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Relative Hamiltonian for Faithful Normal States

of a von Neumann Algebra

By

Huzihiro ARrRAKI

Abstract

Let ¥ be a cyclic and separating vector for a von Neumann algebra I
and 4y be its modular operator. For any elements Q;,..., Q, in I and complex
numbers zy,..., z, such that Re z;20 and 2 Re z;<1/2, ¥ is shown to be in
the domain of 4§1Q,...432Q, and [4§0Q;...452Q. ¥ [<[Q4]...1Q11¥].

A selfadjoint operator h=h(p/¢)=IM is called a Hamiltonian of a faithful
normal state ¢ of 9% relative to another faithful state ¢ of 3 if vectors &,
and &, representing ¢ and ¢ (in the canonical cone V}7*) is related by

&= Z 0] (T g toh g
The operator

Ll . ¢ t tn—1
us¥ = Eo(—-l)"gﬂdtlgodtzmso dtaat (B)at,_ (B)...a%,(R)

tn-1

is shown to be an intertwining unitary operator between modular automor-
phisms ¢} and ¢% for states ¢ and ¢:

uitoi(x)=of(x)uf?, xci.

The relative hamiltonian h(p/¢) is unique for given states ¢ and ¢. It
exists and satisfies logl,= —h(p/¢)=logl, if [172¢,=2¢£,21172%¢,, where @,20,
means that @,—®; is in the canonical cone V}/*. In particular, if l,¢=¢p=1,¢,
then h(p/¢) exists and satisfies the above inequality.

The modular operators 4, and 4., are related by

logd.,—logd.,=h(p/¢)—JTh(p/$)]
where J is the common modular conjugation operator for &, and §,. The
chain rule h(e;/@;)+h(ps/es)=h(p:/es) is satisfied.

§1. Introduction

Let I be a x-algebra of finite matrices and ¢, be a faithful tracial
state on . Then every positive linear functional ¢ on N is uniquely
Received December 7, 1972.




166 HuziHirRo ARAKI

represented by a positive element o, of M by
(1.1) (%) =0o(0,%), x€M.

The corresponding modular automorphism ¢¢ is given by
(1.2) o9(x)=0x0,", xei.

The Lynorm ||x|l;=¢,(x*x)'/2 makes I a Hilbert space which we shall
write ©. The vector corresponding to 1€ is written as &,.

To each g My, there corresponds a canonical vector £,=pl/%&, such
that the expectation functional w, by the vector £, is ¢. The set of £,
is a selfdual convex cone M*¢, in , which has been denoted as V,, or
V'i* in [2]. The modular conjugation operator J for §, is common for
all faithful ¢ =My and is given by

(1.3) foo—_-x*éo.
The modular operator 4, for &, is given by
(1.4) d;,%E0=0,%20,&,.

In statistical mechanics, h,= —logp, for a faithful p&IN{ is called a
Hamiltonian, 0%, is called a time translation automorphism and ¢ is called
the Gibbs state for this Hamiltonian (with an inverse temperature §=1).
We shall be concerned with a Hamiltonian of a faithful state ¢ relative
to another faithful state ¢ defined by

(1.5) h(p/¢)=h,—h,

The original h, is h(¢/p,). Since a tracial state is not available for a
purely infinite von Neumann algebra, we are forced to work with the
relative Hamiltonian in the general case.

From (1.2), we immediately see that the unitary operator

(1.6) u‘f’/’=p;’p;“
intertwines modular automorphisms of ¢ and ¢:
1.7) wlot(x)=02(x)u??, xeM.

The operator in (1.6) has the following perturbation expansion
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G (! 11 tn-1 " "
(1.8) upt=3 (-;)ng dtlg dtz...g dt,ot ()...o%.(h)
7n=0 0 0 0
oo . t 11 tn-1
= 2 irl anflan,. (" anonm. onm
n=0 0 0 0

where h=h(p/¢).

For two faithful states ¢ and ¢ in MM, there exists a unique A(gp/¢)
IR such that A((p/g{))éll,:;’:‘p. It is the Radon-Nikodym derivative satisfy-
ing the chain rule [ 2] and is given by

(1.9) Alp/d)=0;%051'2,

which has the following perturbation expansion:
(1.10) &= A(p/d)e, = :éo(—1)"g.-.gdzl...dzndghu.agghaﬁ

where the integration is over the following simplex
(1.11) I2={(A,..., A); A, =0,..., 2,=0,1/2= 2, +---+2,}.

These expansion formulas are of the same form as the covariant per-
turbation expansion in an interaction picture used in quantum field theory
and has been discussed in [3] in the Banach algebra context.

The purpose of the present paper is to show that the relative hamil-
tonian h(g/¢) exists for a certain class of the pair ¢, ¢ in Mg, it is
unique and it satisfies (1.7), (1.10), the chain rule

(1.12) h(p1/¢2)+h(e,/03)=h(p,/@,),
and
(1.13) logd, —logd,,=h(}p/p)— je(h($/9)).

§2. Moulti-variable three-line theorem

The following is an immediate generalization of the three-line theorem
of Doetsch to the case of many complex variables.

Theorem 2.1, Let f(z) be a function of n complex variables z=
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(zy...z,) satisfying the following two conditions:
(i) £(z) is holomorphic in the tube

2.1) T(B)={z;Im ze B}

where B is an open convex set in R”.
(ii) f(z) is continuous and bounded in the closure T(B)=T(B).
Let

2.2) g(y):sgplf(x+iy)], yEB.
Then log g(y) is a convex function of y€ B.

Proof. We have to prove the inequality

(2.3) log g(Ay, +(1—A) y,) <2 log g (y,)+(1—2)log g(y,)

for 0<A<1, y,€B and y,€B.

If g(y,)=0 at one point v, then f(x+iy,)=0 for all x€R"” and
hence f(z)=0 identically (by the edge of wedge theorem if y,€0B). In
this case, log g(y)= —oo for all yeB and (2.3) holds. We now assume
that f(z)#0 and hence g(y)=0.

For each y, and y,, we may restrict our attention to a compact
convex subset of B containing Ys ¥ and a non-empty interior. Hence
we may assume that B is compact without loss of generality.

