g)/ and ^® /-support of /(x)P=/(x)/. Therefore, ^(x)^ is discrete

over

Theorem 7e L#£ & be a von Neumann subalgebra of jtf contained

in the center 2£ of s£ . Then s$ is discrete over & if and only if each

nonzero projection in Si dominates a nonzero projection abelian over 38,

Proof. If each nonzero projection in ^ dominates a nonzero projection

abelian over ^, by Zorn's lemma, we have a maximal orthogonal family

(G4)4€E/ of nonzero projections in & satisfying the following properties:

for any £e/, there exists an E t ^ j t f p which is abelian over & and Et = Gt.

Put G = £tGt. If G=£l, there exists a nonzero F^jtfp which is abelian

over 38 and F^I—G because I—G^&P. Since F^I—G, F is orthogonal

to each G19 which contradicts the maximality of (GJtS/. Therefore, we

have G = I. Put E = 2LEt. Since CE^Xe/ is an orthogonal family, E=

2lEl = 2lGt = G = I by Lemma 1. On the other hand j*E =

because Et is abelian over ^, (Gt)te/ is an orthogonal family of projections

in ^ with I GL = I and 38 is contained in the center of j/ (cf. [3. p.22]).

Hence E is abelian over 38. Thus there exists an E^s/p which is abelian

over 38 and E = I.

Conversely, suppose that there exists a projection E which is abelian

over 38 and E = I. For a nonzero Pe^, put Q = EP. Then Q^P and
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by Lemma 2, so Q^=0. Since @ is contained in the

center of jtf,Q^£$c. Therefore, by Lemma 4, Q is abelian over 38.

Thus each nonzero projection in 3% dominates a nonzero projection abelian

over Si.

Proposition 8. Let ^ be a von Neumann subalgebra of a von Neu-

mann algebra stf containing the center of stf . Assume that s# is discrete

over £8.

(1) j/ is discrete if and only if 88 is discrete;

(2) stf is continuous if and only if & is continuous',

(3) jtf is a factor if and only if & is a factor;

(4) If j/ is a hyper finite factor, then & is a hyper finite factor.

Proof. If $# is discrete over ^, there exists an E^(£$c)p with sfE

= &E and E = I. Since E<=@' and the 38 fl ̂ "-support of E=I, it follows

that & = &E = jtfE [3. p. 19, Prop. 2]. Therefore, (4) and the "only if"

parts of (1), (2) and (3) are obvious (see, for instance Q3]). Conversely,

$#' = jtfE = £$E because E^jtf and the central support of E= I by &n the

center of jtf. If £% satisfies the condition of (1) (2) (3) respectively, then

^" does so (see, for instance pT]). Therefore $0 does so.

Proposition 9. Let ^ be a (J-finite infinite factor. If j/ is discrete

over ^, then $0 is isomorphic to ^(x)j$f(5?) for some Hilbert space 3?,

where &($£) is the factor of all bounded operators on $).

Proof. If £0 is discrete over ^, there exists an jE'e(^fc)^ with J#E =

3$E and E = I. Since stf is a tf-finite infinite factor, it follows that $0 is

spatially isomorphic to ^E®^(^) for some Hilbert space $) £6. Lemma 3.

12]. On the other hand, the & D ̂ '-support of E = I, so 38 E is isomorphic

to & by the condition that E^&f £3. p. 19]. Therefore^ is isomorphic

to

Remark. Proposition 9 is extended to the following:

If a von Neumann algebra jtf is discrete over a von Neumann subal-

gebra & containing the center of J2/, then $0 is isomorphic to

for some Hilbert space $? and a projection E in

The proof is clear from Q3; p. 58, Theorem 3].
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The following definition is introduced in

Definition 10. A von Neumann algebra s# is called continuous over

a von Neumann subalgebra & if s# contains no nonzero projections abelian

over ^.

Proposition II. Let 38 be a von Neumann subalgebra of stf . If stf

is discrete (resp. continuous) over 3%, then jtfE is discrete (resp. continuous)

over &E for each nonzero

Proof. By the definition 10, it is clear that if j/ is continuous over

^, then J2/E- is continuous over &E for every nonzero E^(&n&f)p. E

j/ is discrete over ^, there exists a F&(&c)p which is abelian over &

and F=I. For each nonzero E^(^n^/)p, G = FE is abelian over @

by Lemma 4 and

G=FE=FE=E

by Lemma 2, so that &&E is discrete over &E.

