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A Study of Intermediate Predicate Logics
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Hiroakira ONO*

As stated in the survey \J3T\ by Hosoi and the author, many works

have been done during the last decade on the propositional logics between

the classical and the intuitionistic (the intermediate propositional logics).

On the other hand, only a little progress has been made in the study of

intermediate predicate logics except Umezawa's pioneering work Hi2] and

some recent works C13J, C14]. In the present paper, we shall develop a

study of intermediate predicate logics.

We want to study intermediate logics in a general framework, intend-

ing to derive some properties common to many intermediate logics, as

we mentioned already in Q8j. Semantical methods have played an impor-

tant role in doing so. But, for the intermediate predicate logics they are

found to be incomplete. Indeed, we have shown in Q9] and [[10] that

we can use neither Kripke's semantics nor the algebraic one as a uniform

way of studying intermediate predicate logics. These incompleteness re-

sults present a limitation of semantical methods, but nevertheless there

are many problems we can solve now. In this paper we shall prove some

basic results on the intermediate predicate logics and their models. We

emphasize here that some of them can be easily extended to modal pred-

icate logics and logics stronger than the minimal predicate logics.

We define intermediate predicate logics in § 1. In §2 and §3, two

kinds of semantics for them are introduced and some basic properties of

them are proved. In §4, we study the cardinality of models and show

analogues of Lowenheim theorem. We prove some syntactical results in
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§5. In §6, we show a certain relationship between predicate logics and

propositional logics. We believe that this is a typical example of a gener-

al study of logics.

Finally, we would like to stress that without Umezawa's work we

could not have any clear insight.

§1. Intermediate Predicate Logics

First of all, we fix a language 3? in order to define intermediate

predicate logics. ££ consists of a list of countably infinite individual vari-

ables x, j, z etc. and a list of countably infinite n-ary predicate variables

p(n\ q(n\ rw etc. for each non-negative integer n. 0-ary predicate vari-

ables are identified with propositional variables. Occasionally, we omit the

superscript letter on a predicate variable. 3? contains no constants and

no function symbols. The logical symbols of £? are A, V, — >, — i, V

and 3 . Formulas (of first order) are defined in the usual way. The

letters A, J5, C etc. will denote them. A formula containing neither quan-

tifiers nor predicate variables except propositional variables is called a

propositional formula. As we mention below, we identify a logic with

the set of formulas provable in it. Thus, by LK (or £/), we mean the

set of formulas provable in the pure classical (or intuitionistic) predicate

calculus. (See Church

Definition 1.1. A set of formulas L is called an intermediate predi-

cate logic if it satisfies the following four conditions :

1) LJCLCLK.

2) L is closed under modus ponens.

3) L is closed under the generalization. That is, if a formula A is

in L then for any individual variable x (V x)A is also in L.

4) L is closed under the substitution. That is, if a formula A is

in L and xi,--, xn are distinct individual variables then any formula of

the form S$Xl>'"'Xn)A\ is also in L. (As for the definition of S, see

We notice that if L is an intermediate predicate logic then it is
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closed under the alphabetic change of bound or free variables, since it

contains LJ.

For each intermediate predicate logic I/, the set of propositional for-

mulas in L is an intermediate propositional logic in the sense of Hosoi

PQ. We call it the propositional fragment of L and write it as n(L).

Let

LK^^LK) and LJn = n(LJ\

Then LKn (or LJ^) is the classical (or the intuitionistic) propositional

logic.

Throughout this paper we sometimes call an intermediate predicate

(or propositional) logic only as a predicate (or a propositional) logic. «/

(or <?„) is the set of all the predicate (or the propositional) logics. Hosoi

Q2] introduced the lattice operations r\ and \J on «/„.. In the same way,

we can extend them on ^. Then the following theorem holds.

Theorem 1.2. ./ is a complete pseudo-Boolean lattice with respect to

r\ and \J.

By Jankov's result Q4], we have immediately that ./ contains 2^°

logics.

Let H be any set of formulas and L be any predicate logic. Then

we write L + H for the smallest set of formulas which contains any

formula either in L or in H and is closed under modus ponens, the

generalization and the substitution. Therefore, if HCLK then L + H is a

predicate logic. Similarly, if H is a set of propositional formulas and K

is a propositional logic, K+H denotes the smallest set of propositional

formulas which contains any formula either in K or in H and is closed

under modus ponens and the substitution (of propositional formulas). Some-

times, we write L + Ai~] ----- \-An for L+{Ai,--9 An}. A predicate logic L

is called to be finitely axiomatizable if there is a finite subset H of LK

such that L = LJ+H.
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§28 The Algebraic Semantics

In this and the next §§, we shall define two kinds of semantics and

study their basic properties. As we deal only with logics and not with

theories, we would say structures (or frames) as models, opposing the

usual usage of the word model. For instance, as a model of the classical

logic, we would take the 2-valued Boolean algebra with a countable do-

main, not considering a fixed interpretation of each predicate variable.

So, as for the algebraic semantics, we get the following definition.

