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On the Definition of C*-algebras

By

Huzihiro ARAKI and George A. ELLIOTT*

Abstract

It is shown that conditions \\x j||^ \\x\\ \\y\\ and ||#*|| = ||#|| follow from the
other axioms for C*-algebras.

Our first result is

Theorem 1. Let 21 be a ^-algebra with a complete linear space norm

such that for all x e 21

a)
Then 31 is a C* -algebra.

Proof. Step (1). For x, ye SI,

(2) ll*yll^

From

(3) 4cdxy= 2 i*(dy* + (-i}n

we obtain (2) by setting c = ||^*||~1, d=||y||-1 (if x^O, y^O) and using

the triangle inequality and (1).

Step (2). For x, ye SI,

(4)
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We have

(by (i))

*|| (by (2)).

Step (3). Any norm-closed commutative sub-*-algebra of 21 is a C1*-

algebra.

From x*x = xx* and (1), we have

(5)

From (1), we have

Hence by (4)

(6)

if [x, yH = 0, [_x, A;*] = 0 and [j,

Step (4). T/ze norm-closed sub-*-algebra 3T.(#) o/ 21 generated by a

self adjoint #e2C /5 a commutative C* -algebra.

Any maximal commutative sub-*-algebra of 21 is a maximal com-

mutative subalgebra (see QlJ, page 554), and hence is closed by (4). For

any selfadjoint #e2l, there exists a maximal commutative sub-*-algebra of

21 containing x by the axiom of choice. This is closed and is therefore

a C*-algebra by Step (3). Hence 2C(» is a £*-algebra.

Step (5). Call a normal ue2l a "u-element" if

(7)

Any #e2l can be written as
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(8) x = 2tijuj9 ^/fy = 0

where Uj is a u-element and jUj is a complex number.

Any #e2I. can be written as x = x' + ix" where x/ = (# + x*)/2 and

x" — {x — x*)/2i are selfadjoint.

The function g(t) = (l — t2}ll2-l is continuous on L — 1, 1 II and g-(0) = 0.

Hence for any selfadjoint yeSt, ||j||^l, there exists g(y)eSl(y) such

that

because St(j) is a C*-algebra. Then

u±=g(x/\\x\\)±ix/\\x\\

are ^-elements for any selfadjoint #e§I and

(9) x = ju+u+ + ju-u-, jU±=+i\\x\\/2.

Remark, u is a ^-element of SI if and only if e+u is unitary when

an identity e is adjoined to §t algebraically.

Step (6). Define

(10) ||*||' = inf{J|/<y |}

ivhere the infimum is taken over all decompositions (8). Then

(ii)

(12)

(13) l l ^ i r ^ l i ^ l l if ** = *.

If x = 2jUjUj, y=2vkvk, with £/jtj = 2vk = Q and uy and t;fe ^-elements

of SI, then

^^) = -(wy + ̂  + ̂ ^
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Hence we have (11).

If u is a u -element, we have | |M|| = ||M*|| by (5).

By (1) and (7), we have

Hence \\u\\£2 and

which implies (12).

(13) follows from (9) where \fJL+\ + \tt-\ = |

Step (7). For x, jeSl,

(14) l k j l l ^Nl l j* | .

Let

(15) xn = x*-ixn-l9 xl = xy.

Then

(16) Xn=y*{(x*X}(yy*)yn-2-\X*X}y (n>l\

(17) lkJI2" (m" I } =

where (17) is due to (1).

By (16), (12) and (11), we have

Substituting into (17) and taking the limit as ra— »oo, we have

By (13) and (1), we obtain (14).
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Step (8). For *<E§1,

(18) II**II = N|.

By (1) and (14), where we substitute x* for x and x for y,

( | / r | l_; i / r*o r | | l /2</< | | r*| |2\ l /2— ||r*||i|#|| — ||# X\\ ^sVJI* II / —II* II-

Substituting A;* for a;, we have |]#*||^||ff||. Thus we have (18).