Corollary 12. If s/ is an abelian von Neumann algebra, then $0 is

discrete over a von Neumann subalgebra & if and only if & is a type I

subalgebra of stf in the sense of Dye £4], that is, each nonzero projection

in jtf dominates a nonzero projection abelian over 3$.

Proof. By Theorem 7, the "if" part is clear. Conversely, if there

exists a nonzero projection which does not dominate any nonzero projection

abelian over ^, then we have a nonzero E^@p such that s#E is conti-

nuous over SSE (cf. Q4. p. 124]). By proposition 11, this is a contradic-

tion.

Proposition 13. Let 38 be a von Neumann subalgebra contained in

the center of stf and (£t)tS/ be an orthogonal family of projections in &

with 2tEt = I. If jtfEt is discrete (resp. continuous) over 3$Etfor each c,

then j/ is discrete (resp. continuous) over &.

Proof. Assume that s#El is discrete over 3$Et for each c. Let Ft be

a projection abelian over ^ and Ft = Et, then by the proof of Theorem 7
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F=2LF^ is abelian over & and F = 2lEi = I. Therefore $0 is discrete

over 38.

Assume that s/El is continuous over 38 El for each c. If jaf is not

continuous over 38, then there exists a nonzero F^(£$°}p abelian over 38.

Let Ek be a projection in (Et\el such that FEk3=Q. FEk is a nonzero

projection abelian over 38 by Lemma 4, which contradicts the assumption

that $#Ek is continuous over 38Ek.

Theorem 14. Assume that 38 is contained in the center of $0'. Then

there exists a unique E^.38P satisfying the following:

(1) jtfE is discrete over 38E,

and

(2) <s# i-E is continuous over 381-E.

Proof. If s# is not continuous over 38', then there exists a nonzero

projection in J3^ abelian over 38. Put E=suptEt, where each Et is a

nonzero projection abelian over 38. It follows that E^3$p and £&E is

discrete over 33E. In fact, take a nonzero P^&p with P^E9 then we

have PEt^O for some c, which implies E^PEt^Q and PEt^(^c)p because

38 is abelian. Since Et^PEt9 PEt is abelian over 38 by Lemma 4. Thus

by Theorem 7 ja^ is discrete over 38E. If J&f-E is not continuous over

&i-E, there exists a nonzero G ^ j t f p which is abelian over 36 and G^I—E.

By the definition of E, we have G^G^E, which implies that G = 0. This

is a contradiction. Therefore •&i-E is continuous over 38T-E.

Assume that, for G^38P^G is discrete over 38G and ^7_G is con-

tinuous over ^/-G» then there exists a Q^J/P which is abelian over 36

and Q = G. By the definition of E,G^E. If £^G, then E-G domi-

nates a nonzero projection abelian over 38. On the other hand, E—G^

I—G. Therefore /— G dominates a nonzero projection abelian over 38,

which contradicts the assumption that ^/-G is continuous over 38/_G.

Thus E=G, which shows the uniqueness of E.

Remark. As a corollary of Theorem 14, we have the following ([[3.

p. 121, Cor. 1]); there exists a unique central projection E such that J/E

is discrete and that J&I-E is continuous.

3. Let 38 be a subalgebra of a von Neumann algebra ja^. A positive
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linear mapping e of jtf onto 38 is called an expectaion of j/ onto 3S if e

satisfies the following conditions;

o) /•=/
and

(ii) (AB)e = AeB for all A<ELS# and for all BSE@

(cf. [10] and [14]).

The main result in [2] is that concerning e-strong Maharam subalge-

bras:

Definition 15. Let e be a normal expectation of j/ onto 38. & is

called an e-strong Maharam subalgebra of stf if for any P^AP and any

B&& such that Q<*B<=Pe there exists a Q^jtfp such that @^P and

that Qe = B.

Theorem A. ([2. Corollary 11]). Let 38 be a von Neumann suba-

lgebra of a von Neumann algebra s# contained in the center of s# and e

a normal expectation of stf onto £8. If ^ is continuous over &, then 38

is an e-strong Maharam subalgebra of tf .

In this section, we shall discuss two von Neumann algebras <€ and stf

satisfying the following conditions;

and # =

or

(**) ^=)j3f and 3r =

Remark that if ^ = ̂ n^7 then

Theorem 16. Let <€ and s# be two von Neumann algebras satisfying

the condition (*). If <$ is finite and discrete, then s# is discrete over *£,#.

