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Transformations of Germs of Differentiable Functions
through Changes of Local Coordinates

By

Masahiro SuHioTA

§1. Intiroduction

We generalize the results in N. Levinson [37], [4] and J. Cl. Tougeron
[8] which show that some germs of differentiable (or analytic) functions
are transformed through changes of coordinates into polynomials in one (or
two) variable with coefficients which are germs in the other variables (§3).

H. Whitney [9] has shown that xy(y—x)(y—(B+t)x)(y—71(t)x)
(where 7 is a transcendental function and y(0)=4) cannot be transformed
into any polynomial through analytic changes of coordinates (locally at the
origin), and we prove this function cannot be transformed even through
differentiable changes of coordinates (§4).

In view of Thom’s Principle, that is, for a germ of an analytic func-
tion f having 0 as a topologically isolated singularity, the variety f~!(0)
determines the function f, we study particularly whether a germ f¢ (such
that ¢(0)>0) can be transformed into f (§5). As a corollary of the sequ-
ence we obtain a sufficient condition for a germ of a differentiable function
in two variables to be transformed into a germ of an analytic function (§6).

In Appendix we show canonical forms of germs which have un point
de naissance or un point critique du type queue d’aronde which is due to
Cerf [2]].

The method of proofs is to use almost all theorems in Malgrange [6 .

The author thanks Professor Adachi for his criticism.

§2. Definitions

According to Malgrange [6_] we denote respectively by 0, (or 0(x)),

Communicated by S. Matsuura, October 4, 1972,
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¢, (or &(x)) the rings of germs at 0 in R” of real analytic and C~-func-
tions, and by &, (or #(x)) the ring of formal power series in n indeter-
minates over R. One has a mapping T: &,— %, (Taylor expansion at
0). We regard 0,c#,. We denote by m(0,) (resp. m(&,)) the maximal
ideal of 0, (resp. €,). As 0, and &, are unique factorization rings, for
any f€0, (resp. €&,) f (resp. Tf) can be factorized. So 0; (resp. &7;)
denotes the set of all germs f in 0, (resp. &,) such that f (resp. Tf) is
not 0, is in m(0@,) (resp. m(&,)) and has no multiple factors. Adif, (resp.
Dif,) denotes the set of analytic local diffeomorphisms (resp. local dif-

feomorphisms of C~-class) around 0 in R”. We have
(1) for any reAdif,(resp. Dif,) and f €0; (resp. &;,) ferE0;, (resp. &),
(2) 0,n¢&;=0; (Zariski-Nagata).

For any analytic set F in £ (where £>a, £ open in R”), the germ
of F at a is called an analytic germ at a, and denoted by F,. To an
analytic germ F, we make it correspond the ideal I(F)c 0@, of germs of
analytic functions which are zero on F.

We say f(e¢,) is flat at 0 if Tf=0.

§3. Generalizations of [4],[8]

The next lemma is similar to the lemma at p. 33 in [7], and the

method of the proof is the same.

Lemma 1. Let f, g be in &, (vesp. 0,) and a(x,t) (i=1+1,..., n)
germs at 0x[0,1] in R*XR of C=-functions (vesp. analytic functions).
Assume that

_ ¢ Of ,, 081 _
as germs at 0x[0, 1] f(x)— g(x)-—igilai(x, t)(0—x,-t+6_a§;(1 t)),
a,-((), t)=0.
Then there exists t<Dif, (resp. Adif,) such that

fof: g,
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z‘(x)=(1'1(x),..., Tn(x))z(xla“" X THl(x)’-'-a fn(x))

Proof. Let X be a complete vector field on R”*! such that the germ
of X at 0x[0,1] is 60—t - Z d,aa , and ¢, 1 parameter group of trans-
i=l+1

formation defined by X. Then we have

F , b
P dFEn )

t=0

The assumptions give
X nF=0, near 0x[0,1] if F=ft+g(1—1)

#:(0, t)= (o, t+t/)5—\
| if 0=t+¢t'<1 and x is near 0
o (x, t)=(y, t+1t') ]
These show that (ft+ g(1—t))e¢,(x,0) is a constant for any fixed «x
near 0, and the ¢,(x,0) is a local diffeomorphism around x=0. This
gives the result.