(14) and (18) prove that the given norm is an algebra norm; hence

SI is a C*-algebra. Q.E.D.

We can also prove the following:

Theorem 2. Let 2! be a ^-algebra with a complete linear space norm

such that for all x e §1

(19) ||***|| = | |**l l l l*l | .

Suppose that x\-^>x* is norm-continuous. Then 21 is a C*-algebra.

Proof. (Part I). We prove that

(20)
is a C*-norm and satisfies

(21)

Step (i). For x, ye SI,

(22)
Setting c = (|| y\\ ||y*||)1/2 and d = (||*|| ||^*||)1/2 in (3), we obtain (22)

by (19).

Step (ii). There exists k*zl and 1^2 such that

(23) ||**||£A||*||,

(24)



98 HUZIHIRO ARAKI AND GEORGE A. ELLIOTT

By the assumption that x\-*x* is continuous, there exists k^l satisfy-
ing (23). By substituting x* for x, we also have \\x \^k\\x*\\. If we
set ||#*||=a||a;||, we have k^a^k~l. Hence

where l = 2k1'2.

Step (Hi). For x, ye 21,

(25) IMI

This follows from (22) and (23).

Step (iv). // x* = x, j*=j and £x, jU = 0, then

(26) IMIHWh

(27) ll*yll^NIMI.

Since (xy)* = xy, we have

- (by (19))

(by (25))

(27) implies ||*»||^||*||«. If 2*>n,

Hence equality holds. Since \\x2 ||^||^||2 and ||#w||^||#||w, we have
(26).

Step (v). For normal #e2t,

(28)

If [x, A;*] = O, (19) implies



ON THE DEFINITION OF C*-ALGEBRAS 99

(29) ji(**r*Hi=n***ir
Let

By (19), 11/11 = || j||2 for y*=y, hence

(30) a»£a.

by (29). By (24) and (29),

(31) an+l^l\\X*X\r.

Define kp recursively by

Jc —(94-Jr W2 lp —J
K'p + l — \^^^p) 5 "'Q — <"

If

n <Jf I l < r * < r l i 2 mam+i^Kp\\x x\\

holds, then by (30)

n <,lf llr^-rll2"1 '1am^*Kp+i\\x x\\

By induction starting from (31), we obtain

(32) 0o = ||* + **||gA,+1||***||1''.

Since kQ^2, we obtain kp^2 recursively. We have

Hence k^^imkp exists and satisfies

Ai =2 + *., ^^2.

Hence kM = 2. By taking the limit as n-+oo in (32), we obtain (28).

Step (vi). Any norm-closed commutative sub-*-algebra 33 of SI is a

C*-algebra relative to (20).

Let *e33, ye 33. Then by (28) and (27),
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Hence

i.e.

(33)

Evidently,

(34)

(35) ||

By (27), we have

xx y*y

i.e.

(36) \xy\\c^\\X\\c

By (28), we have

Hence

O • II •& 1 1 I I II II 119 II ^ f l ) 9Since ||^*|| ||*|| = ||*||? = ||«*||?f

H r l l — I l y * l l 2 l l r * l | - 1 > l l r * l l 2 ^ ? l l r * l l V1 — l l r l l /9l l * l | — II* l l c l l * I I =11* l lc^l l* l i e / — l l * l l c / ^ -

This proves (21) (for #6E$8).

(21) implies that S3 is complete relative to ||-||c. Hence by (33), (34),
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(35) and (36), » is a C*-algebra relative to \\-\\ c.

Step (vii). For # = #*e3l, S!.(A;) is a commutative C*-algebra relative

to IHIe.
The proof is the same as Step (4) where (25) is to be used in place

of (4).

Step (viii). Define \\x\\' by (10). Then

(37)

(38)

(39) NI'^NI if**

Since Uj is normal, (28) and (7) imply

By (21), ||u,ii^2l|^||c-2||uf||c^4||«*||. Hence

This implies (38). The rest is the same as Step (6).