Proof. If aaf is not discrete over ^^^ then there exists by Theorem

14 a nonzero projection F in J9^ such that J&F is continuous over (&v)F.

WP and stf p satisfy the condition (*) and <$ F is finite and discrete because
p- So we shall assume that j/ is continuous over &%.
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Since ^ is discrete, there exists a projection E in ^ such that

#£ = (^)E and JVsupport of E = I. Since <g is finite, there exists a

normal faithful expectation e of ^ onto <2^, that is, canonical natural

mapping of ^ (cf. [XD- On the other hand, £>Tz>^ry and jtf is con-

tinuous over $?<#. Therefore, by Theorem A 3£ <# is an e-strong Maharam

subalgebra of ja/, that is, there exists an F^^p with Ee = Fe. Applying

the comparability theorem to E and F, we have a G e C^*)* such that

EG<FG and that £(/-£)<F(/-G). If EG^FG, then E'G^F'G

because e is positive and faithful, which contradicts the property that

Ee = Fe. Hence EG-FG. Similarly, E(I-G)~F(I-G).

Therefore E~F. Since F is abelian over J?^, F is abelian over j2Ty

cf. [1. Lemma 3]. So that ^F = (J°^)F, which implies ja/p = (^)F.

Thus ja^ contains a nonzero projection F abelian over $£<$. This is a

contradiction.

Corollary 17. L£/ ^ c^J J3f te ^o von Neumann algebras satisfying

the condition (*). If %> is finite and stf is continuous over *£ \, then <& is
continuous.

Proof. If ^ is not continuous, there exists a nonzero projection E in

2£ v such that <£ E is discrete by Theorem 14. Then <& E and J&E satisfy

the conditions of Theorem 16. Therefore s$ 'E is discrete over (j% <^)E.

Due to Proposition 11, this contradicts with the assumption that stf is

continuous over & \.

Lemma 18. Let <£ and $# be two von Neumann algebras satisfying

the condition (**). If jtf is discrete, then s^=-^{\^r.

Proof. Let ^ be a von Neumann algebra generated by C6' and ^f,

then & = (<&r\&'y and J/'D^ZD^. If st is discrete, then #?' is discrete,

cf. p, p. 123, Theorem 1.].

Therefore 38 is normal in j// that is,

@cc = (@r n *tfy n j*7 = ®,

cf. p, p. 307, exercise 13]. In fact, if $£' is discrete, then $#' is isomor-

phic to a von Neumann algebra 3f such that @r is abelian, cf. Q3]. Let
7 be isomorphic to ^c^. &C.&?' is isomorphic to ^n^ ' = ^/-
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Hence 8^&'. Therefore

Therefore &cc = &.

On the other hand,

'y n stf = (& n %' n j*")' n ^

Hence @ = &tf, that is j/ =.&' = <£ n J?7.

Lemma 19. Let <% and stf be two von Neumann algebras satisfying

the condition (**). If stf is discrete and %> is continuous •, then stf is con-

tinuous over 2£ \.

Proof. If J2^ is not continuous over J?^, then there exists a nonzero

E in jtfp such that ^E = (^^)E, which implies £#E = &E = (3fv)E.

Since ^ej^c^n^7, it follows that

tf * = <r* n (5rr)jJ = ̂  n ̂  = (^ n &'}E.

On the other hand, stf is discrete, and so ^r\^r = ̂  by Lemma 18.

Therefore ^E = J^E, so that ^E = (^^E- Thus ^ contains a nonzero

abelian projection, which is a contradiction.

Theorem 20. Let <£ and jtf be two von Neumann algebras satisfying

the condition (**). If % is continuous, then s# is continuous over 2£<g.

Proof. There exists a projection E in 3£ such that stfE is discrete

and that J& I-E is continuous. Since ^ \ is abelian, it follows that J&J-E

is continuous over («^'^)/_jE:, cf. for instance Q2. Example 4],

On the other hand, 3#E and ^^ satisfy the conditions of Lemma 19

because E^2£ — y? {\stf' . Therefore J£E is continuous over (j%><^)E. So that

by an analogy with the proof of Proposition 13, we have J/ continuous

over JV
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Corollary 21. Let <£ and s# be two von Neumann algebras satisfying

the conditon (**). If &0 is discrete over «£^, then <$ is discrete.

