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On the Definition of C*-algebras

By

Huzihiro Arakr and George A. Ervriort*

Abstract

It is shown that conditions [xy|<|x|]y] and |x*]|=|x]| follow from the
other axioms for C*-algebras.

Our first result is

Theorem 1. Let U be a *-algebra with a complele linear space norm
such that for all x€U

ey [l ]| =122
Then % is @ C*-algebra.
Proof. Step (1). For x, ye¥l,
) e Il < 4l =*[[[] ¥
From
3) dedxy= io i"(d y* +(—i)rex)(d y+irex®)

we obtain (2) by setting c=||x*||"}, d=||y||"* (if x#0, y#0) and using
the triangle inequality and (1).

Step (2). For x, ye¥,

4) Il yll < 16||][]] ¥I-
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We have
2 ¥l =11(x )*(x P2 17 by (1)
=Uly*(=*x Plllla*= yl| 7 Hll = *2 ¥l 2 ¥l 7'}

=16[xllll=ll  (by (2).

Step (3). Any norm-closed commutative sub-x-algebra of U is a C*-
algebra.
From x*x=xx* and (1), we have

® ll2* =1l ]l.

From (1), we have

||| = || x*x||t2 =]||(x*x)2") |2~ "
= H(xZn)*xznllz—(nm — ”xZ"HZ_".
Hence by (4)
® || 2 y]| =lim]|(x y)?"||2™"

<lim 16%7"|2"||27"|| "> =] || || ¥,
if [x, y]=0, [x, x*¥]=0 and Cy, y*j:()_

Step (4). The norm-closed sub-x-algebra U(x) of W generated by a
selfadjoint x€W is a commutative C*-algebra.

Any maximal commutative sub-x-algebra of 20 is a maximal com-
mutative subalgebra (see [ 1], page 554), and hence is closed by (4). For
any selfadjoint x %[, there exists a maximal commutative sub-x-algebra of
2 containing x by the axiom of choice. This is closed and is therefore
a C*-algebra by Step (3). Hence 2(x) is a C*-algebra.

Step (5). Call a normal usq a “u-element” if
) u*+u+u*u=0.

Any x€U can be written as
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where u; is a u-element and p; is a complex number.

Any xe can be written as x=x'+ix" where x'=(x+x%*)/2 and
x" =(x—x*)/2i are selfadjoint.

The function g(¢)=(1—1t2?)'/2—1 is continuous on _ —1, 1]and g(0)=0.
Hence for any selfadjoint ye, ||y]|<1, there exists g(y)eW(y) such
that

g(n*+y +28(y)=0,

because (y) is a C*-algebra. Then
ue=g(x/||x|)xix/|| x|l

are u-elements for any selfadjoint x % and

® x=pou+pu u, o= Fi||xl/2.

Remark. u is a u-element of 2 if and only if e+ u is unitary when
an identity e is adjoined to U algebraically.

Step (6). Define
(10) 2]l =int {2 2,1}

where the infimum is taken over all decompositions (8). Then

(1) 2yl = llll” 1AV,
(12) ll2ll=2]|]l",
(13) li=ll'slizll & =x*=x.

If x=2u;u;, y=2y,v;, with Fpy;=23v,=0 and u; and v, u-elements
of U, then

xy=2ﬂjvk(u]'+vk+ u]"Uk),
(ujtvptup)*(uj+v,+uw)=—uj+v,+uw,+uf+vF+vfufk)

=(uj+yk+uj”k)(uj+yk+ ujv,,)*,
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Zﬂjvk=0.

Hence we have (11).

If u is a u-element, we have ||u||=||u*|| by (5).

By (1) and (7), we have

lul?=llu*ull=llu+u*||=2]|u]|.

Hence ||z||<2 and
lell= 2| sl [l =22 ;]
which implies (12).
(13) follows from (9) where |g. |+ |u-|=|x|.