First consider the case where 1y,+(1—2)y,€ B for 0<41<1. Consider

a function of one complex variable z,:
£.(z0)=1£(i{zo ¥y, + (1 —20) y3 } + %), xER"

If Re zo=(0, 1), then f,(z,) is holomorphic by the tentative assumption,

continuous and bounded in the closure. By Doetsch’s three-line theorem,

log sup |f,(A+i0)| is a convex function of 1 in [0,17]. Since the supremum
cE€ER

of a family of convex functions is convex, we have the convexity of
sup log sup |£,(2+i0)| =log g(1y,+(1—2) )
% n o

in 4 and hence (2.3).
For general points y, and y, in B, we consider a sequence of points
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y% and y% such that lim y%?=y,, lim y}=1y, and Ay24+(1—-2)y}€B for
0<4A<1 and all n. Instead of f, we first consider the function

fo(z2)=f(2)exp(— B 2z}).  (8>0.)

For compact B, fz(z) tends uniformly to 0 as z tends to oo in T(B).
Let

ge(y)=sup|fs(x+iy)l|.

Then it is continuous in yeB. By what we have already proved we have

log gg(Ayn4+(1—2) y3) <Alog gg(y2) + (1 —Dlog gz y7).

By continuity, we have

log gg(Ay,+(1—=2) y;) < Alog g5(y,)+ (1 —2A)log gz ys).

We can now complete the proof by showing that
li =
Jim g4(y)=2(y)
for each yeB. First we have
lexp(— R 21z})| <exp(B sup 2yhH-1

as B—0. (B is assumed to be compact at this stage of the proof.) Hence
for sufficiently small S,

ge(n=g(y)+e,
for any given €>0. There exists x such that
lf(x+iy)|zg(y)—e/2.
For this x, we have |fg(x+iy)|=g(y)—e for sufficiently small 3. Hence
g(y)—e=gp(y)=g(y)+e

for sufficiently small 8 for any given &>0. Q.E.D.

Remark. The convexity of log g(y) implies the convexity of g(zy).
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By considering exp f(z) instead of f(z), we also obtain the convexity of
sup Re f(x 4+ y).
x

Corollary 2.2. Let B in Theorem 2.1 be a simplex

B=I1={y; y1>0,.... y,>0, a>y1+ -+ y,}, a>0.

Then g(y) takes its maximum value in B at one of (n+1) extremal points
of B: 2°=(0,...,0), A'=(a, 0,...,0), 12=(0, a, 0,...,0), ..., 22=(0,..., 0, a).

Proof. Since log g(y) is convex, it takes its maximum value in a
compact convex set B at one of its extremal points.
Q.E.D.

§3. Multiple KMS Property

Theorem 3.1. Let ¥ be a cyclic and separating vector with a modular

operator dy. It is in the domain of

(31) Aé’zlgldf;’zzqz-"A!‘;’z"QnEA(z)

if Q,eM, k=1,.,n, and z=(z;...2,)ET(—1L%). The vector valued
Sfunction A(2)¥ of z is holomorphic in the tube T(—1TL%), strongly con-

tinuous and uniformly bounded in its closure T(—1IL/%):
(3.2) IADZN=IZNQull--1Qall.

Proof. We prove Theorem by induction on n. When n=0, there is
nothing to prove. Assume that Theorem is true for n <m except that the
strong continuity is temporarily replaced by the weak continuity and
consider the case n=m.

Let #=D(4}?). Then @&D(4¥) for Im z,€[—1/2,0]. Consider

{(2)=(0,, 0,),
0,=0Q,47Q,d¥3.. . 4FQ, 7,
0,= 47710,

By Lemma 4 of [2], we have
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10,]17<1|4¥20]|>+]|0]2.

Hence @, is a uniformly bounded and strongly continuous function of z;
for z;€T(—1}?). By inductive assumption, @, is a uniformly bounded
and weakly continuous function of (zs,..., z,)€T(—IL2). Hence f(z)
is a uniformly bounded continuous function of z=(z,..., z,) in T(—I}2)
x T(—1I%2)), which contains T(—1IL/%). Since @, is holomorphic for
z,€T(—112) and @, is holomorphic for (z,,..., z,)ET(—1L2), {(2) is
holomorphic in T(—1}2)xT(—12,) by Hartogs’ theorem.

We now consider |f(z)| when Imz is at one of extremal points of
—1I12, We have

[£() | @[ Z Q- [|Qnll, xER.

If Im z;=0 except for j=k and Im z,=—1/2, we have

£(2)=(Q1(x1)Qpr(1+ -+ 2, ) 4F2Qp (1 + -+ 2)-

=(Qu(%1) Qpo1(x1+ + %, )JpQh (1 + -+ %)
F(x+ 42V, 0)

where x,=Rez, and Q(¢)=4%Q4z*. Hence we have
£ [ <[ @I[IZ Q1N [|Qmll-

for all z&T(—1%2). By Riesz theorem, there exists a vector @(z) such
that £(z)=(@(z), ®) and ||0(2)||Z||Z]||\Q:!|- /O]l Hence @, is in the
domain of 4%t and (3.2) holds for n=m.

Since f(z) is holomorphic in T(—IY2) and continuous in, T(—I%/2),
the uniform boundedness implies that @(z)=A(z)¥ is weakly continuous
in T(—1%/2) and weakly holomorphic in T(—7IL/2). Since the weak and
strong holomorphy are the same due to Cauchy integral formula for
polycircles, we have the desired properties for n=m.

To show the strong continuity from the weak continuity, it is enough

to show the continuity of the norm. This follows from the next Theorem.

Q.E.D.

The following Theorem states a multiple KMS property and has been
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derived in somewhat different but equivalent context in [17], except for (4).

Theorem 3.2. There exists a function F(z) of z=(z4,..., z,) for a
given cyclic and separating vector ¥ and operators Q.,..., Q,., €M such
that

(1) F(z) is holomorphic in z€T(—11L),
(2) F(z) is continuous in z€T(—1IL),
(3) F(z) is uniformly bounded in zT(—1I1):
(3.3) IF()| < IZ1PQull-1Qnll,
4) if ze€T(—1}) and
Im(z,+ 4z, 1)=2-1/2, Im(z,+ - +2z,)=-1/2,
then F(z)=(0,, ®,) where
0,=43Q, 47" Qp-1... 47 Q, 7,
0= Az Q1 A7 Q% g . A7 QF 1 Y
a is any non-negative real number satisfying
—Imz,za=0,
1/24Im(z, 4+ +z,)2az —1/2—Im(z,+ - + z,),
(5) if Im z2=0, then
F(2)=0g(Qy+10x(%,)Qn-1(%p-1+ %,)...Q1 (%1 + - + x,)),
(6) if Im z,=0 except for Im z;=—1, then
F(z)=0y(Qj(x;+ +%,)...01(x 1+ + %,)Qps1--Qjur (X1 + -+ %)),
where x;=Re z; and Q(¢t)=4%Qdz".

