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Introduction and Summary

C.T.C. Wall investigated the classification problems of highly connected
manifolds in his series of papers [187], [19], and [21]. But since then
only a few investigations to classify the manifolds with lower connectedness
have been made. As such investigations there are Wall [20], Tamura [17],
and Ishimoto [6]. In this paper, we consider to classify (n —2)-connected
2n-manifolds which have torsion free homology groups (equivalently,
torsion free (n—1)-th homology groups) and are (n —1)-parallelizable.
Such a manifold can be decomposed as a connected sum of an (n—2)-
connected 2n-manifold which has the vanishing n-th homology group and
is (n —1)-parallelizable and an (n — 1)-connected manifold. So that, our main
problems are to classify the former 2n-manifolds and to investigate the
uniqueness of the decomposition. Firstly, we completely classify the
handlebodies of #(2n+1,k, n+1) (n=4) up to diffeomorphism, and
then, using the results we consider to classify (n —2)-connected 2n-manifolds
which have vanishing n-th homology groups and are (n —1)-parallelizable
up to diffeomorphism mod@,,. Here, #(m, k,s) is the collection of
handlebodies W =D™ \kJ { U Di x D~} with the disjoint smooth imbeddings
fi:0D; x Dr—s —->GD’{”f,i}i 12_11, 2,--, k. The uniqueness of the decomposition
is also considered up to diffeomorphism mod 6,,. Throughout this paper,
manifolds are connected, closed, and differentiable.

I would like to express my hearty thanks to Professor N. Shimada for
his kind encouragement and advices during the preparation of this paper.
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Let M be an (n—2)-connected 2n-manifold (n=3) with torsion free
homology groups. The #ype of M is defined as follows; Let ¢: H* 1(M)
X H*"Y(M)—Z, be a symmetric bilinear form defined by ¢(x, y)=
< 82x,U y,, [M],>, where x,, ¥;, and [ M ], mean that they are considered
in the Z,-coefficient, and [ M ] denotes the fundamental class of H,,(M).
Let rank H, (M)=k and we define the rank of ¢ by the rank of the
corresponding matrix representation. Then, M is of #ype 0 if rank ¢=0
(that is, S2: H*"Y(M; Z,)— H""\(M; Z,) is trivial), of typel if there
exists an x€ H" (M) such that ¢(x, x)#0 and rankg=F%, and of type
II if ¢(x, x)=0 for any x€H*1(M) and rankd=%k. M is of type (0+1)
if there exists an x € H" (M) such that ¢(x, x)#0 and rank <k, and
of type (0+1D) if ¢(x, x)=0 for any x= H*» (M) and O<rankg¢p<k. M
belongs to some type and the type is uniquely determined.

Now, we put the following hypothesis on M;

(H) 1t is (n—1)-parallelizable.

Remark. If n=0,4,6,7 (mod 8), (H) is satisfied. If n=1,5 (mod
8) and the (n—1)/4-th Pontryagin class is zero, (H) is satisfied. For 7-
manifolds and almost parallelizable manifolds, (H) is always satisfied.

Theorem 1. Let M be an (n—2)-connected 2n-manifold (n=4) which
has the vanishing n-th homology group and satisfies the hypothesis (H).
Then, M has the representation mod0,, as shown in the following tables
1, 2, and 3.

Here, A4,, B, are the (n—1)-sphere bundles over (7 +1)-spheres with
the characteristic elements «, §er,(S0,) respectively such that 7(«)=0,
n(f)=1 for n:7,(SO,)—r,(S")=Z, (n=4), the homomorphism in-
duced by the projection. # denotes the connected sum operation, and for
an integer m=0, mA4,, mBs, and m(S"*!x S*"!) denote the connected
sum of m-copies of A,, By, and S**!x S"71, respectively. We put rank
H, ,(M)=Fk, and put rank¢=¢q and p=k—q if M is of type (0+I). p
and ¢ are the homotopy invariants of M.

The homotopy groups m,(SO,) are given as follows (Kervaire [97],
Paechter [137]);

n(=3, #6)| 8s 8+1 8s+2 8s+3 8s+4 8s5+5 8s+6 8s+7
7,(S0,) | Zot 2,4+ 2, Z,+ 2, Z, Z Z,+Z, Z, Z, Z,
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Table 1
n(=4) Type 0
A4 (k—1)( S+ x S»—1), a=0
4t—1
t=2=>a;even =0
—4 o en
(’;;odd) A 0y (E—=1)(S*1x S*1),  a=0,1
— Ao, 08 (E—1)(S" 1 x S1), a, b=0,1
(Eeven) | oo A0, (E—2)(S71x S71)
=4¢+1
”(t; otﬁ) AE(k—1)(S"1x S* 1),  a=0,1
n=dr+1 A, ¥k —1)(S"1x S 1), a,b=0,1
(t; even) Ay oy A, 1y (b —2)(S7+1 x §71)
=4t+2 -
”(@5;; AE(k—1)(S"1x S*1),  a=0,1,2
6 E(S7x S%)
Table 2
n(=4) Type 1 Type (0+1)
t =3 = Nothing t =3 = Nothing
4t —1
t=2=kB,, c;0dd>0 | t=2=> p(S8x S%)%qB,, c;0dd>0
4t
(¢; 0dd) kB ,1) p(S* X 8" )kqB 1)
kB,1,0y kBo,1,1) p(S™ 1 x S*1)%qBo,1,0
n+1 Sn—l
(k—=1)B,1,00B0,1,1)> p(S™x )#9B 0,11y
At ) p(S™tx S* i (g— 1)B(o,1,0)#B(o,1,1),
(t ; even) g=2
(k - 2)B(0,1,0)#2'B(0,1,1)’ P(Sn‘-l X Sn—l)#(q _2>B(0’1’0)#2B(0’1’1)’
k=3 >
g=3
Ao, 1(p—1)(S 1 x S" HHi gB,1,0
4141 Nothing Nothing
4¢4-2 Nothing Nothing
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and 7wg(S04)=0.

In Table 3, 2r=rank¢ and p=k—2r. They are the homotopy
invariants of M. Let W( ) be a handlebody DZ”+1 {D”“xD”U
D3*1x D3} such that the llnszl(aD”” X0) U fo(0D3+? ><O)C6DZ”+1 of the
disjoint imbeddings f;: 0D?*! x D#*—0D?"*1, i =1, 2, has the non-zero linking
element (Haefliger [5]) and the normal bundles of the spheres S?*!, with
hemispheres D?*!x0 and D?*! in D?*l  ;=1, 2, have the characteristic
elements «,, a, €7,(S0,) respectively such that 7m(e,)=m(a;)=0. In
other words, W (?xl> is constructed as follows; let A, A’ be the n-disk
bundles over (n +21)—spheres with characteristic elements «,, «, respec-
tively. Then, plumbing 4 and A4’ along a circles S! and then attaching
a 3-cell with thickness D?"~2 to the boundary, W(g;) is obtained (Ishi-

moto [7]). Let VI <g1>=@W<gl). V(gl> never has the homotopy type
2 2

2
of the connected sum of the two (n —1)-sphere bundles over (n - 1)-spheres.

For an integer m=0, mV(gl) denotes the connected sum of m-copies of

2
V(gl) If 7,(SO,) has the several direct summands, for example, if
2

a,=ai+al, i=1,2, we denote V<0‘1> by V(“l “1>
(2% ajy ajg
Theorem 1'. Let A,, By be the n-disk bundles over (n-+1)-spheres
associated with A,, By respectively. In the above tables if we replace
S§#*1x Sn~1, A,, By, V(al), and ¥ respectively by S**' x D*, 4, B, W<a1>,
afz aZ
and the boundary connected sum operation Y, then Table 1, Table 2, and
Table 3 give the complete classification of handlebodies of #(2n+1, k,

n+1) (n=4) up to diffeomorphism.

Theorem 2. In Theorem 1, the representation of M is unique mod@,,

in the following case when

(i) M is of type 0, or

(i) M is of type 1 and n+4¢t (¢; even), or

(i) M is of type (0+1) and n+4¢ (t; even), or
(iv) M is of type Il and n=4t—1 or 6, or

(v) M is of type (0+11) and n=4t—1 or 6,

especially, in the above (i)—(v),
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(vi) when n=4t—1 or 6.

Theorem 1 and Theorem 2 are obtained from the fact that M=0W
mod @,,, We#(2n+1, k, n+1), and by classifying W up to diffeomor-
phism. In [17], Tamura classified some (n —2)-connected 2n-manifolds
using Smale’s decomposition theory although the uniqueness of the repre-
sentations was not obtained except some cases. Our results of Theorem 1
and Theorem 2 include his results as manifolds of type 0 and furthermore
we have the uniqueness of the representations. Our classifications are
performed for n=4, at stable range in a sense. For n=3, Wall has
classified the simply connected 6-manifolds which have torsion free homology

groups and are 2-parallelizable, that is, w,=0 ([20]).

Theorem 3. Let M be an (n—2)-connected 2n-manifold (n=4)
which has torsion free homology groups and satisfies the hypothesis (H).
Then M is decomposed as M= M, M,, where M, is an (n—2)-connected
2n-manifold which has the vanishing n-th homology group and satisfies
the hypothesis (H), and M, is an (n—1)-connected 2n-manifold. M, is
always unique up to diffeomorphism mod@,,. If n=4t—1 (t=2) M, is
also unique up to diffeomorphism mod 0,,, and the homotopy type of M;—
(a point) is always unique.

Since there are much efforts on classifying (n —1)-connected 2n-mani-
folds (Wall [187]), Theorem 3 is very important for our problems although
it is not obvious whether M, is always unique up to diffeomorphism mod@,,
or not.

From the above theorems we have

Theorem 4. Let n=4t—1 (:=2) and let M be an (n—2)-connected
2n-manifold which have torsion free homology groups and is (n—1)-paral-
lelizable if t is odd. Then M is decomposed as M= M4 M, uniquely
mod 0,,. M, is a 2n-manifold as shown in the above tables and is unique-
ly determined up to diffeomorphism mod 0,, by S%: H* Y(M; Z,)—H""1(M;
Z,) and the Pontrjagin class P,(M). M, is an (n—1)-connected 2n-di-
mensional w-manifold and so, under the assumption that Arf M,=0 when
n=2/—1, diffeomorphic to S*x S™§---$S57x S* mod 0,,.
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Theorem 4 is an extension of the result of Wall [20] to greater di-

mensions.

Corollary 5. Let n=4t—1 (t=2) and let M;, i=1, 2, be (n—2)-con
nected 2n-manifolds which have torsion free homology groups and are
(n—1)-parallelizable if t is odd. If they are stably tangential homotopy
equivalent, then they are diffeomorphic mod 0,, under the assumption that
the Arf invariants vanish for closed connected 2n-dimensional mw-manifolds

when n=2"—1.

Corollary 6. Let n=4t—1 (¢=2) and let M be an (n—2)-connected
2n-dimensional mw-manifold with torsion free homology groups. Then, M

is uniquely vepresented mod 0,, as

!
M= §r1x Sn—lg-j-p-#sm x s+ ( o )#--T-#V< 0 )ES"x g4 57 x S,

where 2r=rank ¢, p=rank H, ;(M)—2r, 2l=rank H,(M), and we make a
similar assumption on the Arf invariant. (c.f. Ishimoto [6]).

Directly from Theorem 1 and Theorem 3 we have,

Theorem 7. Let M be an (n—2)-connected 2n-manifold (n=4) with
torsion free homology groups of type I or of type (0+1I). If n=4t (¢;
odd =1), M is uniquely represented mod 0,, as

p q
M=S8S""1x S» 1. S 1 S*"14B, 1 % 4B 1§ M,,

where g=rank ¢, p=rank H, (M)—gq, and M, is an (n—1)-connected 2n-
manifold determined uniquely wup to diffeomorphism mod0,,. If n=4t+1
or 4t+2, t=1, such manifolds M with non-trivial H, (M) do not exist.

Theorem 8. Let M be a 4-connected 12-manifold with torsion free

homology groups. Then M is uniquely represented as

r

M=S7><SS#'{)'#S7><S5#V< 8 )#...#V( 8 >#M2,

where 2r =rank ¢, p=rank H;(M)—2r, and M, is a 5-connected 12-manifold
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completely determined by Theorem 4 of Wall [18]. (We note that 6,,=0).

