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§1. Introduction

We generalize the results in N. Levinson p], £4] and J. Cl. Tougeron

Q8] which show that some germs of differentiate (or analytic) functions
are transformed through changes of coordinates into polynomials in one (or
two) variable with coefficients which are germs in the other variables (§3).

H. Whitney [9] has shown that x y( y— x)( y— (3 + *)#)( J-r(0*)
(where Y is a transcendental function and f(0) = 4) cannot be transformed
into any polynomial through analytic changes of coordinates (locally at the
origin), and we prove this function cannot be transformed even through

differentiable changes of coordinates (§4).
In view of Thorn's Principle, that is, for a germ of an analytic func-

tion f having 0 as a topologically isolated singularity, the variety /~1(0)
determines the function f, we study particularly whether a germ f$ (such

that 0(0) >0) can be transformed into / (§5). As a corollary of the sequ-
ence we obtain a sufficient condition for a germ of a differentiable function
in two variables to be transformed into a germ of an analytic function (§6).

In Appendix we show canonical forms of germs which have un point

de naissance or un point critique du type queue d'aronde which is due to
Cerf [2].

The method of proofs is to use almost all theorems in Malgrange

The author thanks Professor Adachi for his criticism.

§ 2, Definitions

According to Malgrange Q6j we denote respectively by On (or 0(

Communicated by S. Matsuura, October 4, 1972,
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£n (or #(x)) the rings of germs at 0 in Rw of real analytic and C°°-func-

tions, and by IFn (or ^"(#)) the ring of formal power series in n indeter-
minates over R. One has a mapping T: gn-+!Fn (Taylor expansion at

0). We regard On^.^n. We denote by w(0w) (resp. m(<f J) the maximal
ideal of On (resp. <^w). As 0H and &'n are unique factorization rings, for

any/e0w (resp. e<fw) / (resp. Tf} can be factorized. So 0°n (resp. £°n)

denotes the set of all germs f in On (resp. tfK) such that f (resp. Tf) is

not 0, is in Tn(0B) (resp. m(<fw)) and has no multiple factors. Adifw (resp.
Difw) denotes the set of analytic local diffeomorphisms (resp. local dif-

feomorphisms of C~-class) around 0 in Rw. We have

(1) for any reAdifw(resp. Dif;z) and/e0; (resp. ^;) /°re0; (resp. £°n\

(2) On n <f; = ^; (Zariski-Nagata).

For any analytic set F in @ (where J23a, J? open in Rw), the germ

of F at a is called an analytic germ at o, and denoted by Ffl. To an

analytic germ F, we make it correspond the ideal /(F)c0B of germs of

analytic functions which are zero on F.

We say /(e^M) is flat at 0 if Tf=Q.

§3. Generalizations of [4], [8]

The next lemma is similar to the lemma at p. 33 in [7], and the
method of the proof is the same.

Lemma 1. Let f, g be in £n (resp. Gn} and a{(x, t) (i = / + !,..., n)

germs at Ox[J3, 1] in R w x R of C°°-functions (resp. analytic functions).

Assume that

as germs at OxQO, 1J /(#) — g(x}= 2 a{(x,

a,-(0, 0 = 0.

exists reDifB (resp. AdifK) such that

f°r=g,
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. Let Z be a complete vector field on Rw+1 such that the germ

d n dof X at 0 x TO, 11 is -~— — 2 dt~ — , and <pt 1 parameter group of trans-
O'Z i=l + l OX;

formation defined by X. Then we have

X , F- dF(?t(x> *
*<••' >F -- dt

The assumptions give

X(x>t)F=Q, near Ox [0,1] if F=ft+g(l-t)

,1
i if O^i + ^^1 and ^ is near 0

These show that (ft+ g(l — t))°(pt(x, 0) is a constant for any fixed x

near 0, and the <PI(X, 0) is a local diffeomorphism around x = Q. This

gives the result.

As a corollary of Lemma 1, we obtain the next lemma which is due

to [8].

Lemma 2. Let /, g be in mz(#n) (resp. m2(0w) such that f— g is

an element of the ideal generated by %--J*-Xk(*
9 4==^~1'"^ ^)' Tken

there exists reDifn (resp. Adifw) such that

Proof. By the hypothesis, there exist 6;>;-em(^w) (resp. m(0w)) such
M ^ «• /J p-

J&-. We have

9C /*_ ̂  w
9^,. =y=SiC'

S e t = c < - - > - . a n d /-^" where J«- i s i n
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(resp. tn(0w)) in the equation in Lemma 1. Then it is enough to solve

the equations

of (0,0 = 0.