Step (ix). For x, ye ST.,

(40) ||y****y||^||***||||y*y||,

(41) ||(**)n*''||^||**a;||n.

Let xn be defined by (15). Then for re>l,

where (38), (16), (37) and (39) are used. Hence we have (40).

Repeated use of (40) yields (41).
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Step (x). ||#||c defined by (20) satisfies (33), (34), (35), (36) and

(21).

By using (41) in place of (29) in Step (v), we obtain

(42) ]]* + **||:£2||***||1/2

for any *eSt. By (42) and (40), we obtain (33) and (36) in the same

way as in Step (vi). (34) and (35) are immediate. The proof of (21) is

the same as in Step (vi).

This completes Part I of the proof.

The following Lemmas which treat the case of finite-dimensional

commutative ?C are basic steps in Part II of the proof.

Lemma 1. Let 31 be a 2-dimensional complex vector space with a

linear norm \\x\\ satisfying the following conditions:

(a) If x = (xi, #2) with real xl and x2, then

(43) ||A?||=sup{|^1|, \x2\}.

(b) Let x* = (xl9 x2} when x = (xl9 x2}. Then

(44) \\x

Then (43) holds for all *

Proof. Let 3^ denote the unit ball of ST. relative to the given norm

and write

Step (a). 21(0) is convex, compact and contains a neighbouhood of the

origin.

Since 2^ is convex and compact, so is §t(0) for each 6. Since 0 is

in the interior of 2tl5 0 is in the interior of 31(0).

Step (/9). Each half line {(rcosx, rsinx); reQ), oo)} intersects

at one and only one point r(6, %). This is continuous in (0, %). Let
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Then for all integers n,

(45) <p(0,x) = <p(p, /i7r + x) = 0<7i7r + 0, (-I)"*);

( | sec % | if % e [ - 7T/4, TT AH U [37T/4, 57T/4],
(46) r(0,%) =

( | cosec % | if % e [>/4, 37T/4] U [57T/4, 77T/4] ;

(47) 0>( J&7T, %) = <p(d, 717T/2) = 1 ;

(48)

(45) follows from the definition of #>. (46) and (47) follow from the

assumption (a). (48) follows from the assumption (b).

Step (7*). Simultaneously for all %e(0, 7T/2) and 0e(0, TT), ez'l

, *)>! or (p(0, %) = ! or ^(0, %)<!.

Let <p(6, XQ) = I for a fixed 0 and a %0
e(0> ^AH- By convexity, and

9 0) = 1, ^(0,x)^l for %e[%0, 7T/4] and p(0, x)^l for xe(0, X0H.

Since <p( — 6, %0) — 1 by (48), we also have <p( — 0, %)^1 for %e[]?c0, 7r/4j

and p(-0, %)^1 for xe(0, X0H- BY (48)» we have ^(^x) = 1 for %e

(0,7T/4]. Similar argument starting from <p(6, n/^) = l yields (^(0, %) = !

for %e[)r/4, 7T/2). Similar argument holds when %0eQ7r/4, 7T/2). Hence

for each 6 either #>(0, %) > 1 or <p(0, %) = 1 or <p(0, PC) < 1 simultaneously

for all %e(0, 7T/2).

Let <p(0l9 %)>! and <^(02, %)^1 for Ol9 02
e(05 TT)- Then (p(-62, pc)^l

by (48). We may assume xe(05 7T/4]. With

i, %) tan% e

-02, %)tanac

!, x)sin01}-1,

we have ||a;|| = ||y|| = lf a>0, #>0 and a + /9 = l. Hence

Since
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for some real £, we have

\\ax

which is a contradiction. Hence y>(69 %) > 1 must hold simultaneously for

all 0e(0, TT) and %e(0, 7T/2) if it holds at one such (6, %). Similar argu-

ment shows the same for <p(d, %)<!. If neither holds, then <p(6, %) = !.