Similarly we can consider to classify the simply connected (2rn-+1)-
manifolds (n=5) which have non-trivial homology groups only at dimen-
sions 0, n—1,n+2, and 2n+1 and are (n—1)-parallelizable. If SZ% is
replaced by Adem’s secondary cohomology operation, then similar argu-
ments are applicable.

Part 1. Classification of Handlebodies of 5 (2n+1,k, n+1)

In Part I, we give the proof of Theorem 1’; we classify the handle-
bodies of #(2n+1,k,n+1), n=4, up to diffeomorphism using Wall’s
theory [197], and clarify the figures of the representative handlebodies.

Let (H; 2, &) be a triple consisting of a free abelian group H of finite
rank, a bilinear form 1: HXx H— 7w (S™ %), 2m=3s+3, s=2, and a map
a:H-m,_(S0,_,). We call it an (H; A, a)-system or simply an alge-
braic system if the following conditions are satisfied;

1) Ay, 2)=(=1)°Ax, ),
Ax, x)=Sta(x),
(2) a(z+y)=a(x)+a(y)+04(x, y),

where w: 7, (SO, _)—m,_;(S™571) is the homomorphism induced by the
projection of SO,,_, to S»=s71, S:w,_,{(S" s 1) m (S™ %) is the suspen-
sion homomorphism, and 9: 7 (S™ %)—n,_,(S0,,_,) is the boundary homo-
morphism in the homotopy exact sequence of the fibering SO,,_.—SO0,, .1
— Sm=s,

If there is no confusion we call an (H; 4, &)-system briefly a system.
The two systems (H; 4, a), (H'; ', a’) are isomorphic if and only if there
exists an isomorphism hA: H— H’ such that A=42o(hXh) and a=a’-h.

Wall’s Theerem. If s=2, 2m = 3s+3, diffeomorphism classes of
handlebodies of #(m, k,s) correspond bijectively to isomorphism classes of
(H; 2, a)-systems with rank H=k.

For a handlebody W of +#(m, k, s), the corresponding algebraic sys-
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tem is defined by H=H (W), Wall’s pairing 2 ((197]), and the map « as-
signing to each x€H (W)=n (W) the characteristic element a(x) of

the normal bundle of the imbedded s-sphere which represents x.

1. Types of Handlebodies of s#(2n+1,k,n+1)

Let H be a free abelian group of rank £, and let ¢: HXH— Z, be a

symmetric bilinear form.

Lemma 1.1. (i) If there exists x€H such that ¢(x, x)+0, then
under some basis {e,, -, e,} of H, ¢ is represented by a k Xk matrix
0
P 0
0
(¢(ei’ e].)): 1

- 9q
|0 1/,
where q+0 and p, q are independent of the choice of the base {e;, -, e,}.

(i) If ¢(x, x)=0 for any x<H, then under some basis {ei, -, €,}
of H, ¢ is represented by a k Xk matrix

0 '._P 01
0
(B(esr €)= 93 \
0 10|

b

where p,r are independent of the choice of the base {e, -, e,}.

The above two rvepresentations ave exclusive.

Proof. Let {e;, -, e,} be a base of H and let A=(a;;)=(¢(e;, €;))
be the symmetric kX k% matrix with the components in Z,. Then to ex-
change the base corresponds to multiply unimodular k£ X k matrices P, P*
with integer components to A4 from the left and from the right respec-
tively. We show the lemma using a sequence of elementary row and

column operations on 4, performing the same operation on row and column
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(c.f. Artin [17]).

We show (ii). If there exists a;; #0 (i=2) we may assume a,; =a,,
=1. Then, adding the second row to the i-th row (i=3) and subsequent-
ly the second column to the i-th column, all non-zero a;, a;; (i=3) are
killed. Similarly all non-zero a;,, a;; (£=3) can be killed. Repeating this
and pushing out the zero columns to the left, we obtain the matrix of (ii).
Since 2r=rank 4, r is independent of the choice of the bases.

We show (i). We may assume a;;=1, and so all non-zero a;;, aq;
(1z2) can be killed. Let the resulting matrix be A’'=(aj;). If there
exists a};#0 (i=2) we may assume aj,=1 and the situation is quite simi-
lar. Repeating such operations till the diagonal elements of the rest are
all zero and applying the operations of (ii) to the rest, we have the fol-
lowing matrix;

|

-
O =

0 |

where zero columns have been pushed out to the left. Now, the following
reformations of the matrix will conclude the proof of (ii):

100 101 111 101 100
001 (2)+ (1) 001 (3)+(1) 101 (1) +(2) 010 (1) +(3) 010
010 110 110 100 001/,

where (i)+(j) means the operation of the indicated row and column.
Since g=rank 4, g is independent of the choice of the bases. This com-
pletes the proof.

Let H be a free abelian group of rank k, and let ¢: Hx H—Z, be a
symmetric bilinear form. We define the rank of ¢ by the rank of the
representing matrix. We call ¢ to be of #ype0O if rank ¢=0, that is,
¢(x, y)=0 for all x, yeH, of type I if there exists an xH such that
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é(x, x)#0 and rank@d=~k, and of #ype(0+1I) if there exists an x€H
such that @¢(x, x)#0 and rank@d<k. We also call ¢ to be of #ype II if
é(x, x)=0 for any xH and rank¢=£k, and of fype (0+II) if @(x, x)
=0 for any x€H and 0<rank@d<k. The type of ¢ is uniquely deter-
mined and the corresponding matrix representation is given by (i) or (ii)
of Lemma 1.1.

We define the #ype of an (H; A, a)-system of our case by that of the
bilinear form A. Isomorphic (H; A, a)-systems belong to the same type.
We define the #ype of a handlebody We#(2rn+1, k, n+1) by that of
the corresponding (H; 4, a)-system. Diffeomorphic handlebodies of s#(2n
+1, k, n+1) belong to the same type. In Part II, it will be shown that
the type of a handlebody W es#(2n+1, k, n+1) is determined by S2:
H»'(oW; Z,) > H**Y(0W ; Z,) and the cup product in H*OW; Z,).

2. Calculations of @ and =

The homotopy groups 7,(S0O,) are given in the table of the introduc-
tion. Let 0,:7,.1(S")—m,(SO,) be the boundary homomorphism in the
homotopy exact sequence of the fibering SO,— SO,.,— S", and let 7,:
7,(S0,)—m,(S"* ') be the homomorphism induced by the projection of
80, to Sl By Kervaire [9] and Paechter [137], we know the following
results, where 1 denotes the generator of 7,(S* ) =m,.,(S")=Z,(n=4).

Lemma 2.1.

(i) 0y4-,(V)=2€Z, for t=3, and 0,(1)=0.

(ii) 04-1=0  for t=1.

(iii) 04,+0 for t=1, more precisely,
05, (1)=(1,0,00€Z,+Z,+Z, for s=1, and
0s,+41)=Q1,0€Z,+Z, for s=0.

(iv) 04,170  for t=1, more precisely,
0s,.:()=Q,0€Z,+Z, for s=1, and

ass+5(1)=1EZZ f07’ 820.
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Lemma 2.2,

(i) my-1=0 for t=3, and if t=1, 2,
Tyq: Z— Z, satisfies w4y 1(1)=1.

(ii) myu+#0 for t=1, more precisely,
wg:(1,0,0)=mg.(0,0,1)=0, mg,(0,1,0)=1 for s=1,
and 7y, 4(1,0)=0, 74,400, 1)=1,  for s=0.

(iii) 74y =0  for t=1.

(iV) 7f4,+2=0 f01’ tzl.

These results are known, except precise informations of 04, 04,1, and
T4 by Kervaire [97] and using the homotopy exact sequence of the fiber-
ing SO,_,— SO, — S*1.

Since Tgoo5(Vm, m-gs-i) =Ws5+4(S04g,+;) (m is sufficiently large), by Pae-
chter [137] we know the precise correspondence of suspension homomor-
phisms 7g,,4(S0g;+3) = Tge+4(SO0s,+4) = T5,44(S0g,+5).  So that, behavior
of Ogst4, Tgs+4 18 known from the homotopy exact sequences of the fiber-
ings SOgs13— SO0g,44— S8%3, S04, 4 — SOg,.5— SE*4.  Similarly, using

the splitting exact sequences (Kervaire [9])
075 i1(Vin, m-ss+i) = Tss(S085-;) = M5(S0,) — 0
(i<1, s=1, m is sufficiently large) and
0 7gsio( Vi, m-ss+i) = Tgs+1(S085-;) = M55.:1(S0,,) — 0

(1£3,s=1, m is sufficiently large), by Paechter’s computations [13], we
know the precise correspondence of suspension homomorphisms 75,(SOg,_)
— 5 (S0s,) > Tg,(SO0g4+1), Tasr1(SO0ss41) 2 Mge41(SO0ss45).  So that, be-
havior of 0, mg,, and 0g,.; is known from the homotopy exact sequences
of the fiberings SO,_, — SO, — S*"1, n=8s,8s+1, 8s+2.

3. Classification of Handlebodies of Type 0

Let W be a handlebody of #(2n+1, %k, n+1) and let (H; A, a) be
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the corresponding algebraic system. Since W is of typeO if and only if
A is trivial®, classifying the handlebodies W of type 0 up to diffeomor-
phism comes to classifying the homomorphism «: H—r,(S0,) up to equi-
valence, where the homomorphisms «;: H—m,(S0,), i=1, 2, are equivalent
if and only if there exists an isomorphism A: H— H such that a;=hoa,.
We note that since sma(x)=24(x, x)=0, o maps H to Kerr, n: 7,(S0,)
-, (S*71).

If We#(2n+1,%k,n+1) is a handlebody of type 0, any basis {uq,
Uy, Uyt of H=H, (W) gives a representation as W=A,}4,,b---b4,,,
where J means the boundary connected sum and Jm, i=1,2,--, k, are
n-disk bundles over (n+1)-spheres with characteristic classes «;=a(u;)
such that 7(;)=0 ((7]). For an integer m=0, m(S**! x D*) denotes the

boundary connected sum of m copies of S”*!x D,

Theorem 3.1. The handlebodies W of type0 of #(2n+1,k, n+1),
n=4, are uniquely represented up to diffeomorphism as follows:
(i) If n=4t—1 (¢=2), W=A4,5(k—1)(S**1 x D"),
where ac Z=n,, (S04 1), a=0, especially ac2Z,a=0, if t=2.
(ii) In the case when n=4r (¢=1),
if n=8s+4 (s=0), W=A4,,4(k—1)(S**1xD"),
where (a,0)EZ,+ 2, =mg,,4(S0,,,), and
if n=8s (s21), W=A,0.4k (k—1) (S x D7),
or W=A4q,0,0)140,0,1y4 (k—2)(S"** x D),
where (a, 0, b), (1,0,0), (0,0, )eZ,+Z,+ Z,=7,(S04,).
(iii) In the case when n=4t+1 (t=1),
if n=8s+5 (s=0), W=A (k—1)(S7*1 x D7),
where ac€ Zy,=mg, . 5(S0g,.5), and
if n=8s+1 (s=1), W=A4A(,,,l4k—1)(S*1xD"),
or W=A4q,00 40,1k (k—2) (S xD"),
where (a, b), (1,0), (0, VEZ,+ Z,=7mg,,1(S0g.1).
(iv) In the case when n=4t+2 (¢=1),
if t=22, W=A4,45(k—1)(S**1x D"),
where a=0,1,2€ 72,27, 5(S04;.,), and
if t=1, W=k(S7xDS5).

(1) Equivalently if and only if SZ:H"'(0W; Z;)— H"*'(0W; Z,) is trivial (See Part
10).
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Proof. We consider the matrix representations of homomorphisms
a: H-m,(S0,), where H is a free abelian group of rank k.. By Lemma
2.2, Kerm are given as follows:
VA if t=3,

(1) Kermyy=
27 if t=1, 2.

(2) Kermg,y={1,0H(=2Z)cZ,+Z, (s20),
Kermg,=4(1,0,0), (0,0, VY =Z,+Z,)CZ,+Z,+ Z, (s=1).

(3) Kermg,5=2Z, (s=20),Ker ng,,1=2Z,+2Z, (s=1).

Z, if t=2,

(4) Kermy.,=
0 if t=1.