As a corollary of Lemma 1, we obtain the next lemma which is due
to [87].

Lemma 2. Let f, g be in mz(é’,,) (resp. m*(0,) such that f— g is
an element of the ideal generated by '8 ?ﬁ k( o] =l+1"'ﬁ’ n). Then

ax,-axj k=15
there exists v Dif, (resp. Adif,) such that

fof: g,

z‘(x):(rl(x),..., rn(x))=(x11-'-a %1, Tl+1(x)""’ Tn(x))

Proof. By the hypothesis, there exist b; ;em(&,) (resp. m(0,)) such
that f— g= Z‘:‘, b; og ag. We have

i,/ 0%, 0x;

of-8 _ 3+ e,

—w . fg— , where ¢; ; is in m(¢&,) (resp. m(0,)).
i J=l+
0g

Set %&: f} c; a—— and f—g=_ﬁ: d,-—a—g— where d; is in m(&,)

j=1+1 xj i=1+1 6x’.
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(resp. m(0,)) in the equation in Lemma 1. Then it is enough to solve

the equations

7
d;= 2] ajc; jt+a;, l+15i<n,
J=T+1

a;(0, t)=0.

Let 4 be the matrix whose (i, j)-component is ¢; ;¢ and I the unit matrix.

Then the equations above are

(d)=(A4+1I)(a;) and a,0, ¢)=0.

We easily see that A+ has the inverse B where components of B are

germs at 0x[0, 1]. This prove the lemma.
we use frequently the next lemma which is also shown in [8].
Lemma 3. Let p be in &, and p(0)=0. Then there exist an in-
teger k>0 and q,,..., q,€F, such that pt= > q,-g—f—.
i=1 i
The next lemma is the result about differentiable functions, see [ 3]

for analytic functions.

Lemma 4. Let geé&, satisfy the following condition,

om g

ax;l”(O);#O for some m>0.

Then there ave f in &, [ x,] (polynomials in x, with coefficients in &(x,,
vees %,-1)) and v in Dif, such that

fer=8
f(x)=(z‘1(x),..., Tn(x))=(x1"~-’ Xn—1s Tn(x))

Proof. The case aaf (0) #0, this is trivial. Therefore, suppose
”

08 i0y—
o, (0)=0. Let
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6=(5E) =

then for some m’>0

om'G
oar ———(0)+0.
Applying Malgrange’s preparation theorem [6] to G and g, we get
QEé’n R,-Eé’(xl,..., x”_l) (l=0,, P)
such that
b .
=QG+ 2 R;x}.
=0
p .
Take f= ), R;x}, then
=0
g—f=0Q6G.

If we apply Lemma 2 to f, g, then there exists t=(x,,...,
Dif, such that fer=g

Xn-1, T (x))E

Theorem 1. (1) Let G be in &, x,] (resp. 0,1 x,]). Suppose
the discriminant of G in x, is not flat at 0 (vesp. not 0). Then there exist
F in &, [ x,1, x,] (polynomials in x, ., x, with coefficients in &(x,,
oy Xp—3)) (resp. On_o[ %, 1, x,]) and t in Dif, (vesp. Adif,) such that

For=0G.

(2) The statement in (1) remains valid for any GE&, (resp. 0,) which
satisfies the following conditions;
G=G,-G, for some G,€8(xq,..., X,-1) (resp. O(x,..
G, 8&;(resp. 0;,), such that

] xn—l))

oG,

(i) for some m>0 %t

(0)=0,
(i) TG,=+0.

Proof. When n=2 and G0, Part (2) of this theorem is proved in
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[4]. And when G,=1 in Part (2) this theorem is shown in [8]. It is
enough to prove the case Gem?(&) (resp. m?(0)). If we apply Lemma 4
to G, in (2). Then there exist feé, ,[x,] and r, €Dif, such that

fet1 =G,,

(31 =(x1a-- v Xp—1s T,,(x)),

and we get
(G1+f)ot1=(G1o11)+(for1)=61-6,=GC.

