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Characterization of Pseudo-Boolean Models
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For the study of intermediate logics, pseudo-Boolean algebras play a

very important role as their models. So an investigation into the algebraic

structure of pseudo-Boolean models seems essential. For dealing with

these models, we already know two operations on models, i.e., Cartesian

product and the pile operation. But these operations are incomplete in the

sense that there exist finite models which can not be obtained from the

two element model Sl by these operations alone. There has been a pro-

blem of finding a complete set of operations in this sense. (See Hosoi QQ,

and Hosoi and Ono Q8].)

Our main result (Theorem 3.7) solves this problem. More precisely,

in §2, we shall introduce the notion of the patch operation on models, and

in §3, we shall show that Cartesian product and the patch operation are

complete in the sense that any finite model can be obtained from S1 by

these operations.

Further, we shall study intermediate logics through pseudo-Boolean

models. The notion of slice defined axiomatically by Hosoi will be char-

acterized algebraically in §4. To do this, we shall define the notion of

the height of pseudo-Boolean models. We shall prove that this height

corresponds to the index of slice to which belongs the logic characterized

by the model.

In §5, we shall apply the main result to obtain an easy method for

counting the height of models, and a theorem on the immediate predeces-

sors of certain logics.
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Throughout this paper, we expect some familiarity with £5] and

since some notations and definitions are borrowed from them without spe-

cial mentioning.

The author wishes to express his hearty thanks to Profs. T. Hosoi and

H. Ono for their helpful suggestions and kind discussions with the author.

§ 1. Preliminaries

Propositional variables are expressed by the letters a0, a l9 . . . . By a

logic we mean an intermediate prepositional logic. By a model we always

mean a pseudo-Boolean algebra (PBA) with at least two elements. (See

e.g. £1], £12]). We write 1 (0) for the maximum (minimum, respectively)

element of a model, where 1 is the designated. We use four logical con-

nectives A, V, -», and '. Same symbols are used for the corresponding

operations in models. It should be noticed that any model M determines

a logic L(M), that is, the set of formulas valid in it, and for any logic

L there exist a model M such that L = L(M).

Any model M is a partially ordered set by definition. For any ele-

ments p, q (p^q) in a model M, we write £_p, gr] for the set {x\p^x

^ q}9 and call it an interval in M. It is important to remark that £_p, g]

is also a PBA by the natural ordering in it (see £2]).

If the ordering in M is linear, we say M is a linear model. We

write Ln for the linear model with ra-j-l elements. Since any infinite

linear model is characteristic for one and the same logic, we write Lm for

such a model. We put Sn = L(Ln) (l^n^o)).

The following lemma is well-known.

Lemma 1.1. Sl^S2^---^Sn^---^Sco.

Clearly, the set {Sn\l^n^o)} covers all logics which have a linear

model.

The following theorem is due to Dummett £3]. We remark here that

this theorem can be proved easily by the decomposition theorem of McKay

£9] and by Lemma 1.9 in Hosoi and Ono £7].

Theorem 1.28 A logic L has a linear model iff Z&L, where Z=(aQ
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*a1)V(a1->a0).

The definition of slice by Hosoi is as follows:

Definition 1.3. &n = {L\L + Z= Sn}.

Now we define the pile operation (see also

Definition 1.4. Let M, N be two models. We define K = M | N to

be the model such that there is some d&K satisfying the conditions (f)

K=M'l)Nf, where M' = {p^K\p^d} and N' = {p^K\ p^ d}9 (if) M

is isomorphic with M'9 and (ill) N is isomorphic with N'. By these iso-

morphisms we identify M with Mf and N with Nf . Hence d = QM = lN.

§2. Patch Operation

In this section, we first define the patch operation on partially ordered

sets. This operation defines an ordered set R from a triple (P, (?,/),

where P, Q are partially ordered sets and f is an isomorphism from a

subset of P to a subset of Q. Afterwards, we consider the case that P

and Q are PBAs.

Now let A and B be two disjoint sets and f: A' — »Bf be a bijection,

where A' (or B'} is a subset of A (or B). Define an equivalence relation

= on A\jB by that x = y iff x — y or x=f(y) or y=f(x). We write

AQfB for A\jB/ = 9 and call it the patching of A and B by /. By

identifying those elements in A U B that are equivalent w.r.t. = , we shall

consider that A<^>fB = A(jB and A' = B' = AnB.