A pseudo-Boolean algebra P is said to be ^-complete for some cardinal

/I, if both f\ a and \J a exist in P for any subset S of P such that

Definition 2.1 (P, V} is called a pseudo-Boolean model (a p.B.

model) if V is a nonempty set (a universe) and P is a ^-complete (non-

degenerate) pseudo-Boolean algebra, where 1 is the cardinality of V.

Let (P, V) be a p.B. model. An assignment / of (P, V) is a func-

tion such that

1) /(p) £ P for each prepositional variable p,

2) /Cp(w)) is a function from Vn to P for each ra-ary predicate

variable p^ O>0).

Now, we add a constant v for each element v in V to the original

language £?. <^C^H is the extended language thus obtained. For each

assignment f, define a function fr from the set of closed formulas in

to P by the following rules;



INTERMEDIATE PREDICATE LOGICS 623

where A, W, D and — denote the corresponding lattice operations of P.

Hereafter, we identify this /' with /. We write IP (or Op) for the great-

est (or the least) element of P.

A formula A of <£ is said to be valid in a p.B. model (P, F) if

f(A/) = lp for each assignment / of (P, F), where A is a closure of A,

jL+(P, F) denotes the set of formulas valid in (P, F). It is easy to see

that the set L+(P, F) contains LJ and is closed under each of three

operations mentioned in Definition 1.1. The following theorem shows that

there is a predicate logic which cannot be characterized by a single p.B.

model.

Theorem 2.2 ([10]). There exists a predicate logic L such that 1)

L = L+(P1, Fi)nl+(P2, F2) for some p.B. models (Pf, F,-) (i = l, 2) forf

2) L^L+(P, F) /or any £.5. wwwfe/ (P, F).

This fact suggests the following definition.

Definition 2.3 ([10]). A set of p.B. models {(Pf, F,-); i€ 1} is said

to be characteristic for a predicate logic L, if L= A Z+(P/5 FA In this
i^i

case, we say that L has a characteristic set of p.B. models {(P/3 F/);

Theorem 2.4 ([10]). There exist 2^° predicate logics having no

characteristic sets of p.B. models.

Now, we shall give a condition for a set f\ L+(P^ Fj) to be an
z'e/

intermediate predicate logic. Formulas FI, F2 and Fin are defined as fol-

lows:
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(2.5) Fi=\fxr(x, *)A V*Vy(r(*

A V*V yVz(r(x, j)Ar(y, *)-»K*, *)),

F2 = -i V x 3 y-\r(y, x\

Fi n = Fi—+F2.

The intuitive meaning of Fin will be obvious. We can expect that

a model which validates Fin has a finite universe. Of course., Fin^LK.

Theorem 2.6. f\ L+(Pi9 F,-) z's aw intermediate predicate logic if
»€=/

and only if there is a j 6 / s^c^ that Vj is infinite.

Proof. First, suppose that Vj is infinite. To show that f\L+(Pj, Vj)
«e/

is an intermediate predicate logic, it suffices to show that f\L+(P^ F,-)

CLK. Clearly,

„ - • • - p» ^
The model (Py, Fy) contains the submodel (Si, F/)5 where Si denotes the

2-valued Boolean algebra. Thus,

So, f\L+(Pi, V^CLK. Next, we shall show that the formula Fin is
*€=/

valid in a p.B. model (P, F) if F is finite. Suppose otherwise. Then

there is an assignment / of (P, F) such that f(Firi)=^IP. Let f(Fi)=a

and f(F2) = b. Since o^'6, there is a filter F of P such that a€F, 6<£F

and ||6|| is the greatest element of P/F— {lp/jr}, where P/jF denotes the

quotient algebra of P with respect to F and || || denotes the natural

mapping from P to P/F. Define an assignment g of the p.B. model

(P/F, F) by

vi, t72))|| for any vi, v2€ F.

Since F is finite, we can prove that g-(Fi) = ||a|| = lp/i? and

Define a relation <^ on F by
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' if and only if g(r(v, v/y) = lpiF-

Then, we can prove that the relation <^ is a quasi -order on V and that

either v<Lvf or vf <^v holds for any v, vf €=. V, as for any \\c\\, \\d\\^P/F

if ||c||\j||d|| = lp/F then either \\c\\ = lP,F or \\d\\ = lPlF. As V is finite,

there is a VQ in V such that v <I #o holds for any v € F. That is,

#(/•(*;, t;o)) = l/>/F for any t;£ F.

Hence, g(F2} = g(-\V x 3 y-\r(y, x)) = lPlF=^\\b\\. This is a contradic-

tion. Thus, if V is finite then Fin£L+(P, V). Now, suppose that V is

finite for each i € /. Then

Hence f\L+(P{,
fe/

When we study propositional logics, the decomposition theorem plays

an important role (see ^3]). We have used its analogue for p.B. models

with a finite universe in the above proof. Consider the following proposi-

tion (2.7), which means the decomposition theorem for p.B. models.

(2.7) For any p.B. model (P, F), there is a set of p.B. models {(Ph Vj)\

i € /} such that

1) L+(P,V)=r\L+(Pi,V{-) and
is/

2) each Pi is irreducible, i.e., Pi— {lpt} has the greatest element.

