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Differentiable Functions Equivalent
to Analytic Functions

By

Masahiro Suiora

1. Let f, g be real-valued functions of class €~ in R!. Functions
f> g are called equivalent if there exists a diffeomorphism (of class C~) t
of R! such that fer=g. The main object of this paper is to show under
what conditions a function is equivalent to an analytic function (Theorem
1).

In the case of polynomials, the corresponding result is proved in Thom
[17]. The method of our proof is analogous to that in [17], and our Lemma
3,4 correspond to Theorem R in [17].

Theorem 2 refines Mittag-Lefler’s theorem in the real case.

The author thanks Mr. Iwasaki for his kind criticisms, and Professor
S. Matsuura for his kind encouragement.

2. A function is called flat at a point a if for each n=0 the n-th
derived function £ vanishes at a.

Theorem 1. A C™-function f (not constant) is equivalent to an analy-
tic function if and only if the derived function f' is nowhere flat.

If f” is nowhere flat, then we can see by Rolle’s theorem that the set
of critical points of f (i.e. the set of points where f’ vanishes) has no
accumulating points. Let {a,} denote the set. Adding regular points to

the set (if necessary), we can assume {a,} satisfies the following conditions

(1) a’n<an+1,
(2) a,m(n—o0) @, —oco(n——c0),
(3) a_, <0<a0.

For each integer n we define k(f, n) the least non-negative integer £—1
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such that the k-th derived function f (8 does not vanish at a,, and put

xgo kD
{ (_ 1) (f(a‘n+l) _f(an)) n=0
b(f, m)=1 flap)—f(a-1) n=—1
_E.‘IH BUD

(D™ (fa)—f@)  ns-2.
Then b(f, n) have all the same sign.

For the proof we need the following lemmas.

Lemma 1. Let ¢, d be real numbers (0<c<d) and h a real-valued
continuous function in (—oo, c]U[d, ). Then there is an entire holo-
morphic function ¢ in the complex plane C' which satisfies the following

conditions:

(1) the restriction of ¢ on the real axis is real-valued,

(2) d(x)=h(x) on (=<0, cJU[d, =),
#(x)=0 on [—g—c—i——%—d, —é-c+"§—d:|,
(B) Red(z)sh(c) on |z]|<ec.

Proof. 1t is enough to prove the lemma for a function A’ such that

h’<h. So, from the first we can assume
{K,,+1 on [nd,(n+1)d) for n+0, —1 (K,<0),
h=
K+1 on [—d,c] (K<0).

We put

K+1

o (z)=—53—-Bz—2¢c—d)+1,

¢”(Z)=Kneln{—z+(n+l)d} ng -2,

(1, are taken large enough so that |@,(z)| <27 on |z| <max(— d c))

K-1

$u(2)=(K,+ 5= (Bnd+2d-2c))e="  nzl,
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(I, are taken large enough so that |@4,(z)| <27" on |z| Smax(ﬂ, c)).

Then for any compact set K (cCh), Z] ¢, converges umformly on K, so
-1

o= Z ¢, is holomorphic. It is easﬂy seen that ¢ satisfies the conditions

n+—1
in the lemma.

Lemma 2. Let ¢, d be real numbers (O<c< d) and h a positive
continuous function in (— oo, c ] Ur 3 ct+g d ——c+ 3 d}u[d o). Then
there is an entire holomorphic functzon ¢ in C1 which satisfies the following
conditions.

(1) the restriction of ¢ on the real axis is real- and positive-valued,

(2) ¢(x)=h(x) on (—oo, CJUEd °°)

$(x)Zh(x) on (_c+ d, tet+ 2 d]

(3) [8(2)|=h(c) on IzI§C-

Proof. Applying Lemma 1 to

log A(x)~—log sup h(x) ,
xE[ 3 c+—§ —+— d]

we easily prove this lemma.

Lemma 3. For any real numbers a,+0 (such that a,<a,.,, a,—
o(n—), and a,—— o(n— —x)), non-negative integers k,, and postive
numbers b,, there is an entire holomorphic function g in C' which satisfies
the following conditions.

(0) the restriction of g on the real axis is real-valued,

(1) the set of critical points of g in the real axis is contained in the
sequence {a,},

(2) k(g, n)=k, where k(g, n) means k(g|R, n),

(3) 0<b(g, n)<b, for n+0

b(g, 0)=by for n=0,
where b(g, n) means b(g|R, n).