Let {uy,-+, u,} be a basis of H and let a;=a(e;). If Kerr=Z or
27, by changing the basis, that is, by performing column operations to
the 1xk matrix (o, &, -+, &), & is represented as (a, 0, -+, 0), where
a=6G.C.D(ay, &y, -, a,)>0 or a=0 and e is independent of the choice
of the base {uy, -, u,}. If Kerm=Z,, similarly « is represented by
some basis as (a,0,---,0),a=0,1€Z,. Let Kern=2,. If a(H)c{0,2},
« has a representation as (a, 0,--,0),e=0,2€Z,. If a(H)JA{0,2},  is
represented as (1, 0,---,0). Let Kern=2,+27, and a(u;)=al(u;)+a?(u,).

We represent & by a 2xXk matrix (a’(u;)). If al=0, a?+0, then « is

00---0 . 1 _ 10---0 L
represented as (10.”0>, and if a'+#0, =0, then as 00“_0). If al=+0,

]i88> or (1)(1)88>, and it is easily seen

. . 100---0\ _/10---0\ ,, .
that such unimodular matrices L that (OlO---O)‘(lO---O)L do not exsist.
Thus, in any case of the above, the equivalence classes of the homomor-
phisms « correspond bijectively to the representations. This completes

the proof.

a?+0, then « is represented as (

4. Classification of Handlebodies of Type I

In this section we classify the handlebodies of type I of #(2n+1, &,
n+1), n=4, up to diffeomorphism, that is, (H; 4, a)-systems of type I
with rank H=Fk up to isomorphism.

Let (H; 2, ) be a system of type I. A base {v,,-,v,} of H is
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called to be orthogonal if A(e;, e;)=0,,€ Z,=7,.1(S"). If {v;,-, v} is an
orthogonal base of H, we may replace v; by v;=2lv;4+v; (i#j), where [
is an integer; the new base is also orthogonal. An orthogonal base {v,,
-, v,} of H gives a representation of the corresponding handlebody W as
W=B,4B,Y4 4B, where B, ,i=1,2,, k, are n-disk bundles over
(n+1)-spheres with the characteristic classes «;=a(v;) such that 7(«;)
=1 ([7]). For an integer m=0, mB, denotes the bundary connected sum

of m copies of B,.

Theorem. 4.1. Let n=4t—1 (¢=2). If t=3, the handlebodies of
type I of #(2n+1,k, n+1) do not exist. If t=2, i.e. n=7, the handle-
bodies W of type 1 of #(2n+1,k, n+1) are uniquely represented up to
diffeomorphism as W=FkB,, where c is a positive odd integer of m,(SO;)
=Z.

To prove the theorem we use the following lemma.

Lemma 4.2. Let H be a free abelian group of rank k, 2: HX H—
Z, a symmetric bilinear form of type 1, and o: H—Z a homomorphism
which takes odd integers om some'® orthogonal base. Then there exists
such an orthogonal base {v,, vy, -, v,} of H that a(v,)=a(v,)=---=a(v,)
=¢>0, where c is an odd integer and independent of the choice of the

bases.

Proof. Let {vy, -, v,} be an orthogonal base of H and assume that
a(v;),i=1,2,-- k, are odd integers. Let a(v,)=a(v,)=-=a(v,_,)=a
for some r=2. We show that by choosing some orthogonal base (r—1)
can be extended to r. Then, by repeating it we have the lemma.

Note that for given integers (8,7, |8| <|r|, there exists an even in-
teger 2/ such that r=2IB+7/, |v'| =|8|. Let a;=a(,),i=1,2,, k.
If |o,|<|e,], let a,=2la,+a], |al|<|a,|, and put vi=v; (i#r), v])=
—2lv,+v,. Then, a(v])=a,, a(w))=a, where «] is also an odd in-
teger. If |a;|>|a,|, perform similarly. Apply similar way to the pair
(a{=a(v]), a,). Repeating this, we can perform Euclidean algorithm to
the pair (&, @,) by exchanging orthogonal bases until the residues are

(2) It is easily seen that ‘some’ induces ‘any’.
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equal up to sign.

Thus, replacing the base up to sign, there exists an orthogonal base
{v{,~-, vi} of H such that a(v))=0b, a(vy)=-=a(v,_,)=q, and a(v))=
b, where b=G.C.D(a;=a,,)>0 and is an odd integer. Applying the
similar way to the pairs (a(v}), a(v))),i=2,3,--,r—1, we have an or-
thogonal base {v], -, v3} of H such that a(v])= - =a(v])=0>0. Thus
(r—1) is extended to r, and this completes the proof.

Proof of the theorem. 1f (H; 2, &) is a system of type I, there exists
an orthogonal base {v;, -, v,} of H by Lemma 1.1. But, if t=3, 2(v;, v;)
= Sta(v;)=1 contradicts to the fact that 7,, ;=0 (Lemma 2.2.). So that,
there are no (H; A, a)-systems of type I, and therefore no handlebodies of
type I, if n=4t—1¢t=3. Let t=2. Since 04_,=0 for t=1 and a(x+ y)
=a(x)+aly)+04(x, y), a: H—Z=n,(S0;) is 2 homomorphism. And,
by Lemma 2.2, A(v;, v;)= Sma(v;)=1 reduces «(v;) to be odd. So that,
we can apply Lemma 4.2. Then, ¢ is an invariant of isomorphism classes
of (H; 4, a)-systems of type I, and two (H; 4, a)-systems of type I are
isomorphic if and only if they have the same value of ¢. Thus, ¢ clas-
sifies (H; 4, a)-systems of type I up to isomorphism and therefore handle-
bodies of type I up to diffeomorphism. This completes the proof.

Since w4, =m4.,=0 for =1, similarly we have

Theorem 4.3. If n=4t+1 or 4t+2,t=1, the handlebodies of type
I of #02n+1,k, n+1) do not exist.

Let n=4t (t=1), and let (H; 4, a) be a system of typel. Since
Sra(v;)=A(v;, v;)=1 for any orthogonal base of H, a(v;),i=1, 2, -, k,
are the elements of 7;(1). If n=8s+4 (s=0), by Lemma 2.2, w5l , (1)
consists of the two elements (0, 1), (1, 1) of mg,.4(SO0g,.4)=Z,+Z,, and
so a(v;)=(0,1) or (1,1) for i=1,2,---, k. If a(v;)=(1, 1), replace v; by
—v;.  Then, since 04,.4(1)=(1,0), a(—v,)=a(v;)+04(v;, —v;)={0, 1).
Therefore, there exists always an orthogonal base {v,, -, v,} of H such
that a(v,)=a(v,)=-=a(v,)=(0,1). This shows that if n=8s+4 (s=0)
there exists only one isomorphism class of (H; 4, a)-systems of type I.
Thus, we have

Theorem 4.4. If n=8s+4 (s=0), the handlebodies W of typel of
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H(2n+1,k,n+1) are uniquely represented wup to diffeomorphism as
W=kE(o’1), (0, 1)677.'85.,.4(508”4)522-{-22.

If n=8s (s=1), by Lemma 2.2, mzl(1) consists of the elements
(1,1,0) (7,0=0 or 1) of ng,(SOs,)=Z,+Z;+ Z,. Similarly to the above,
if a(v;)=(,1,0) or (1,1,1), then a(—v;)=(0,1,0) or (0,1, 1) respec-
tively. So that, if n=8s (s=1), any handlebody W of typel is represented
as W=rB 1,0§(k—1)B,1,1), 0Sr<k.

Let a=(al, a?, a®), ai=p;ca (i=1, 2, 3), where p, is the projection
of w3, (S0g,)=2Z,+Zy+Z, to the i-th direct summand. Then, since 04,(1)
=(1,0,0), a?, a® are homomorphisms and «! is a quadratic form over
Z, with the associated bilinear form 0g,04. We call a £ Xk matrix L

with integer components to be mod 2 orthogonal if LL*=FE (mod 2).

Theorem 4.5. If n=8s (s=1), the handlebodies W of type 1 of
H(2n+1,k, n+1) are uniquely represented up to diffeomorphism as follows:

(i) W=kB,,0), or
(ii) W=kB 1,1y Or
(i) W=(k—1)B,1,00B0,1,1y (kZ2), or
(iv) W=(k—2)B,1,042B,1,1) (k=3),
where the characteristic elements belong to wg,(SOg)=Zy+Zy+ Z,.

Proof. The following assertions will complete the proof, where =+
means that they are not diffeomorphic. Denote By ;) by B and B, ;)
by B’.

Assertion 1. kB #(k—r)BY{rB’, kB’ +(k—r)BHrB’, 0<r <k, and
kB+kB’.

Proof. Let (H; 2, «) be the system of type I corresponding to kB.
If kB is diffeomorphic to (k—r)BjrB’ for some r, 0<r<k, then there
exist two orthogonal bases {v, vy, -, v,} and {v{, v3,--, vz} of H such
that a(v,)=a(vy)=---=a(v,)=(0, 1, 0) and a(v])=---=a(v,-,)=(0,1, 0),
a(vh_pr1)==a(v},)=(0,1,1). Since a’: H—Z, is a homomorphism,
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this is a contradiction. We note that we have also proved kB+#kB’. Let
(H; 2, @) be the system of type I, corresponding to kB’ and let kB’'=
(k—r)BhrB’,0<r<k. Then, there exist two orthogonal bases {vi, v, ",
vy} and {v{, vh, -, v} of H such that a(v,)=---=alv,)=(0,1,1) and
a(%)— c=a(v-,)=(0,1,0), (vi-,s1)="=a(v,)=(0,1,1). Let vi=
Z lisvs,1=1,2,-+, k, and L= (l ;) be the modZ orthogonal matrix. Then,
for 1i<k—r,0=a3(v))= CES(Z llsvs) Z l;; (mod 2). But this contradicts

to Z lisz Z l’szl (mod 2).
s=1 s=1

Assertion 2. (k—r)BbrB' =(k—r—2)Bi(r+2)B’,0<r<k—2, where
=’ means that they are diffeomorphic.

3

Proof. We show that Bb3B'=B't3B. Let (H; 1, ), (H; 2/, &) be
the corresponding system of type I of BL3B’, B'h3B respectively. Then,
there exists an orthogonal base {v,, v,, v3, v,} of H such that a(v,)=
(0,1,0) and a(vy)=a(v;)=a(v,)=(0,1,1). Let

v’l\ /O 1 1 1‘/01\
v 1 0 1 =1} v,
vy 111 0 1| v
loyl 1 1 1 0\,

Then, {vi, vy, v}, vy} is a new orthogonal base of H since the 4x4
matrix is unimodular and mod 2 orthogonal. We have a?(v})=---=a?(vy)
=1 and a®(v)) =1, ad(vy) = a®@y)=a(w,) =0. If a(v))=(1,1,1), or
a(v;)=(1,1,0), 2<i<4, replace v; by —v} or v; by —v,. Then a(—v})
=(0,1,1) and a(—v;)=(0,1,0). Thus, there exists an orthogonal base
{vi, vh, vy, vi} of H such that a(v))=(0,1,1) and «a(vy)=a(v;)=a(v})
=(0,1,0). This implies that (H; 4, @) is isomorphic to (H’; 2/, o),
and therefore, B} 3B’ is diffeomorphic to B’43B=3BLB’.

Thus, if 0<r<k—2, we have (k—r)BtrB’'=(k—r—3)Bh(3BhB")h
(r—1)B'=(k—r—3)By(B{3B)(r—1)B'=(k—r—2)B4(r+2)B".

Assertion 3. (k—1)ByB'#(k—2)Bhy2B’

Proof. Let (H; A, @) be the system of type I corresponding to (k—2)
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BH2B’, and suppose that (k—2)By2B’=(k—1)BEB’. Then, there exist

two orthogonal bases {vy, vy, -, v,}, {01, v3,--, v3} of H such that a(v,)

=a(vy) = =a(v-2) = (0, 1, 0), @(vp-1) = (v)=(0, 1, 1) and a(v})=
a(vy) = =a(y_1) =(00,1,0), a(v};) =(0,1,1). There exists a mod 2
orthogonal matrix L = (I;;) such that (v, v3,---, v})' = L(vy, vy,---, v,)".