Step (7). For x, ye¥,

149 Il yll= 1]l y]I-
Let
(15) Xp=Xf 1%y, X=X .
Then
(16) %, = y*{(*2)(yy P N (a*2) y
an 2112777 =] 2% 21| =2 ¥II2,

where (17) is due to (1).
By (16), (12) and (11), we have

ll2all = 2]| 4]

(n>1),

<2l A=l (L y 49w

Substituting into (17) and taking the limit as n—oo, we have

ll2 yll = l2*% D2y y*[1)M2.

By (13) and (1), we obtain (14).
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Step (8). For xe¥,
(18) Il = |-
By (1) and (14), where we substitute x* for x and x for v,
o]l = il 2|2 < (| 2*]|2)1 2 = || ]|

Substituting x* for x, we have ||x*||<||x||. Thus we have (18).
(14) and (18) prove that the given norm is an algebra norm; hence
9 is a C*-algebra. Q.E.D.

We can also prove the following:

Theorem 2. Let U be a x-algebra with a complete linear space norm
such that for all xU

(19) lloe* 2| == || 2]l.

Suppose that x\>x* is norm-continuous. Then U is a C*-algebra.
Proof. (Part I). We prove that

(20) [l2llc=lc*a]|*2

is a C*norm and satisfies

1) llxll =2lxll, <4l x|l
Step (i). For x, ye,

(22) e yll < CAI= 12 A2+ 2] ]2 12)2.

Setting c=(|| y| [ y*|ID"* and d=(||x|| ||*|[)*/? in (3), we obtain (22)
by (19).

Step (ii). There exists k=1 and 1=2 such that

(23) l|*|| = &|| ],

(24) [l + ¥ = 2| *%]]2.
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By the assumption that x|—x* is continuous, there exists k=1 satisfy-
ing (23). By substituting x* for x, we also have ||x||<k||x*||. If we
set ||x*||=a||x||, we have k=a=k™!. Hence

llx + 2¥|| < |l %l + || %] = (@2 +a /2] | 2 (|12
<1z a2
where [=2k'2,
Step (iii). For x, ye,
(25) llx yll= @+ £ 2] ] ¥l

This follows from (22) and (23).

Step (iv). If a*=x, y*=1y and [x, y]=0, then
(26) |27 =ll%|I",
(27) [EZYESEIRRY
Since (% y)*=xy, we have
l|% yll=lim||=*" y*" | (by (19))
<lim (1+ k)" |22y 1" (by (25))
==/l |l
(27) implies ||x*||<||x||*. If 2?>n,

201 =l | <[l 112> < l2]* .

Hence equality holds. Since ||x2" "||<||#]|2" " and ||x*||<||x||", we have

(26).
Step (v). For normal x€¥,
(28) %+ x*|| <2 ||a*x||22

If [x, x*]=0, (19) implies
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(29) ()" 227 = [|2* ][ *".
Let

a,=[|22" +(2*)%"[|.
By (19), [|y2ll=Iy* for y*=, hence
(30) 0% S0y + 2| 2% x|
by (29). By (24) and (29),
3D @y S| x*x|2".

Define k, recursively by
by =Q2+k)Y2, ko=1.
If
@1 S hopl| % 22"

holds, then by (30)

G S g |22
By induction starting from (31), we obtain
(32) ag =2+ x*|| S ki || 2|2,

Since k,=2, we obtain k,=2 recursively. We have
kpr—ky=1ky1+k,} 1 (2—k,)(1+k,)<0.

Hence k.=limk, exists and satisfies

k% =2+k., k.22.

Hence k.=2. By taking the limit as n—oo in (32), we obtain (28).

Step (vi). Any norm-closed commutative sub-x-algebra B of U is a
C*-algebra relative to (20).

Let x€®B, yeB. Then by (28) and (27),
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2% y+ (& y)*|| =2l y* 2 2yl 2 =2||(x*2)y* P

§2”x*x”1/2”‘y*y”1/2.