Theorem 2.8. (2.7) does not hold.

Proof. Let

P=i(*> j); o^*<o>, y=o, i}w{(o>, i)}

and V={n\

P is ordered by a relation <!* such that

, 72) if ^i^^2 and ji^ J2-

Then P forms a complete pseudo-Boolean algebra with respect to <I*.
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Thus (P5 F) is a p.B. model. This model is nothing but Model 9 in

Umezawa £12]. We can show that the formula (JD-> q) V (q — > p) is valid

in (P, F). It is shown in []12] that the following formula Z^s (which

means a distributive law)

(2.9) Dis; V *(X*)Vg)->(V xp(x)Vq)

is not valid in (P, F). Now suppose that (2.7) holds. Then there exist

p.B. models (P,-, F/) (iel) such that Z+(P, V}=f\L4-(Pi, F/) and each
«e/

Pf- is irreducible. Since

(p-+q) V (?->/>) 6 i+(P,-, Fi) for i € I,

Pi must be a linear pseudo-Boolean algebra for i 6 I. But then Dis is

valid in L+(P^ F,-) for each i€l. This is a contradiction.

On the other hand, we show later that the decomposition theorem for

Kripke models holds.

§30 Kripke's Semantics

We shall discuss Kripke's semantics in the present §. Many of basic

properties of Kripke models for propositional logics can be naturally ex-

tended.

Definition 3.1. (M, 17) is called a Kripke model if M is a nonemp-

ty partially ordered set (with the order <^M) o,nd U is a function from

M to the power set of a set S such that 1) if a <J Mb then U(a) C U(bl)

and 2) U(a) is nonempty for any a EM.

We sometimes omit the subscript M of <^M. A function W is said

to be a valuation of a Kripke model (M, U) if it satisfies the following

conditions.

Let a and b be arbitrary elements in M. Then

1) for any propositional variable p> JFCp, a) € {£3 /} and if a<^b

and W(p, a) = t then
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2) for any ra-ary (ra>0) predicate variable p(n\

W(p(n\a}CU(a}n and

if a<;& then W(p(n\ a}CW(p(n\ 6).

Now, corresponding to each valuation W, we define a function W

which takes a value t or / for each pair (^, a) of a closed formula A

in the language &\i\J U(b}~] and an element a of M by the following
&e=M

rules. (&\_ \J U(by^\ denotes the language which is obtained from 3? by

adding a constant u for any element u in \J
b<=M

= t iff

si>-> nn\ a)=t iff Ox,..., *„)<£ r(/K), a),

,a) = t iff W'(A,a) = t and Wf(B,a) = t,

} = t iff Wf(A,a) = t or W(B,a} = t,

W(A-*B, a} = t iff r7(^3 &)=/ or r7(5, 6) = f

for any 6 such that a<^b,

W(-\A, a) = t iff r'U, 6)=/ for any & such that

Wr'(VxA(x\a) = t iff W'(A(u\ b) = t for any 6 such that

and for any u

W(^xA(x},a) = t iff Wr'(A(u),a) = t for some u€U(a).

Hereafter, we identify JF"7 with P7". A formula A of «£? is said to be

valid in (M, J7) if for any valuation W of (M, U) and for any aGM,

W(A',a) = t, where ^ is a closure of A We write L(M, U) for the

set of formulas valid in a Kripke model (M3 17). If L = L(M, U) for

some Kripke model (M, Z7) we say that L has a characteristic Kripke

model (M, Z7). The following three theorems can be proved quite similar-

ly as Corollary 2.8, Theorem 2.10 and Theorem 2.11 of [7]. They are

fundamental in the succeeding discussions.
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Theorem 3.2. For any set of Kripke models {(M/3 t//); i€/}3 there

is a Kripke model (M, Z7) such that L(M, U} = f\L(M{, £/i).
«e/

Compare the above theorem with Theorem 2.2. Now, suppose that

(M, Z7) is a Kripke model. For each a EM, let Ma={6; a<JM&} and Ua

be the restriction of U to Ma. Then (Mfl, Z7a) is a Kripke model. It

is easy to see that

L(M, U)=f\L(Ma, Ua-).
a<=M

Thus we have the following decomposition theorem for Kripke models (cf.

Theorem 2.8).

Theorem 3.3. For any Kripke model (M, U) there exists a set of

Kripke models {(M/3 £/,-) ; i e 1} such that

2) each M/ /z^5 ̂ ^ least element.

Suppose that (M, [/") and (JV, t/7) are arbitrary Kripke models and

that there are functions / and g such that

1) / is an embedding of M into N (see C?]),

2) g is a function from W U(a) to W Z7C&) such that g(U(a))
as=M b&M

= Uf(f(a)} for each a€M. Then we say that (M, V") is embeddable into

(N, 170.

Theorem 3.4. If (M, U} is embeddable into (N, U'}, then L(M, U}

Corollary 3.5. Suppose that (M, U) and (N, U') are Kripke models

satisfying the following conditions,

1) there is an embedding of M into N,

2) there is a set S such that U'(b) = S for any b€N and U(a)^

for any a€M.