Since a®: H—Z, is a homomorphism, the above conditions on « insist L

to be the following form:

/ bier )
Ll : :

L= : : ’
v le1,0-1 ly-r,e | and 1 =1, +1(mod 2).

|
(PR S

l,-,k-1=l,-k(m0d 2) lf Lék—l,

Then, LL!=FE (mod 2) implies that L, is also a mod 2 orthogonal matrix.
Let Z,;=(l1, ligs-s Ui p—p) and Z;=(%;, 1; -1, 1;) the i-th row of L.
Since %, %,,--, ¥, are linearly independent, 2,2*1:/220,-3,- (mod 2),
where ¢;,1=1,2,---,k—2, are integers. But, 0=($k_1,3’,-):12%$k_1,lk_lyk_l,
bee1,0)s (L lii-15 L)) = (L1, L) H b -1l e w0 bin = (L1, )
=c; (mod 2), i=1,2,---, k—2. So that, &, ;=(0,0,--,0,l,_y -1, ls-1.2)
and (Lp-1, Lp-1)=l- 101t i-1,0=le-1,4-1 + lp-1,,=0 (mod 2).  This
contradicts to (F;_, Z;-1)=1 (mod 2). Therefore, such a mod 2 orthogonal

matrix as above do not exist. This completes the proof of Assertion 3.

Thus we have completed the proof of the theorem.

5. Classification of Handlebodies of Type (0+1)

In this section we classify the handlebodies of type (0+I) of s#(2n
+1,%k,n+1), n=4, up to diffeomorphism, that is, (H; 4, «)-systems of
type (0+1I) with rank H=% up to isomorphism.

Let (H; 4, &) be a system of type (0+I) with rank /=% and rank 4
=g (0<g<k). By Lemma 1.1, there exists a base {uy, -, uy; vy,-, v,}
of H, p+q=k, such that A(u;, u;)=24(u;, v;)=0 and A(v;,v;)=0,,€2Z,
=m,.,1(S") for possible i, j. We call such a base to be admissible. o is

a homomorphism on the subgroup generated by {u,, -, u,} and quadratic
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form like on the subgroup generated by {v;,--, v,}. If {uy, -, up; vy,
vq} is an admissible base, we may replace u; by uw;=u;—2lv;,, or v; by
v;=v;—lu;, where [ is an integer; the new base is also admissible.

An admissible base {u;, -, u,; v;,--, v,} of H gives a representation
of the corresponding handlebody W as W =A, b d, b4 A, 4Bg B
---hBg,, where A,,, B,, are n-disk bundles over (n+ 1)-spheres with
characteristic elements «;=a(u;), 8;=a(v,), respectively, such that 7(a;)
=0, 7(B8;)=1 ([7]). p and ¢ are diffeomorphism invariants of W, more
precisely, homotopy invariants of 0W (See Part II).

Firstly, since w4, =0 (¢=3) and 7,,,; =74, ;=0 (¢=1) we have the

following, similarly to the section 4.

Theorem 5.1. If n=4:—1 (¢=3), or 4t+1 (t=1), or 46+2 (¢ >1),
the handlebodies of type (0+1) of #(2n+1,k, n+1) do not exsist.

If n=4t—1, t=2, we have

Theorem 5.2. If n=7, the handlebodies W of type (0+1) of #(2n
+1, k, n+1) are uniquely represented up to diffeomorphism as follows:

W=p(S®xD")hqB,, p+q=Ek,
where ¢>0 is an odd integer of mw,(SO;)=Z.

Proof. Let (H; A, a) be a system of type (0+I) with rank H=k.
Since 04;,_,=0 (¢=1), the map a: H—Z =n,(50,;) is a homomorphism.
For an admissible base {u;, uz,=, u,; vy, vy,, v,} (p+q=k) of H, let
c=6G.C.D(a(u,), -, a(u,), a(v,), -, &(v,))=0. Then ¢ is independent of
the choice of admissible bases, that is, ¢ is an isomorphism invariant of
(H; 2, a)-systems of type (0+1I), and therefore, a diffeomorphism invariant
of handlebodies of type (0-+1).

Let {uy, ug, -, uy; vy, vy, v,} be an admissible base of H. We
may assume that a(u;)=a=0 (even), a(u;)=--=a(u,)=0, and a(v,)=
a(vy)=--=a(v,)=b>0 (odd), (See Theorem 3.1. and Lemma 4.2.). If

a>b>0, let a=2lb+a,, 0=<|a;|<b, and put wui=wu,—2lv,. Then
a(uy)=a—2lb=a, (even). If a,<0, replace uj by —uj. So that, we
may assume a,=0. If 6>a,>0, let b=1[,a,+b,,0<b,<a,, and put v;=
v;—lLuy,i=1,2,, 9. Then «a(v))=0b—1la;, =5, (odd), i=1,2,,q.
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Repeating this by Euclidean algorithm till |e,| =0, we arrive at c=(a, b)
>0. It is easily seen that c¢=G.C.D.(a(u,), -, a(u,), a(vy), -, a(v,))
and c is odd.

So that, there exists an admissible base {u;, -, u,; v;,--, v,} of H
such that a(u,)=-=a(u,)=0 and a(v,)=---a(v,)=c>0 (odd). Thus,
two (H; A, a)-systems are isomorphic if and only if they have the same

value of ¢. This completes the proof.

Theorem 5.3. If n=8s+4 (s=0), the handlebodies W of type (0+1)
of #(2n+1,k, n+1) are uniquely represented up to diffeomorphism as
W =p(S*'xD") 4 qB 1y, where p+q=k and (0,1)Emg,.,(S0g:4) =
Zy+Z,.

Proof. Let (H; A, ) be a system of type (0+I) with rank H=k
and rank A=¢q. By Theorem 3.1 and Theorem 4.4, there exists an admis-
sible base {u;, -, u,; v;,--,v,} of H such that a(u;)=(a, 0)EZ,+Z,,
a(uz)=-=a(u,)=(0,0) and a(v,)=---=a(v,)=(0, 1). If a(u,)=(1,0),
let u{=u;+2v,. Then, since 04,,4,(1)=(1,0) by Lemma 2.1, a(u{)=
o(uq) +a(2v,) = a(u,) +2a(v,) +04(vy, v1)=(0, 0).

So that, if n=8s+4 (s=0), for any (H; 2, a)-system of type (0+1I)
with rank H=k and rank 4 =g, there exists an admissible base {u;, -, u,;
vy,, v,} of H such that a(u,)=--a(u,)=0 and a(v,)=--=a(v,)=
(0,1). Therefore all such (H; 4, o)-systems are isomorphic, and this com-

pletes the proof.

Theorem 5.4. If n=8s (s=1), the handlebodies W of type (0+1)
of #(2n+1,k, n+1l) are uniquely represented up to diffeomorphism as
follows:

(i) W=p(S**1xD*)hqB 1,0y OF
(ii) W=p(S**'xD")lqB, 1) or
(i) W =p(S**xD")bk(g—1)Bo,1,0% B(o,1,1)s q=2, or
(iv) W=p(5"*xD")bk(q—2)B,1,062B0,1,1, q=3, or

(v) W=4,0,1i(p—1(S"" x D)k gBo,1,0),
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where always p+q=Fk and the characteristic clements belong to g (SOy)
= Zz + Z2 + Zz.

Proof. Let (H; 2,a) be a system of type (0+1I) with rank =% and
rank A=q (0<g<k). Since n=8s (s=1), by Theorem 3.1 and preliminary
notions of Theorem 4.5, there exists an admissible base {uy, -, u,; vy, -,
v,y of H such that a(v,)=--=a(v,)=(0,1,0), a(v,;)==a(v,)=
0,1,1),0=r=<gq, and

(@) a(uy)=(a,0, b), a(uz):"':a(up)z(oa 0, 0),
or (b) a(u;)=(1,0,0), a(u;)=(0,0,1), aluz) = =au,) =(0,0,0).

In the case (a), replace u; by ui{=u,;+2v; if a=1, then a(u;)=(0, 0, b)
since 05,=(1,0,0), s=1. Furthermore, if =1, replace v,,; by v,,;=uj
+v,.; for i=1,2,---, g—r, then a(v;,;)=(0,1,0). Thus (a) is reduced
to the cases

(€ alu)=-=alu,)=(0,0,0)
a(vy)=--=a(v,)=(0, 1, 0), (v, 1) =" =a(v,)= (0, 1, 1),
0=r=gq,
or (d) a(u;)=(0,0,1), a(uy)=-=a(u,)=(0,0,0)
a(v, )=-=a(v,)=(0,1,0).

The case (b) is similarly reduced to the case (d).
By Theorem 4.5, the cases (c) and (d) are reduced to the following

five cases:
1) a(w)==a(v,)=(0, 1, 0),
2) av)==a(v,)=(0,1,1),
() a@)==a(v,-1)=(0,1,0), alv)=(0,1,1), g¢=2,
1) a(w)==a(v,-2)=(0,1,0), a(v,)=a(v,)=(0,1,1), ¢=3,

where during (1)~(4), a(u,)=-=au,)=(0, 0, 0),
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(5) a(uy)=(0,0, 1), a(uz):"'Za(up):(os 0, 0),
a(v)=-=a(v,)=(0, 1, 0).

Now, we prove that these five cases are independent. Let {u,, -, Ly;
Vi, Uk, UL, 0, Uy U1, -, ¥, ) be admissible bases of H and assume that
they satisfy (i), (j) respectively. Let (ui, -, uj, v1, -, V) =L(uy, -, uy,
vy, 0,), L=(;;), and let L,=(l;;) A<i<p, p+1=j=k), L,=(l;)
(p+1=i, j<k). Then, L;L1=0 (mod 2) and L,Ly=FE (mod2). If i, j=
1,2,3,4, it is easily seen that there arise contradictions by quite similar
way to that of Theorem 4.5. Let j=5 and i€{l, 2, 3,4}. If i=1, then

» g
ui= le,-sus—i— tle,-JpHv, induces a®(uw{)=0, and this is a contradiction.
& =

If =2, then 1=a%(uq)= 2111’“": é}ll%,,ﬂ, (mod 2), and this contradicts
L,Li=0 (mod2). If i=3, then 0=a’(v;)=1l,.;; (mod2), t=1, 2,--,
g, and this contradicts L,Li{=FE (mod2). If i=4, then 0=a3(v})
=Lyt p-1Flpsrr, (mod2), t=1,2,..,q, which contradicts L,Li=F
(mod 2).

Thus the (H; 4, a)-systems corresponding to the above cases are in-

dependent up to isomorphism. This completes the proof.

6. Classification of Handlebodies of Type II

In this section, we classify the handlebodies of type II of H(2n+1, &,
n+1), n=4, up to diffeomorphism, that is, the (H; 4, a)-systems of type
II with rank H=Fk up to isomorphism, where we note that k=2r.

Let (H; 4, @) be a system of type II with rank H=2r. A base {e,,
Sfi, s e,y fr} of H is called to be symplectic if A(e;, e;)=A(f;, f;)=0 and
ey f)=0,€Z,=m,.1(S?) for i, j=1,2,--,r. If {e;, f1,, e, f,} is a
symplectic base of H, a(e;), a(f;), i, j=1,2,..., r, belong to Kerm,, m,:
7,(80,)-7r,(S*1)=Z,, and « is linear on the subgroups of H generated
by d{ei,-, e}, {f1,, fr} respectively. If 0,(1)eKerx,, 0,: m, (S")=
Z,—m,(S0,), then a(H)cKerm,.

Let {e;, f1,, €,, f,} be a symplectic base of H. By the following
transformations of bases we have new symplectic bases of H:

(¢9) Interchanging e; with f; or replacing e; (or f;) by —e; (or —f,).

(¢1) Replacing e; (or f;) by ej=e;+1f; (or fi=le;+f)).
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(t,) Replacing e; by e;=¢;+2[- (the other basis element),
or replacing f; similarly.

Here, [ are integers.

(t5) Replacing ey, f;, e;, and f;, i#], by ei=e;+e;, fi=e;+e;+f}
e;=f:—f; and f;=e;+f;—f; respectively.

For an (H; 2, a)-system of type Il with rank H=2r, a symplectic
base {e;, f1.-:-, ,, f,} of H gives a representation of the corresponding

handlebody W of type Il as W= W(ig;?»h- N4 (gg?%), where W'(gg;‘:%)

denotes a handlebody of s#(2n+1, 2, n+1) with the algebraic system (H;;
4;, ;) such that H; has a base {e;, f;} which is symplectic with respect

to 2; and ay(e)=ale;), ai f)=alf). CTI. W(ZE }%) is neither dif-

feomorphic nor homeomorphic to the boundary connected sum of any two
n-disk bundles over (m--1)-spheres. For an integer m=0, mW <(Z> de-

notes the boundary connected sum of m copies of W(%).