Proof. Let Q; s=0Q,;(f$) where f§ is given by (3.11) of [2] and the
notation Q(f) is given by (3.7) of [2]]. Qj; g(¢) has an analytic continua-
tion Q; ¢(z)eM for any complex number z and
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FA(2)=(Qps1, 34 Qy 5-- - 457Q1, ¥, ¥)

= (Qn+1,ﬁQn,/8(zn)' . 'Ql,ﬁ(zn +- z]_>¢, W.)

is an entire function of z. By Theorem 2.1, |FA(z)—F#'(z)| for ze
T(—1I!) is bounded by the maximum of |F&(x—il%?)—F& (x—il?)]
for j=0,1,..., n and real x where A9 is as in Corollary 2.2 in which
we set a=1.

By usual KMS condition, we have
FA(x —idD)=(Q;, g(xj+ -+ %,)...Q1, 5(21+ -+ £,)Qp11, 5---
Qji1,g(xji1++x,)¥, F).

Since ||Q;, 6| 11051l hm Q;,s=0Q; and 11m QF s=QF, |FP—F#| converges
to zero uniformly in z in any compact subset of T(—IL). Let F(z)=
hm FA(z). As the uniform limit of a continuous and holomorphic func-
t10n F(z) is continuous on T(—I1) and holomorphic in T(—I1). Since
|FA(2)| é(l;IHQj,/sH)HTHZé(leHleI)HWHZ, (3) is also satisfied. Hence F(z)

so constructed satisfies (1), (2), (3), (5) and (6). It remains to prove (4).
Consider

f(zy...2,01)=F(21...25-1, 24+ 23415 20010) — (T 1, ¥ ),
V1 =dFrQudiF Q1. AP Q¥
¥y=dg7 n1Q¥, .. Q%5 Y,
in the domain
(z21...2) ET(=I}?), (z4s1-- - 20e) ET(=I}/3 1),
(z1...2,+ z2p41..-2,0) ET(—IL).

f(z) is holomorphic in this domain.
If Im(z,+ - +2z,.1)=—1/2, then

F1, ) =(Qui14F™".. .Qp1 Y= :11720Q, . A1 Q¥ , ¥).

By the weak continuity of Theorem 3.1, f(z) is continuous in z&T(—11/3).
At Im z=0, we have f(z)=0. Hence f(z)=0 identically by edge of
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wedge theorem. This proves (4) for ze&T(—I}) satisfying
—a+Im(z + - +2z,-)>—1/2, Im(z,+- +z,)+a>—1/2.
For a fixed z,...z,_;, we obtain (4) for z&T(—I}) satisfying
—a+Im(z,++2,9)>—-1/2, Im(z,+ - +z,)+a=—1/2

by the weak continuity. For fixed z,...z,,;, we then obtain (4) for

z€T(—11) satisfying
—a+Im(z,+ - +2z,9)=—-1/2, Im(z,++z,)+ta=—1/2

by weak continuity again. Q.E.D.

§4. Relative Hamiltonian

Proposition 4.1. Let heIR, h*=h and ¥ be a cyclic and separai-
ing vector. Then
(4.1) ¥(h) = f}ogmgdtl---dt,,A;,MhA;,"-lh...A',}hllf

n=

converges absolutely and uniformly over bounded h, where the integrations

are over the region
(4.2) LI2={(t,...t,); t,20,..., 1,20, t;+---+1,<1/2}.

Y(h) defined by (4.1) is in Vg, namely the closure of AY*Y [27). If
a sequence h, converges to h strongly, then ¥(h,) converges to ¥(h)
strongly.

Proof. By Theorem 3.1, we have
| dgphdip-2h--- A3R7 || < ||A|["||Z]].

Hence (4.1) is dominated by X(n!)7!||a]|*||#||=¢€"*!]|¥| and hence con-
verges absolutely and uniformly over a bounded set of A.
Since converging sequence is uniformly bounded and multiplication is

continuous on a bounded set, we have

lim 6% (h,)...0% ()T =a¥ (h)...ct (¥
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for each t,...t,. By Lebesgue dominated convergence theorem, we have

the strong convergence (i.e. weak convergence plus the convergence of
norm):

4.3) i, £2)- b ) =hCSD - B )W

for any L; functions f;...f,, where

h()= ot h)f 0, h(H)={otmpan

We shall use f§ given by (3.11) of [2].
If F(z,...2,) is a vector valued function holomorphic in {z;|z,— 2| <0}
and bounded by A, then for |z;—2z?|<d/2, we have

(4.4) |I(d/dz)F||= |K27Ti)—lglz—z§-’|=a(z —2;)7%F(21...2;-122;41...2,)dz]|

<4407

Hence ||F(z)—F(z")||£4407 |z—2'| for |z;—2%|<0/2, |z;—2z0|<d/2.
Since

4304 (B 85 6y (b 456 (R )E

is holomorphic in z=(s;+ity,..., S, +1it,) for Re z€I}? and bounded
uniformly for a bounded set of A,, it has the equicontinuity in (¢, £;+1¢,,
..oty + - +¢,) and hence

lim AR, (f8). A ho(fDY = 45 by 457h,¥
—+

strongly and uniformly over n for each fixed (s,...s,) in I1/2, The same
equation holds when A4, is replaced by A.
Furthermore,

A¢h (... 47 h(fOT =h,(f1)...hy(f)¥
where
[i®)=f6@+i(s;+---+s,)).

Hence by (4.3) we have
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lim Ah,(f5)... 45 hu (Y =h(f)--h(Fu)¥
=43 h(f §).. 4z (fEY.

Therefore, by taking the limit as §— +0 and exchanging the order of limit
in n and, 8, we obtain
lim d@h,...45"h, ¥ = 43*h.. 45" h¥

n—rc0

for each (s;...s,)€ L2
Since 43*h,,...d3mh,¥ is uniformly bounded by (sup ||%,||)™”||Z||, we have
n

lim 7 (h,) =¥ (k)

by Lebesgue dominated convergence theorem.
We now show that #(h)e Vy. Let hg=h(f$). Then ||hgl|<||A| and

lim hg=h. If we show ¥(hg)E Vy, then ¥(h)=1lim ¥ (hg)E Vy.
£-+0

The closure of d§hgdy* is given by

h,s(—is)=SA;;hA;fyg(z+is)dte M.

Hence

Afynhﬁ.A;-lhﬁy:hlg(—itn)...hﬁ(_i(t1+"+t”))y.