Let A be the matrix whose (i, jr)-component is c f j t and / the unit matrix.

Then the equations above are

ai) and a,(0, 0 = 0.

We easily see that A + I has the inverse B where components of B

germs at 0 x Q), 1]. This prove the lemma.

are

we use frequently the next lemma which is also shown i

Lemma 3* Let p be in &n and p(0) = 0. Then there exist an in-
n Q p

teger &>0 and g l 5 . . .9 qn^^n such that pk= 2 <?/^-.
= VX>

The next lemma is the result about differentiable functions, see

for analytic functions.

Lemma 4. Let g^^n satisfy the following condition,

flm „
for some 77i>0.

Then there are f in $n-\[_oc^\ (polynomials in xn with coefficients in

..., xn-i)) and r in Difw such that

dgProof. The case 6 -(0) ̂ 09 this is trivial. Therefore, suppose
oxn

) = 0. Let
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then for some m'>0

Applying Malgrange's preparation theorem [J5] to G and g, we get

such that

Take /"= 2 -R«*JM then
-•=o

If we apply Lemma 2 to f, g, then there exists r = (^1?..., #M-i, rw(#))e

Difw such that f0^=g-

Theorem 1. (1) Let G be in &n-i[_x^\ (resp. Gn-£_x^). Suppose

the discriminant of G in xn is not flat at 0 (resp. not 0). Then there exist

F in #n-2\lxn-i> Xn1\ (polynomials in xn-l9 xn with coefficients in #(xl9

..., ^n_2)) (resp. &n-2L
xn-i> xnH) and r in Difw (resp. Adifw) such that

(2) The statement in (1) remains valid for any G^£n (resp. On} which

satisfies the following conditions ;

G = G1-G2 for some G^ff(xl9...9 xn-^) (resp. 0(xl9..., x^)

G2 e £°n(resp. 0°n}, such that

ftmr
(i) for some m>Q ° ^ (0)^0,

Proof. When re = 2 and G&&n Part (2) of this theorem is proved in
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And when Gl = 1 in Part (2) this theorem is shown in [8J. It is

enough to prove the case Gem2(«f) (resp. tn2(0)). If we apply Lemma 4

to G2 in (2). Then there exist f^&n-i\L
xn1 anc* rie^ifM such that

and we get

Here Gl'f satisfies the assumption of (1). So it is sufficient to prove (1).

Let S be the ring of quotients of ^n-i[_xn~] with respect to the ideal of

those elements which vanish at the origin. Then by Proposition III 4. 10

in Q6] 3F ' n is faithfully flat over S. Hence from Lemma 3 there exist an

integer &>0 and pl9 g r l 9 . . . , qn^^n-iL
xn~^ such that pTGk= 2 ^f^ and1=1 o x i

(
£1*^1 \ 2
- — j (1 = 1,..., TI) have no

common divisor p (where p is in ^r
n-iL

xn1\ and not in ^(x^..., xn-^)).

Let JT be the quotient field over ^(xl9..., xn-i), and K]~_x^\ the polyno-

mial ring over K. Then by the fact that K^_x^\ is a principal ideal ring,

it is shown that the ideal generated by T(^ — J i = l,..., n in K[_x^\ is

Hence there exist ^i^^n-iL
x^\ sucn tnat

0= .S ̂ ' ^ 2 is not 0 and in &(xl9...9 xn.J..

By the theorem of E. Borel, there exist ^i^^n-^_x^\ i = l,...9 n such

that r<Pf = 0f. And if we put

then 3F is in ^(A;!,..., #„_].) and not flat at 0. It is easily seen that

there exist r2^Dif(A;1,...9 xn.^ and ^ye^-iC^,,] such that

for some TTI>O
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Put G°r2= S//*i, (/fe^(*i» •••»*ii-i)) and aPp!y Malgrange's preparation

theorem to (^Forg)-*,,-! and /,- then there exist Qi^^(xlJ..., %M-i), PJ>;

e^(# ls..., ^w_2) (& = 0,..., Z / = 0,..., A) such that

P,,,.^-! ( i=o, . . . ,z) .
y=o

If we put

then G°r2 — F is in the ideal generated by ^ °r2 - ^ °t2 #,,-1, i,j=l9..., n,

and we can apply Lemma 2 to G°r29 F. From this there exists reDifw

such that F°r = G.

