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Differentiable Functions Equivalent
to Analytic Functions
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Masahiro SHIOTA

1. Let jf, g be real-valued functions of class C30 in R1. Functions

/, g are called equivalent if there exists a diffeomorphism (of class C°°) r

of R1 such that f°t=g. The main object of this paper is to show under

what conditions a function is equivalent to an analytic function (Theorem

i).
In the case of polynomials, the corresponding result is proved in Thorn

ri]. The method of our proof is analogous to that in [1], and our Lemma

3,4 correspond to Theorem R in p.].

Theorem 2 refines Mittag-Lefler's theorem in the real case.

The author thanks Mr. Iwasaki for his kind criticisms, and Professor

S. Matsuura for his kind encouragement.

2. A function is called flat at a point a if for each n ̂  0 the n-th

derived function ^ vanishes at a.

Theorem 1. A C°°- function f (not constant) is equivalent to an analy-

tic function if and only if the derived function f is nowhere flat.

If f is nowhere flat, then we can see by Rolle's theorem that the set

of critical points of f (i.e. the set of points where f vanishes) has no

accumulating points. Let {an} denote the set. Adding regular points to

the set (if necessary), we can assume {an} satisfies the following conditions

(1) an<an+l9

(2) an— »OO(TI— >oo) an— > — oo(n,— > — oo),

(3) a_1<0<a0.

For each integer n we define k(f, n) the least non-negative integer k — 1
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such that the k-th derived function f^ does not vanish at an, and put

|0 *(/,;)
(-1) = (/K+1)-/OO)

&(/, B) = <

1.̂ 1 *v-"
(aB+1)-/(aB))

Then 6(y, ft) have all the same sign.

For the proof we need the following lemmas.

Lemma I. Let c, d be real numbers (0 < c < d) and h a real-valued

continuous function in (—00, cQu[[c?, °°). Then there is an entire holo-

morphic function $ in the complex plane C1 which satisfies the following

conditions :

(1) the restriction of <j> on the real axis is real-valued,

(2) 0(#) ^A(#) on (-00, c]u[cZs oo),

on

(3) Recf>(z)^h(c) on \z\£c.

Proof. It is enough to prove the lemma for a function hl such that

h' ^*h. So, from the first we can assume

(KH + l on cf, O + l)d) for

We put

on -

are taken large enough so that |0w(z)| ̂ 2~n on \z\ ^max( ~™~~ d, c))
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(ln are taken large enough so that \$n(z)\ ^2~~n on | z \ ̂ max(-^-, c)).

Then for any compact set K(dC1), 2 $n converges uniformly on K, so
n+-\

$= 2 fin is holomorphic. It is easily seen that 0 satisfies the conditions
»¥=-!

in the lemma.

Lemma 2. Let c, c£ be real numbers (0 < c < c?) «wd A <z positive

[ 2, 1 1 2 ~1
-«-c + -q-d, -^c + ^-c? U^d, oo). 77&£n

G »J O «J _j
^/zer^ /5 fl^ entire holomorphic function $ in C1 which satisfies the following

conditions.

(1) //z£ restriction of $ on the real axis is real- and positive-valued,

(2) 00*0 ̂ &(#) <w (-°°, c]l)[d, oo),

(3) |0(2r

. Applying Lemma 1 to

log h( x) — log sup h(x)

*6Ci«+irf- f H

we easily prove this lemma.

Lemma 3. For <mjy real numbers an^0 (such that an<an+i,an-+

oo(ra— »oo), and an— > — co(n->— oo)), non-negative integers kn, and postive

numbers bn, there is an entire holomorphic function g in C1 which satisfies

the following conditions.

(0) the restriction of g on the real axis is real-valued,

(1) the set of critical points of g in the real axis is contained in the

sequence {an},

(2) k(g, n) = kn where k(g, n) means &(g-|R, n-),

(3) 0<b(g, n)^bn for

where b(g, TI) means b(g\1R, n).

Proof. We put
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G(X)= i l - - ( * ) d * ,
Jo n=-°° \ an /

then by Mittag-Lefler's theorem £(#) is an entire holomorphic function

in C1 which satisfies the conditions (1), (2) in the lemma. Let h be a

positive valued continuous function such that

small enough on (—00, a0]U[ai, °o),

t o i i 2 ~ l
-ya0 + -3-°i» — ao + ̂ tt! .

If we apply Lemma 2 to this h, then we get an entire holomorphic

function 0(z) such that

g(x) = d(X<t>(z) fi (l -- —\nHn(z}dz (d is a constant)
JO H=-°o\ Ow /

satisfies the conditions (1), (2), (3) in the lemma.

Lemma 4. In Lemma 3, we can take g so as to satisfy moreover

the following condition ,

(4) b(g, n) = bn for each n.

Proof. For each m we have constructed an entire holomorphic function

gm in C1 which verifies (1), (2) in Lemma 3 and a condition

(3)' 0<6(^, lO^-'""-3^ for m*n,

n) = bn for m=n.

In doing this, if we let h take values small enough at am and aOT+1, from

the condition 3 in Lemma 2 gm is constructed so that for any compact set

^(cC1) Y^cmgm (f°r anY 0<cw^l) converges uniformly on K. Here we

should remark that Ylcmgm(Q<cm^l) satisfies the (1), (2) in Lemma 3.

We put

o , b(g\, n) 6(^1, m
g2=gl+ = ^l' } -- ̂

then



DIFFERENT! ABLE FUNCTIONS EQUIVALENT TO ANALYTIC FUNCTIONS 117

generally we put

00

g°k= gk-l + Z cm,k-lgm>
m =—°°

(r — .utftg'*-1' »)-6(g'*-i'
(^V^-sup ^ ^

then

3 ft(gi-i. "0_ * fr(gi-*. "0
Z m bm i m bm

\k
From this we can see Q^cm>k^(—^-} . If we put

Then gr° has the property

6(^°5 rn) ,
= _ A & J - L^ for any 71, m.

n bm

So g=T? — cr? — x^° satisfies the condition (4) in the lemma.