Proof. We put

r 2 In
=) s () e
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fi (12 o

x
0 7=—o0 ay

G(x)=g

then by Mittag-Lefler’s theorem G(x) is an entire holomorphic function
in C! which satisfies the conditions (1), (2) in the lemma. Let % be a
positive valued continuous function such that

small enough on (— oo, a,]U[a,;, =),

2 1 1 2
large enough on [—g—ao—l——s—al, 5 % +?a1].

If we apply Lemma 2 to this A, then we get an entire holomorphic
function ¢(z) such that

g(x)=6S:¢(Z)nﬁw(l—é)""Hn(z)dz (0 is a constant)

satisfies the conditions (1), (2), (3) in the lemma.

Lemma 4. In Lemma 3, we can take g so as to satisfy moreover
the following condition,

4 b(g, n)=b, for each n.

Proof. For each m we have constructed an entire holomorphic function
&m in C! which verifies (1), (2) in Lemma 3 and a condition

3) 0<b(gn, n)s2-'m1-3p, for m+n,
b(gms n)=0b, for m=n.

In doing this, if we let A take values small enough at a, and a,,;, from
the condition 3 in Lemma 2 g, is constructed so that for any compact set
K(cC') Yc,gn (for any 0<c,<1) converges uniformly on K. Here we
should remark that 3¢, g,(0<c,=<1) satisfies the (1), (2) in Lemma 3.
We put

= b(gi, 3
gi= 2 _ &n then 1<———(gb1,, n)<_2_;

oo

82=8it L Cm18m (cm,1 =sup

b(gi, n)_ b(gl, m))
b, b

then
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supb——(g;l’ m)<&5§’ n) <%supé(g;1’—m—)—%;

generally we put

oo

gz:g’k—l-’_ m;:_mcm,k—lgmv

b(g85%-1, b(gy-1, m
(Cm,k—1=51ip (gkbl n)_ (gkbl )>
then
b(gi-1, m) _b(gw n) _3 _ b(gh-1, m) 1 (g2 m)
Sl';l‘p 5, < b, <—2 Stnllp —___—bm — SI,;‘LP 5 .

k
From this we can see ogcm,é(—;—) . If we put

Cp= 1+ ;;11 Com, k>

&= 2 Cu&m

m=—oco

Then g° has the property

b(g°, n)
b,

=b(g 2 m), for any n, m.

m

So g:z(—g[:’:—nj g° satisfies the condition (4) in the lemma.

Proof of Theorem 1. The necessity of the condition is trivial. We
shall prove its sufficiency. From Lemma 3, 4 there is an analytic function
g in R? such that

(1) the set of critical points of g is contained in the sequence {a,},
@ k(g m)=k(f, n),

@) b(g n)=b(f, n),

(4) (by adding a constant) g(a,)=f(a,).

Let z be a function in R! such that

T(x) =f_lg(x) n [am an+1:| on [(Z,,, an+1]-

Then 7 is diffeomorphic on (a,, @,.;). Around a, there are certain C=-
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functions F, G such that
f(x)=04{(x —a,)F(x)}*¥"*1 4 f(a,), (0=a constant, F(a,)>0)
g(#)=0{(x —a,)G(x)}*/""*1 1 f(a,). (G(a,)>0)

From this, ¢ is locally diffeomorphic around e,. So t is a diffeomorphism

of R!, and satisfies for=g.
3. Applications of the lemmas
Next lemmas result from the corresponding previous lemmas and proofs.

Lemma 2. Let c, d, e be real numbers (0<c<d, 0<e) h a positive-
valued continuous function (h(x)>e on [c, d]). Then there is an entire
holomorphic function ¢ in C' which satisfies the following conditions

(1) the restriction of ¢ on the real axis is rveal- and positive-valued,

(2) d(x)ZXh(x) on the real axis,

(3) d(x)ze on [c, d],

c

O |¢(Z)I§h<%) on 2| <.

Lemma 2", Let c, d, e, h be the same ones as in Lemma 2'. Let

{a,}, {b,} be sets of real numbers which satisfy

(a) ay <an-‘~1’ a-—1<0<a0’ a,”—>00(71,—>00), ap—— 00(71,—)-— 00),

/
(b) 0<b,<h(a,) when ay=c and —a_,=c, the set of numbers h—(l;”—)— is
n

bounded, otherwise,

(C) {a,,}ﬂ[c, d]=¢

Then, there are an entire holomorphic function ¢ in C' and a constant 0
(>0) which satisfy the condition (1), (2), (3), (4) in Lemma 2', and a
condition

(5) @é(a,)=b, when a;=c and —a_;=c,
é(a,) =00, otherwise.