In the analytic case it is enough for the proof that we remind the

fact that

(1) &n is faithfully flat over (9n

and (2) Weierstrass' preparation theorem.

Remark 1. Let / be in #9
n and let g be in £ \ and be flat at 0.

Then f+g is in £°n and so /+ g can be transformed into a polynomial

in two variables. On the contrary, G + g such that G takes the one form

in Theorem 1 and g flat at 0 cannot be necessarily transformed into a
polynomial in two variables. For example f=x2y±e~lly2 cannot be trans-

formed not only into any polynomial but also into any analytic function

(locally at 0). The reason is as follows. If f can be transformed into some

element of 02» then
dx dy

satisfies the inequality of Lojasiewicz

(Theorem IV 4.1 in [jBiJ) on some neighborhood of 0 in R2. However it

is easily seen that
Dy

does not satisfy the inequality on any

neighborhood of 0 in R2. It is a contradiction.

If /(em(^M)) can be transformed into an element of On (or a poly-
k k

nomial), then /= H f\ for some elements //e^w where
1=1
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The converse of this is not always true. For example, f=(x2+ y2)-
~llz2) cannot be transformed into any element of d?3. For the proof,

see

But we have a partial converse

Theorem 2. For any G^#2 (resp. 02) such that G=g1°g%, g

#2 (resp. d?2), there exists reDif2 (resp. Adif2) such that G°t is a poly-

nomial.

Proof. It is enough to prove the case Gem2(^2) (resp. m2(02)).

Because of the hypothesis on g^ g2, one sees that g2 is in <^2. Applying

Theorem 1 to g2, we see that g2 is transformed into a polynimial, so we

may assume that g2 is a polynomial. From Lemma 3 it is easily seen

that the greatest common measure of T{ -= — ) and jf-x — ) is g%. If
\dx J \vy/

p, q(^^2) have no common divisor, then the height of the ideal genera-

ted by p, q is 2, hence the ideal contains xn
9 yn for some n>0. From

this the ideal generated by T(-~ — j and T(^ — ) contains xng%9 yn gl

for some n>0. Consider a map u: £2— >#2 defined by

and u: «F2-»J*"2 defined by

If we use the terminology and Proposition III 1.6 in £6], then we see that

u being quasi-finite, hence u is guasi-finite, that is, for some 7?i'>0 the

(
£\f~* \ 2 / f^/^i \ 2
^ — J and (^ — j contains g2tti(#2)m'- From this

there exists a polynomial / such that, f gl~ gig2^$rn(#2)-

Put fgl = F and apply Lemma 2 to F, G9 then there exists reDif2 such

that Fo-c = G.

In the analytic case, we must remind that 3F ' n is faithfully flat over

On. The proof is similar to that in the differentiate case.
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§4. The Example of Whitney

For any transcendental function v (such that y(0) = 4), the germ of the

function f= xy(y— #)(y— (3 + t)x)(y— v(t)x) at 0 in R3 cannot be trans-

formed into any polynomial even through differentiable changes of coordi-

nates.

Proof. Suppose

(i) g is a polynomial in three variables with real coefficients,

(ii) r is a diffeomorphism of C°° class of a neighborhood 17 of 0 in R3

onto a neighborhood of 0 in R3, where r(0) = 0,

(iii) g°T=f °n U.

Let V be the vanishing of f on U, then V consists of five analytic mani-

folds, hence the vanishing of g on r(J7) (that is, r(F)) consits of five

differentiate manifolds. It is shown in [_6j (Proposition VI 3.11)

"Let XQ be an analytic germ at 0 in Rn with dimX0 = k. Suppose

that XQ contains the germ VQ of a C°° manifold of dimension ft, then VQ

is the germ of an analytic manifold (which is then an irreducible com-

ponent of Z0)."