Here G,-f satisfies the assumption of (1). So it is sufficient to prove (1).

Let S be the ring of quotients of &, ;[ x,| with respect to the ideal of

those elements which vanish at the origin. Then by Proposition III 4. 10

in [6] &, is faithfully flat over S. Hence from Lemma 3 there exist an

integer £>0and py, q,,..., §,€F,_,[ %, such that pTG*= Z q,TQ—G— and
x;

p(0)=+0. 6x~> (i=1,..., n) have no

common divisor p (where p is in &, [, ] and not in F(xy,..., X,-1)).
Let K be the quotient field over #(xi,..., %, 1), and K[ x, | the polyno-
mial ring over K. Then by the fact that K[ x, ] is a principal ideal ring,

it is shown that the ideal generated by T<aG i=1,..,n in K[x,] is

K[ x,] Hence there exist ¢;=%, [ x,] such that

_ % r(9G\ ; .
_El b ox; is not 0 and in F(xy,..., X,-1).

By the theorem of E. Borel, there exist #;,€¢&,,[x,] i=1,..., n such

that 70;=¢;. And if we put

then ¥ is in &(«x4,..., ¥,-;) and not flat at 0. It is easily seen that
there exist r,eDif(x,,..., %,-,) and @} ;€&,_,[ x,] such that

a"’WO Ty

(020,

for some m>(
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Wc:fz: .Zn:]- w’ 000(2 _ag‘ﬂ.
1,15

LiT0x; 0x;
!
Put Geor,= ), fixi, (f;€6(%y, ...,%,-1)) and apply Malgrange’s preparation
=0
theorem to (¥or,)-%,-, and f; then there exist Q;€&(xy,..., x,1), P; ;

€8(%1,...s Xy-2) (1=0,..., 1 j=0,..., k) such that

k ) .
fi=(¢°Tz>’xn—1'Qi+J§0Pi,jx{z—1 (i=0,..., D).

If we put
F=ZPi,jx{t—lx£u
i,

then Gor,—F is in the ideal generated by

aG°TZ 6G°Tz %
0x 0x;
and we can apply Lemma 2 to Geor,, F. From this there exists r&Dif,
such that For=0G.
In the analytic case it is enough for the proof that we remind the
fact that
(1) &, is faithfully flat over 0,

and (2) Weierstrass’ preparation theorem.

n—1s s ]=1’---’ n,

Remark 1. Let f be in &; and let g be in &, and be flat at 0.
Then f+ g is in &; and so f+ g can be transformed into a polynomial
in two variables. On the contrary, G+ g such that G takes the one form

in Theorem 1 and g flat at 0 cannot be necessarily transformed into a
polynomial in two variables. For example f=x2y+e !/?* cannot be trans-

formed not only into any polynomial but also into any analytic function
(locally at 0). The reason is as follows. If f can be transformed into some
element of @,, then lg{;l + '%‘ satisfies the inequality of Lojasiewicz
(Theorem IV 4.1 in [67]) on some neighborhood of 0 in R2. However it
is easily seen that 13—{;’ + lgj;‘ does not satisfy the inequality on any

neighborhood of 0 in R2, It is a contradiction.

If f(em(¢,)) can be transformed into an element of @, (or a poly-

k k
nomial), then f= J] fi for some elements f;e¢&, where I]f;€¢;.
i=1 i=1
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The converse of this is not always true. For example, f=(x%+ y?)-
(x+e71%") cannot be transformed into any element of 0;. For the proof,

see [5].

But we have a partial converse

Theorem 2. For any Ge&, (resp. 0;) such that G=g,- g}, g1° &€
&5 (resp. 03), there exists tv€Dif, (resp. Adif,) such that Gotr is a poly-

nomial.