Proof of Theorem 1. The necessity of the condition is trivial. We

shall prove its sufficiency. From Lemma 3, 4 there is an analytic function

g in R1 such that

(1) the set of critical points of g is contained in the sequence {an},

(2) 4 (#JO = *(/,»),
(3) b(g,n) = b(f,n\

(4) (by adding a constant) g(an)=f(an).

Let r be a function in R1 such that

, aw+1] on [>„, a^J.

Then r is diffeomorphic on (aw, aw+]). Around a^ there are certain C°°-
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functions F, G such that

(O, (d = a constant,

From this, r is locally diffeomorphic around an. So r is a diffeomorphism

of R1, and satisfies f° t = g.

3. Applications of the lemmas

Next lemmas result from the corresponding previous lemmas and proofs.

Lemma 2'* Let c, d, e be real numbers (0 < c < d, 0 < e) h a positive-

valued continuous function (h(x)>e on Qc, d^J). Then there is an entire

holomorphic function <j> in C1 which satisfies the following conditions

(1) the restriction of $ on the real axis is real- and positive-valued,

(2) 0(#)^A(#) on the real axis,

(3) (f>(x)^e on [c, f\,

(4) \4(z)\£h(±}<m \z\£±.

Lemma 2". Let c, d9 e, h be the same ones as in Lemma 2f . Let

{an}, {Vn} be sets of real numbers which satisfy

(a) an<an+l9 a_1<0<a0 , aw->oo(^->oo), aw->- oo(n-+- oo),

(b) 0<bf
n<h(an) when a0^c and — a_!^c, the set of numbers -,(

n . is
n,(an)

bounded, otherwise,

(c)

Then, there are an entire holomorphic function <f> in C1 and a constant d

(>0) which satisfy the condition (1), (2), (3), (4) in Lemma 2f, and a

condition

(5) <f)(an) = bf
n when a0 =

 c

(f>(an) = dbf
n otherwise.

Lemma 4/. For positive numbers cn, the g (in Lemma 4) can be
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chosen to satisfy moreover

/ n
' E kt
(-1)'"° cn

Lemma 4". On the same conditions as in Lemma 4', for any <5>0

there are entire holomorphic functions gx^C*) *n C1 (N: positive integer

0 < £ ̂  s(AO where z(N) > 0 is defined on positive integers) which satisfy the

conditions (1), (2) in Lemma 3 and the following conditions

n

(-1)''=°*' cn

0) ^,"/11(o«)

00
sbn \n\<N,

(HO \gK.M\<8 |z|<mi°(^2-°-^).

Theorem 2. L^ {aw}, {^w}, {cw} te s^5 o/ re«/ numbers which satisfy

(a) {n} = {integer}, or {n^N} for some N, or {n<>N} for some N9

(b) aw<awo. l5 an— >oo(as TZ-^CX)), an-+ — oo(as ra— > — oo)3

(c) Zw are positive integers,

El ~Z l
(d) c0, (-l)'-i l cw(7i>0)? (-l)-^i lc, (iKO)

/z^ same sign.

Then there is an analytic function f in R1 such that

(i) the set of zero points of f is {an},

(ii) for each n, an is a zero point of ln-th order of f,
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(iii) for each n, f(ln\an) = cn.

Proof. We assume {n} = {integer}, otherwise we can prove in a similar

way. If c_! is positive, then we prove about { — cn}. So we assume c_x

is negative, and o_1<0<a0. We put

bn=l

- -iy-o''c

C2n= ( ~cl 71= -1

from the above assumption, c^ are positive. If we apply Lemma 4' to

{a'n}, {kn}, {c'n}> then there is an analytic function g in R1 such that

(1) the set of critical points of g is contained in the sequence {an},

(2)

(3)

71= -1

**

From this it is easily seen that g(ln\an) = cn, g(ar
2n+2)= g(a/2n) and

g is a monotone function on \_a'n, a^+J. If we put /= g— g(aQ) then the

set of zero points of/ is {a2n} = {an}, for each ra an is a zero point of

ln-th order of/, and for each n f(ln}(an) = cn.
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Theorem 3. Let {an} be a set of real numbers (such that an<an+l9

aw-»oo(n— >oo), an— » — 00(71— > — oo)) {ln} be a set of positive integers, and

{pn(x)} be a set of polynomials (such that for each n the degree of pn(x}

is less than /„). Then there is an analytic function f in R1 such that for

each n, an is a zero point of ln-th order of f(x) — pn(x).

Proof. In the same way as the proof of Theorem 2, if we define

adequate values of derivatives (of the function which we want) at each

point — — r^^1, then we get an entire holomorphic function fQ in C1 such

that for each n fQ(an) = pn(an). We put

Pn, l(*) = Pn(x) - {/oO

and defining adequate values of derivatives (of the function which we

want) at one or two points of each (an, an+1\ we get an entire holomo-

rphic function fl in C1 such that

/i (O = />!., iOO-

Repeating this and applying Lemma 4", we get entire holomorphic func-

tions fm and polynomials pn>m which satisfy the following conditions

(1) /?>(«„) = X?U<O for p^m,

(2) Pn,m(X} = pn,m^(X}-{fm-,(an} + --- + (X-an^(ln\Y^f^\(an)}

(3) for any compact set K (cC1) 2/» converges uniformly on K.

The function 2/» i§ what we want.
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