From this and the hypothesis that g is a polynomial, one sees that

each sheet of r(F) is an analytic manifold. Let these sheets be F^...,

F4. For each &"( = !,..., 4) the set £,- of those polynomials which vanish

on Vf is prime in the polynomial ring RQ# l 5 x2, x^\ of 3-variables over

R. The reason is as follows. From the fact that the radical of J>f- is ty
ki

and that Rf^, x2, #3H is noetherian, it is shown that £,-= H q,- fy (Vdj-

prime) and the sum of the vanishing of q^y(j = l,..., ft^-) is the vanishing

of ft, especially the sum of the vanishing of q / fy(y = l,..., ft,.) on V^ is Vi9

hence ft;- = l and $i = q i f i is prime. Let Wt be the vanishing of £,- in C3.

Then one can see easily that W{ is an algebraic variety of dim 2 and that

&CD&1, X2* xs^ is 1 m height. From this and the fact that CQ# l5 x29

x 3] is integral over R^!, x2, #3], p,- is a prime ideal of height 1 in

R[>i, x29 x?~\. Hence ft—jo/RC^i, ^2. ^sH for some /?i-eR[^1, x29 x^9

and the ideal of polynomials which vanish on r(F) is II pi^Lxi9 xz*
i=ii,»; i j

xz~\ (n°t always y = 4). For the remainder of this proof, we only have to
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proceed as in pT],

S. Izumi pointed out the following.

Remark 2. Using Artin's theorem in Ql] we can easily prove the

fact above, moreover Proposition VI 3.11 in Q6] which we use in the proof

above also can be shown by the same theorem.

§5. Multiplication by Germs

Let/, g be in m(O (resp. m(0n)),
 and /"1(0)=gr"1(0)« Then here

is a question whether there exists reDifw (resp. Adifw) such thatf=g°r.

This section give an answer to this question in the case that / and g

have a special relation such that f=cpg, 0>(0)>0.

k in Lemma 3 is not always 1. For example, p= xe + x*j4+ y6

cannot have a solution of the equation

Definition. &n (resp. 0B) is the set of germs Pem(<fw) (resp.

which satisfy

<lij~- for some
1=1 (/x;

Proposition 1. For any g^#n (resp. ^w), <t>^#n (resp. 0W)

0(0) >0), there exists reDifJ (resp. Adifw) such that (f>>g = g°r.

Proof. Let's proceed as in the proof of Lemma 2. It is enough to

have germs at(x, t} which satisfy the following conditions;

= 0, (1)

By the hypothesis, there exist 6y e m(^lf) (resp. m(0w)) such that
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From this, (2) becomes

If we get the following relation for all i,

-1)6, = So/*, t)bMt+at(X, i)W -!> + !}. (4)
j VXj

then (3) is established. Hence it is sufficient to find a,-(#, t) which satisfy

(1) and (4). Let A be the matrix whos

/ the unit matrix. Then (4) is equal to

(1) and (4). Let A be the matrix whose (i, y)-component is bf^—t and
-

From 6 iem(<fw) (resp. m(<fj), the determinant of ^4 + {(0 — l)i + l}7 does

not vanish at any point of 0 X TO, 1], hence there is the inverse matrix B

of A + {($ — !)£ + !}/ (where all components of B are germs at OxQO, 1]

of C°°-functions (resp. analytic ones)). By 6/0) = 0, all components of

^/(0~~l)^i \ (that is, at-) satisfy (1). The proposition follows.

U1!)*./
The following is the converse of this result in the analytic case.

Proposition 2. Suppose g e ttt(0w) satisfies the following condition ;

for any jeQl, 2], £/&ere exists r feAdifw 5wc/i //wtf tg = g°rt. Then g^

On-

Proof. For each integer A(>1), Tn
k denotes the natural map from

(6n}
n to (P^)n/mk(p^ x (&n)

n, (OVln*(^»)x(^ji)11 is a vector space of
finite dimension over R. Regard Adifw as contained in (0w)n, then the set

of 7^rj(£e[X 2]) is contained in a finite dimensional vector space over

R. Hence there exist £OTe[l, 2] (HI = 1, 2,...) such that £w and Tn
krtm
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converge. From these convergence one sees that when TTI— >oo , m' -» oo

then -m- and rjr/TO°r^ converge respectively to 1 and T\I (where / is
^m m

the identity map). Hence from the beginning we may assume that tm,

Tlrtm converge respectively to 1 and Til (when TTI— »oo)5 and that

f _ £ f _ 1

For sufficiently large m, and l^t^tm, — M — T~!+ - T~rtm belongs to
tm~*- tm~*-

Adif,. Let /„(*, «)= «"(-^=f /H-j^f-r, \ Then /„(*, «) is a germ
\lm~L lm L '

at OxQl , tm~^\ in R w x R of analytic function, and satisfies

We have that

fm(X,tj-fm(X,i)_dfm(X,y converges to 0 in
tm — L Vl

(when 77i— »oo).