Lemma 6.1. Let H be a free abelian group of rankk,l: Hx H—Z,
a svmmelric bilinear form of type 1, and a: H—Z (or Z,) a homomor-
phism.  Then, there exists a base {ey, f1,-, e,, f,} of H which is sym-
plectic with respect to 2 such that ae)=d=0, afe,)=--=ale,)=0 and
a(fi)=-=a(f,)=0. Here, d is independent of the choice of such sym-
Dlectic bases.

Proof. Let {ey, f1,", €,, f,} be a symplectic base of H with respect
to 4. ale;), a(f;)=0 may be always assumed by (i,)-transformations.
We can perform Euclidean algorithm to each pair {a(e;), a(f;)} by (¢)-
transformations. Thus, interchanging e; with f} if necessary, there exists
a symplectic base {ey, f1,", e,,f,} of H such that a(e;)=0, a(e;)=(a(e;),
a(f)) if a(e))#0, i=1,2,--,r, and a(f;)=0,j=1,2,--,r. Let a(e;)
#0 for 1<i=<r, and a(e;)=0 for ry+1=<i<r, under some exchanges of
suffixes of {e}, fi}, i=1,2,---,r, and assume that a(e])=---=a(e;_,)=a
>0, 2<s5=<r,. Then, using (i,)-transformations, as in the proof of Lemma
4.2 (s—1) can be extended to s, allowing that some of them may come

to zero. Thus, there exists such a symplectic base {e;, f1,---, €}, f,} of
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H that a(e))=--=ale,)=d>0,r <ry, a(e,,1)=-=ae;)=0, and
a(fi)=-=a(f;)=0, where d=G.C.D(a(e,), a(f1), -, ale,), a(f,)).
The last result is also valid if « has its values in Z,.

In the above, if a(e))=a(e))=d, a(f})=a(f;)=0 for two pairs {e},
fi}, e, fi}, replace them by e =e;—e}, f{=e;—e;+ fi, ] =e€;+ fi— [}
and f7=f;—f; respectively. Then, a(e])=a(f;)=0 and a(e})=d,
a(f7)=0. Similar way can be taken even if « has its values in Z,.
This completes the proof.

Theorem 6.2. If n=4t—1 (¢=2), the handlebodies W of type 11
of #(2n+1,k, n+1) are uniquely represented up to diffeomorphism as

W= W< d )h(r—l)W’( 0 ) d=0,
where k=2r and deZ=n,,_1(S0y,_,), especially d=2Z=Kern, if t=2.

Proof. Since 04_,=0 for t=1 by Lemma 2.1, a: H—Kerm,,_, is a
homomorphism. By Lemma 2.2, Ker 7y, = 74;_1(S04y-1)=Z for t=3
and Kerm,=2Z if t=2. Then applying Lemma 6.1, any (H; 4, )-sys-
tem of type II with rank H=2r has a symplectic base {e;, f1,-:", €,, f,}
such that a(e;)=d=0, d €Kermy,_;, a(ey)=--=a(e,)=0, and a(f;)=
~-=a(f,)=0. These (H; 4, a)-systems are determined by d up to iso-
morphism, and this completes the proof.

Let n=8s+5 (s=0) and (H; 4, @) be a system of type II. Then
Tge45(S0g..5)=Z, and 0g,.5 is an isomorphism sicne 0g,,5(1)=1 (s=0)
by Lemma 2.1. So that, « is a quadratic form over Z, with the associ-
ated bilinear form 04, where a base of H is symplectic with respect to
02 if and only if it is symplectic with respect to 4. « is completely de-
termined by the Arf invariant c().

Theorem 6.3. If n=8s+5 (s=0), the handlebodies W of type 11 of
H(2n+1, k, n+1) are uniquely represented up to diffeomorphism as

w=w( & )ae-vw( g ),

where k=2r and d=0,1€2,=75,,5(S04,.5) according as the Arf invari-
ants of the corvesponding algebraic systems are equal to 0 or 1,
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Proof. Applying the transformations (¢,), (¢5), any (H; 4, a)-system
of type II with rank H=2r has a symplectic base {e,, f},..., €,, f,} such
that a(e;)=a(f1)=d€Z,=mg,.5(S0s,.5), and ae,)=-=ale,)=a(f>2)
=-=af,)=0, where d=0 or 1 according as c¢(a)=0 or 1. Since c(a)
determines those (H; 4, a)-systems up to isomorphism, this completes the
proof.

Let n=8s+4 (s=0) and (H; 4, &) be a system of type II. By Lemma
2.1 and Lemma 2.2, Kerw,,.,={(1,0)}=Z,, 05,.4(1)=(1, 0), and so that
a(H)cKermg,,,. This means that the situation is quite similar to that
when n=8s+5 (s=0). Thus we have,

Theorem 6.4. If n=8s+4 (s=0), the handlebodies W of type II of
H(2n+1, k, n+1) are uniquely represented up to diffeomorphism as

W= W( a0 >lq(r——1)W< 00 )

where k=2r and (d,0)eZ,+Z,=7g,.4(S04,,4) according as the Arf in-
variants of the corresponding algebraic systems are equal to 0 or 1.

Let L=(l;;) be a kXxk matrix (k=2r) with integer components and
let .#; be the i-th row of L. L is called to be mod2 symplectic if LJL

=J (mod 2), where J=diag(U,--, U), U=<(1) (1)> Define an inner product

(%, Z;) by (%, gi)=SZ::lli,Zs—1°lj,Zs+sélli,z.s'ljyz.s—l- Then L is mod 2
symplectic if and only if (L1, Ly-1)=(L3;, £L2;,)=0 (mod2) and
(ZLi-1, L2;)=0;; (mod2) for i, j=1,2,-,r.

If n=8s+1 (s=1), by Lemma 2.1 and Lemma 2.2, Kermg .=
Tgs+1(S0g,41)=Zy+ Z; and 04,,,(1)=(1,0). Let (H; 4, a) be a system
of type II, and a=(a!, a?), a’'=p;ca (i=1, 2), where p; is the projection
of Z,+Z, to the i-th direct summand. Then, a! is a quadratic form over
Z, with the associated bilinear form p;o0g,.;°4, where p,o0,,; is an

isomorphism. a? is a homomorphism since p;e0s,.; is the zero homomor-
phism.

Theorem 6.5. If n=8s+1 (s=1), the handlebodies W of type 11 of
H(2n+1, k, n+1), k=2r, are uniquely represented up to diffeomorphism
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as follows:
® 1 a=o, w=w(30)ue-0w(35) dez,,

where d=c(al), the Arf invariant of .

(i) If c(at)=0, a?=+0,
W:W(Sil)q(r—nW(gg), de 7,

where d=¢(at), an invariant which is shown below.

(i) If c(at)#0, a?+0,
w=w( gy )w( 10 )ae-2w(30). dez,

where d=e(a), an invariant which is shown below.
Here, av=(al, a?) is the map of the corresponding algebraic system
(H; 2, o).

Proof. Let (H; X, ) be a system of type II with rank H=2r and
{e1, f1,---» €,, f,} be a symplectic base of H. By symplectic transforma-
tions, we simplify the matrix
< al(e)) al(fi) - al(e,) al(fr)>

o) @f) - aXe) @(f)

We denote the simplifications by arrows and the symplectic transforma-
tions (¢;),1=0,1, 2, 3.

. 0---0 110---0
() If a?=0, A . @3 (0”.0) or (000...())
according as c(a!)=0, 1.

(ii) If c(a')=0 and a?+0, by Lemma 6.1 and then by (¢,) and

(t5)-transformations (I=1),

780---0 _ 11110---0
A4 100--.0>(7‘6‘0> or (10000---0 :



ON THE CLASSIFICATION OF (1 —2)-CONNECTED 27-MANIFOLDS 239

But, we know the following:
(18)--(38) = (30)
1111 tte) 0000
1000 1100,.
So that, finally we have,

A—> < 1ée---0 ), 5—_-0, 1EZ2.

Assertion 1. The two systems (H; A, o), (H ; X', a") which belong re-
spectively to the cases e=0,1 are not isomorphic.

Proof. If they are isomorphic, there exist the two symplectic bases
{en, fr1o en fr}s el, fio, €y, f7} of H such that the values of a' and
a? vansish on those basis elements except only «a?(e;)=a?(e})=a?(f1)
=1. Let L=(l;;) be the k£ Xk matrix (k=2r) with integer components
and let (el, fi,-, e}, fr)'=L(ey, f1,--, €,, f,)'. Then L is unimodular and
mod 2 symplectic, and satisfies the following conditions:

1) Z:lli,Zs—l'li,Zs:O (mod 2) (i=1,2,, k),

1(mod2) if i=1,2,

(2) lil ={
0 (mod 2) if i=3.

We show that there are no such mod 2 symplectic matrices L that satisfy
the conditions (1) and (2).
L has the following form:

1 llZ l13 ll,Zr

where |L,|#0 since L is mod 2 symplectic. Since (&, £;)=(%;, £;)=0
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(mod 2) for j=3,4, -, 2r, (I;3, ligs-+, Ui 2,) (i=1, 2) satisfies the following
linear equations in mod 2:
(lyg24+lga23+ +1s5 0, 1%0, 152, %2,-1 =132

Ligxgtlyxst+ o+l 0, 1%, 14,0, %2,-1=14s

Loy 32atly, sx3+ 41y 0,-1%0,t 1oy 2, %5, 1=15,2

So that, we have [;;=I,; (mod 2), j=3,4,--, 2r, and therefore [,,=1[,,
(mod 2) by (1) and (2). This contradicts |L| =1, and this completes the
proof of Assertion 1.

(iii) Let c(a')=1 and a?+0. Then, similarly we have,
110---0 70110---0 _
-A“"*<100~0)°r<10000~0) (r-0=0)
. 110-- 0) or 0110'--0> or(OOllO---O)
100-- 10000---0 0 11000---0 /°
We also have,

(1100 _)(0011><,3) (1011) an, (0011 gy, (1011

1000 0010 1101 0101 0100
. (0011
- 1100)

Thus, finally we have

00110---0

16000.-0) =0 1€Z

Assertion 2. The two systems (H;Z,a), (H'; X,a’) which belong
respectively to the cases €¢=0,1 are not isomorphic.

Proof. The proof is quite similar to that of Assertion 1. Only it is
required to correct the condition on «!, that is, to replace the condition

(1) by
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, 1 (mod 2) if £=3,4,

Y L+t 2 Lasarli =
s=1 0 (mod 2) if i#3,4.

This completes the proof of Assertion 2.

Thus we have proved that the (H; 4, a)-systems of every case of the
above are independent up to isomorphism, and this completes the proof of
the theorem. (We note that the matrix A4 is transposed in the representa-
tions of W.)

Let n=8s (s=1) and (H; 4, ) be a system of type II. By Lemma
2.1 and Lemma 2.2, Ker 75,={(1, 0,0), (0,0, 1)} cng (SOg)=Z,+Z,+ Z,,
05,(1)=(1, 0, 0)=Ker 7y, and therefore a(H)cKer wz,. So that, if we
identify Ker mg, with the direct sum of the first and the third direct sum-
mand of 74,(S0y,), then Kermg, =Z,+Z,, 05,=(1,0), and a: H->Z,+ Z,.
This situation is quite similar to that of the case when n=8s+1 (s=1).

So we have,

Theorem 6.6. If n=8s (s=1), the handlebodies W of type Il of
H2n+1,k, n+1), k=2r, are uniquely represented up to diffeomorphism
as follows;

Q) If a?=o, W=W<§88>h(r—1)W<888), dez,
where d=c(at), the Arf invariant of a.
() If c(a)=0, a?#0,
001 000
W'=W<00d)lq(r—1)W<000>, dez, d—=ga).

(i) I c(al)#0, a?#0,
W= W(88 b)qW’(%gg)q(r——Z)W(ggg), deZ, d=ca)

Here, o is the map of the corrvesponding algebraic system (H; A, a)
and a=(at, a?, ad) takes its values in 7wy (SOs,)=Zy+ Zy+ Z,.

Let n=4¢t+2 (¢21). Then, by Lemma 2.1 and Lemma 2.2, Ker 7.,
=7E4t+2(SO4t+2)=Z4 if tzz, TEG(SOG)=0, and a4t+2(1)=2624 if t22.
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But, in this case, the argument is simple.

Theorem 6.7. If n=4t+2 (t=1), the handlebodies W of type 11 of
H(2n+1,k, n+1), k=2r, are uniquely represented up to diffeomorphism
as follows:

() If a(H)c{0,2}cZz,, t=2,

W= W( y )b_(r—mV( 0 )

where d=c(a), the Arf invariant of .