Changing integration variables to s;=1¢;+ - +¢&,, Sa=ta+ - +tps..., S,=tp,

we obtain
(4.5) T(he)= 3 S”zdslg‘”dsz...Ss""ds,,hﬁ(—is,,)...hﬁ(—isl)qf
7n=0J0 0 0
1/2
=Exp,<S : hﬂ(—-is)ds>W
0

where the expansional Exp, is defined in [37].
By formula (3.5) of [3], we have

Exp,(S:IZ ; he(— is)ds)

= Exp,(S:M ; he(— is)ds)Exp,(S:M s hg(—i(s+ 1/4))ds>.
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Since
ho(—i(s,+1/4))...hy(—i(s; +1/4)F
= AY2ho(—i(s,—1/4))...hp(—i(s, — 1/4)F
= Toho(i(s, = 1/8))...hy(i(s,~ /)T,
we have

1/
0

EXp,(S;M; hﬁ(—i(s+1/4))ds>¢'=]¢Exp,<g ‘. hﬂ(i(s—1/4))ds)§”.

By formula (2.10) of [37], we have

Exp,(S:/4 s hg(i(s— 1/4))ds) =Exp,<3‘1)l4 s he(— is)ds>.
Hence

U(he)=Qjr(@Q¥ EVy

where

0=Exp,(( s ho(—is)ds). jo(@=JrQlr.

Q.E.D.

Definition 4.2. Let oMy, oMMy and ¢, §, be unique representa-
tives of ¢ and ¢ in V. If §,=6,(—h), h€IN, h=h*, then h is called
a Hamiltonian of ¢ relative to ¢ and denoted by h(p/¢).

We shall prove the uniqueness in Lemma 4.6.

Remark. There is an unfortunate small discrepancy in the notation of
mathematicians and physicists. As explained in Introduction, the time
translation automorphism of physicists differs from the modular automor-
phisms of mathematicians by sign of the variable, which also causes a
sign change in the statement of KMS condition. In the present definition,
it would be simpler mathematically to call —A as a relative hamiltonian,
but we would like to avoid a further discrepancy in terminologies and we

define the hamiltonian as it appears in statistical mechanics. In the present
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article, we follow mathematician’s notation regarding modular automor-
phisms, MSK conditions and inner product of a Hilbert space.

Proposition 4.3. Assume that h(p/P) exists for faithful ¢ and ¢ in
Mi. Let 07 and 0! be modular automorphisms for ¢ and ¢. Let

t
46) ur?=Exp,( || —iot(bo/9))ds),
t
@ ar!=Exp ([ ; iotne/o)as ).
0
Then
8 (=i, uptar=afturt=1
4.9) u?*ct(x)=02(x)u?*, xeM.

Proof. The first equation in (4.8) follows from definition. The second
equation in (4.8) follows from formulas (2.14) and (2.15) of [ 3]. To prove
(4.9), we consider

Pe=0¢,thp

where h=—h(¢/¢), hy=h(f$) and f§ is given by (3.11) of [2]. we
first prove (4.9) for ¢, instead of ¢.

We have
u‘fﬁfl’ = ExP’(St R ihﬁ(s)d.?),
0
zz;w:EXp,(S'; —ihg(s)ds ),
0
where
(4.10) ho(z)= go‘ﬁ(h)fg(s— 2dse M.

We compare two functions

(4.11) Fi(t)=gg(zugof(y)age)

=¢(A*x Ao} (ki yk,)),
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and
(4.12) Fy(0)=pe(usetoy(y)agex)
=(ot(kity k) A*x A)
where x, yeIt
1/2
A=Exp,<g ; hﬁ(—is)ds>,
0
k=0t (a3e" 4),
ky=0t,(ags"(4*)™),

and the second equalities of (4.11) and (4.12) are due to (4.5). We shall
first prove that %, and E, have analytic continuations to the same entire
function and k,_;=k,.

By formulas (4.2) and (4.4) of [3], we have

Exp,(Sm ; — ihB(—O')d0'>

0

=Exp,<gl; —ihﬁ(—d)da>a‘k, {Exp,(S ; —ih,g(—o)da>}.

0
By formula (2.8) of [37], we have

Exp,<gt; —ihﬁ(—a)do'>=Exp,<g ; —ithﬁ(—m)do)

1
0 0
The right hand side is an entire function of ¢ and its value at t=+is is
given by

Exp,(g: ; —ithg(— to‘)dd):EXp,(S; ; The(F ia)do),

due to formula (2.8) of [3] where s is real positive. Hence the analytic

t
continuation of Exp,(S ; —ihg(—0) dd) to z=t+is is given by
0
Exp,(S' ; —ihg(— 0')d0‘>o“k, {Exp,(gs s Ry (F ia)da)}
0 0

EEXP'(S:; - ihﬂ(—o‘)d(f).
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By formula (2.11) of [3], we have

ot (ageh) = Exp,(S ; —ihg(o— t)da)

t
0
t
=Exp,(go; —ihg(— o’)do‘).
Hence

k,=Exp,<S'+”2; —ihﬁ(—O')do')

0

We also have
I —_
(A*)-l:(Exp,(S1 % hﬁ(id)dd» '
0

=Exp,<S:l2; —h,g(io)do>

due to hg(—i0)*=hg(io) and formulas (2.17), (2.14) and (2.15) of [3].
Hence

t—il2

i, =Exp,(g . —ih ﬁ(—o)do).

0

Therefore k, and £, have analytic continuations to the same entire func-

tion and k,_;=k,.

Since Exp,(gz

; —ihﬁ(—O')d0'> has an inverse
0

{o“k,Expl<S:; Fha(F io‘)dd)}Expl(S:; ihﬁ(—o‘)do‘)

for all z=t+is, k;! and k;! have analytic continuations to the same entire
function and k;L=£;2.
Returning to F,(¢), it has an analytic continuation to z=t—i/2:

Fy(t—i/2)=(4y*0}(k;* yk )T, (A*xA)*T)
=(Jp0t (k3  yk ), (A*xA)Y)

=(Jp(A*x Y, 07(k; yk )*T).
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On the other hand F,(¢z) has an analytic continuation to z=¢+i/2:
Fo(t+i/2)=(A*x AV, 4} 20}(k;" yk,)*¥)
=(Jp(A*x A, a}(k3 y k)*D).
Since k,=k,, they coincide. Hence the *-automorphism
x—ulelol(x)age?

satisfies the KMS condition for ¢s. Hence it must be the modular auto-
morphism of ¢g4:

ups'of(x)ag =o7s(x).

If —+0, hg tends te % swongly. By Proposition 4.1, #(hg) tends
to ¥(h) strongly and hence ¢4 tends to ¢ in norm. By Theorem 10 of
[27], 0%5(x) tends to 0%(x) strongly for x<IN.