Now suppose that A and B are partially ordered sets and /: A'-*Br

is an order isomorphism. Then we can define an order ^ on A<^>fB as

follows :

As mentioned above, we consider that A<^>fB = A[jB. We denote the

ordering of A (or B) by ^A (or <;#). Define a relation <^ on A\jB by

that x^ y iff (x, y&A and x^Ay) or (x, y^B and x^By) or (x&B,

y&A and for some z^Ar\B, x^Bz and z^Ay) or (x&A, y^B and

for some z^AnB, x^Az and z-^By). Then it is easy to see that ^

is the weakest order on A\jB which preserves both ^A and ^B.
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Example 2.1. We show an example by Hasse diagrams, where / is

an isomorphism which maps a, 6, c, and d in A to a, 6, c, and d in B.

AOfB

As seen in the above example, even if A and B are PBAs the patch-

ed partially ordered set AQfB is not necessarily a PBA. So, to make

A<yfB a PBA we must put some restrictions on /. The following theo-

rem gives a sufficient condition for AQfB to be a PBA.

Theorem 2.2. // A and B are PBAs and f is an isomorphism from

an ideal A' of A to a filter Bf of B, then A<^fB is also a PBA.

Proof. First remark that Ar\B = [QA, 1B], by the identification stated

above. For any a^A we define a~^.AnB by putting a~ = a/\AIB, and

for any b^B,b+^Af}B is defined by b+ = bVBQA. It is clear that a~^a

and b^b+. Further, ai— >a~ (6i->6+) is a homomorphism from A (B, resp.)

to AnB.

(I) Existence of inf{a, b}.

Since other cases are trivial, we only consider the case that a^A — B

and b^B. We prove that inf{a, b}=a~/\Bb. Clearly, a~/\Bb^b, and

a~ /\Bb^a~-^a. Hence a" /\Bb is a lower bound of {a, b}. On the other

hand, let c be any element such that c^a and c^b. By the definition

of the ordering on A<^fB9 c^a implies the existence of some x^AnB

such that c^x^a. Hence x = x~^a~. So c^a~. Thus c^a~/\Bb.

Therefore we see that a~/\Bb = inf{a, b}.

(II) Existence of sup{a, b}.

This can be proved as the dual case of (I).

Thus we see that AQfB is a lattice. We denote the lattice opera-

tions on AQfB by A and V.
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(III) Existence of max{# |
We consider four cases so that they cover all possible cases. In any

of these cases we prove that max{# \a A x^b} = c for a certain c. We
do this in two steps. In (Step 1) we prove that if a/\x^b then x^c.
In (Step 2) we prove that aAc^b. From these two steps we have that
max{x |aA x^b} = c. In the following x will denote an arbitrary element
such that a/\x^b.

(i) The case that a^A and b^A.
We shall prove that max{^; \a/\ x^b} = a— *Ab.
(Step 1) If x^A then by the definition of a-*Ab9 x^a—>Ab. Sup-

pose that x^B — A. Then there is some y&AnB such that a/\x^ y^
b. Hence a~ /\Bx=a~ A x^a/\ x^ y. So x^a~-+By. Then since a~—>B

y^AnB, a/\(a~->By) = a~ /\(a~->By)^ y. Hence a~->B y^

Ab. Thus x^a—>Ab.
(Step 2) Obvious.
(ii) The case that a^A-B and b<=B-A.
We shall prove that max{^: \a/\x^b}=a~— >Bb.
(Step 1) Suppose that x^A, then a/\x^A. Then we have

since a/\x^b^A. This contradicts to b&B — A. So we see that x
Now, since a~^a, we have that a~ /\Bx = a~ A ̂ ^aA x^b. Hence

(Step 2) By definition, or /\(a~-^Bb}^b. Clearly, a-->Bb<^B. Then
by (I), a/\(a~— >Bb) = a~ /\(a~-+Bb)<^b.