This is because letting fm(x, 0=2 ^w,/(^)(^~l) / we have

hmj(x}^ml(0n), and hmj(x} converges in On/m
k(0n)

(when 77i—»oo).

From this we have

From the equations
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dg
and the fact that Tk$ where p is the ideal generated by ^-Xj is a linear

OXf

subspace of a finite dimensional vector space over R, we see that g is

contained in p + m*(0w). Because k is arbitrary, and by Theorem of Krull

we see that g is centained in £.

Remark 3. In the same way as in the above proofs, we can prove

that for any/em(<fw), the following two conditions are equivalent;

(1) for any <fr&£n (such that 0(0) >0) there exists reDifw such that

(2) there exists ^eJ% (i = l,..., n) such that gf<0) = 0 Tf=iqiT

§6. A Sufficient Condition

In this section we consider only the case n = 2.

Lemma 5. Let /,•(& = !,..., n) be in &2 such that g= Tlf{ is in 0°2.

Then there exist 0,-e^2 (& = l > - - - j ^) SMC^ ^^ ^^ $//* *5 analytic and

n# f-=i , &(o)=i.

Proof. Here we don't distinguish a function from the germ defined

by its function.

We have the following facts

(i) On and &'„ are unique factorization rings,

(ii) for any prime ideal $ of On, $&'„ is prime in &'n (Zariski-Nagata).

By these it is easily seen that we can assume Tf{ are prime in J*"2>
 an(i

that there exist Pi^^2 (^ = l » - - - > n) where />f-(0) = l II />,- = ! PiTfi=qi
i = l

^02. Let 0f- (i = l,..., TI) be in ef2 such that T</){ = p{ (£ = !,..., rc). Then

we see that g^- — 0f-/f are flat at 0.

For each i, the vanishing of /,- is the vanishing V{ of q{. The

reason is as follows. Any analytic germ X in R2 is described in the fol-

lowing form (by some linear transformation) (see p.57 in [J)]);

"p(x, y) is a distinguished polynomial in x with coefficients in

and X is the vanishing of p."
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Hence V{ is {0} or a sum of curves. If V{ is a sum of curves and fj
vanishes on a subgerm (^{0}) of F,-(/^j)» then there is a sequence an

(-»0) in Vt such that /y(O = 0 (n = l, 2...). By the fact that ?y-0y/y
is flat at 0, for any JV>0 there is a neighborhood of 0 where we have

From these we see that for sufficient large n

sXOI^KI"- (i)

Now, from the hypothesis that Uqj=g is in ®\, one sees easily that the
ideal (generated by q{, qj) is 2 in height, and that the ideal is contained

in 7(F,.n Fy). Hence /(F,.n Fy) is 2 in height, and F.-n Fy = {0}. It is
shown in £6] (Corollary IV 4.4) that any two analytic sets X, Y are
regularly situated (i.e. locally there exists a pair of constants c>0 and
a>0 such that for every x in X d(x, Y)^cd(x, X n F)a). From this
there exists a pair of c>0 and a>0 such that for sufficiently large n

d(an, ry)^c|aj«. (2)

But, from the inequality of Lojasiewicz, we have locally for some constants
c'>0, a'X)

especially for sufficiently large /&

(3)

From (1), (2), (3), we get for sufficiently large n

c'(d(an,

By the fact that N is arbitrary and d(an, Fy) is not 0, this is a contra-
diction. Thus we have shown that

Vt is {0},

or that
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fj does not vanish on any point (^0) of F{(j^i).
From the hypothesis (IIf{ = g), the sum of the vanishing (of /,• on V^
is V{. Hence one sees that V{ is the vanishing of f{.