() If a(H)d{0,2}, =2,

1
W= W< 5 )q(r—l)W< 0 )
i) 1 n=6, W=rw( g )
Here, « is the map of the corrvesponding algebraic system (H; 2, «).

Proof. Let (H; A, «) be the system of type II with rank H=2r, and
let {e;, f1---, e,, f,} be a symplectic base of H. By (¢,)-transformations,
we may assume that a(e;), a(f;)=0, or 1, or 2.

(i) If ale), a(f)e{0,2}cZ, for all i,
then a(H)c{0,2}=Z, since 0,.,,(1)=2€Z,. So that the situation is
quite similar to that of the case when n=8s+4, 8s+5 (s=0).

(ii) Let a(H)T{0,2}. By (¢y) and (¢,)-transformations, it may be
assumed that (a(e;), a(f;))=(0,0), or (1, 0), or (2, 2), for all ;. Since
a(H)T {0, 2}, there exists some {e;, f;} such that (a(e;), a(f;)=(1, 0).
Using it we can kill (a(e;), a(f:))=(2, 2) by (¢;)-transformations. Hence,
we may assume that (a(e;), a(f;))=(0,0) or (1,0) for all i. If (a(e,),
a(f))=(ale;), a(f;))=(1,0), i+#j, we can kill a pair of them by perfor-
ming a (¢g)-transformation and then a (¢,)-transformation and (#,)-trans-
formations. Thus, there exists a symplectic base {ei, fi,, e, f;} of
H such that (a(e}), a(f1), -, a(e,), a(f;))=(1,0,0---,0).

(iii) If n=6, then 74(S0s)=0. So that, the proof is clear.

This completes. the proof.
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7. Classification of Handlebodies of Type (0+1I)

In this section we classify the handlebodies of type (0+1I) of
#(2n+1, k, n+1), n=4, up to diffeomorphism, that is, the (H; 4, a)-
systems of type (0+1II) with rank H=% up to isomorphism.

Let (H; 4, @) be a system of type (0+1I) with rank H=£% and rank 4
=2r (0<2r<k). By Lemma 1.1, there exists a base {u;, -, u,; €y, f1,
-, e, fr} (p+2r=k) of H such that A(u;, u;)=24(u;, e;)=4(u,;, f;)=0,
Me;, e,)=2(f;, f;)=0, and A(e;, f;)=0,;€ Zy=m,1(S") for possible i, j.
We call such a base to be admissible. « is a homomorphism on the sub-
groups generated by {u,, -, u,}, {e),---, ¢e,}, and {fy,--, f,} respectively.
The following transformations of an admissible base {uy, -, u,; ey, f1,-,
e,, f,} of H yield new admissible bases of H:

(u,) Replacing e; or f; by e;=e;+lu; or fi=f;+lu; respectively.

(uy) Replacing u; by u;=u;+2le; or u;+2If;.

Here, [ are integers.

Lemma 7.1. Let (H; 2, &) be a system of type (0+11) with rank H
=k and rank A=2r (0<2r<k). Let {u,, -, uy; ey, f1,--, e, f,} be an
admissible base of H and let (u', -, uj; ef, fi,, ep, f1) =T (uy, -, u,;
e f1,s e, f,)', where T =(t;;) is a unimodular matrix. Then, the base
{ui, -, uy; €, fivo-, e, fr} is also admissible if and only if T has the

form

P 2r
M 0

T=< ) b (mod 2)
« L/ Yor

and L is mod 2 symplectic.

Proof. The proof is straightforward. We note that if {u1,..., u};e], f1,
-, €, f;} is admissible, A(u}, x)=0 for any x€H and so A(u}, e;)=
A(u}, f;)=0 (mod 2) for all i, j.

We call such matrices T that T-diag (0, J)-T*=diag (0, J) (mod 2)
to be admissible. T is admissible if and only if it satisfies the above

conditions.
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Let (H; 4, @) be a system ot type (0+II) with rank H=#% and rank 4
=2r (0<2r<k). An admissible base {u, -, u,; ey, f1,, €,, f,} of H
gives a representation of the corresponding handlebody W of type (0-+1I)
of #(2n+1,k, n+1), n=4, such as

W=Aawn Aaunt 1 Aatuy b W(gg}g)ﬂ W(gg;;g)h- b W(ﬁ%je,:g) ’

(C7]), where A4,(,,, is an n-disk bundle over the (n+1)-sphere with the
characteristic element a(u;)er,(S0,) such that 7(a(u;))=0 and W(gg;’g

is that defined in the section 6. p and r are diffeomorphism invariants

of W, more precisely, homotopy invariants of 0W (See Part II).

Theorem 7.2. If n=4t—1 (¢22), the handlebodies W of type (0+1I)
of #(2n+1,k, n+1) are uniquely represented up to diffeomorphism as
Sfollows:

(i) W:Afaq(p—l)(S”“xD”)hrW( 0 ) a0, p+2r=Fk,
where aemy (S04, )= Z.

(i) W=p(§"x D) W( d )q(r—l)W( 0 ) d>0, p+or=Fk,
where den,,_1(S0,_)=2Z.

In (i) and (ii), especially if t=2, then a and d are even.

Proof. Let (H; A, ) be a system of type (0+II) with rank H=k
and rank 4=2r (0<2r<k). By Theorem 3.1 and Theorem 6.2 there is an
admissible base {uy,- -, u,; ey, f1,--, €,, f,} of H, p+2r=Fk, such that
(@u). @) aler), a(fo) ale,), a(f,) = (a0, 0; d,0,-, 0),
where we may assume that a, d=0. If a<d, let d=la+d;, 0= d;<a.
If a>d, let a=2ld+a,,0=<]|a,|<d. Then, by transformations (u;) and
(u,) we can perform the Euclidean algorithm to the pair (a, d).

Thus we may assume that there exists an admissible base {u;, -, u,;
e f1, e fry of H, p+2r=EFk, such that (a(u,), -, a(u,); ale;), a(f1),
-, ale,), a(f,)=(a,0,---,0; 0,---,0) or (0,---,0; d,0,---,0). So, we
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have the representations of handlebodies of type (0+II) as in the theo-
rem. We show that the two algebraic systems (H; 4, &), (H'; 2/, &) of
type (0+1I) with the different representations of « and «’ by such
admissible bases as above are not isomorphic. We show it when a=d>0.
In the other cases it is clear since «, @’ are homomorphisms. If they
are isomorphic there exist the admissible bases {uy,---, u,; ey, f1,-, €,,
FobAutey whs ey flo el £} of H such that (@(uy), -, au,); aler),
(£, ale,), Al f,0)=(a, 0, 05 0, 0) and a(ui), -, alup); aled),
a(fD,- ale)), alf)=(0,-, 05 d, 0,-,0). Let (ufy-—, uh; eh, fi,
ey, fr)=T(uy, -, u,; eq, f1.-, e,, f,)', where T is a unimodular matrix.
Then, by Lemma 7.1, t;;=0 (mod 2) since a(u})=t;;-a=0 (mod 2), i=1,
2,...,r. So that |T|=0 (mod 2), and this is a contradiction. This com-
pletes the proof.

Theorem 7.3. If n=8s+5 (s=0), the handlebodies W of type (0+1I)
of #(2n+1,k,n+1) are uniquely represented up to diffeomorphism as
Sfollows:

(i) W=p(5"1x D)k W‘< g)h(r—l)W< 0 ) por=k, or

(i) W:Alh(p—l)(S"“xD”)hrW(g), ptor=k,
where d,1€7my,,5(S04,.5)=Z,.

Proof. Let (H; 4, ) be a system of type (0+1II) with rank H=%k
and rank A=2r (0<2r<k). By Theorem 3.1 and Theorem 6.3, and apply-
ing the transformation (u,), there exists an admissible base {u;, -, u,;
er, f1,5 e, fr} of H such that (a(u,), -, a(u,); ale), a(f1), -, ale,),
a(f,))=(0,-,0;0,---,0) or (0,--,0; 1,0,---,0) or (1,0,---,0; 0,---, 0).
We show that any two algebraic systems (H; 4, «), (H'; 2/, «’) with dif-
ferent representations of «, &’ of the above are not isomorphic. If & has the
first or the second representation, «’ has the third, and the two systems
are isomorphic, then there arise the contradictions as in the proof of
Theorem 7.2. If o has the first representation and «’ has the second and
the two systems are isomorphic, by Lemma 7.1, there exists a mod 2
symplectic 2r X 2r matrix L=(l;;) such that
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1 (mod 2) if 1=1, 2,

,
_Z li,Zj—l 'li,2j=
i=1 0 (mod 2) otherwise.

But Arf invariant shows that such matrices can not exist. This completes
the proof.

Let n=8s+4 (s=0) and (H; 4, &) be a system of type (0+II). By
Lemma 2.1 and Lemma 2.2 Kermg, ., =4(0,0), (1,0)} C g, 4(SOg,+4)
= Z,+2Z,, 05,44(1)=(1,0)eKer g, 4, and therefore a(H)cKerwy, 4= Z,.
So that, the situation is quite similar to that of the case when n=8s+5
(s=0). Thus we have,

Theorem 7.4. If n=8s+4 (s=0), the handlebodies W of type
(0+1I) of #(2n—+1,k, n+1) are uniquely represented up lo diffeomor-
phism as follows:

(i) W:p(S””xD”)hW(gg)n@—DW(g8), ptor=k, or

.. - N 00
(i) W=dopt(p-D(S=1xDerw (00, prar=k,
where (d,0), (1,0)Em5,. 4(SO0s,.4)=Zy+ Z,.

Let n=8s+1 (s=1). For an (H; 4, a)-system of type (0+II), let
a=(al, a?), a'= p;oa (i=1, 2), where p; is the projection of 74,,;(SOg;+1)
=7,+Z, to the i-th component.

Theorem 7.5. If n=8s+1 (s=1), the handlebodies W of type
(0+11) of #(2n+1,k, n+1) are uniquely represented up to diffeomor-

phism as follows:

(i) W=p(S***xD")§W,, where W, is a handlebody of type 11 of
#(2n+1,2r, n+1), p+2r=k.

). o

(iii) W=A'(o,1)b(p—1)(5””><D”W-W(§8>”("1)W(88>’ or

OO

(i) W=duoi(p-1(S"x D)W ( § & a1 ( g



ON THE CLASSIFICATION OF (1 —2)-CONNECTED 27-MANIFOLDS 247

. i 00
(iv) W:A(m)lq(p~—1)(5”*1xD”)b‘W(gg)h@—DW(o0>,
where d=0,1€Z, and p+2r=k.
1 1 n+l 7 00 —
(V) W=danidoni(p=2X(S" xDOErW(00),  prar=k.

Proof. Let (H; 2,a) be a system of type (0+II) with rank H=k
and rank A=2r (0<2r <k). By Theorem 3.1 and Theorem 6.5 there

exists an admissible base {u;, -, u,; ey, f1,"--, €,, f,} of H which satisfies
].
a case 4;xC; of the following: we put 4= ( (uy) - <u1’)> and C=

2y ()
aier) al(fy) - al(e,) al(f,
(Gaerd Gl o aalers aatfd)

4 4=(378) o e=(§0)

) 4=(g070) @ ¢=(500.70)

) 4=(107%) @ ¢=(1570)

() a=(1578) @ e=(995:9)

) 4=(3070) @ e=(549075)
€ ¢=(50110.0)

It is easily seen that the above cases 4;x C; (i=0,1,---, 4, j=0,1,--,
5) are reduced to the cases 4, X C; (j=0,1,...,5), 4,xC; (j=0,2), 4,xC;
(j=0,1), 43xC; (j=0,1), and A,x C,, using (u,)-transformations and
(¢1)-, (ty)-transformations in the symplectic part. We show that these
caces are independent up to isomorphism, that is, there are no admissible
transformations between any two of those cases. Then the proof will be
completed.

It is judged, using Lemma 7.1, mostly by comparing the values of a!
or a? on the corresponding admissible bases, Otherwise, it is judged by
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the Arf invariant and the e-invariant; for example, if A4;X C, is equiva-
lent to A3x C;, then as in the proof of Theorem 7.3, Arf invariant shows
that there arises a contradiction. If, for example, 4,X C, is equivalent to
Ay x C3, then by Lemma 7.1 there exists a 2r X 2r matrix L=(l;;) consisting
of integers such that L is mod 2 symplectic, | L|=1 (mod2), and satisfies
that [5;_; 1 =1z;,,=0;; (mod2) and ,-é bai1,25-1°0ai1,2;= Jg:llzi, 2j-1"02i,2;=0
(mod 2). But e-invariant shows that such matrices can not exist. The
others are similar to these cases. This completes the proof.