(iii) The case that a<=B-A and b<=A-B.
We shall prove that max{# |aA x^b}=a+-*Ab.
(Step 1) Since aAx^B — A, there is some y&AnB such that a A

^^j^6. Suppose x^B. Since a+ A(a->B j) = (a A(a->5 j))
+^ y+ = j,

we have a— >By^a+— >Ay. Then, x^
Next, suppose x^A — B. Then, a/\x~ = a/\x^b. Hence (a A #
Since a, #~, and 0^ are in B9 we can use the distributive law. Hence,

^~VOA)^6. So a+Ax~^b. Since a+eJ5 and ̂ e^-5, a+A
^6. Thus we have x^a+-+Ab9 since a+, ^c, and b are in A

(Step 2) a/\(a+-+Ab)^a+ /\(a+-*Ab}<>b.
(iv) The case that ae£ and
We shall prove that
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a-*Bb (otherwise).

First we consider the case that a-^>Bb&A. Put c = 1B—>A(a—>Bb).

(Step 1) If x^B then x^a-*Bb^c. Suppose x^A — B. Then a A

oc=af\(lB/\x)-^b. Since lB/\x^B, lB/\x^a->Bb. Since IB, x, and

a-*Bb are in A, we have x^c.

(Step 2) By the definition of c9 a/\c = a/\(lB/\c}^a/\(a—>Bb)^b.

Next, suppose c = a-+Bb&B — A.

(Step 1) If ^e5, then by the definition of c, #^c. If # e ^4 -5,

then a/\x~^b, where x~^B. Hence x~^c&A. Therefore x~ $A.

This is a contradiction.

(Step 2) Obvious. Q.E.D.

From the above proof we have the following table for the calucula-

tion of the logical operators.

x A y

x<=A-B

xeAHB

x<=B-A

xV y

x<=A-B

xsEAKB

x<=B-A

x<=A-B

x<=B-A

y^A-B

*AAy

x/\Ay

x/\By~

y^A-B

x\/Ay

x\/Ay

x+VAy

x->Ay

x+->Ay 1

y^AHB

xf\Ay

x/\Ay

x/\By

y^AKB

xVAy

xVAy

xV By

x->Ay

~B->A(x-*By]

y&B-A

x~ /\By

x/\By

x/\By

y^B-A

xVAy+

x\/By

y^B-A

x~-*By

x->By

\x-*By

x~*Bj) (if x->ByeA)
(if X-
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X

x<=A-B

x<=B-A

^x

H,*-

lB^rV) (if "Vce A)

~^BX (if-V«M)

Remark. If f is a mapping which identifies 0A and 15, then

= A]B. Hence the patch operation is a generalization of the pile opera

tion.

§3. Completeness of the Patch Operation

Definition 3.1. A partially ordered set C is called an n-cube if it

is isomorphic with the n-dimensional Boolean algebra.

The following theorem clarifies the local structure of a PBA. This

theorem will be used in the last section.

Theorem 3.2. Let be that P is a PBA and p^ pz,..., pn are distinct

maximal elements in P— {!}. Then \~_pl A • • • A pn, 1] is an n-cube.

Proof. As an inductive hypothesis, we assume that the theorem holds

for m<n. Consider an ^-dimensional Boolean algebra .B=^p({l, 2,..., 72.}).

We define a: B— ̂ pl A ••• A pn, 1] by putting a(K)= A pi for any Kd

{1, 2,..., n}. (We consider a(0) = l) Then, clearly, 'a(£"U I) = a(K) A

«(£).

We first show that a is injective. To derive a contradiction, let us

assume that K^L and a(K) = a(L). Then a(K(J L) = a(K\ Hence,

without any loss of generality, we have only to consider the case that

K={19 2,...9i} and L = {1, 2, . . . , f , * + !}. That is,

Hence p^i^pi A ••• A p{. Now by the inductive hypothesis,
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1] is an j'-cube. So, pi+1 must coincide with one of pi,...9 pi, since pi+l

is maximal in [_pl A • • • A pi9 !] — {!}. This is a contradiction.
Next, we prove that a is surjective. Take any r^ pl A ••• A pn. We

put p = pi/\'"f\pn and qi = piA~-/\pi-i/\pi+ih-~ApH. Then,

First suppose that r/\qf> p for some i. If r^q{ we can prove that there

is some Kd{pl9...9 p^l9 pi+l9..., pn} such that r = a(K) by the inductive

hypothesis. Hence we may assume r^qf. Then we have qi>rAqi>p.