Proof. It is enough to prove the case Gem?(&,) (resp. m2(0,)).
Because of the hypothesis on g;-g,, one sees that g, is in &3. Applying
Theorem 1 to g,, we see that g, is transformed into a polynimial, so we

may assume that g, is a polynomial. From Lemma 3 it is easily seen

0G \* G\ ..
that the greatest common measure of T s and T oy is g3 If

P, g(EF ;) have no common divisor, then the height of the ideal genera-
ted by p, q is 2, hence the ideal contains x”, y” for some n>0. From

. . aG 2 aG 2 : 7 2 7 52
this the ideal generated by T rrs and T a—y— contains x”g3, y"g}

for some n>0. Consider a map u: &,—¢&, defined by
0G \? 0G \?
= () 16 (2 1),

and i&i: F,—F, defined by
wn=r(7(55) /et 7(3%) /61)

If we use the terminology and Proposition III 1.6 in [6 ], then we see that
i being quasi-finite, hence u is guasi-finite, that is, for some m’>0 the

oc
0x

there exists a polynomial f such that, fg§— g, g§€hm(&,).
Put fgi=F and apply Lemma 2 to F, G, then there exists re&Dif, such
that Fer=G.

In the analytic case, we must remind that &%, is faithfully flat over

2 2 ,
ideal p generated by < ) and (%?7) contains gim(&,)™. From this

0,. The proof is similar to that in the differentiable case.

ne
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§4. The Example of Whitney

For any transcendental function v (such that v(0)=4), the germ of the
Sunction f=xy(y—x)y—@B+1)x)(y—v(t)x) at 0 in R3 cannot be trans-
formed into any polynomial even through differentiable changes of coordi-
nates.

Proof. Suppose
(i) g is a polynomial in three variables with real coefficients,

(i) 7 is a diffeomorphism of C= class of a neighborhood U of 0 in R3
onto a neighborhood of 0 in R3, where 7(0)=0,

(iii)) ger=f on U.

Let V be the vanishing of f on U, then V consists of five analytic mani-
folds, hence the vanishing of g on t(U) (that is, (V)) consits of five
differentiable manifolds. It is shown in [6] (Proposition VI 3.11)

“Let X, be an analytic germ at 0 in R” with dim X,;=%. Suppose
that X, contains the germ ¥V, of a C~ manifold of dimension k, then ¥V
is the germ of an analytic manifold (which is then an irreducible com-
ponent of X;).”

From this and the hypothesis that g is a polynomial, one sees that
each sheet of (/) is an analytic manifold. Let these sheets be V7,...,
V,. For each i(=1,...,4) the set p; of those polynomials which vanish
on ¥V, is prime in the polynomial ring R[x,, x,, x; | of 3-variables over
R. The reason is as follows. From the fact that the radical of p; is p;
and that R[x,, x5, x5 is noetherian, it is shown that ;= _Rq,-, PCIE
prime) and the sum of the vanishing of q; ,(i=1,..., &;) is thJe 1vanishing
of p;, especially the sum of the vanishing of q; ;(j=1,..., k;) on V; is V7,
hence k;=1 and p;=gq;, is prime. Let W; be the vanishing of p; in C3.
Then one can see easily that W, is an algebraic variety of dim 2 and that
p;CL %, %5, %3] is 1 in height. From this and the fact that C[x,, x,,
x4 ] is integral over R[ x,, %, %3], b; is a prime ideal of height 1 in
R[x,, x5, x5]. Hence p;= pR[x,, x,, x45] for some p,eR[x,, x,, x5],
and the ideal of polynomials which vanish on z(¥) is II  p;R[xy, %,

i

i=i1,., f
%3] (not always j=4). For the remainder of this proof, we only have to
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proceed as in [97].

S. Izumi pointed out the following.

Remark 2. Using Artin’s theorem in [1] we can easily prove the
fact above, moreover Proposition VI 3.11 in [6] which we use in the proof

above also can be shown by the same theorem.

§5. Multiplication by Germs

Let f, g be in m(&,) (resp. m(0,)), and f~1(0)= g~1(0). Then here
is a question whether there exists r€Dif, (resp. Adif,) such that f= gor.
This section give an answer to this question in the case that f and g
have a special relation such that f=¢g, ¢(0)>0.

k in Lemma 3 is not always 1. For example, p=x6+x*yt+ 6
cannot have a solution of the equation

_< 0p
P_’,;l qiax.-

-,

Definition. &, (resp. 0,) is the set of germs Pem(¢&,) (resp. m(0,))
which satisfy

& 9P
P_;;xq"ax

for some ¢,em(&,) (resp. m(0,)).