Step (<J). If <p(6, %)>! for 0e(0, TT) «wJ xe(0, ?r/2)3

(49) ^, x)^

where

(50) A = (2?(00, «) sin ^

7T/4], %e(0, 7T/6]

For %e(0, 7T/4] and Ae[-l, 1] we have

, x),

Hence for any a^O, /?^0, a + /9 = l, we have

(51) \\(a<p(8, *) + $, <W(0, x)tanx

Let

^ J ^ Z H ^ Q tan%,

A0 = /9-1({(a^(e, x) + /9)2-aV(0> %)2sin2^}1/2-a^, %)cos<9).

Then

, x) tan % e^ + 0^ = (a<p(09 %) + /9) tan % e^'s

) sin

For fleQO, 7T/4], we have ^0e[JL, </2~)- Hence we have /^eQ), 1) if
%e(0, 7T/6]. Hence by (51) we must have
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As a varies from 0 to 1, 0' varies from 0 to 6. For fixed 6, we have

d6f/da = [_a2(p(6, %)2 + 02tf + 2a0l0(p(0, %)cos^]-1/l0^, %)sin0

^2<p(0, x)sin0,

using <p(09 %)>!, A0e[l, V~2~), cos0>2-1/2, a + /9 = l. Hence

Denoting 0 by 00 and 07 by 0, we obtain (49).

Step (e). 0<00, x) = l w

For %e(0, ?r/4] we have

11(1, -1)11 = 1-

Hence for any a>0, /?>0, CK + /9 = 1, we have

Choose /?/a = ^(0, %) tan %. Then we must have

On the other hand,

Since 0>(0, %)— >1 and 1— cos6 = O(02) as 0— >0, we have

(1 + «A;0)2 - 2a$(p(6, %)(! - cos 0) > 1

for sufficiently small 0 if &>0. Since &^0, this implies k = Q.

Steps (5) and (e) eliminate the possibility 0?(0, %) > 1 for 0 e (0, TT) and

%e(0, 7T/2). Similar argument eliminates the possibility 0>(0, %)>! for

0e(-7r,0) and xe(0, 7T/2). Hence ^(0, x) = l; i.e. §t(0) = Sl(0). This

proves Lemma 1, Q.E.D,
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Lemma 2e Let 21 be an n-dimensional complex vector space with a

linear norm \\x\\ satisfying the following conditions:

(a) // x = (xl,...,xn) with real *y, then

(52) ||*||=8UP{|*,| ;;•=!,...,»}.

(b) Let x* = (x1,.,.,xn) when x = (*!,..., *w). Then

(53) ||**||||*||=8up{|*y|'; ; = !,...,«}.

Then (52) holds for all *e3I.

Proof. With 0 = (02,...,0M) and r = (r2,...,rj write

(54) P«(0 = ll(l,r2e"»,...,r,Ie«-)l|.

Fix 6 (with real Ok) and let rk vary from 0 to 1. Then the following

properties hold.

(i) pe(r) = l if rk = Q for all but one k (this follows from Lemma 1).

(ii) P0(r)p_0(r) = l (this follows from condition (b)).

(iii) P0(r) is convex in r (this follows from the triangle inequality).

These properties have the following consequences.

(iv) Suppose that pe(r
a} = l, p6(r

b) = l. Then ^(Arfl + (l-/l)r6) = l

for O ^ A ^ l . (By (ii) we have p_^(rf l) = l, p_e(r&) = l, whence by (iii)

J)r*)^l. Since by (iii) p^r*-f (1-^>*)^1, by (ii) we have

(v) Suppose that pe(ra) = l, p0(/lrf l + (l-/i>&) = l with 0

Then ptf(r*) = l. (By (iii), if p,(r&)<l then pd(tr* + (I-tyb)^tpg(r
a) +

l, whence p^(r6)^!. By (ii) we have also p_e(rf l) = !9

) = l, so that p_0(r6)^!. Hence by (ii) p^(r*) = l.)