Since pjV q{ = l, piAqi = p9 and P is a modular lattice we get l>(rAg/)
\/ pi > Pi- This contradicts that pi is maximal in P— {!}. Thus, there

72

only remains the case that r/\qf = p for any i. Then p= V (r/\q{) = r/\

y 9, = rAl=r . Hence r = a(

Thus we have seen that a: .#— »[j?, 1] is a bijection. Further, if

KdL, then a(i) = a(Jf uL) = a(K)Aa(L). Hence a(A:)^a(i). This

means that a is an anti-isomorphism. Since B is self -dual, we see that
QJD, 1] is an ra-cube. Q.E.D.

Dually we have the following

Corollary 3.3. Let be that P is a PBA and pl9 p 2 , - - - , pn ore dis-

tinct minimal elements in P — {0}. Then QO, p iV- ' -VjoJ is an n-cube.

For any p in P, since p), p~] and []jo, 1] can be regarded as PBAs,,
we can use the above results to investigate the "neighborhood" of p.

The operation of patching naturally suggests the "inverse" operation,
namely, the cut operation. But, instead of defining the cut operation, we
define the notion of section.

Definition 3.4. A subset S of a PBA P is called a section of P,
if it satisfies the following conditions.

(i) S = [^q, p^\ for some p9 q such that q^

S is called proper if
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Examples: (i) Hosoi \J6T\ proved that the set & of all intermediate

logics is a PBA. Each slice £?„ (n = l, 2,..., a)) is a section of «£?.

(ii) If two PBAs A and B are patched to make a PBA A<^fB then

is a section of

Now we want to consider the following problem presented by Hosoi

and Ono [8]:

"By what operations can all finite PBAs be obtained from 1-cube

Si?"
As Hosoi £4] has remarked, Cartesian product and the pile operation

are not sufficient, since the PBA of (Fig. 2) can not be obtained from Sx

by these operation.

Fig. 2

We shall show that Cartesian product and the patch operation generate

all the finite PBAs from St. Further, we shall see that Cartesian pro-

duct is needed only to obtain n-cube 5". To show this we prepare two

lemmas.

Lemma 3.5. If P is an n-cube, then it has no proper section.

Proof. Let pl,...9 pn be the collection of the maximal elements in

P—{!}. Suppose P had a proper section \^q, p^\. Then, since Q<q^p

<1, there exist some L, K such that <fi^=Lc.K§z{I, 2 , . . . ,n} and p= A pi9

q= A p^ Take any j&K. Then pj is neither in [^q, \] nor in p), /T].
i^=-K

This is a contradiction.

Lemma 3.6. If a finite PBA P is not a cube, then it has a proper

section.

Proof. As an inductive hypothesis, we assume that the theorem holds
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for any PBA whose cardinality is less than the cardinality of P. Since

P is finite, there exists a maximal element p in P—{!}. Let r1,r2,..., rk
k

be the enumeration of the elements such that pVrj = l Put r= A rj.
k k J=1

Then, p\/r = p\/ A ry= A (jDVry) = l. Thus r is the least element such
y=i y=i

that joVr = l. Put q = p/\r.

We shall show that P = [0, /f] U [#, 1]. Suppose #<£[0, /Q. Then
since p is maximal in P—{!}, />V# = 1. Hence x^r>q. That is, #e
£gr, 1]. Now, if g>0, then we have a proper section Qgr, /T] in P. If

9 = 0, then P = ̂ p, l]x[>, 1]]= 5j x[>, 1], since pVr = l and pf\r = q =

0. Since P is not a cube, [>, 1] is also not a cube. Hence it has a pro-
per section, say, [_q'', p'~} by the inductive hypothesis. Then it is easy to

see that \_q' AJD, p'~] is a proper section of P.

From the above two lemmas we have the following

Theorem 3.7. Any finite PBA can be constructed from Sl by

Cartesian product and by the patch operation, where Cartesian product is

necessary only to obtain n-cube S" from S^.

Remark. Let F be the set of all finite PBA and let C={5lf 5f,...}.

For any subset S of F, we define S to be the smallest set of finite PBAs

such that SDS and .§ is closed under the patch operation. Then we can

see that S = P iff Si>C.

Theorems 2.2 and 3.7 give us a very useful criterion to determine
whether a partially ordered set is a PBA or not when it is given in the

form of Hasse diagram.