Proposition 1. For any ge&, (resp. 0,), ¢ €&, (resp. 0,) (such
that ¢(0)>0), there exists t€Dif,) (resp. Adif,) such that ¢-g=geor.

Proof. Let’s proceed as in the proof of Lemma 2. It is enough to

have germs a,(x, t) which satisfy the following conditions;

a;(0, t)=0, ¢))

($—1)g= ,-Zn:la‘(x’ t)(ﬁ%;%l&t+g§;). )

By the hypothesis, there exist b;em(¢&,) (resp. m(0,)) such that
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R _1oq

From this, (2) becomes
-0t g€ = Dar b -FE 1+ Dada 03E(@- D41} @)

If we get the following relation for all iz,

(6—1)b; —Za](x £)b; —t—l—a,(x, {(@—1)e+1}. 4

then (3) is established. Hence it is sufficient to find a,(x, t) which satisfy

(1) and (4). Let A be the matrix whose (Z, j)-component is b; aaét and
I the unit matrix. Then (4) is equal to
(¢—1)b, a

=(A+{(g—1)t+1}])

\ a,

From b;,em(¢&,) (resp. m(&,)), the determinant of A+ {(¢—1)t+1}I does

not vanish at any point of 0x[0, 1], hence there is the inverse matrix B

of A+{(¢—1)t+1}I (where all components of B are germs at 0x[0, 1]

of C=~-functions (resp. analytic ones)). By 5;(0)=0, all components of

B (qS—.-l)b1 (that is, a@;) satisfy (1). The proposition follows.
<<¢41)b,,>

The following is the converse of this result in the analytic case.

Proposition 2. Suppose gem(0,) satisfies the following condition;
for any t€[1, 2], there exists v, Adif, such that tg=ger,, Then ge&
7,

Proof. For each integer k(>1), T%? denotes the natural map from
o))" to (0,)"/wm*0,)x(0,)", (0,)"/m*0,)x(0,)" is a vector space of
finite dimension over R. Regard Adif, as contained in (@,)", then the set
of T#r,(te[1, 27]) is contained in a finite dimensional vector space over
R. Hence there exist ¢,€[1, 2] (m=1,2,...) such that ¢, and Ti%r,,
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converge. From these convergence one sees that when m — oo, m’—

then t"‘ and T%t, ot;l converge respectively to 1 and I%[ (where [ is
m
the identity map). Hence from the beginning we may assume that ¢,,

T#r,, converge respectively to 1 and I'%/ (when m—oo0), and that
8°Ct, =tm§&-

bryt=l o,

t
tm_ i —{ Ctm belongs to

For sufficiently large m, and 1=Z:<t,,

Adif,. Let f,(x, t)=go<fm:{ I+tt—~_11—r,m>. Then f,(x,t) is a germ
at 0x[1,¢,] in R*XR of analytic function, and satisfies
Snl(x, =g,

fm(xs tm)'__tmg-
We have that

S, tm) = f(%, 1) 3fm(x,
ty—1

converges to 0 in

O,
m*(0,)

This is because letting f,(x, t)= }ei by, (2)(t—1)" we have
=0

(when m—o0).

hm, (x)em!(0,), and h, ,(x) converges in 0,/m*0,)

(when m— o).

From this we have

Falzr )="5 by (2)(t =1} mod mH(0,).
=0
From the equations

fm(x, tm)"'fm(x’ 1) In8— 8 —
ty—1 ty—1 &

0 —t I+ —T |
0g ( tm ’”‘)
at (x, 1)= Z ‘a“%‘; at ‘t=1,
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0 . .
gx,- is a linear
axi

subspace of a finite dimensional vector space over R, we see that g is

and the fact that T,p where D is the ideal generated by

contained in p+m*(0,). Because k is arbitrary, and by Theorem of Krull

we see that g is centained in p.