Hence
lGx + 0¥ (= + Pl = w21+l y* [+ [12* 7+ (=* 7)¥]]
< (llw*x M2+ || y* ylIH2)2;
i.e.
(33) 2+ yle=ll=ll.+ 1l yle-
Evidently,
(349) 2|l =|4] [[=ll,
(35) ll* 2|, = [1(x*2)2||2 = || * x| =[] =] |2.

By (27), we have
12 %% yll =ll2*x y* yl| < ll2*]| [ y* ¥I,

ie.
(36) = yll. < ll=ll:Al Al

By (28), we have

|2+ %] < 2[| 2]l
|2 — 2| =lGx) + Gx)¥|| =2l #]l..
Hence
=]l <2]|]l..
Since ||x¥|| |2l =1l=]12=|x*|IZ,
2l =l2*12l %] Z || x*] 22l %] )7 = | ]|./2.

This proves (21) (for x €B).
(21) implies that B is complete relative to ||-||,. Hence by (33), (34),
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(35) and (36), B is a C*-algebra relative to ||-||,.

Step (vii). For x=x*€U, W(x) is a commutative C*-algebra velative
to ”'Hc

The proof is the same as Step (4) where (25) is to be used in place
of (4).

Step (viii). Define ||x||" by (10). Then

(37) (EZZIEZIMIRS
(38) llll=4{lx]l",
(39) llxll"<llxll i x*==x.

Since u; is normal, (28) and (7) imply
2wfu M2 zluf+ ull={lufu,ll.
By (21), |lujli=2lujll. =2[[uf|l.<4lluf|l. Hence
2z|lufu |l 2=1lu M2l 2z 27 [y ).
This implies (38). The rest is the same as Step (6).
Step (ix). For x, ye,

(40) y*x*x yll < fla*x || || y* o,
(41) (%) xm]| < J %],

Let x, be defined by (15). Then for n>1,

[[2/12777 = lxF 0,

Il < 4|,/

27:-2

Ulyy*nz "

where (38), (16), (37) and (39) are used. Hence we have (40).
Repeated use of (40) yields (41).

=4l y* Myl dle* 1)
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Step (x). ||x||, defined by (20) satisfies (33), (34), (35), (36) and

21).
By using (41) in place of (29) in Step (v), we obtain

(42) Il + x| < 2]| 2% x][12

for any x=2. By (42) and (40), we obtain (33) and (36) in the same
way as in Step (vi). (34) and (35) are immediate. The proof of (21) is
the same as in Step (vi).

This completes Part I of the proof.

The following Lemmas which treat the case of finite-dimensional

commutative 2 are basic steps in Part II of the proof.

Lemma 1. Let U be a 2-dimensional complex vector space with a
linear norm ||x|| satisfying the following conditions:
@ If x=(x,, x,) with real x, and x,, then

(43) ll%l|=sup{| %], [%,]}.
(b) Let x*=(%,, %;) when x=(xq, ;). Then
(44) [lx*|| ||| =sup{| %1 |2, |25]2}.

Then (43) holds for all x€ .

Proof. Let U, denote the unit ball of A relative to the given norm
and write

W(O)={(r1, 72); (ry, 1)U }.

Step (). () is convex, compact and contains a neighbouhood of the
origin.

Since U, is convex and compact, so is A(O) for each 6. Since 0 is
in the interior of 2;, 0 is in the interior of 20(6).

Step (B). Each half line {(rcosx, rsinx); r&[0, o)} intersects 0%(0)
at one and only one point r(0, x). This is continuous in (0, x). Let

(6, 2)=r(0, £)/r(0, ).
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Then for all integers n,

(45) 00, x)=¢(0, nr+2)=¢(nz+06, (—1)"x);
|secx| if x€[ —n/4, n/41U[3%/4, 5r/47],
(46) r(0, x)=
|cosec x| if x€[r/4, 3n/4 U[5n/4, Tn/4];
(47) ¢(nzm, x)=¢(0, nn/2)=1;
(48) (0, 2) p(—0, 2)=1.