On the other hand, ¢} (hg)...07 (hg) converges strongly to o} (h)...
ol (h) and hence u?s* and 4¢s" converge strongly to u¢* and a¢’ by
Lebesgue dominated convergence theorem. Hence we have

ugtal(x)aft=o7(x), x <M
which proves (4.9). Q.E.D.

Corollary 4.4. If ¥ is cyclic and separating and hesI, h*=h,
then ¥ (h) is also cyclic and separating.

Proof. By the proof of Proposition 4.3, ¥'(h) satisfies KMS condition
relative to the group of x-automorphisms

x€M—u,0f(x)uf=0,(x)

where
1
u,=EXp,(S , io“s/'(h)ds>
0

and the group property of the x-automorphisms follow from the cocycle
equation

uflo-fl(utz) = ut1+fz’
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which is formula (4.2) of [37]. It is known that a KMS state is faithful
if it is faithful on the center.

Let E be a central projection. Then E{¥(h)}=(E¥)(EhL), where we
restrict our attention to EYR and the restriction Edy of 4, (which com-
mutes with E) is dgp. Since ¥ is separating E¥ +#0 unless E=0.

We now prove @(h)+#0 for any non-zero cyclic and separating @#. We
then have E¥(h)+0 and hence ¥(h) is separating for M. Since Z(h)e
Ve, ¥(h) is then also cyclic and the proof is complete.

To prove @(h)+0, we define

o 1 Sp-
0,(h)=73 an dsl...g 'ds, AgnzhA§n1-swe . AG1-s0 2RO,
n=0 0 0

The integrand is continuous for Re z&[0, 1/27], holomorphic for Re z& (0,
1/2) and uniformly bounded by ||A||*||@|| for Re z€[0, 1/2]]. Hence @,(h)
is continuous for Re z&€[0, 1/2]] and holomorphic for Im z (0, 1/2).

Next we prove the following formula:
0,.u(h)=u,430,(h)

where ¢ is real,
u,:Exp,(S’ ; iag(h)ds)
0

and ¢=w, If this formula is proved, then @(h)=0,,,(h)=0 implies
0,,5.:;(h)=0 and hence @,h)=0 by the edge of wedge theorem. In
particular @y(h)=@=0. Since @+0 by assumption, we obtain @(h)+0.
Since u, is a unitary operator strongly continuous in A and @,(h) is
also strongly continuous in % by the proof of Proposition 4.1, it is enough
to prove the formula when A is replaced by hg=h(f§). For hg, the

formula reduces to

1
EXPyGO 5 (24+12)0%; uin s(hﬂ)ds>

=Exp,(g:; io“g(hﬁ)ds)o“;’{Exp,(S:; 202;,.(h)ds >},

which holds for Re z=0 due to the formula (2.8) and (4.2) of [3] and
hence for Re z€[0, 1/2] by the edge of wedge theorem, Q.E.D,
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Proposition 4.5. If 0=¥(h), then O(—h)=¥. If 0,=¥(h,) and
@2=@1(h2), ihen @2=¥f(h1+h2).

Proof. First we consider
ho={ 4 a5 15000, 0,5=F (i),

o= 48, ha 455, FEOE, Oy =01 5(hs,0).

Then we have

!
/7 =Exp,(g1 ’ s hig(— is)ds>¢,
0

1/2
@2ﬂ7=EXp,<SO ; Boyp(—is)ds)0 5
where hy4(z) and h,,4(z) are analytic continuations of h,4(t)=0"(hyp)

and h,, () =07'%(hs3,e), and ¢ =0y, @15=0,,,.
By Proposition 4.3, we have

of(x)=ur'ofs(x)u,,

u,=Expr<g;; ihw(s)ds>=Exp,<S;; ithlﬁ(ts)ds)

By analytic continuation of the right hand side, we obtain the analytic
continuation of the left hand side:

1 - 1 .
o“z/‘(hz,,ls)zExp,(go; zzhlﬁ(zs)ds>‘1hz,,ﬁ(z)Exp,Go; tzhm(zs)ds)
Hence
. 4 . t .
hm(—u)=EXp,<So; hm(—zs)ds)afe,.,(hm)Exp,(go; hlﬁ(—zs)ds>‘1.
By formula (3.10) of [3],
/2 .
0,5 =Fxp, ({5 has(=i9) + 021, Chy, Y5 .

=¥ (hi5+haye)-
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In the limit 8—+0, A,z tends to h;, and hence @, tends to &,
strongly. By the proof of Theorem 10 of [2], 4%, tends to 4% strongly
(uniformly over bounded t¢) and hence

By o(2) = Sdiotlahzdaj; FS(t— z)ds
tends to

ha(2)= {4, ha 45217 50— )
which is an analytic continuation of

07:Cha,), hay =45 aditfE ()L,

Therefore h,,, tends to h,, strongly and @,4(h,,z) tends strongly to
0,(h,,). By Proposition 4.1, ¥(h,z+h;,s) tends to ¥ (h; +h,,). Hence

D1 (hyy) =¥ (hy+ hs,).
In the limit y—+0, h,, tends to h, and hence by Proposition 4.1
01(hy) =¥ (hy+hy).

By taking h,=—h,;, we have @(—h)=¥ when @=%(h).
Q.E.D.

Proposition 4.6. For given faithful ¢ and ¢ =My, h(p/P) is unique

if it exists.

Proof. Any cone Vy is related to any other cone Vy- by a unitary
u'eW: u'Vy=Vy. Hence the choice of V, does not affect the defini-
tion of h(¢/¢). We fix one V. Assume that

V(h)=0=C(hy), wg=¢, 0s=9¢.
By Proposition 4.5,

T (hy—hy)=0(—h,)=7.

2
By Proposition 4.3, Exp,<S ; iO"é‘(hl-—hz)ds> must commute with all 0%(x),
0
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xR and hence is in the center of Y. By differentiating by ¢ at ¢t=0,
we see that h,—h, is in the center of M. We then have 0l(h,—h,)=
h{—h, and hence

U(hy—hy)=exp{(h,—hy)/2}¥ =7.

Since ¥ is separating, we have h; —h,=0 for selfadjoint A, —h,.

Q.E.D.
Proposition 4.7. a?%=u?’.
Proof. By (4.9), we have
utr =Exp,( | 5 ugt(—iok(h(@/o)(uit)ds)
ur?=Exp,(| 5 —iol(hio/0)ds ).
By formula (3.10) of [37], we have
utur® =Exp,({ 5 — W@/ 0)+ ho/)ds ).
By Proposition 4.5, the right hand side is 1 and hence
uf? =uf?uftag=ag"
Q.E.D.