Proof. If ^ is not discrete, there exists a nonzero E&(3?^p sucn

that ^ 'E is continuous, by Theorem 14. Then <$ E and s$ 'E satisfy the

conditions of Theorem 20 because .Ee^c'g7 n .*/'. Therefore $0 E is con-

tinuous over (£ 'V)E> which contradicts the assumption that j/ is discrete

over 2£ \ by Proposition 11.

Theorem 22. Let *% and «£/ be two von Neumann algebras satisfying

the condition (**). Assume that <& is finite. Then %> is discrete (resp.

continuous) if and only if j/ is discrete (resp. continuous) over 2% \.

Proof. If ^ is discrete, ja^ is discrete over 2£<g by Theorem 16. If

%> is continuous, jaf is continuous over 2£ \ by Theorem 20. If jtf is dis-

crete over «^^, ̂  is discrete by corollary 21. And if s# is continuous over

Jf^, ^ is continuous by corollary 17.

4. Let G be a countable group of (*-) automorphisms of a von Neu-

mann algebra s£ . An automorphism a of s£ is called freely acting on J2^

when

BaA for all

implies

OH)- G is called freely acting on stf if g-^1 (the unit element) in G is

freely acting on jaf.

In this section, we are concerned with a finite von Neumann algebra

J2/ with a faithful normal G-invariant trace <p.

Now, we shall review briefly the concept of crossed product ([11]

and p. 2]). Denote by Ig^Gg®Ag an operator valued function on G where

Ag^jtf is the value of the function at g^G. Let ^ be the set of all

operator valued functions on G such that Ag = 0 up to a finite subset of G.

Then & is a linear space with the usual operation of the addition and

sealer multiplication, and becomes a *-algebra by the following operations;
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and

And <p is extended to a faithful trace <p on Of by

Let § be the representation space of jaf by ^ (cf. for instance PQ), tnen

G®*&5 in the sense of Umegaki £14], is the representation space of 2 by

f. Define operators I® A and Ug(g^G, A^jtf} on G(g)£> by

and

for any 2h<=Gh®Bh^@, where 3t is considered as a dense linear subset

of G®§. Then Ug is a unitary operator with

Hereafter, we shall identify I® A with A since sf is isomorphic to

The crossed product G(x)j2/ is the weak closure of 2 on G(g)§, where

^ is now considered as a ^-algebra of operators on G®£>, that is, a von

Neumann algebra generated by s# and {Ug: g^G}. Then G(x)«5/ is a

finite von Neumann algebra with a faithful normal trace <p.

Haga-Takeda [7] have extended the definition of full group (due to

Dye) as in the below and proved Theorem B.

For two automorphisms a and $ of J2/, let F(a, /9) be the maximum

central projection such that a~l& is an inner automorphism on eB^FCa./s)

(cf. [7] or [9]). Consider the set

[jST\ = {automorphism a of jtf: sup g(=GF(a, g) = I}.

Then each aeQG] induces the unitary Ua of G(x)j3^ with

U*AUa = A« for
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FG] forms a group containing G and G is called full if FGj = G. By the

fixed algebra of G, we mean the algebra

Ae = A for all

A subalgebra of G® s& containing sf is called an intermediate von Neumann

algebra of

Theorem B (Q7. Theorem 2])- Let G be a countable group of auto-

morphisms freely acting on <$/. Suppose that s£ is a finite von Neumann

algebra with a faithful normal G-invariant trace. Then the lattice of all

intermediate von Neumann algebras <$ of G®jtf and the lattice of all full

subgroups K of \jG\] are isomorphic by associating with each full subgroup

K the intermediate von Neumann subalgebra <£

<% — the von Neumann algebra generated by {JJa\

and with each intermediate von Neumann subalgebra %> the full subgroup K

Now, we shall extend the definition of types of automorphism groups

as follows:

Definition 23. A full subgroup K of |̂ GJ is called to be discrete type

(resp. continuous type) if jtf is discrete (resp. continuous) over the fixed

algebra 2(K) of K.

Remark that the fixed algebra of a full group is contained in the center

of j£ because a full group contains all inner automorphisms of j&.

Mixed types can occur, but by Theorem 14 a full group K can be

devided into purely discrete type and continuous type parts. That is, for

the projection E^3?(K) in Theorem 14, each of J$E and J&I-E reduces

K, so that K splits into the direct sum KE + K^E of two groups, the first

a discrete type of automorphisms of ja/g, the second a continuous type of

automorphisms of J3^/_£. The summands are obviously uniquely determined.