If n=8s (s=1), by Lemma 2.1 and Lemma 2.2 Ker 7z, ={(1, 0, 0),
0,0, N}cme (SOg)=Z,+ Z,+ Z, and 05,(1)=(1, 0, 0)=Ker 7g,. So that
a(H)cKer ng, for (H; A, a)-systems and the situation is reduced to that

of the above. Thus we have,

Theorem 7.6. If n=8s (s=1), the handlebodies W of type (0+1I)
of #(2n+1,k, n+1) are uniquely represented up to diffeomorphism as
follows:

(i) W=p(S"*xD")hW,, where W, is a handlebody of type 11
of #(2n+1,2r, n+1), p+2r=k.

() W =Ag008(p-00s"1xD0ew( 58 D)re-nw (550

N—

or

k]

(iiil) W=Agonk(p—1)(S"1xD")k W< 388

N——

q(r—1)W<888>, or

’

@) W =0 t(p—1S" x DY ( 408 ) e —0w (398

N—

where d=0,1€Z, and p+2r=kFk.

7 7 000
) W:A(M,O)M(o,o,l)q(p—zxsman)urW(OOO , pror=F.
Let n=4t+2 (¢=1). By Lemma 2.1 and Lemma 2.2, Kerm,;,,=
7[4t1_2(504t+2>§24 if tZZ, 77.'5(506)=0, and 04”2(1):2@24 if tZZ. We
have the following.

Theorem 7.7. If n=4t+2 (¢t=1), the handlebodies W of type (0+
II) of #(2n+1,k, n+1) are uniquely represented up to diffeomorphism
as follows;
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(i) If (H)c{0,2}cZ,,  t22,
w=p(smx Dy (e —DW( g ).
where d=0, 2€ Z, and p+2r=Fk,
or W:Azh_(p—l)(S"*lxD”)hrW< 0 ) ptor=Fk.
(i) If «(Fl)T{0,2 cZ,, t=2,
W=p(5n+1><Dn)hW< : )u(r-l)W( 0 )

or  W=dyb(p=1)(S x D)k ( ) p+2r=F.

(i) If n=6, W=p(5n+1xpn)qu( 0 ) ptor=Fk.
Here, « is the map of the corvesponding algebraic system (H; 1, ).

Proof. Let (H; 2, &) be a system of type (0-+1I) with rank H=Fk and
rank A=2r (0<2r<k), and let t=2. By Theorem 3.1 and Theorem 6.7
there exists an admissible base {wy, -, u,; ey, f1,-, €,, f,} (p+2r=k) of
H which represents « as the matrix (4, C) of a case 4;x C; of the follow-
ing, where A=(a(u,), -, a(u,)) and C=(ale,), a(fi), -, ale,), a(f,)):

(AO) A=(0,-, 0), (CO) C=(0,---,0)
(4,) A=(,0,--,0), (¢,) C=(1,0,-,0)
(4,) A4=(,0,-,0), (Cy) C=(2,2,0,-,0).

It is easily seen that the above cases 4;x C; (i, j=0, 1, 2) are reduced
to the cases Ay X Cy, AgX Cy, Agx Cy, A; X Cy, and A, x C,, using (u,)-
transformations. We show that the representations of « in these cases are
independent up to equivalence.

If a(H)cA{0,2}=Z,, o has the representation of A,x C, or 4,X C,
or A, x C,. But since 04,.,(1)=2 (¢=2) independence of those representa-
tions is known similarly as in the case when n=8s+5 (s=0). If a(H)
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{0, 2}, then equivalently a(H)=Z,, and a has the representation of
Ayx Cy or A;x C,. The independence of the two is easily seen by com-
paring the values of & on the corresponding admissible bases using Lemma

7.1. This completes the proof.

Part II. Classification of (n—2)-connected 2n-manifolds

In this part, we consider to classify (n —2)-connected 2r-manifolds with
torsion free homology groups up to diffeomorphism mod@,,. Since the
results are listed up in the introduction, we give the proofs of the theorems.

8. Proof of Theorem 1

Lemma 8.1. Let M be an (n—2)-connected 2n-manifold (n=3)
which has the vanishing n-th homology group and satisfies the hypothesis
(H) in the introduction. Then, M=0W4tZX for some handlebody W
H(2n+1,k, n+1) and some homotopy 2n-sphere 2, where k=rank

Hn—l(M>-

Proof. This is obtained by Theorem 6.3 of [7, land also confer
Theorem 2 of [20].

Let W= D““{\J{UD"+1 x D?} be a handlebody of #°(2n+1,k, n+1),
fiy i=1
n=4, where f;: 0D?"1x D¢—0D**1=8%" j=1,2,.--, k, are disjoint im-

beddings. Let 4;;€Z,=n, (8" ') (n=4) be the linking element (Haefliger
[5]) defined by f;(S?x0) in S?**—f,(S7x0) if i+ j, and defined by Si” in
S%n— £,(S7 x 0) slightly moved from f;(S?x0)if i=j. Let ;€ H*1(0W;Z,),
i=1,2,..., k, be the canonical generators which are dual to the homology
classes (x;x S Y)eH, (0W; Z,), x;€0D?*1, S?~1=0D?, respectively.

Then we have,

Lemma 8.2, 1,,=<S8%;\Ue;, [0W ;> for all i,j, where [0W ],
is the mod 2 fundamental class of H,,0W; Z,).
p
Proof. Let Y=S2"— U Int f,(S2xD?). Y is a deformation retract

of SZ”——Uf(S"xo) and aW YU{UD"”XS" ). Let fi=fi| 1% v;

‘L i=1
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y;€8771=0D7. There exists a continuous map h: V S71— Y which
i=1

induces an isomorphism /hy: 7,( \/ S 1)—>m,(Y). So that there are iso-
i=1

morphisms
k k
T (V) & m (Vv St Y=Y a (St Es Zy+ 4+ 2, (nz4).
= i=1 i=1 =

k
Then, the element (f%) of 7,(Y) correspond to an element (g;) of 7,(V

i=1
S771), and if (g;)=(g1,)+ - +(gs,;), we have H(g;;)=2;; by the defini-
tion of linking elements. We have the following commutative diagram-*

5§

H™ W ; Z,) H*Y\0W; Z,)

g’ ’

H Y U D1 x s 2) 6 By U Drtix ) Z)
TA TR o it

= =

iy I

H= (N S VAU DI Z) S BV St U U DEYs ),

where ho g;=f; may be assumed and F is a continuous map such that

V S 1=h and F| UD””-ldentlty Let {d,,--, d;,} be the base of

,,H(@W Z,)= Hnﬂ(W Z,) corresponding to the canonical base of
H, (IV; Z,), and let {0, -, 0,} be the dual base of H*"\(W; Z,). Let {«;,
- &Y, {81, -, B} be the canonical bases of H’(i\j1 S;’”l{\gji}{ ikzkle;’“}; Zy),

k k
r=n—1, n+1, respectively. Then, since Sia;= > H(g;;)B;= 2. 4,8},
=1 =51
the diagram shows that SZe;= Z 2;0;. Therefore, <SZ;Ue¢;, [0W ;>
=1

=< 8%, d;>=< Z 2;0;, d;> :lij, and this completes the proof.
i=1

Remark 1. If W is a handlebody of #(2n,k,n+1) (n=6), we have
a similar result by replacing S§ by Adem’s secondary cohomology opera-

tion.

Remark 2. We have shown the above lemma for n=4. Confer Wall
[207] for n=3.
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Theorem 8.3. For a handlebody W of H(2n +1,k, n+1), n=4,
Wall’s pairing A: H, (W)X H, (W)—-7,(S")=Z, is isomorphic to the
pairing ¢: H*Y@W )X H" Y\(OW)— Z, defined in the introduction.

Proof. Let {e;, -, e,} be the canonical base of H,.,(W). Since
A(e;, e;)=S4;; by Wall [197], using Lemma 8.2, the following commutative

diagram completes the proof:

Hn+1( W) X Hn-rl(W) —r ZZE 7rn+1(5n)
H, .OW)XH,.,0W) = I s

xpl=
DDI |

H=1QW)x H™10W) —> Z,=7,(S" 1),

where S is the suspension isomorphism, iy is the isomorphism induced by

the inclusion map i, and D is the isomorphism of Poincaré duality.

Corollary 8.4. W(gl> is neither diffeomorphic nor homeomorphic to
2

the boundary connmected sum of the two n-disk bundles over (n+1)-spheres
(nz4).

Corollary 8.5. V<g1> never has the homotopy type of the connected
2
sum of the two (n—1)-sphere bundles over (n+1)-spheres (n=4).

Now, we have proved Theorem 1; by Lemma 8.1 and Theorem 8.3,
the type of M coincides with that of the membrane W e#(2n+1, k,
n+1), k=rank H, (M), and therefore the results of Part I serve the

representation of M mod §,,.

9, Proof of Theorem 2

Let M be an (n—2)-connected 2n-manifold (n=4) which has the
vanishing n-th homology group and satisfies the hypothesis (H) in the
introduction. Then, by Lemma 8.1 M =0W§2%, where Wes#(2n+1, k,
n+1), k=rank H, ;(M), and S is a homotopy 2n-sphere. By Theorem
8.3 M is of type 0 if and only if W is of type 0. The uniqueness of the
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representation of M of type 0 is know by the following theorem and
Theorem 3.1.

Theorem 9.1. Let W, i=1,2, be the handlebodies of type 0 of
H#2n+1,k,n+1), n=4. If 0W, is diffeomorphic to OW, mod 0,,, then
W, is diffeomorphic to W,.

Proof. Let (H;; 2;, «;), i=1,2, be the corresponding algebraic sys-
tems of W, i=1, 2, respectively. We show that they are isomorphic.
Since 2;,i=1, 2, are trivial, it is sufficient to show that there exists an
isomorphism A: H,—H, such that a,=a,°h. Since 0W; is diffeomorphic
to 0W, mod 0,,, there exists a homeomorphism g: 0W,—0W, which is an
almost diffeomorphism. Let i,: 0W ,— W, s=1, 2, be inclusion maps, and
let h=(iy)xo gxo(i1)5", where (i) H, (OW ) > H, (W), s=1,2, gy:
H, ,0W,)—H, ,(0W,) are isomorphisms. Let u;,t=1,2,---,k, be a base
of H =H,.,(W,). Then we may assume that W,= A1, --hA,, where
A;,i=1,2,---,k, are D*bundles over (n+1)-spheres, the zero-cross section
S#*1 of A, represents u;, and each A;=0A; has a cross section S7+l
which represents (i;)z'(u;). (See §3). Let F,(S7*Y), B,(g(Sr)e
7,(S0,_,) be the characteristic elements of the normal bundles of S#*! in
W, and g(S?*!) in 0W, respectively. We know that a,(u;)=SB,(S7*1)
and moving (i,og)(S?*!) slightly into the interior of W, the normal
bundle of it has SB,(g(S7*')) as its characteristic element, where S:
7,(80,_,)—7r,(S0,) is the suspension homomorphism.

Then we have a,(h(u;))=SB,(g(S7™1))=SB:(Sr)=ay(uy), i=1,2, -,
k. Since «,, @, are homomorphism, we have a,ch=c;. This completes
the proof.

Lemma 9.2. Let n=4i—1 (t=2) and let W be a handlebody of
H(2n+1, k, n+1) with the algebraic system (H; 2, «). We have the fol-
lowing commutative diagram:

H=H,,+1(W') / )
<% VA
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where c is the number as

(12 if t=2,

~——

Cc=

2(2¢—1)! if tis odd =3,
(

2t—1)! if tis even =4.

N

Proof. For x=H, (W) represent it by an imbedded (7 + 1)-sphere,
and let y=(N, o, S**1) be the normal bundle with the characteristic ele-
ment a(x)eZ=7my (SO, -1). It is well known that P,(v)= +c-[Z, where
Z is the fundamental class of H#*1(S”*1). (See Kervaire [ 8] and Tamura
[167], [17]). So that, we have P,(N)=p*(P,(v))= *=ca(x)-& and therefore
<P(W), x>=<Py(N), e>==+ca(x), where e H,,,(N), e H**(N)

are those corresponding to u, Z respectively.