Remark 3. In the same way as in the above proofs, we can prove
that for any f em(&,), the following two conditions are equivalent;
(1) for any ¢<=¢&, (such that ¢(0)>0) there exists r€Dif, such that
I(f-¢)=T(fer), .
(2) there exists q;e#, (i=1,..., n) such that ¢;(0)=0 Tf=i§1 q;T

of
0x;

§6. A Sufficient Condition
In this section we consider only the case n=2.

Lemma 5. Let fi(i=1,..., n) be in &, such that g= ﬁf, is in 05.
i=1
Then there exist ¢, €&, (i=1,..., n) such that each ¢;f; is analytic and
n
i:].__[l¢i=1; $:0)=1.

Proof. Here we don’t distinguish a function from the germ defined
by its function.

We have the following facts

(i) 0, and &, are unique factorization rings,

(ii) for any prime ideal p of @,, pF, is prime in &, (Zariski-Nagata).
By these it is easily seen that we can assume Tf; are prime in &,, and
that there exist p,e#, (i=1,..., n) where p,(0)=1 ﬁpi:l piTfi=gq;
€0, Let ¢; (i=1,..., n) be in &, such that T¢;=p, (i=1,..., n). Then
we see that g,—¢; f; are flat at 0.

For each i, the vanishing of f; is the vanishing V; of ¢;. The
reason is as follows. Any analytic germ X in R? is described in the fol-
lowing form (by some linear transformation) (see p.57 in [6]);

“p(x, y) is a distinguished polynomial in x with coefficients in @(y)
and X is the vanishing of p.”
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Hence V; is {0} or a sum of curves. If V; is a sum of curves and f;

vanishes on a subgerm (#{0}) of V,(j#1i), then there is a sequence a,

(—0) in V; such that fi(a,)=0 (n=1,2...). By the fact that ¢,—¢;f;

is flat at 0, for any N >0 there is a neighborhood of 0 where we have
lgi(2)—¢, fi(2)| =[x |V

From these we see that for sufficient large n

lqj(an)l é |a’n|N' (1)

Now, from the hypothesis that IIq;= g is in 03, one sees easily that the
ideal (generated by g¢;, g;) is 2 in height, and that the ideal is contained
in I(V;nV;). Hence I(V;nV;) is 2 in height, and ¥V;nV;={0}. It is
shown in [67] (Corollary IV 4.4) that any two analytic sets X, Y are
regularly situated (i.e. locally there exists a pair of constants ¢>0 and
a>0 such that for every x in X d(x, Y)=cd(x, XNY)¥). From this
there exists a pair of ¢>0 and >0 such that for sufficiently large n

d(a,, V)zcla,| (2)

But, from the inequality of Lojasiewicz, we have locally for some constants
¢’>0,a’>0

lg;(x) | Zc'(d(x, V),
especially for sufficiently large n

|gi(an) | =c'(d(a,, V)" (3
From (1), (2), (3), we get for suffiiciently large n

N
a

¢ d(ay V) (LD

By the fact that IV is arbitrary and d(e,, V;) is not 0, this is a contra-
diction. Thus we have shown that

Vi is {0}’

or that
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f; does not vanish on any point (#0) of V,(j#i).

From the hypothesis (ITf;=g), the sum of the vanishing (of f; on V;)
is V;. Hence one sees that V; is the vanishing of f,.

On the other hand, any analytic set X in £ (open in R?) is coherent
(i.e. for any a€® and for any finite system {A;} of generators of I(X,),
there exists a neighborhood £’ of ¢ such that for any b= £ h; generate
I(X,)). The reason is, if I(X,) is 2 in height, then the above statement is
trivial, if I(X,) is 1 in height, then I(X,) is principal and is generated
by h (where A is in @3). From this we have near a

jg_i‘_(b)| + l%(m £0, b+a,

and one sees easily that near a I(X,) is generated by h.

In [6] Malgrange has shown the following theorem (VI 3.10): Let
K(X,) be the ideal in &, of C~ functions vanishing on X,, then the fol-
lowing properties are equivalent,

(@) K(Xo)=I1(X,)¢,,
(b) X, is coherent at 0.

From this, if V;#{0} then there exists ¢;€&, such that f,=q;é;.