Then L(M, U)CL(N, IT).
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In the following, we shall give a condition for a set L(M, £7) to be

an intermediate predicate logic (cf. Theorem 2.6).

Theorem 3.6. L(M, U) is an intermediate predicate logic if and

only if there is an element a£M such that U(a) is infinite.

Proof. At first, we remark that for any Kripke model (M, 17), L(M, U)

contains LJ and is closed under each of three operations in Definition

1.1. Thus it suffices to show that £(M, U}(^LK, in order to prove that

L(M, U) is an intermediate predicate logic. Suppose first that U(d) is

finite for any a EM. We show that the formula Fin is valid in Z,(M, Z7).

Suppose not. Then there exists a valuation W such that

W(Fin,a) = f for some a

Thus, there is a b such that

1) a ̂ b, 2) W(Fi, K) = t and JF(F2, &)=/.

By 2), there is a c such that b <j c and

Thus, for each w E J7(c) there is a ur E i7(c) such that

JF(r(B', S), c)-/.

Define a binary relation <I* on C/"(c) by

a <J* z^7 if and only if (u, z^O € B^(r, c).

By 2), <^* is a quasi-order on U(c) and either w^*^7 or uf<;*u holds

for each M, i/€ f/"(c). Since Z7(c) is finite, there is a u* G C/(c) such that

u^*ii* holds for any u E C/"(c). By the definition, this implies that

JF(r(zZ, 5*) 5 c) = £ holds for any U€L f/(c). This is a contradiction. Thus

we have that Fin€.L(M, £/").

Next suppose that U(a) is infinite for some a in M. Then i(M3 Z7)

Ua) where the model (Ma, £7a) is defined in the same way as in
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the paragraph just above Theorem 3.3. Suppose that N is a singleton set

{&} and U/ is a function such that U'(l)) = {n\ n<a)}. Let / be a (con-

stant) function from Ma to N. Then by Corollary 3.5,

L(Ma,

Thus L(M, U) is an intermediate predicate logic.

Remark. Let Finr be the formula F\-* 3^Vjr(j, #), where JF\ is

the formula introduced in (2.5). Then, we can show similarly as Theo-

rem 2.6 that Fin'eL+(P, V} if and only if V is finite. On the other

hand, it does not hold always that Fin'€L(M, U) if and only if U(a) is

finite for any a€EM. This follows from the fact that the predicate logic

(but not intermediate} LJ + Fin has no characteristic sets of p.B. models.

In other words. Fin' ' £ LJ+Fin, but there are no p.B. models (P, V) such

that

Fin£L+(P, V} and Finf£L+(P, V}.

It follows from this, for instance, that any predicate logic of the form

LJ+{AiVFin; i£ /}, where each At is a prepositional formula not in

LJn, has no characteristic sets of p.B. models.

Theorem 3.7 (£9]). There exist 2^° predicate logics having no

characteristic Kripke models.

We have remarked in dlCf] that there is a predicate logic having a

characteristic set of p.B. models but not having a characteristic Kripke

model and that there is a predicate logic having a characteristic Kripke

model but not having a characteristic set of p.B. models.

Now, we show how the formula Dis plays an important role in the

proof of Theorem 1 in Ql(T]. The following theorem can be proved

similarly as Corollary 1.3 1) of

Theorem 3.8, If Dis is in a predicate logic L which has a charac-

teristic Kripke model, then L has a characteristic set of p.B. models.
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§4o Cardinality of Models

We shall discuss the cardinality of models in this §. In the defini-

tion of Kripke models, the range of the function U is the power set of

some set S. Is it necessary to consider the case where 5 is a very large

set? A well-known result related to this problem is Lowenheim theorem

for the classical predicate logic Q6]. We will prove a kind of Lowenheim

theorem for predicate logics characterized by either type of models.

Theorem 4.1. For any Kripke model (M, 17) such that M< \J U(a),

there is a Kripke model (M, Z7') such that

1) 1(M, J7') = I(M, U\

2) \J Uf(a}

Proof. We assume that \J U(a) is well-ordered. For each a 6 M,
0e=M

we write ua for the first element of U(a) with respect to the well-order-

ing above mentioned. We take an enumeration {An\ n<a)} of all the
closed formulas not valid in CM, £7). For each An, we take a valuation

Wn of (M, U) such that JFn(An,a)=f for some a EM. Now, for each

k<(D we define a set H(
n

k\n<a)} of closed formulas in the language

(a}~] and a subset V(k^ of \J U(a) by induction on k.
aeM

H™={An} for each n<a).

= m + l: Assume that we have defined H(
n

m} and V(m\ For each
(
}™\ we define first a subset S^B, n) of M by

{c6M; Wn(E, c} = t} if B is of the form 3 xC(x\

s = {c6M; Wn(C(u\ c)=f for some u€.U(c)}

if B is of the form V xC(x\

^ empty otherwise.
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For each c 6 5(5>M), define an element u(B, n, c) of C7(c) by

the first element of {u\ u€=. U(c) and Wn(c(u)^ c) = t}

with respect to the well-ordering if B is of the

form 3 xC(x),

the first element of {u; u€.U(c) and Wn(C(u), c)=/}

with respect to the well-ordering if B is of the

form VxC(x).