On the other hand, any analytic set X in J2 (open in R2) is coherent
(i.e. for any aeJ2 and for any finite system {ht} of generators of I(Xa),
there exists a neighborhood Qr of a such that for any 6eJ2/ h{ generate
I(XbJ). The reason is, if I(Xa) is 2 in height, then the above statement is
trivial, if I(Xa) is 1 in height, then I(Xa) is principal and is generated
by h (where h is in 0°2). From this we have near a

~dx v

and one sees easily that near a I(Xb) is generated by h.
In Q6] Malgrange has shown the following theorem (VI 3.10): Let

K(Xo) be the ideal in $n of C°° functions vanishing on XQ, then the fol-
lowing properties are equivalent,

(a) *(Z0) = /(*„)/„,

(b) X0 is coherent at 0.

From this, if F,-^{0} then there exists $e^2 such that /,. = q^.
Malgrange [6] also has proved the fact (Theorem VI 1.1'): Let S be

an open set in Rw and hi,..., hp analytic functions in @. Let 0e<f(J2)
(the set of C°° functions defined on J2). Then 0 can be written in the

form $=^hi</>i (with 0 fe<f(J2)) if and only if for any ae£, the Taylor
i = l

expansion Ta<t> of 0 at a belongs to the ideal generated by Tah{ in &„.
From this, if Vf = Q then there exists <^-e«f2 such that fi = qi<t>'i. Since
nfi = nqiy jof-(0) = l. Hence 11^ = 1 and #(0) = 1. Thus the lemma is
proved.

Remark 4. In the lemma above we see that an analytic set in R2

is coherent. But the one in R3 is not always coherent. The counter ex-
ample is the "umbrella" (p. 95 in [6]).

k k
Lemma 6. Let f be such that f =Tlfl (where II/,-^^2). Then

i=l 1=1
there exist reDif2 and 0e^2~m(^2) suc^ that 0(/°r) is analytic.
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k
Proof. Applying Theorem 1 to g = Tlfi9 we get reDif2 such that

g°r is analytic. From Lemma 5 there exist 0 fe^2 (& = !,..., A) such that
k k

0*(/*°r) are analytic and H ${= 1, 0,-(0) = l. Hence II {$\ • (/,-or)'} is
*=i 1=1

*
analytic and equal to (]Q0D(/00-

Combining this and Proposition 1, we have

Theorem 3. For any f^^2 such that f= Y i f l , flf^<*°z there exist
reDif2 such that /°r is analytic.

n
Remark 5. Let /^<^2 be such that for some ^-em(J%), Tf= 2

q{T^-, then by Remark 3 there exist reDif2 and 0e<f2 such that 0 is

flat at 0 and /°r + 0 is analytic.

§7. Appendix? A Proof to Cerf's Result

Let us recall the following concept introduced by Cerf pT],

Let W be a C^-manifold, f a C°°-function defined on W, and c a

critical point of f. One calls condimension of critical point c the codimen-

sion of the ideal generated by the germs of the first partial derivatives of

/ at c in the ring of germs of C°°-function: W—>R zero at c.

Critical points of codimension 0,1, or 2 are called respectively points

critiques du type de Morse, points de naissance, and points critiques du type

queue d'aronde.

We present a proof to the following Cerf s result (shown at p. 23 in

ra).
Proposition 3, If y*em((fw) has a critical point of codimension 1

(resp. 2) at 0, then there exists reDifw such that

Proof. The proof of the case of codim 2 follows in the same way as

its of codim 1, so we prove only the case of codim 1,



TRANSFORMATIONS OF GERMS OF DIFFERENTIABLE FUNCTIONS 139

Let £(/) be the ideal generated by the germs of the first partial deri-

vatives of f in & n. We have

R\ mod m2.

Hence, after some linear transformation, we can assume

df̂-em2 — m3.dxn

Therefore there exist gQ9 g1 and g2^(e(x1,..., ^ w _ x ) and h^^n — m such

that

gQ: of Morse type,

Applying Morse's theorem to g0, we have

n-l
Let g*2 — Zj^j^i+g 'a such that a{ are constants and ^-3em2. Then, trans-

forming x{ by Xf±-^x^9 we only have to prove the case g2^m2. Let/j
us apply Lemma 2 to / and G=gQ + hx*. We see easily that p(G) is

generated by ^ l 9 . . . , ^w_ l s and x2, and that ^2(G)m contains gixl + gQx2.

From Lemma 2 there exists reDifw such that f°t = G. Let r'eDif,,

denote (^ l 5 . . . , ^ W _ l 5 A1/3a;B). Then / o r o r ' = — ^? ---- - *2 + A;?+IH ----- h
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