§4. The Height of Models

In this section, we give a characterization of slice. First we define

the notion of normal chains.

Definition 4.1. Let M be a model. A chain in M of length n is a

finite sequence (ci\^i^n of elements in M such that cQ<cl<---<cn. A

chain (c,-)og,-g» is normal if c,-—>c,-_1 = c,-_1 (l^-i^n). The length of a
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chain tf = (c,-)o^»g» WHI oe denoted as l(a).

Definition 4.2. Let M be a model. The height h(M) of the model
M is sup{Z(a)|a is a normal chain in M}.

Definition 4.3. We define wffs Pn(n = Q, 1, 2,...) inductively as fol-
lows:

P, = ((a^p..,)-^)-^, (f ̂  1).

Now we state our main theorem in this section.

Theorem 4.4. Let M and N be two models. If L(M) = L(N) then

To prove this we prepare some lemmas.

Lemma 4.5. SW=)£(M) iff

Proof. Suppose Snz>Z,(.M). Let Ln = {cQ, cl5...,cn}, where c0<c1<

•••<cn. Clearly (c,-)o^»g» is a normal chain. Let / be an assignment
function such that /(o,-) = c»- It is easy to see that f(Pi) = ci

Hence /(Pll-i) = c J I_1<c l l^l. Thus Pn_!$ 5B. This implies Pn

since 5WDL(M). Therefore we have an assignment function g into M
such that ^(PII_1)<1. Let us put dt= g(P{) (f^O). Now by Lemma
4.3 in Q5], the following (a) and (b) are provable in LJ.

(a) P^-^soo-nio

(b) P^P^EEP,^

By (a) we have d^^d^ Suppose di^l = di. Then by (b), di^1 = di— >
£/,-_! = !. Combining these results, since dw_ 1^l , we have ^ 0 < ^ 1 < - - - <
dw. Again by (b), {di)Q^i^n is a normal chain of length n. Thus h(M)

Now we prove the converse. Suppose h(M)^n. Then there is a
normal chain (c,-)o^/^» of length n. It is easy to see that C={cQ, c l9...,
cw_ l 5 1} is a subalgebra of M, i.e., closed under the four logical operations,
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It is also clear that C is isomorphic with Ln. Hence Sn

If we check the proof of the sufficiency of Lemma 4.5 we have the

following

Corollary 4.6. Pn^^L(M} iff h(M)^n.

Now the proof of Theorem 4.4 is immediate from Corollary 4.6. We

also obtain the following theorem which characterizes slice.

Theorem 4.7. L(M)^&n iff h(M) = n.

By our characterization of slice we can prove the following theorem

in [5].

Theorem 4.8. // L(M) e= &m and L(N} e &n then L(M T N) e &m+n.

Proof. By the hypothesis, we have two normal chains (cf-)og^w m

M and (d,-)o^i^» in N- ^ *s easy to see tnat co^>dn-1 = dn_l. Hence
G?O, di,...9 dn^i, c0, c l5..., cw is a normal chain of length m+n. Hence

h(M^N)^m+n. Now suppose h(M^N)>m+n. Then we have a

normal chain (ci}0^i^m+n+1 in M | TV". Clearly there is some A: such that

c^-! eJV— {Ijv} and c^eM. Then c0, c1?..., c^_ l 9 1^ is a normal chain of

length k, and c^, c^+1,..., cw+ll+1 is a normal chain of length m+n + I — k.

Hence k^*n, and m+n + 1 — k^m. That is, n + I<*k^n. This is a

contradiction.

Following Ono Ql(T], a Kripke model is a partially ordered set. Let

K be a Kripke model. A subset / of K is called closed if p^J and q^

p implies q&J. It is a well-know fact that the set PK of all closed sub-

sets of K is a model, i.e., a PBA. It can be easily seen that K and PK

is characteristic for the same logic (see £1], p]). We write L*(K) for

the logic characterized by K. For the definition of the height of K (de-

noted as h*(K)), we refer to £10].

Now using Theorem 4.7, we give another proof for the following theo-

rem due to Ono,
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Theorem 4.9. // h*(K)=n then L*(K)f=S?n (l^n^a).

Proof. It suffices to prove the case that n is finite. Since h*(K} = n,

we have a chain in K such that

(1) cl<c2<"-<cn.