We can now deduce p0(r) = l for all r = (r2,..., rw) with O^r^^l .

By (i) and (iv) p^(r) = l for r in the convex hull of the n points

(1, 0,..., 0),..., (0,..., 0, 1), i.e. in a neighbourhood of the origin. Hence

by (v) P0(r) — 1 for all r with O^r^l. This proves Lemma 2.

Q.E.D.

We are now ready to start Part II of the proof.

Proof (Part II). We prove that 11*11 = 11*11,.
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Step (a). || #||= \x\\c for any commutative 21.

Let y l5..., yweSI. be such that yy^0, ||yy|| = l and 112^11 = 1. Then

(55)

This is seen as follows.

With the norm ||-||c, SI is the C*-algebra of all continuous functions

vanishing at infinity on some locally compact Hausdorff space 3. Since

= 0 and sup2yy(?) = l, we have

sup 1 27y yy(? ) | ̂  sup | lj | sup I yy(?)

Since 11,7/11 = 1, there exists fy such that yy(f/) = l. Since

we have y*(?y) = 0 for k^j. Hence

Thus

;; = !,..., n}.

We now set ||̂ yy|| = ||A||, ^ = (^,...,4)- If ^* = A, then

jyllc — sup|Ay | . We also have
y

Therefore Lemma 2 is applicable and (55) holds for all A.

The proof for a commutative SI is completed if we show that

as described above are dense in SI.

Let ye SI. and e>0 be given. There exists a finite open minimal

covering {@n}n=Q,i,...,N °f & such that the 0W for 7?,>0 are relatively com-

pact in E, and |y(£)-'U^£ for £e0w for each TX, where A0 = 0. For

this open covering, there exists a partition of unity yw(f)^0, 2"yw(f)=:l by

continuous functions yn vanishing outside of On. We have ||y— 2 ^nyn\\c
N n=\

= sup| 2 yn(£)(y(£) — ̂ n)\=£- By minimality, ||yj| = l. We also have
I w = 0

||2yJ| = l, y^^O. This shows that ^^-yy are dense in SI.



108 HUZIHIRO ARAKI AND GEORGE A. ELLIOTT

Step (b). ||#|| = | x\\c if ST. is separable.

Let SI** be the second dual of 31 with respect to ||-]|. Since the

norm ||«| |c on SI. is equivalent to ||-||, it induces a norm ||-||c on SI**

equivalent to ||-|| on ST.**. Since ||-||c is a C*-algebra norm on SI the

*-algebra structure of SI can be extended uniquely to SI** so that SI** is

a JF*-algebra with respect to ]|-||c.
Suppose that AeSI, A^O. Since SI is assumed to be separable there

is a countable approximate unit (ew) for 21 consisting of positive elements

of norm <;i. Set h + e22~nen = h£., £>0. Then h£ is strictly positive (i.e.

for 0^/eSr.*, /(A£) = 0 implies /-O; see [lj), and ||Ae-A||-»0 as e->0.

Denote by 3C(A£) the sub-C*-algebra of SI generated by h£. Then the

second dual of 5K(A£) with respect to ||-|| (resp. ||- c) can be identified

with the (7(21**, SI*)-closure 2t(AJ- of SI(Ae) in SI**5 normed by the

restriction of ||*|| (resp. ||'||c) from SI**. Since by Step (a) ||*|| = ||*||c
for #eSI(A£), we have ||*|| = ||*||c for *e2t(A£)~. Moreover, because h£

is strictly positive the unit of SI** is contained in SI(A£)~. Therefore

By continuity, we have

Suppose that O^AeSI**. Since 21- = 21**, A is the strong limit of a

net (AJ in 21 with O^A^||A|| (there exists a net (#a) in SI with 3^ = **,

il^a | |^l |A1 / 2 | | and xa^h112 strongly; set ha = x%). Then eih is the strong

limit of eiha, therefore the (7(21**, SI.*)-limit. Since] \eiha\\ = 1 we have

Any unitary z^eSI** can be written as u = eih with O^AeSI**. (If
Cln rZir

u = \ ei0dE0, take A = \ 6dE0.) Therefore for u unitary in SI**,

By [6], for arbitrary x(=%,**,
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where the infimium is taken over all decompositions

x = 2AjUj, Uj unitary in §1**.