Now, define V(m+l^ by

V(m+l^=V(m^\j{u(B, n^ c); n<o), B£H(
n

m) and c65(5jW)}.

Next, we define a set of formulas H(™*1} by the smallest set H satisfying

the following conditions. For each B 6 H(™\

2) if B is of any one of the forms, CA-D, CVD,C-*D then both

C and D are in H,

3) if B is of the form —i C then C is in H9

4) if B is of the form V#CO) then

4.1) if rw(£, c) = * then C(zZ) is in ^ for any we C/

4.2) if c 6 5(5>w) then C(u(B, n, c)) is in .fiT,

5) if B is of the form 3 xC(x) then

5.1) if c€5 ( B > w ) then C(u(B, n, c)) is in ZT,

5.2) otherwise C(u) is in H for any ii6 C/(c

Let V=\JV^ and HH= \J H«>.
k<<» k<°>

It is easy to see that each formula in Hn is in the language

Lemma 4.2. F =

Now, we define a Kripke model (M, I7X) by

[/'(a) = U(a) r\ V for any a E Jlf .
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Since V is a subset of \J U(a\ \J U'(a)=V. Thus \J U'(a) = max{M,
af=M a^M a&M

^0} by the above lemma.

Leamma 403. L(M, U)CL(M, Uf).

Proof. From the proof of Theorem 3.3, it follows that

L(M, U) = (\L(Ma,UJ.

Let Uf
a be the restriction of Uf to Ma. Then we have also that

Thus, it suffices to prove that

Z{Ma, Ua)CL(Ma, U% for each a€M.

Define a function g from \J Z7a(6) to \J U'a(b) by
6eMa b^Ma

( U li U€V,

«rW =
( MO otherwise.

Then g(Ua(b))=U'a(b) for any 6eM. By Theorem 3.4,

L(Ma, Ua}CL(Ma, U'a).

Lemma 4.4. L(M, Uf}^L(M, U}.

Proof. Suppose that A is a closed formula not valid in (M, J7). We

shall show that A is not valid in (M, £7X). Since A^L(M, 17), ̂  = .4,

for some TI<O). We define a valuation JF£ by

1) f^n(p> a)— W^ntp, o) for any a EM and any propositional vari-

able JD,

2) Wn(q
(m\ a)= Wn(q

(m\ a)rMI'(a)m for any aeM and any 7/i-ary

predicate variable g(w) (TTI>O).

Now, we show that if a formula B is in £TW, then
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(4.5) W'n(E, a) = Wn(E, a) for any a e M,

by induction on the number of logical symbols appearing in B. When

B is atomic or of any one of the forms C/\D9 C\/D9 C—>D and -iC,

(4.5) can be easily ascertained by using the definition and the hypothesis

of induction. Suppose that B is 3 xC(x). Let Wn(B,a) = t. Then

u(B, n, a)€ U(a) and Wn(C(u(B, n, a)), d) = t

by the definition. If B is in H™ then u(B9 n, a) e F(*+1). Thus

C(u(B9 n, a))e #i*+1). By the hypothesis of induction, W'n(C(u(B, n, a)\

a) = t. So, W'n(B,a} = t. Conversely, let Wn(B,a}=f. Then

Wn(C(n\ a)=f for any u€U'(d).

If u£U'((i) then u^V(h^ for some h<o). Put A = max{A— l,y}5 where

/ is the smallest integer i such that B^H(j\ Then &G F(&+1) and

H(f\ So, C(u)€H(
n

k+l}CHn. Thus by the hypothesis,

W'n(C(u\ a} = f for any M 6 C/W

Hence, ri(5, a)-/.

When 5 is of the form V^COO, (4.5) can be proved similarly as the

above case. Now our theorem follows from lemmata 4.2, 4.3 and 4.4.

It is clear that in some cases we can make \J Uf(a)<max{M, |̂ 0} in
<ze=M

Theorem 4.1 2).

We can get also Lowenheim theorem for p.B. models by the same

method as the above.

Theorem 4.6. Let(P, F) be a p.B. model such that P<f. Then

there is a p.B. model (P, F7) such that

i) L+(P, r)=z+(p, v\

2)
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We have dealt with the cardinality of the universe of a model in the

above. On the other hand, can we contract the cardinality of a partially

ordered set (or a pseudo -Boolean algebra) of a Kripke (or a p.B.) model

without changing the logic characterized by it? In the case of preposi-

tional logics, we can show that for any pseudo-Boolean algebra P there

exists a pseudo-Boolean algebra Q such that

L+(Q) = L+(P) and 0^«0,

by taking the Lindenbaum algebra of £+(P) for Q.1^ At present, we can

only prove a weak result on p.B. models.

Suppose that (P, F) is a p.B. model such that

Write A; = 2X. Let S be any subset of P such that QP€S and

Corresponding to 5, define a subset 5^ of P for each ordinal fi^^f by

So = 5,

Sf=Se\j{\Ja, f\a; TCSf and T^X}
ae=r 0er

W{O6;a, 665,} if /£ = p + l,

8^= \J Sp if /^ is a limit ordinal.
/»</«

Define

Lemma 4.7- PCS) £s <2 ̂ -complete subalgebra of P whose cardinali-

ty is not greater than A'.