Lemma 4’. For positive numbers c,, the g (in Lemma 4) can be
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chosen to satisfy moreover

g(k"+1)(an)= C1 n=-1,

|
i
(=1) "1 ¢ n<—2.
Lemma 4. On the same conditions as in Lemma 4', for any 0>0
there are entire holomorphic functions gy .(z) in C' (N: positive integer

0<e<e(N) where e(N)>0 is defined on positive integers) which satisfy the
conditions (1), (2) in Lemma 3 and the following conditions

1

721
[ (—1)"=°k Cp n=N+1
() gl (o) = 1

._Zl ki
(=1)i=n»*1" ¢, n<—N+1,

b, In|=N

(11) b(gN,éa n):{
eb, |n|<N,

i) gy o) <8 || <TIRE@N —a-)

Theorem 2. Let {a,}, {l,}, {c,} be sets of real numbers which satisfy
(a) {n}={integer}, or {n=N} for some N, or {n< N} for some N,
(b) a,<a@,.q,a,—(as n—), a,——o(as n— — o),

(c) 1, are positive integers,

f.' li 3 _Z% 123
(@) co, (1)1 ¢ (n>0), (=1)i=#*1 ¢, (n<0)

have the same sign.

Then there is an analytic function f in R such that

(i) the set of zero points of f is {a,},
(i) for each n,a, is a zero point of l,-th order of f,
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(iii) for each n, f'%(a,)=c,.

Proof. We assume {n}={integer}, otherwise we can prove in a similar
way. If c_, is positive, then we prove about {—c,}. So we assume c_,

is negative, and a_;<0<a,. We put

a,ta +1
a n= Qs a2n+1_ z 2n

k2n=ln"‘ls k2n+1=11

b,=1
Zh
—(—=1)i=0 n=0
Ch={ —cy n=-—1
BT
—(—1) =1 'Cn n<-—2,
C/2n+1=1!

from the above assumption, c, are positive. If we apply Lemma 4’ to
{a,}, {k,}, {c,}, then there is an analytic function g in R! such that

(1) the set of critical points of g is contained in the sequence {a,},
(2) k(g’ n’)=kns

(3 (g n)=1,

(=1)i% e c, n=0
4) g(k,,+1)(a )= n=—1
!\( 1yiFer® n<—2.

From this it is easily seen that g'"(a,)=c,, g(as,+2)= g(az,) and
g is a monotone function on [a}, a,.,]. If we put f=g— g(a,) then the
set of zero points of f is {a%,}={a,}, for each n @, is a zero point of
l,-th order of f, and for each n fY(a,)=c,.
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Theorem 3. Let {a,} be a set of real numbers (such that a,<a,,,
a,—oo(n—), a,——oco(n——o0)) {l,} be a set of positive inlegers, and
{p.(x)} be a set of polynomials (such that for each n the degree of p,(x)
is less than l,). Then there is an analytic function f in R such that for
each n,a, is a zero point of l,-th order of f(x)— p,(x).

Proof. In the same way as the proof of Theorem 2, if we define
adequate values of derivatives (of the function which we want) at each

point a—”——‘_—zg”—‘ !, then we get an entire holomorphic function f, in C! such

that for each n fy(a,)= p,(a,). We put
Pn,l(x): Pn(-"’)_{fo(an)"l'(x _an)f{)(an)_l_
+(x—a,)"(L, )7 (@)}

and defining adequate values of derivatives (of the function which we
want) at one or two points of each (a,,a,.;), we get an entire holomo-
rphic function f; in C! such that

fl(an)zpn,l(an)zos
f’l(an) = P;, l(an)-

Repeating this and applying l.emma 4”, we get entire holomorphic func-
tions f,, and polynomials p, , which satisfy the following conditions

D fP(@)=plu@,) for p=<m,

(2) Pn,m(x)=_pn,m—1(x)_{fm—l(a’n)"r e +(x _an)ln(ln !)_1 ;riﬁ)l(an)}

(3) for any compact set K (cC!) 3 f, converges uniformly on K.

The function }] f, is what we want.
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