(45) follows from the definition of ¢. (46) and (47) follow from the
assumption (a). (48) follows from the assumption (b).

Step (v). Simultaneously for all x€(0,n/2) and 0€(0, w), either
@0, 2)>1 or (0, 2)=1 or ¢(6, x)<1.

Let ¢(0, 2,)=1 for a fixed 6 and a %,=(0, 7/4]. By convexity, and
o0, 0)=1, @0, 2)<1 for zx€[%y, /4] and @0, x)=1 for x=(0, %]
Since ¢(—0, %5)=1 by (48), we also have ¢(—0, x)<1 for x€[x,, /4]
and ¢(—0, x)=1 for z=(0, %, ]. By (48), we have ¢(0, x)=1 for x&
(0,m/4]). Similar argument starting from ¢(0, 7/4)=1 yields ¢(0, x)=1
for xe[n/4, /2). Similar argument holds when x,€[7/4, 7/2). Hence
for each 6 either ¢(0, 2)>1 or (0, x)=1 or ¢(f, x)<1 simultaneously
for all x=(0, /2).

Let ¢(0,, x)>1 and ¢(0,, x)<1 for 0,, 0,(0, ). Then ¢(—0,, x)=1
by (48). We may assume x<(0, 7/4]. With

x=(¢(0,, %), ¢(0,, 2) tanx e*?1) e,

y=(¢(—03, %), p(—03, x)tanx e~?2)e ¥,

a=@(—0;, x)sin 0,{¢(—0,, x)sin 0,+¢(0,, x)sin 0},
B=¢(0,, 2) sin 0,{(¢(—0,, 2) sin O, + ¢(0,, x)sin 6, } 1,

we have ||x||=]/y]|=1, @>0, >0 and a+F=1. Hence ||ax+By||<1.
Since

ax+By=(ap(0,, )+ Le(—0 %), §)
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for some real &, we have
llax +Byl|=zap(6,, x)+ Be(—0,, x)>1

which is a contradiction. Hence ¢(6, x)>1 must hold simultaneously for
all (0, 7) and z=(0, 7/2) if it holds at one such (6, x). Similar argu-
ment shows the same for ¢(f, x)<1. If neither holds, then ¢(0, 2)=1.

Step (0). If ¢(0, 2)>1 for 6(0, @) and x=(0, n/2), then

(49) o0, x)=1+k0
where
(50) k=(2¢(0,, 2)sin 64)(¢(0,y, x)—1)

Sfor any 0,(0, /47, x=(0, ©/6] and 6= (0, 0, .
For x=(0, /4] and A€[ —1, 1] we have

ll(e(0, %), (0, %) tanz e*)]| =1,
licL, Hil=1.
Hence for any =0, 8=0, a+ S =1, we have
(51) [|(ap(0, x)+ B, ap(l, x)tanx ei?+ BA)||< 1.
Let
Ay=2Aytanx,
o= B ({(ae(8, x)+ B)?—a?p(0, x)?sin?0}'2 — ap(0, x) cos 0).
Then
ap(0, x)tanx e + B2, = (ap(0, x)+ B) tan x ei?’,
tan 0’ =aep(0, x)sin 0(ap(0, x) cos 0+ B4,)7 1.

For [0, n/47], we have 2,€[1,42). Hence we have ,€[0,1) if
x€(0, /6. Hence by (51) we must have

ap(l, x)+B=1+a(p(, x)—1)Z (0, %).
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As « varies from 0 to 1, 6’ varies from 0 to 6. For fixed ¢, we have
d0'/da=[a?p(0, x)*+ B2+ 2aBA,¢(0, %) cos 0] 12,¢(8, ) sin @
<2¢(0, x)sin 0,
using @(0, x)>1, ,€[1,42), cos@>2"12 a+B=1. Hence
a=(2¢((0, x)sin6)710".
Denoting 6 by 6, and 6’ by 6, we obtain (49).