Theorem 4,8. For any p.B. model (P, F") such that P>F( = A),

there is a p.B. model (P', F) such that

2) P'<^, wAer* A; = max{^0j min{P, A7}}.

1) L+(P) denotes the intermediate prepositional logic characterized by P,
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Proof. We first remark that if either ^>Q <,?<:&' or P<^0 then

we have only to take P for P'. Now, suppose that P>/1' and /tj>^0-

Let H be the set of closed formulas not valid in (P, F). For each for-

mula A in H, we choose an assignment fA such that fA(A) =^= IF- Define

a subset 5 of P by

S={QP}V{fA(p(n\v1,...,vn»;AeH,pW is in X and n,..., *„€ F}.

Let P'=P(S). Then, P7 is a A-complete subalgebra of P such that P'<>

K by Lemma 4.7 and each join or meet of at most A elements of P7

coincides with that of P. Thus, we have

We can show also that fA(B}^Pr for any formula B in J^C^H and any

^4 in H. In particular, fA(A) £ •?'• Define an assignment gA of (P7, F)

by

gA(p(n\Vi,--, Vn)) = fA(p(*\vi,...9 »„)) for any ra-ary (w^O) predi-

cate variable pw and any v i , - - - , t;«6 V.

Then we get

Therefore, L+(P',

Next, let ^<^0<P. Then we can show that L+(P, F) = L+(P*, F),

where P* is the Lindenbaum algebra of the prepositional logic L+(P).

Of course, P*=^0 = £. This gives our theorem.

§5. Some Syntactical Results

In the present §, we shall show two syntactical properties of predi-

cate logics, applying the axiomatic method. These results will be used in

the next §.

At first, we remark the following fact. If a formula A is in a pred-

icate logic L+iBi", i£l} then there is a sequence of formulas Ci,--- ,
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Cn( = A) (nl>l) such that for each k<>n,
either 1) Ck = Bi for some iE / 3 or Ck£L,

or 2) Ck is of the form V xd or of the form SP
B

(XI ..... *m)Cf-| for

some i<&3

or 3) there are i,j<k such that C7- = (C,— >C^).

Definition 5.1. A^ instance of a formula A is defined recursively as

follows ;

1) A is an instance of A,

2) if B is an instance of A then any formula obtained from B by

using the substitution or the generalization or the alphabetic change of

bound or free variables is an instance of A.

It is obvious that if a formula A is in a predicate logic L then any

instance of A is in L. The following lemma can be easily verified.

Lemma 5.2. // a formula B is in L+{At\ z'G/} then there are

formulas Ci , - - - , Cn such that

1) (\Cj-*E)£L and
y=i

2) each Cj is an instance of some Aim

Definition 5.3. An instance B of a formula A is said to be ele-

mentary, if

either 1) the outermost logical symbol of B is not a universal

quantifier^

or 2) B is of the form V ocC and C is not an instance of A,

Let B be an instance of A. Then there is a formula C such that

B is of the form Vxi'-VxnC and C is an elementary instance of A.

Clearly, such a formula C is determined uniquely by B. Each elementary

instance of a formula A can be obtained from A without the generaliza-

tion.

Lemma 5,4 Suppose that A and B are closed formulas having no
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predicate variables in common and that A\ and J5i are instances of A and

B, respectively. Then there is an instance C of Ay B such that

if AI and BI have neither individual nor predicate variables in common.

Proof. Suppose that

and

where A2 and B2 are elementary instances of A and £, respectively. Put

Then we get

In addition, we can show that C is an instance of A\/B.

Now we have the following theorem.

Theorem 5.5. Let Dis be in a predicate logic L. Then if closed

formulas A and B have no predicate variables in common,

Proof. It is clear that

Let F be a formula in (L + A)r\(L + B). Then by Lemma 5.23 there are

instances Q(l<^* <J/?i) of A and instances Dj(l^j^n) of B such

that

and

By replacing some predicate and individual variables in
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n
(/\ JDy— >.F) by other variables not appearing in any of C/, Dj and F, we

can get formulas Dj and Ff such that

2) for each i and /, d and Dy have neither predicate nor individu-

al variables in common,

3) F can be obtained from Fr by replacing some predicate and in-

dividual variables.

Then, we have that

(A j\(Ci\/Drj)-»(F\fFfy)zL.
i = l 3=1

Since each Dj is an instance of 5, applying Lemma 5.4 we have that

for each i and j there is an instance EIJ of Ay B such that

Thus,

((A j\E<j)-*(FVF'»£L.
i-i y-i

Therefore,

By replacing some predicate and individual variables in Fr, we get

Hence,

Fe

As we show in the following, it does not hold always that
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(cf. Theorem 2.1 [2]).

Theorem 5.6, (LJ+R2)r\(LJ+Dis^LJ+R2VDis, where R2=rV

(r->s)V-is.