Malgrange [ 6] also has proved the fact (Theorem VI 1.1’): Let £ be
an open set in R” and h,,..., h, analytic functions in 2. Let ¢=&(2)
(the set of C™ functions defined on £). Then ¢ can be written in the
form ¢= Zﬂ] hi¢; (with ¢;,€&(R2)) if and only if for any a= £, the Taylor
expansionFlT,,¢ of ¢ at @ belongs to the ideal generated by T,h; in &,.
From this, if V;=0 then there exists ¢;€&, such that f;=gq;¢;. Since
IIf,=1gq; p(0)=1. Hence II$;=1 and ¢;(0)=1. Thus the lemma is
proved.

Remark 4. In the lemma above we see that an analytic set in R?
is coherent. But the one in R3 is not always coherent. The counter ex-
ample is the ‘“‘umbrella” (p. 95 in [6]).

k E
Lemma 6. Let f be such that f =11fi (where 11 f;€63). Then
i=1 i=1
there exist t€Dif, and g€ &,—m(&,) such that ¢(for) is analytic.
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k
Proof. Applying Theorem 1 to g=1IIf; we get t<Dif, such that
i=1
ge°T is analytic. From Lemma 5 there exist ¢;=&, (i=1,..., k) such that
k k .
@;(fior) are analytic and JI¢;,=1, ¢;(0)=1. Hence I {i-(f;°7)'} is
i=1 i=1

k
analytic and equal to (I ¢i)(fer).
i=1

Combining this and Proposition 1, we have

_ E .k
Theorem 3. For any f€ &, such that f= 1] fi, [1 fE&5 there exist
i=1” V51

teDif, such that fotr is analytic.

Remark 5. Let fe&, be such that for some ¢;,em(#F,), Tf= Zn:
=1

qg; Taa%, then by Remark 3 there exist r&Dif, and ¢ &, such that ¢ is
i

flat at 0 and for+4¢ is analytic.

§7. Appendix: A Proof to Cerf’s Result

Let us recall the following concept introduced by Cerf [27].

Let W be a C~-manifold, f a C=-function defined on W, and c a
critical point of f. One calls condimension of critical point ¢ the codimen-
sion of the ideal generated by the germs of the first partial derivatives of
f at ¢ in the ring of germs of C~-function: W—R zero at c.

Critical points of codimension 0, 1, or 2 are called respectively points
critiques du type de Morse, points de naissance, and points critiques du type
queue d’ aronde.

We present a proof to the following Cerf’s result (shown at p. 23 in

[2D.

Proposition 3. If fem(&,) has a critical point of codimension 1
(vesp. 2) at 0, then there exists t<Dif, such that

for=—xi——xltxtatotala+a],
(resp.= —xi——xf+ai + - +al 1+ x).

Proof. The proof of the case of codim 2 follows in the same way as

its of codim 1, so we prove only the case of codim 1,
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Let p(f) be the ideal generated by the germs of the first partial deri-
vatives of f in &,. We have

m/p=R1, mod m?.

Hence, after some linear transformation, we can assume

afem—mz, i=1,...,n-—1,
axi

o em?—m?,
0x,

Therefore there exist gy, g, and g,€&(xy,..., x,-;) and heé,—m such
that

=80+ &ux,+ gxi+hxd,
&o: of Morse type,
g EM*(&E,-y),
&2EM(&,-y).
Applying Morse’s theorem to g,, we have
Go=—x— —x?4+x} + - +xi,.

n—1
Let g,= ), a;x;+ g3 such that a; are constants and gs&m?. Then, trans-
i=1

forming x; by x;iﬁxﬁ, we only have to prove the case g,=m? Let

us apply Lemma 2 to f and G=gy+hx3. We see easily that p(G) is

generated by x,,..., x,_;, and x2, and that p?(G)m contains g,x;+ gox2.
From Lemma 2 there exists te&Dif, such that for=G. Let ¢/ Dif,
denote (x,..., x,_;, B*'3x,). Then forot/=—x}— - —x?+x?,+ -+
x,zt_]__*'x?’.
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