Step (e). @(0,, x)=1 in Step (7).
For z=(0, /4] we have

ll(e(0, ©)e~?, ¢(6, %) tan %)[| =1,
i, —1fj=1.
Hence for any >0, >0, ¢+ /5 =1, we have
[|(ap(8, 2)e ?+ B, ap(0, x) tanx— B)||<1.
Choose B/a=¢(0, z)tanx. Then we must have
|agp(d, x)e i+ B <1.
On the other hand,
|ap(0, 2)e™** + B|2=(ae(0, x)+ £)*—2aB (0, x)(1—cos §)
=1+ akd)?—2aBe(0, 2)(1—cos 6).
Since ¢(0, x)—1 and 1—cos 0=0(6?) as 6—0, we have
Q4+ ak0)?—2aBe(0, 2)(1—cos §)>1

for sufficiently small 6 if £>0. Since £=0, this implies £ =0.

Steps (0) and () eliminate the possibility ¢(8, x)>1 for 6 (0, w) and
x€(0, 7/2). Similar argument eliminates the possibility ¢(6, x)>1 for
0e(—m,0) and x=(0, 7/2). Hence ¢(0, 2)=1; i.e. AH)=2(0). This
proves Lemma 1, Q.E.D,
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Lemma 2. Let A be an n-dimensional complex vector space with a
linear norm ||x|| satisfying the following conditions:
(@) If x=(xy,...,x,) with real x;, then

(52) [|x]|=sup{|x;|: j=1,...,n}.

() Let x*=(%4,...,%,) when x=(x,..., x,). Then
(53) JH] 1l =sup{| %123 j=1,...,n}.

Then (52) holds for all x< .

Proof. With 0=(0,,...,0,) and r=(r,,...,r,) write
(54) 0s,(N)=(1, ryei®,.. . r,eif)||.

Fix 6 (with real 0,) and let r, vary from 0 to 1. Then the following
properties hold.
(i) pe(r)=1 if r,=0 for all but one k (this follows from Lemma 1).

(i) e(r)o-g(r)=1 (this follows from condition (b)).

(iii) pe(r) is convex in r (this follows from the triangle inequality).

These properties have the following consequences.

(iv) Suppose that p,(r)=1, p4(r*)=1. Then p,(Are+(1—-)rb)=1
for 0<2<1. (By (i) we have p_,(r*)=1, p_,(r®)=1, whence by (iii)
p_o(Ar*+(1~r*)<1. Since by (iii) pe(Ar*+(1—2)rt)<1, by (ii) we have
0o(Ar*+(1—=r*)=1.)

(v) Suppose that py(r9)=1, pEa(Ar*+(1—-A)r’)=1 with 0<a<L.
Then p,(r®)=1. (By (iii), if pg(r®)<1 then  (Ar*+(1—2)rt)<ip,(r*)+
(1—-2)p,(%)<1, whence p,(r®)=1. By (ii) we have also p_,(r*)=1,
p_o(Are+(1—2r*)=1, so that p_,(r®)=1. Hence by (ii) p,(r*)=1.)

We can now deduce p,(r)=1 for all r=(ry...,r,) with 0<r,<1.
By (i) and (iv) p,(r)=1 for r in the convex hull of the n points
1,0,...,0),...,(0,...,0,1), i.e. in a neighbourhood of the origin. Hence
by (v) 0,(r)=1 for all r with 0=<r,<1. This proves Lemma 2.

Q.E.D.

We are now ready to start Part II of the proof.

Proof (Part II). We prove that ||x||=]lx|,.
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Step (@). ||x||=|lx]||, for any commutative A.
Let y,..., y,€2 be such that y;=0, ||y;/|=1 and ||2 y;/l=1. Then

(55) 122;y;ll=sup{|4;]; j=1,..,n}=|122,l..

This is seen as follows.