Proposition 4.8. Let 0=%(—h), heM, h*=h, Hy=—logdy,, Hy=
—logdy. Then

(4.13) H,=Hy+h—j(h)

where j(h)=JphJy=JshJys. For w,=¢, 0y=¢,
(4.14) uf?dif =exp(—it(Hy + h)) = j(ul*)4¥,
(4.15) 457 ugt =exp(it(Hy— b)) = 45" j(u}®),

4.16) A% = j(utMul’ 4if = 4 j(ut?)ute.
0=] ¢ J t
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Proof. By Remark to Proposition 16 of [37] and equation (4.6), we
have the first equality of (4.14) where Hy+h is selfadjoint. By Proposi-
tion 4.7 and equation (4.8), we have

wlt=(ul)*= EXPI(S:§ - io‘g(h)ds).

Hence by Remark to Proposition 16 of [37], we have the first equality of
(4.15), where H,—h is selfadjoint. ((4.15) can be obtained also from
(4.14) by taking adjoint and interchanging ¢ and ¢.)

Consider

w= 45" j(ug?)ust 4§,
For x€Mt and yeM’, we have
wx y=wa j(j(3) = 457 j(ugHustal(x) (1)) ¢
=45 03(x) j(03{j ()P j(uhus’ 4%
=2j(j(y))w=x yw.

Hence weM NI (=(WMUDY)’). Obviously w is unitary. Since Vp=
V, is invariant under multiplication of 4¥, 4% and Qj(Q), Q=uf*eM,
we have wVyCV,. By the next Lemma, this implies w=0 and hence
w=1. Hence we have the first equality of (4.16). By taking adjoint
and changing the sign of ¢, we obtain the second equality of (4.16). From
w=1, we also obtain second equalities of (4.14) and (4.15).

By (4.14), (4.15) and w=1, we have

exp(—it(Hy+h)) = j(uf")y* 4 ={j(45" us)}*
=exp(—ii(Hp+ j(h)))

where we have used the property j(H,)= —H,, which follows from J;4,J,
=45'. Since both Hy+h and H,+ j(h) are selfadjoint operators, we have

(4.17) Hy+h=H,+ j(h).

Since Hy+h and Hy+h— j(h) have the same domain, which also coincides
with the domain of H, by (4.17), we have (4.13). Q.E.D.
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Lemma 4.9. If weNW and wVyCVy, then w=0.

Proof. Since MNP is commutative, w is normal. Let E be a
spectral projection of w for an open set contained in the upper half complex
plane. Since EeMNW, Ej(E)=EE*=E by Lemma 3 of [27] and hence
EVycVyg. Therefore, for any @V,, we have EOcV,, whcsV, and
hence wy(Ew)=0. On the other hand, E is a spectral projection of w for
an open set in the upper half plane and hence Im w,(Ew)>0 unless E@ =0.
Therefore we have EO =0 for any @V, and hence E=0. Similarly w
can not have a spectrum in the lower half plane nor in the negative real
axis. Hence w=0. Q.E.D.

Proposition 4.10. If 0<I'V?¥ (ie. 1V2¥—0Vy) and if h(p/P)
exists for wy,=¢, wg=¢ then —h(p/P)=<logl.

Proof. For heR, h*=h, we define

(4.18) T(i;h)= 3, S' dtlg“dzz...g’""dznA;,nhA;,n—l—fn...A;,x—fthr,
0 0 0

n=0
0<st=<1/2.

¥(h) defined earlier is ¥(1/2; h). We shall first prove the following
formula:

(4.19) 0 (%)= (4411257, T(; b))
=(xJ ¥ (t/2; h), J;¥(t/2; h)), xI.

First consider hgz=~h(f$) instead of A. Then
P(t; hy)=Exp (g' h (—is)ds)w.
? B 7 0’ B

Hence

(xJy¥(t/2; hg), JeZ(t/2; hg))= (27, ju(k*)ju(k)¥)
=(a, jp(*E)T) = (¥, AY2k*kT)

=(4§112xF, AY2R*ET)
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where
tl2 .
k =Expr<go ; hﬁ(—zs)ds)

Since the closure of 4%2k*43*'? is given by

prl@:’z; hy(i(s — t/2))ds) - Exp,(S;’z; ho(— is)ds) —F,

due to formula (2.11) of [3], we obtain as the closure of 4¥2k*kdz*'?
tl2 tl2
Exp,(S ; hﬂ(-—is)ds>Exp,<S ; hﬁ(—i(t/2+s))ds>
0 0

— Exp,(g;; ha(— is)ds>

by formula (3.5) of [3]. Hence (4.19) is proved for hA=hg.

By taking the limit #— +0, we obtain (4.19) by continuity of ' (¢; )
on h, which can be proved in exctly the same way as the continuity of
¥(h) in h.

Assume now O0=¥(h), O<I'?¥ For a general a<[0, 1/2], the
closure of 4g*¥ is denoted by V§ in [2]. By Theorem 3 (5) of [2],
it is dual to V}/2-«. By Taking x€I* in (4.19), we obtain

(4.20) V(t; hye(Vy2t2y =y
We now prove
(4.21) 2y -—ver heviy Y

by induction on n. It is true for n=1 by our assumption.
Assume that

Py —v@G; hery?, t<1/2.
Since 4§ ~"2x¥ e V}2-t12=(V2) for x I+, we have
o (x)SP(AG0 22T, U)=1"(x), x= T+,
Hence w,<I'¢ for x=J,¥(¢/2; h). Hence, there exists y,&I’ such that

¥ (/2; )=y 7, ||yl =V
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Let x,=Jpy,Jy eI
By Theorem 3(2) of [ 2] and equation (4.20), we have

Je¥(t/2; h)= 43 P12¥(t/2; h).
Hence
45 2x 0 = Jpx, ¥ =Jo¥(t/2; ) =43 01257

By Lemma 6 of [27, 6?(x,) has an analytic continuation to Im s€[0, £/2)
and ||o?(x,)|I<||x,/|<1"% for the analytic continuation. In particular,
0=<0!,,(x,)<I""? where the positivity comes from ¥(z/2; h)e Vi* and
Theorem 3(7) of [27]. Hence

VI W (1/2; B) =AY 42— 0y u(x )T € VY.
This completes the inductive proof of (4.21).
We have

lim ({2"—1)2"=log [,

oo
lim{¥(2"; h)—-F}2"=h¥,
nseo

where the last equation is due to the estimate

t tn-1
”Sodtl...go dtnA’nhA‘n-l“n...A’l"ZhY/'H
s(n))7'e7||Al||Z]], 0=¢<1/2

and

lim z—lg'dsmh;ﬂ:w.
0

t—0

Hence we have

(4.22) (logl — B)¥ =1im 2(I2™"¥ —¥(2-*; h)).