Theorem 24. Let G be a countable group of automorphisms freely

acting on s# . Suppose that jtf is a finite von Neumann algebra with a

faithful normal G-invariant trace. Let *£ be an intermediate von Neumann
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algebra of G®JS/ and K a full subgroup of QGQ which corresponds to <£

in the sense of Theorem B. Then <tf is discrete (resp. continuous) if and

only if K is discrete type (resp. continuous type).

Proof. By the assumption of G and j?/9 G®^ is finite, and so ^ is

finite. Furthermore, by []8. Lemma 4.1], we have %?{}<$#'= & = jtfftj/f.

Therefore ^ and j/ satisfy the conditions of Theorem 22. On the

other hand, &(!£) = £'#, the center of tf by [8. Corollary 4.3]. Hence

we have this theorem.

In Q8], Haga has proved the Dye correspondence in the different form

from Theorem 24.

Corollary 25. (£5. Proposition 6.1]). Suppose that J3/ is abelian,

that G is freely acting automorphism group on jaf and that j/ has a

faithful normal G-invariant trace. Then the correspondence of intermediate

von Neumann subalgebras of G®3$ and the full subgroups of \JGT] in the

sense of Theorem B (that is due to Dye Q5]) conserves the type.

Especially assume that j/ is continuous in Theorem 24, then s# is

continuous over each abelian von Neumann subalgebra of j/. Therefore

by Theorem 24, we have the following corollary.

Corollary 26. Let G be a countable group of automorphisms freely

acting on j&. Suppose that $0 is a finite continuous von Neumann algebra

with a faithful normal G-invariant trace. Then each intermediate von

Neumann subalgebra of G(x)j3f is continuous.

5. Prof. Y. Nakagami pointed out the following variants of Proposi-

tion 9.

Proposition A. Let ^ be a finite discrete factor. If $£ is discrete

over a von Neumann subalgebra 38, then $# is isomorphic to ^® J^(S) for

some Hilbert space $.

Proof. If J2/ is discrete over ^, then ^ is a discrete factor by Pro-

position 8 and finite. Therefore, jtf is isomorphic to ^®J5f(S) for some

Hilbert space $).
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Proposition B. Let ^ be a von Neumann algebra discrete over a

von Neumann subalgebra £8 containing the center 2£ of jaf. If ^ is

properly infinite, then jaf is isomorphic to 2®^Et®^(^^\ where EL

runs over a partition of I in 2£ and §t is a Hilbert space for each c.

Corollary. Let $# be a properly infinite factor discrete over a von

Neumann subalgebra ^, then jaf is isomorphic to &§§3?(<Q) for some Hilbert

space §.

Poof of Proposition B. At the first, we shall show that there exists

a nonzero E^3?p such that £# 'E is isomorphic to ^£-(x)^f(§) for some

Hilbert space §.

Since jtf is discrete over ^, there exists a F^(&c)p such that F=I

and that J&F = &F. Since there exists a projection P in ££ such that EP

is finite and that F(I— P) is properly infinite in jaf, we may assume that

F is finite or properly infinite. Let {Ft; c^I} be a maximal family

of equivalent and mutually orthogonal projections in j/ such that F — FL

for some c^I. Then there exists a nonzero central projection E in jaf

satisfying

If F is finite and / is finite, then the central projection

is finite, which contradicts that stf is properly infinite. If F is properly

infinite, for each Ft9 there exists a family of countable projections in jaf

which are equivalent to Ft. Therefore we may choose / as an infinite

set. Since

it follows that E~2ls=IFtE. Therefore £/E is spatially isomorphic to

j/F£® JS?(§) for some Hilbert space § with dim. § = card. /. Since

FE=E, &E is isomorphic to ^FE = ^FE- Thus there exists a nonzero

projection E in 2£ such that J&E is isomorphic to 3$E®£?(*Q).

Let C^Xe/ be a maximal orthogonal family of projections in 3? such

that for each c, E,^0 and that <s?Et is isomorphic to ^£t(g)jS?(§J for some
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Hilbert space §t. If 2tGlEt-=^I, then G = I—£l<=IEt is a nonzero projection

in 2£. By the assumption, $$'G is properly infinite and jtfG is discrete over

&G by Proposition 11. Therefore, there exists a nonzero projection Q in

& such that Q^G and that J</Q is isomorphic to &8Q®<£(®) for some

Hilbert space ^, which contradicts the maximality of {Et}. Hence

^te/£>/, that is, j* is isomorphic to 2\e/©j*£t = 2\e/©(0£t(g)J^($,)).
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