For any c^K, put Tc = {d\d^c}. Clearly TC^PK. We prove that if

c<cf then TC-*TC'=TC'. Put R=TC-+TC>. Then

(2) rcn#civ,

and R^>TC>. Suppose R^TC' and let d be any element in R-TC>.

Then d^c'9 since d&Tc'. This implies e'el?, since dejf? and R is

closed. On the other hand, cf^Tc since c<c'. Hence by (2), c'elV.
This is a contradiction.

Therefore the following chain in PK is a normal chain of length n:

K^TCl^TC2^---^TCn.

Thus,

(3) h(PK}^h*(K}.

Now suppose m = h(PK). Then we have the following normal chain

in PK:N^N^.~^Nm.

Let dj_ be any element in Nm — Nm^l. For any c&K, put MC = {G?|G?^C}.

Clearly MC^PK. We have N m ^ l f ] Mdl<fNm_2, since otherwise Mrflc

JVOT_2. Let c?2 beany element in (Nm^1 n Mrfl)-7Vm_2. Then d2^Nm-l

— Nm-2 and d2> dl. Continuing the same process, we have the following
chain in K: d1<d2<--<dm. Hence,

(4)

By (3) and (4), we get h(PK} =

§5. Applications

Let us consider a finite PBA P. Let a be any element in P and let

l9 6 2 j - - - s ^jfe be the enumeration of elements such that bj— >a = a. (Since

->a = a, A^l .) Put b = b l / \ - - - / \ b f l . Then b-*a = (bl A - - - /\bk)->a = bl-->
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(bz— > • • • (bk-i—*(bk— >a))- --) = a. This means that b is the least element

such that b-*a = a. Define a mapping A: P-+P by l(d) = b.

Now we define a sequence {c,-},-=0j... as follows:

We call this sequence the central sequence in P. We can easily see that

if n is the least integer such that cn = l, then c0 = cn+l = 0 and c0<cl<

•••<cn = l. This sequence has the following property.

Theorem 5.1. Let {c{} be the central sequence in P, and n be the

least integer such that cn = l. Then h(P)=n.

Proof. Since 0 = c0< cl < ••• < cn = l is a normal chain,

Suppose A(P)> n. Then we have a normal chain d0 < dl < • • • < dn< dn+i.

Clearly cQ^dQ. Then from the next Lemma 5.2, dl— >c0 = c0. Hence

cx ^ di. Continuing the same process, we see that cz ^ d 2 , - . - , cn^dn.

Thus we obtain l = cw^ c?w< rfw+1. This is a contradiction.

Lemma 5.2. // a>b^c and a-+b = b, then a— >c = c.

Proof. Let d — a-*c. Then a/\d = a/\(a-*c)^c^b. On the other

hand, a—*b = b. Hence e/^6. Since 6<a, d = a/\d = a/\(a—*c)^c. Clear-

ly d = a—* c*^c. Therefore d = c.

Theorem 5.3. If h(P) = n9 then \^ch ci+l~] is a cube.

Proof. Since other cases can be proved similarly, we only show that

Q), ej is a cube. Let {jol5 />2,..., Pk} be the set of minimal elements in

P-{0}. Then it is easy to see that *-*0 = 0 iff x^pj for l

Hence cl = V PJ. Then from Corollary 4.3 we have that QO, cj is a

cube.

By Theorem 5.1 and 5.3 we can easily calculate the height of a model

if its Hasse diagram is given.

A logic L is called an immediate predecessor of another logic Lf if

L^Lf and there are no logics between L and I/. We write L<^Lr to
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denote that L is an immediate predecessor of Lr.

Concerning immediate predecessors of Sn, Hosoi proved that if n ^3

then Sn+l<Sn, 5wn S, T Sl^SH9 and 5wn S, T S? t S^SH. (See Ono

fll].) Since 3? is a PBA, we can apply Theorem 3.2 to obtain the fol-

lowing theorem. We owe this remark to Prof. T. Hosoi.

Theorem 5.4. Sn n Sl T S? n 5X T S? T «i <{ Sw n 5X t Sf,

s,n 5X T s?n 5t t 5f t s^snn s, t 5? t sl5

. n S i t S ? , and

sn+lns^ 5?t S x ^ s ^ n S i T 5ft ^.
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