Since [|41/2-x¥|<2|l«|[Z]| for xeM 1[0, 1/2], and 412x¥
is strongly continuous in :€[0, 1/27], we have
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(412x%, @) =lim (4272 x¥ 0,)

whenever ||@,—0||—0. By (4.22) and (4.21), we have
(41227, (logl—R)¥)=0
for all x=W*. Hence (log!—h)¥ =V and we have
logl=h.

Q.E.D.

Corollary 4.11. If I1?¥<0<I1}?¥, ¢p=w,, ¢=wy, and h(p/P)

exists, then

(4.23) log I; £ —h(p/P)<log I,.

Proof. By Proposition 4.10, we have —h(p/¢)<logl,. Since ¥=<
I7Y20, we have —h(¢/¢)< —logl,. Since h(p/¢)=—h(¢/¢), we have
log I, =< —h(p/P). Q.E.D.

Proposition 4.12. For h€, h*=h, a cyclic and separating vector
Y is in the domain of exp z(—Hy+h) for Re z€[0, 1/2], where Hpy=
—logdy, the vector

oo 1 s Sn-1
(4.24) Y(z)=exp z(—Hp+h)¥ = ), z"g dslg 1dsz...g ds,
=0 Jo “Jo 0
d§rrhdfpr-17s0z [z p Y

is holomorphic in z for Re 2€(0, 1/2) and strongly continuous in z for
Im z€[0,1/2]). If h, tends to h strongly then

(4.25) limexp z(— Hy+h,)¥ =exp z(— Hy+ h)¥
n
strongly for Re z€[0, 1/2]].
Proof. For z=it with real ¢, we have

hd 1 s1 Sn-1
% o as. dsz...S ds,dgrhdigei-swz. A0 pF
n=0 0 0 0
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= . 4 i tn-1 [ ¢
s L”S dtlg dtz...g dt,ot.(h)...ot. ()T
n=0 0 0 0
= u = u? 4YY = expit(— Hy + h)¥

where 0 =¥ (h), ¢=w,, ¢ =wy and Proposition 4.8 is used. Hence (4.24)
holds for pure imaginary z.

If H is any selfadjoint operator and e?¥¥ with pure imaginary z has
an ‘‘analytic continuation” % (z) holomorphic for Re z=(0,0) and con-
tinuous for Re z€[0,07], then ¥ is in the domain of e*#, Re z€[0, 0]
and ¥ (z)=e*"¥ due to the following argument:

Let H= glldE,~ and D be the union of ranges of E; —E_; for all L>0.

D is a core of e for any z. For each @<= D, we have
F(2), 0)=(¥, e*70)

for pure imaginary z. Both sides are holomorphic in z for Re z&(0, d)
and continuous in z for Re z€[0,0]. Hence the equality holds for all
z with Re z€[0, 0] by the edge of wedge theorem. Since D is a core of
e?H, the equality holds for all @< D(e?¥). Hence ¥ € D(e*¥) and ¥(z)=
e Y,

Therefore we obtain Proposition if we show that the right hand side
of (4.24) is holomorphic for Re z&(0, 1/2), is strongly continuous for
Re z€[0,1/27], and sequentially strongly continuous in h.

Due to (3.2), the sum in (4.24) converges uniformly in norm for
Reze€[0, 1/2] and over a bounded set of A. Due to Theorem 3.1, the
integrand in each term of (4.24) is holomorphic for Re ze(0, 1/2) and
continuous for Re z=[0,1/2]. Since the integrand is dominated by
l|]|#|¥|| irrespective of s, and z, we obtain the holomorphy of the integral
by Fubini’s theorem applied to Cauchy integral formula. We also obtain
the strong continuity in z by Lebesgue dominated convergence theorem
applied to the inner product with other vector and the norm. Hence we
have holomorphy and continuity of the sum by the uniform convergence.

Exactly the same proof as Proposition 4.1 shows that the right hand
side of (4.24) is sequentially strongly continuous in A.

Q.E.D.

Proposition 4.13. Let heR, h*=h, ¥ be a cyclic and separating
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vector, O=¥(h), ¢=wy and ¢=w, Assume that 1}?T=0=1}*¥ for
some 1, and l,. Then there exists an invertible A(z)€M for Re z&
[0, 1/27] such that A(z) is holomorphic for Re z€(0,1/2), strongly con-
tinuous for Re z€[0, 1/2], ||A(z)||<max(l}1/?, 1), [|A(2)7 || < max(l31/?3, 1),
A(s+it)=ufc?{A4(s)}, A(0)=1, A(1/2)7 =0, T(z)=A(2)?.

Proof. Consider #(z) of Proposition 4.12. We have
(4.26) ¥ (s+it)=expit(—Hy+h)T(s)=ul? 4§ (s)

due to (4.14). By Theorem 3 (8) of [2], there exists A=t such that
O=AY, ||A||<1}?, ||4A7Y|<13%. Hence

(4.27) T(it)=u?¥, U(1/2+it)=u??c?(A)V.
For a vector x and Q&0, consider
1(2)=(¥(2), Q*x).

Since ||¥(2)||<e""||¥||, f(z) is uniformly bounded for Re ze&[0, 1/2].
By Proposition 4.12, it is holomorphic for Re ze(0, 1/2) and continuous
for Re z€[0, 1/2]]. Furthermore, by (4.27), we have the following bounds

on the boundary lines:
[£G@0)| = |(u3*?, Q*x)| = | (uf*Q¥, %)|

<1 lllll,
[£(1/2+i)| = |(uf*a}(DF, Q*2)| = |(uf*c(4)QY, )|

<1 4][[|QZ|l/|Il.
Hence we have
|£(2)| = max(|| 4[|, D)I|QZ]][x]|.
This implies the existence of operators A(z) such that
f(z) =(A(2)QY, %), ||A(2)||=max((1'?, 1)

due to Riesz theorem and ||4]||<1}/2.
Since f(z)=(Q¥(z), ), we have



ReLATIVE HAMILTONIAN FOR FArTHFUL NORMAL STATES 193
Q¥ (z2)=A(2)Q¥, Q.

Hence [A(z), Q"JQ¥ =0 for any Q, Q'MW and hence A(z)s W

By interchanging the role of ¥ and @, we obtain B(z)& IR such that
B(it)=ul® and ||B(z)||<max(l31'2, 1). Since A(it)B(it)=uf'ul*=1, we
have A(z)B(z)=1. Similarly B(z)A(z)=1. Hence ||A(z)7}||=||B(2)||=<
max(lz12, 1).