With the norm ||-||,, 2L is the C*-algebra of all continuous functions
vanishing at infinity on some locally compact Hausdorff space X. Since
y{(£)=0 and s%pZ' yi{(§)=1, we have

sup | 22;5;(6)| <sup | 4;] sup 2 y,(8)
J
=sup|4;|.
J

Since ||y,/|=1, there exists & such that y;(§;)=1. Since 2 y,(§)<1,
k
we have y,(§;,)=0 for k+#j. Hence

Mj| = |2}*k}’k($j)| §S?P|21k}’k(5)|-

Thus

N Z2; . =sup{|4;|; j=1,..., n}.

We now set ||24;y,|=|2ll, 2=(44,...,4,). If 2*=2, then |i]|=
[|22; ¥l =sup|4;]. We also have
J

!M*H lllll=]l(ﬂjy,~)*l| l|2/1jyj|| = llﬂ,-yj||5=sgpllj|2-

Therefore Lemma 2 is applicable and (55) holds for all A.

The proof for a commutative 2 is completed if we show that Z4;y;
as described above are dense in 2.

Let ye and e>0 be given. There exists a finite open minimal
covering {@,},-01,.,n of E such that the ¢, for n>0 are relatively com-
pact in E, and | y(§)—2,| <S¢ for €0, for each n, where 4,=0. For
this open covering, there exists a partition of unity y,(§)=0, ¥ y,,(é) 1 by
contlnuous functions 'y, vanishing outside of ¢,. We have | y— 2 Ap ¥all
=sup| 2 ¥(E)(y(€)—24,)| £e. By minimality, ||y,/|=1. We also have
||2y,,||”—01, ¥,20. This shows that 21;y; are dense in 2.
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Step (b). ||x||=]|xll, if U is separable.

Let 2% be the second dual of 2 with respect to |l-j|. Since the
norm [|-|], on 2 is equivalent to ||-||, it induces a norm ||-||, on 2A**
equivalent to ||-|| on 2**, Since ||-||, is a C*-algebra norm on 2 the
x-algebra structure of ¥ can be extended uniquely to 20** so that W** is
a W*-algebra with respect to ||:]|..

Suppose that A€, h=0. Since 2 is assumed to be separable there
is a countable approximate unit (e,) for 9 consisting of positive elements
of norm <1. Set h+eX27"e,=h,e>0. Then h, is strictly positive (i.e.
for 0 feU*, f(h,)=0 implies f=0; see [1]), and ||h,—A||—0 as 0.

Denote by (A,) the sub-C*-algebra of 2 generated by h,. Then the
second dual of ¥(h,) with respect to ||-|| (resp. ||-||;) can be identified
with the @ (0% A*)-closure W(h,)~ of WU(h,) in W** normed by the
restriction of ||-|| (resp. ||-||,) from 2**  Since by Step (a) ||x||=]=||,
for x=WA(h,), we have ||x]|=]|x]||, for x=A(h,)~. Moreover, because h,
is strictly positive the unit of ** is contained in 2(h,)~. Therefore

lei®= et =1.
By continuity, we have
llet*]|=1.

Suppose that 0<hAe**, Since W-=W** }h is the strong limit of a
net (h,) in 2 with 0<h,<||h|| (there exists a net (x,) in U with x,=x%,
| %4]|<1)AY?]| and x,—h'? strongly; set h,=x2). Then e’* is the strong
limit of e’s, therefore the ¢(2**, A*)-limit. Since|le?s||=1 we have

llef"||<1.

Any unitary uze20** can be written as u=e'* with 0<he%** (If

27 27
u=S e'?dE,, take h=g O0dE,.) Therefore for u unitary in 2**,
0 0
llul|<1.

By [6], for arbitrary xe20**,

l| ]l =inf2|4;],
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where the infimium is taken over all decompositions
x=2A;u;, u; unitary in ¥

71777

Since ||u;||<1 we have

|x]|= 2[4,
for any such decomposition. Hence ||x||<||x]||,. Substituting x* for =x
we also have ||x*||<||x|],. For x€2 we have ||x]|| ||x*||=]|%||2; hence
2] =]|%]l-

Step (c). ||x||=||x||, for a general 2.
For given x &2, consider the sub-C*-algebra 2(x, x*) of U generated
by x and x*. It is separable and therefore ||x||=||x]||, by Step (b).
Q.E.D.