Proof. Let R*2 = V X(T(X) V (r(*)->s(*)) V ~i *(*)).

Clearly,

R$VDise(LJ+R2')r\(LJ+Dis).

But, we can show that

R$ V ZXs ̂  LJ+ R2 V Di5,

by using the p.B. model introduced in the proof of Theorem 2.8.

In §6, we shall study a relation between a predicate logic and its

prepositional fragment. We prove a theorem which we shall use often in

our development in the next §.

Suppose that a formula A is given, a is a function from the set of

atomic formulas appearing in A to the set of prepositional variables such

that

1) a(p)=p for any propositional variable p,

2) a(p(xi9>.-, xny)=a(p(yi,'-, yny) for any predicate variable p

and any individual variables # i , - - - , xn, Ji,---, J«,

3) if a(p(xi9-.>, xmy)=a(q(yi,-~9 jw)) (m, Ti^O) then p = q (and

771= ft).

We extend a, by using the following rules;

for any formula B, C,

a(B/\C}=a(B}f\a(C\

a(B\/C}=a(B}\/a(C\
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It is clear that a(A) is a prepositional formula. a(A) is called an as-

sociated propositional formula (apf) of A. (See Church Ql]. The word an

associated formula of propositional calculus is used in it.) Taking an enu-

meration of all the predicate variables, we can assume that the value

a(A) is determined uniquely by A. Thus, we say henceforth that a(A)

is the apf of A. We can show that if a formula is in a predicate logic

L then its apf is also in L and hence in 7r(JL).

Theorem 5.7. For each predicate logic L and each set of formulas

{£,-;* 6 /},

Proof. As 5 f .ei+{5 f .; i£/} for 7 €/,«(£,) G 7r(L+{fl,; *6 /}).
Clearly,

7r(L)C *

Therefore,

Suppose that a propositional formula A is in £,+ {!?,•;&"£/}. Then by
n

Lemma 5.2, there are formulas Ci,---, Cw such that (/\Cj-*A)£L and
y=i

each Cj is an instance of some Bnj. So, we have that

Since each a(Cy) can be obtained from a(Bnj) by using only the substitu-

tion of propositional formulas,

Corollary 5.8. If a predicate logic L is finitely axiomatizable then

n(L) is also finitely axiomatizable.
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§6. Propositional Fragments and Predicate Extensions

Let K be a prepositional logic. Then it is interesting to see the

structure of the set n~l(K}. We say that L is a predicate extension of a

prepositional logic K if L^n~l(K}. Of course, LK is the only predicate

extension of LKn. If we look over Umezawa El 2] then we know by

using Theorem 5.7 that there are many predicate extensions of LJa. For

instance, there is a "predicate extension of LJV in which every formula is

logically equivalent to its prenex normal form.

Theorem 60I8 n is a homomorphism preserving all infinite meets

and joins in J^. That is, for any set of predicate logics {£/; J6 /},

Theorem 6.2. For any propositional logic K, there are the strongest

logic and the weakest logic among the predicate extension of K.

Proof. Let

L^LJ+iA; AeLK and a(A)eK} and

L2=LJ+{A;AeK}.

Then it is easy to see that LI is the strongest and L2 is the weakest

logic of irl(K).

In the following, K* and K* denote the strongest and the weakest

logic of K~l(K), respectively.

Definition 6.3. Formulas Ex^ Ym(x) (TTI^!) and Zn (/i^l) are

defined as follows',

Ex=p\/ -njo,
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(x) if

zn=(f\ 3*r,<*))^v*(\/r,00).i=i «•=!

Lemma 6.4. For any propositional logic K and any formula A,

a(A) 6 K if and only if AeK* + Zi.

The following axiomatization of K* relative to K* gives another

characterization of K*.

Theorem 6.5. For each propositional logic K^

Proof. By Lemma 6.4,

Since Dis £(K* + Ex)r\(K* + Zi\ we have

by using Theorem 5.5. However, as Dis 6 LJ+Ex V Zi,

Corollary 6.6 If K is finitely axiomatizable then K* and K* are

also finitely axiomatizable.

We notice here that even if K has the disjunction property (dp) K*

does not have dp. (For the definition of the dp, see e.g. £8].) We can

show that many predicate extension of a propositional logic having the

dp do not have the dp. It is interesting to see the relation between the

dp and the following property;
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if 3xA(x)^L then there is a variable z such that A(z)€.L.

However, we have very little knowledge of the subject. (Cf. Rasiowa-

Sikorski [11].)

Theorem 6.7. For each propositional logic K, K* has a characteris-

tic set of p.B. models.

Proof. We remark that K*=LKr\(K* + Zi). It suffices to show

that K* + Zi = L+(PK, {0}), where PK denotes the Lindenbaum algebra of

K. Clearly,

Let A€L+(PK, {0}). Then, a(A) € L+ (PK) = K.2> Thus, AeK* + Zi by

Lemma 6.4.

On the other hand, it remains open whether each K% can be charac-

terized by some models.