Let M be as above and assume that M has the two representations
M=0W 2 ,=0W,42,, where W,es#(2n+1,k, n+1),2; are homotopy
2n-spheres, i=1, 2, and k=rank H, (M). There exist homeomorphisms
h;: OW,—0W 2, i=1, 2, covered by bundle maps between the tangent
bundles (See Shiraiwa [157]). So that there exists a homeomorphism g:
OW,—0W, such that g*(c(0W,))=c(0W,). The following theorem will
show the uniqueness of the representation of M in any type when n=
4g—1 (¢>2).

Theorem 9.3. Let n=4t—1 (¢=2) and let W;,i=1,2, be the handle-
bodies of #(2n+1,k, n+1). If there exists a homotopy equivalence f:
OW,—0W, such that f*(P,(0W,))=P,0W,), then W, is diffeomorphic to
W,.

Proof. Let (H;; 4;, ;) be the corresponding algebraic system of W,
i=1,2, and we show that they are isomorphic. Let (i )y: H,,(0W,)—
H, .(W,),s=1,2, be the isomorphisms induced by inclusion maps and
define an isomorphism k: H,=H, (W,)—=H,=H, ,(W,) by h=(iz)x°fx°
(i)z'. Let 0,=D71'e(i)z',s=1,2, where D: H* (oW ,)— H, .0W,),
s=1,2, are Poincaré duality isomorphisms. Then 0;,=f*-0,°h and
by Theorem 8.3, it is easily seen that A4,(x, y)=¢,(0,(x), 0,(¥))=
Bi((F*e00h)x, (f*e0,0h) y)=$3(0,(hx), T3k y)) = A,(h(x), (), where
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¢ H Y OW ) x H* X(0W,)—Z,, s=1, 2, are the bilinear forms defined in
the introduction.

On the other hand, as=%<P,(Ws), >, s=1,2, by Lemma 9.2.
Since P,(0W,)=(i,)*P(W,),s=1,2, and P,(0W,)=f*P,(0W,), we have
<P(W), x>=<P(W,), h(x)> and so that «a,(x)=a,(h(x)). This
completes the proof.

Corollary 9.4. Let n=4t—1 (t>2) and let W; i=1,2, be handle-
bodies of #(2n+1,k, n+1). The following four are equivalent.

(i) OW, is homeomorphic to OW .
(ii) OW, is diffeomorphic to OW,.
(iii) W, is homeomorphic to W,.

(iv) W, is diffeomorphic to W,.

Proof. We may show only that (i) induces (iv). Let h: OW,—0W,
be the homeomorphism. Since H**Y(W;; Z)— H*"*Y(W;;Q),i=1,2, are
injective, where ( is the group of rational numbers, by topological invari-
ance of rational Pontryagin classes (Novikov [127]), we have A*(P,(W,))
=P,(WV,). So that it follows from Theorem 9.3.

By Lemma 8.1 we have

Corollary 9.5. Let n=4t—1 (¢=2) and let M;,i=1,2, be (n—2)-
connected 2n-manifolds which have vanishing n-th homology groups and
are (n—1)-parallelizable if ¢ is odd. Then, if M, is homeomorphic to M,,
M, is diffeomorphic to M, mod0,,.

The other results of Theorem 2 are obtained directly from Theorem 1.

10. Proof of Theorem 3

Let M be an (n—2)-connected 2n-manifold (n=4) which has torsion
free homology groups and satisfies the hypothesis (H). Let e;,--, ¢; be a
base of H,(M). Since the elements of H,(M) are spherical, each e; can
be represented by an imbedded n-sphere S?, and we may assume that S7,
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=1, 2,..., [, intersect at points. Then, shrinking the intersections by an
isotopy of M into a small neighborhood, we have a handlebody W e
#(2n, I, n) which represents the homology group H,(M). Since the matrix
(e;+e;) is unimodular, 0W is a homotopy (2n—1)-sphere. Let N=M—
IntW. Then N is an (n —2)-connected 2n-manifold with 9/N=0W such that
H, ,(N)=H, (M), H,.,(N)=H,.,(M), and H,(N)=0. Since H, (V)
is free and N is (n —1)-parallelizable, we can kill H, ;(IV) by surgery so
that it does not affect that H,(N)=0 (See Ishimoto [6]). So that N
bounds a contractible manifold and therefore it must be a standard sphere.
Thus, by closing N, W, we have M,, M, respectively such that M= M %
M,, where M, is an (n—2)-connected 2rn-manifold which has the vanish-
ing n-th homology group and is (n —1)-parallelizable, and M, is an (n—1)-
connected 2n-manifold.
To prove the uniqueness of M, we use the following lemma.

Lemma 10.1. In the following splitiing exact sequence
0— Kerh — 7w, (M)-—t> H(M)—0,

Ker h consists of the elements of order 2, where h is the Hurewicz homo-

morphism (n=4).

Proof. Let M?* be the space obtained from M by attaching n-cells
e?,i=1,2,, k,(k=rank H, (M)) to kil 7, (M)=H, (M). Then M*
and (M*, M) are (n—1)-connected, and we have the following diagram

well known:

Tnir(M*, M) —2> 7,(M) = 7,(M*)

lh ;lh
0 —H,(M)— H,(M¥*),

where horizontal sequences are exact. So that we know that Ker A=Ker iy

k k k

=Imd, where 7, (M*, M)=m,.,(V et, V SO =n,(V Sr)=Zy+- + 2,
i=1 i=1 i=1

(nz4).

Lemma 10.2. Any imbedded n-sphere of M representing a torsion
element of w, (M) has the trivial normal bundle (n=4).
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Proof. Let B: w,(M)—m, (SO,) be the map which associates to
each n-sphere the characteristic element of the normal bundle. This is
well defined since n>4. Let u:w,(M)xn,(M)—Z be the pairing of
intersection numbers after AXh. Then, since B(x+ y)=pF(x)+B(y)+
ou(x, y), 0: m,(S")—m,1(SO,) by Wall [19], we know that B is a
homomorphism on Ker A, the torsion subgroup of m,(M). So that we may
prove the lemma for the generators of Ker h=Im 0. Let S?7! be the im-
bedded (n —1)-sphere of M which represents the basis element of H, (M)
=, (M), 1=1,2,--, k. Im0 is generated by the essential maps from
the n-sphere to S?°! for some numbers of i. Since each S?7! has the
trivial normal bundle in M by the (n—1)-parallelizability of M, such
essential maps can be represented by the imbedded n-spheres 77 in
S#71x D7+ the product neighborhood of S?7!. We note that any n-sphere
S*(n=4) imbedded in S”7*x D**'c R?” has the trivial normal bundle con-

sidering it in R?®* by Haefliger [4], and this completes the proof.

Let M have the two decompositions as M= M, M,= M{$ M}, and let
W=M,—IntD?*, W =M;—IntD’?2". W, W’ are the handlebodies of s#(2n,
l, n), l=rank H,(M), with the algebraic systems (H; 4, ), (H'; 2/, &)
respectively. We show that W and W’ are diffeomorphic, that is, their
associated algebraic systems are isomorphic.

For any x€H,(M) take an element yem,(M) such that A(y)=x
and define 8’(x) by S8(y). Then, 3': H(M)—m,_,(S0,) is well defined
by Lemma 10.1 and Lemma 10.2. Let i, i’ be the inclusion maps of W,

W’ into M respectively. We have the following commutative diagram:

T (W) —= 7, (M) (W)
a B B al
=k Tp-1(S0,) =|  7pa(S0,) =)
/ V’ /7 Nl

HW) — H,(M) —= H(W')

= =

where a=("0iy and «’=f’ciy are known from the other commutative
triangles and squares.
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Let g: H=H,(W)—H'=H,(W’) be the isomorphism defined by g=
(i4) toiy. Then, we have a=p"ciy=a (i) teixy=a’cg. On the other
hand, let 4': H(M)xH,(M)— Z be the intersection number pairings.
Since 4, A’ are the intersection number pairings, we have A= #'o(iyx X ix),
A =p"o(i%Xi%), and so that A=4"-(gx g). Thus we have proved that
W and W’ are diffeomorphic, that is, M, and M} are diffeomorphic
mod 0,,,.

Now, we prove the uniqueness of M; when n=4:—1 (¢=2). Let
N=M,—IntD?», NN=M{—IntD'?*, and M=NUW=N UW’'. Let %:
H, (M,)— H, .(M{) be the isomorphism defined by the composition of the
isomorphisms H, (M) = H,(N) = H,..(M)—= H, (N )= H, (M),
and let %': H*Y(M,)— H" '(M}) be the isomorphism defined by the
composition of the isomorphisms H”* Y(M;)—= H* Y{(N)«= H* {(M)—=>
H»Y(N")«z= H*»"1(M{). Then it is easily seen that ¢=¢ (7' X7’) and
<P,(M;), >=<P,(M]), >oy, where ¢, ¢’ are the associated bilinear forms
of M, M’ respectively. So that using Theorem 8.3. and Lemma 9.2, we
know that the membranes of M; and M{ by Lemma 8.1. are diffeomor-
phic, where we note that P,(M), P,(M’) are induced from those of the
membranes. Thus M; and M{ must be diffeomorphic mod 8,,.

The uniqueness of M;—x* up to homotopy is known by the following.

Lemma 10.3. Let M, M’ be (n—2)-connected 2n-manilolds (n=4)
with the vanishing n~th homology groups, and let ¢, ¢’ be the bilinear
Sforms of M, M’ respectively. If rank H, (M)=rank H, (M), rank ¢ =
rank ¢, and M, M’ belong to the same type, then M—(a point) has the
homotopy type of M’ —(a point).

Proof. By Lemma 1.1, there exist the bases {ay, -, &}, {al, -, &4}
of H*1(M), H* *(M") respectively such that ¢(«;, @;)=d¢(a}, &) for all
i, j, where k=rank H, ,(M). Let {8,--, 8.} be the base of H"*(M)
such that <a;UpB;,[M]>=0;; for all i, j, and let a;€H, (M), b;e
H,.,(M) be the dual elements of «;, §; respectively, i=1,2,---,k. Then,

k
using Smale decomposition, M —* has the homotopy type of ;\415?—1{\#}

3 !
{\U D?*'}, where f;: 0D?**—V S?71,i=1, 2,---, k, are the attaching maps.
i=1 i=1
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Similarly, let B}, a; and b}, i=1, 2,---, k, be those of M’. M’—x%" has the
k k k

homotopy type of V Sty {\U Dz}, where f;:0D7"1— v S7°1 i=1,
i=1 Gy it i=1

k
2,--+, k, are the attaching maps. Then, under the isomorphisms m,( Vv S?°!
i=1

=1, (ST 4T (S A Zyok 4 2, (0 20), S = 2 BB,
where (f;)=(f1)+--+(fs;) and ( ), means that they are considered
in the Z,-coefficient. Thus we have ¢(c;, ;) = < S%(a;), U(;)s, [M 1>
= tgH(fit)<(Bt)2 Uz, (M 1> =H(fy;). Let (fD=(f1)++(fr):
Similarly we have ¢'(a}, a))=H(f;). So that H(f,;)=H(fi;), for
all i, j, since ¢(a;, @;)=¢'(a}, @;), and therefore we know that f; is
homotopic to fi,i=1,2,--, k. Thus M —x has the homotopy type of
M —x.
This completes the proof of Theorem 3.

11. Proof of Theorem 4 and Others

Let n=4t—1 (¢=2) and let M be an (n—2)-connected 2n-manifold
which has torsion free homology groups and is (n—1)-parallelizable if ¢
is odd. Let M =M,4M, be the decomposition of M, and let M,=0W;
(mod 0,,), W, #(2n+1,k, n+1), k=rank H, (M). Then, as is seen
in the proof of the uniqueness of M; of Theorem 3, the type of W, is
determined by S%: H" (M; Z,)— H"*'(M; Z,). Similarly, using the re-
sults of Part I when n=4¢—1 (¢=2), the figure of W, is determined by
P,(M) by Lemma 9.2. So that M, is determined mod 0,, by S2: H*"(M; Z,)
—H»Y(M; Z,) and P,(M).

If n=4t—1, M, is a m-manifold since the obstructions vanish. On
the structure of (n—1)-connected 2n-dimensional w-manifolds, see [ 6] for
example.

The corollaries and other results are known at once.
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