Problem 1. In Theorem 1 (Theorem 2) is it enough to assume
x| =[lx][* (lx*x]|=||x*||[|x]]) only for normal x? (Cf. [2], [3], [4])

Problem 2. In Theorem 2, is it necessary to assume the continuity
of x—x*? (If multiplication is continuous then continuity of xl—x* can
be deduced. Indeed, by the spectral radius theorem (which is now avail-
able) and (26), ||x||=0p(x) whenever x is a limit of selfadjoint elements,
so that if x,—y with x,=x} and y=— y* then

Hxn+ }’H=0(xn+ }’)=0<(xn+ y)*>=p(xn_y):”xn_ }’”,
y=0.

This shows that the set of selfadjoint elements is closed, whence by the
closed graph theorem xi—x* is continuous.)
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Added on Feb. 1, 1973

T. W. Palmer has communicated to the authors the following proof of
Theorem 1 and Part I in the proof of Theorem 2:
For Theorem 1, if wu**=u*y=u-+u*, then

llull?=llw*ull=llu+ w*[| < |lu]l+|lu*|,
w12 <l + el
whence |lz||<2. For Theorem 2, if uu*=u-+u*, then
lullllu*)l=lluw*||=]ju+w*|| < ||l +]]u*],
M ul| < [[u*|| < kllull,

whence ||u||<k(1+k). These computations establish the boundedness in
norm of the set of u-elements of 2. As soon as the continuity of multi-
plication is proved, we see that the norm

lx| =sup{|ldx +xy]l; |2 +[[yll=1, A€ C, yeU}

is equivalent to the given norm and is an algebra norm. By Corollary 12
of [7], A is a C*-algebra relative to the norm ||-||' and we obtain

[[* ]| =lim [|(x*2)2"||*" =lim ([|Ca*2)?"[[)27 = ([ #])*.

Alternatively, we can use the continuity of the involution (in Theorem
1, (1) and (4) imply ||x*||<16||x||) as well as the continuity of the multi-
plication. A selfadjoint square root y of 1—x2 can be obtained as a power
series when x=x* and ||x||<1. Writing x=u,—u_, u.=(ytix)/(27),
we have ||x|/'<||x|| for x=x*. Then the proof of Theorem 1 can be
completed by Steps 7 and 8, and Part I of the proof of Theorem 2 can be
completed by Steps (ix) and (x). This alternative procedure does not use
the theorem of Berkson and Glickfeld.

Z. Sebestyén has communicated to the authors a negative answer to
Problem 1, and also a slightly different way of shortening the proofs of
Theorem 1 and Part I of the proof of Theorem 2.

The latter involves using the result of [8] and [9] that a Banach
algebra with an involution such that ||x*x||=C||x*||||x|| for some C>0
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is isomorphic (as an involutive algebra) to a C*-algebra.
The counterexample to Problem 1 is the involutive algebra of all
bounded operators on a Hilbert space of dimension =2, with the norm

|]s]l, defined by
1/2)

where ||-|| is the usual operator norm. The subadditivity of ||-||; follows

el =5 (ol + | g+ 22%)

from the inequality
2 y*+ y*x+x* y+ ya*|P<4llx*x + 2 2*||| y* v+ y |,
which in turn follows from the discriminant condition for
Ax+ y)Ax+ y)*+(Ax+ y)*(Ax+ y) 20, A€R.
For every normal x
le* 2|l =ll%1F= |l 1]l 1]

If x, is the operator defined by
1
x051=532, x0$2=—2—$1, %0€,=0 for n>2
where &, £,,... is an orthonormal basis, then

ol =5 (14 2) <1=%ol.

The norm ||.]|; does satisfy

ll2*x]ly=lx*2 || =[[2* [|#]| 2 || 1] ]