Since | |i| |^l we have

for any such decomposition. Hence \\x\\^= \\x\\ c. Substituting x* for x

we also have ||A;*||^||#||C. For #e3l we have \\x\\ \\x*

Step (c). \\x\\ = \\x\\c for a general 31.

For given #e§l, consider the sub-C*-algebra 5l(^c, #*) of 21 generated

by x and #*. It is separable and therefore H#| | = ||#||c by Step (b).
Q.E.D.

Problem 1. In Theorem 1 (Theorem 2) is it enough to assume

j|***|| = ||*ll2 (||***|| = ||**|| ||*||) only for normal *? (Cf. [2], [3],

Problem 2. In Theorem 2, is it necessary to assume the continuity

of x\-*x*1 (If multiplication is continuous then continuity of x\— *x* can

be deduced. Indeed, by the spectral radius theorem (which is now avail-

able) and (26), ||#|l = p(A;) whenever x is a limit of selfadjoint elements,

so that if ocn-*y with xn = x* and y= — y* then

This shows that the set of selfadjoint elements is closed, whence by the

closed graph theorem x\-*x* is continuous.)
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Added on Feb. 1, 1973

T. W. Palmer has communicated to the authors the following proof of

Theorem 1 and Part I in the proof of Theorem 2:

For Theorem 1, if uu**— u*u = u+ u*, then

whence | iw| |^2. For Theorem 2, if uu* = u + u*9 then

whence | |w| |^A;(l4-&). These computations establish the boundedness in

norm of the set of u -elements of 31. As soon as the continuity of multi-

plication is proved, we see that the norm

H=sup{p* + *y||; U|+||j|| = l, AeC, yeSl}

is equivalent to the given norm and is an algebra norm. By Corollary 12

of [YJ, SI is a C*-algebra relative to the norm ||-||' and we obtain

Alternatively, we can use the continuity of the involution (in Theorem

1, (1) and (4) imply ||#*||^16||A;]|) as well as the continuity of the multi-

plication. A self adjoint square root y of 1 — x2 can be obtained as a power

series when x = x* and ||#||<1. Writing x = u + — u^9 u± = (y±ix)/(2i\

we have H ^ y ^ H ^ H for x = x*. Then the proof of Theorem 1 can be

completed by Steps 7 and 8, and Part I of the proof of Theorem 2 can be

completed by Steps (ix) and (#)• This alternative procedure does not use

the theorem of Berkson and Glickfeld.

Z. Sebestyen has communicated to the authors a negative answer to

Problem 1, and also a slightly different way of shortening the proofs of

Theorem 1 and Part I of the proof of Theorem 2.

The latter involves using the result of Q8] and Q9] that a Banach

algebra with an involution such that \\x*x\ ^C\\x*\\\\x\\ for some C>Q
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is isomorphic (as an involutive algebra) to a C*-algebra.

The counterexample to Problem 1 is the involutive algebra of all

bounded operators on a Hilbert space of dimension ^2, with the norm

! defined by

l /2\

where ||-|| is the usual operator norm. The subadditivity of \\*\\i follows

from the inequality

\\x y*+ J*# + #*y+ j%*||2^4|| #*# + ##* ||| y* y+ yy*\\,

which in turn follows from the discriminant condition for

For every normal x

If x0 is the operator defined by

where fl9 ? 2 » - - - is an orthonormal basis, then

The norm H ' ] ^ does satisfy