Theorem 6.8. Let K and Kf be propositional logics such that

Kf. Then there is a surjection from n~l(K) to n~l(K'}. Hence, n~l(K}

Proof. Define a function $KK' from K~l(K) to n~l(Kf} by

</>KK,(L) = LV(K% for any L^n-l(K\

and a function <PK'K from n~~l(K'} to Tt~l(K) by

VK,K(L) = Lr\K* for any L£n~\Kr).

We notice that

2) Remark that n(L+(P, 7)) = L+(P) for any p.B. model (P, F).
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=(£')*,

applying Theorem 6.5. Now, we show in the following that </>KK' is

surjective. It suffices to show that </)KK,(<pK,K(L)) = L for any predicate

logic L in n~l(Kf}. By the definition,

snce

Corollary 6.9. For any predicate extension L of a propositional logic

K, there is a predicate extension L1 of LJn such that L = Lf^jK*. Hence ,

if L is finitely axiomatizable then there are propositional formulas ^i,---,
Am and formulas -Bi,-- , Bn such that

and

a(Bi)€LJn for any i^n.

This corollary tells us that the variety of the intermediate predicate

logics is nothing but that of the logics in 7r~1(L/w).

Corollary 6.10. The function cp K*K is an isomorphism from 7t~l(K')

into n~l(K\ which preserves all infinite meets and joins in TC~l(K'}.

That is,

VK'K^ A L^ = A VK'K(Li) and
i e/ f e/

W <PK'K(L*) hold
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for any set of predicate logics {Li\ i^I} in Ti~l{Kf).

Let 52 be the 3-valued linear pseudo-Boolean algebra. We know that

the propositional logic L+(52) is the strongest logic among the preposition-

al logics weaker than LKn (see

Theorem 6.11. 7T~1(Z+(52)) contains at least countable predicate

logics. Moreover, there are logics in it which are mutually incomparable,

Proof. It is easy to verify that

^L+(S2)* for any n>l.

Now, let M be a set {a, 6, c} with the order <J such that afSa,

c<:C and b<,c hold and let U\ and C/"5(7&>1) be functions from M to

the power set of the set of non -negative integers such that

Then, £(M, Z7J) and L(M, Z/g) are in 7r"1(^"1"(S2)). But if 7i>m, then

L(M, C/^) is incomparable with L(M, £/"§).

Applying Theorem 6.8, we have the following corollary.

Corollary 6.12. For each propositional logic K weaker than LKX9

there are at least countable predicate extensions of K.

The above corollary does not mean that the case of LKn is exception-

al, since LK+Zn(n^>l) is a (consistent but not intermediate) predicate

extension of LK.

Theorem 6.13. For each predicate logic L such that
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(P,, {0, l})fYL£ (GTrW)),

P/ is the Lindenbaum algebra of LJn, define a function 61 from the

set ^a of all the prepositional logics into n~l(LJ^) by

for any K 6

Then, 1) QL is injective,

2) 6L(LJa)=L and 0L(L

Furthermore^ if Dis£.L then QL is an isomorphism.

Proof. It can be easily ascertained that

} = L and

Let K and K7 be distinct propositional logics. We may suppose Kf <

Then we can take a formula A^Kf — K. Clearly,

Suppose that 0L(K) = 6L(K'). Then,

AVZ^OL^CK^JL^PL {o, i»

CL+(PK, {0, 1}),

where P^ is the Lindenbaum algebra of K. As Zi£L+(Si, {0, 1}), where

Si is the 2 -valued Boolean algebra, we can show that

AeL+(PK,{0, 1}).

But since A is a propositional formula, A must be in L+(P#). So, A^K.

This is a contradiction. Thus 0£ is injective. We remark that

dL(K\jK'} = dL(K}\jOL(K'} holds always since (K\JK% = K*\J(K%.

Now we suppose that Dis^L. Then we can prove in the same way as

Theorem 5.5 that
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Corollary 6.14. There are 2^° predicate extensions of LJn.

Proof. By Theorem 6.13 and Jankov's result

We say that a formula is unary if it contains only prepositional and

unary predicate variables. 7Ti(L) denotes the set of unary formulas in a

predicate logic L. Now consider the following problem;

can any predicate logic be axiomatized by using only unary formulas •?

If the answer is affirmative, then for any predicate logic L and Lf L=^Lf

implies 7ri(L)=^7Ti(Z/)« But this does not hold, as we show in the fol-

lowing.

Lemma 6.15. Let A be any unary formula. Then if

P, {i; z<ft>}) for a finite pseudo-Boolean algebra P,

P, {iji<;n}) for some n<a).

Proof. This can be proved similarly as a theorem in Lowenheim

ra.
Theorem 6.16. There are predicate logics L, L' such that

but 7Ti(£) = 7ri(i/). Hence there is a predicate logic which can not be axio-

matized by using (even infinitely many) unary formulas.

Proof. Let

L=r\L+(P, {*; i<,n}}r\LK and
»<o>

L'=L\P, {»

where P is any finite pseudo-Boolean algebra such that Ex £ L+(P). As

ExVFineL-L', we have that L'^Z. It follows from this that

On the other hand, Xi(L)Cni(L') by Lemma 6.15, Thus
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