Since ¥(z) is strongly continuous for Re z€[0, 1/2], we have the
strong continuity of A(z)Q¥ =Q'¥(z) for all QM. Since A(z) is
uniformly bounded, it is strongly continuous for Re z€[0, 1/27].

Since ¥'(z) is holomorphic for Re 2= (0, 1/2), we have

A(z)Qf;If=Qf9f(z)=(2m)—1§r(z—z')—lo/zzf(z')dz'

= {(Zni)“lgr(z - z')‘lA(z’)dz’}Q’W,

for any Q'€ and any simple closed curve I, encircling the point z and
contained in the strp {z; Re z=(0,1/2)}. Hence A(z) is holomorphic
for Re z€(0, 1/2).

The equality A(s+it)=u?’d{{A(s)} follows from (4.26) and ¥(z)=
A()?. Q.E.D.

Proposition 4.14. In Proposition 4.13, ¢%(h) has an analytic con-
tinuation to Im ze(—1/2, 1/2).

Proof. Since A(z) and A(z)"! is holomorphic in z for Re z&(0, 1/2),
the operator

(4.28) B(z)=A(z)"(d/dz)A(z)

is also holomorphic for Re z€(0,1/2). For pure imaginary z=it, we
t
have A(z)= u‘}""=Exp,<S ; io“i’(h)ds) and hence
0
B(it)=a}(h).

Since B(z) is holomorphic for Re z&(0, 1/2), B(— z)* is holomorphic
for Re ze€(—1/2,0). We also have B(it)=B(—iz)*. By edge of wedge

theorem, there exists an operator valued analytic function h(z) for Re z&€
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(—1/2,1/2) such that h(z)=B(z) for Re z&€(0, 1/2), h(z)=B(—z)* for

Re z€(—1/2,0) and h(it)=0¥(h). Q.E.D.
§5. Existence Proof (I)

Lemma 5.1. Let OV,

(5.1) F(t)=2m sech? 27¢,
(5.2) a)F=S°° 0
Then Og is in D(4¥) for Imze(—1/4,1/4), it is in Vg and satisfies

!
(5.3) a):Sl Y 4y 0.

-1/4

If 0=0¥, QeIN, then Or=Q¥ where ¢y =wy and
(5.4) (20

Proof. We have

(5.5) F(u)ESe"WF(t)dt—_— u(e“/4—e‘"’4)“1,

Hence Op=F(log 45)@ is in the domain of 4§ for Im ze(—1/4,1/4)
because e** F(u) is bounded for |Re | <1/4. We also have

14 -
S F(u)et*ds=1.
~1/4

Hence (5.3) holds.

Since ¥V is a convex cone invariant under Z;}‘ and F(¢)>0, we have
OpsVy. If 0=0Q¥, then (5.4) follows from (5.2) due to 47"*¥ =¥
Q.E.D.

Lemma 5.2. Let QM be such that Q¥ € Vy, 6¥(Q) has an “analytic
continuation” ¢4(Q)eM for Im z&€[ 0, 0] and ||0%;5(Q)—1||<L where
0 is any fixed number in (0,1/8). Let Qg be given by (5.4). Then c¥(Qg)
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has an “analytic continuation” ¢(Qp)€ M for Im ze(—86—1/4, 6+3/4),

(5.6) hy=0%(Qp)—2=0%,{(Q—1)r}
is in D, k¥=h,, ||hi]|<2L,

(5.7) 7, EY’(hQ:EXp,(S;IZ; d‘l;is(hl)ds>¥f
and

(5.8) leQExp,(S:/Z; — 01, (h)ds

satisfy Q. ¥, =0Q¥, ¢(Q,)eM for Im z€[ —06,, 0], and
ll6%5,(Q) — LIS (L2+ A+ L)L )er'?, ¢y =0y,
L’=(1/2){rLlog 2(0 —0,)}?exp{—nLlog 2(0 —0,)},

where 0, is any number in (0, 7).

Proof. By Theorem 3(7) of [2], Q¥ €V, implies that ¢¥(Q) has an
“analytic continuation” ¢¥(Q)eIM for Im z[0,1/2] and (d%(Q))*=
0t,;2(Q). (“Analytic continuation” here means a function continuous in
the closed strip and holomorphic in the interior.) By assumption, we also
have an ‘“analytic continuation” ¢%(Q)eM for Im z&[ -4, 0]. By edge
of wedge theorem, we have ¢%(Q)e M for Im ze[ 0, 1/2+07, (d4(Q))*
=0%,,2(Q) and

(5.9) llo?(Q—-DII=]lot;5(Q—D| =L, Im ze[ -0, 1/2407].

(see proof of Lemma 6 of [2].)

By (5.4), we have an analytic continuation
(5.10) 0%Qe)={"_olot(@F(—z,)reMm

whenever z=z,+2z,, Imz,€(—0,1/2+0) and Im z,e(—1/4,1/4) i..
for Im ze(—0—1/4, 3/4+0). Since Qz¥ &V, we have

04)4(Qp)20

by Theorem 3 (7) of [2]. Hence h¥=h,. Since F(0)=2, 1z=2 and we
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have the second equality of (5.6). By proof of Lemma 6(4) of [2] and
the equality 67,,(Qr—2)=(Qr—2)* we have [|h||<||Qe—2[|<2]|Q-1||<
2|jc¢,;5(Q—1)||<2L where the third inequality follows from proof of Lemma

6(4) of [2] and (d%(Q))*=0%.,:(Q).
Let

1/2 1/2
(5.11) /1=EXp,(S ;—a‘ﬁ,-s(hl)ds>—1+g o, (hy)ds.
0 0
By Lemma 5.1,
1/2 1/4
<S ot,-s(hl)ds>¥f=g 45Q:Tds—T =(Q—1)7.
0 -1/4
1/2
Since ¥ is separatingg 0t;s(hy)ds=Q—1. Hence the definition (5.8)
0

implies

(5.12) Q:=1-(Q—-1)>+0Q0:.
We have

4@ —1l1=1102(@) — 11> + {1+ lleX(@) — 1I}Igk@DIl,

Sn

br = ("1/2 -1 " ¢
lot@Dlls 3 Pdsy.. {7 as ot Bl llots )

n

= 5 o ] asliot ol

By (5.10), (5.6) and (5.9), we have
ot o hOIIS " 6% s ia o 4514(Q = DIIFC +ia(s))
<L S: |F (¢ + ia(s)) | d¢ =8z La(s)/sin 47a(s)

if a(s) is chosen such that
Im z—s+a(s)+1/4€[ -0, 1/2], |a(s)| <1/4.
If Imze[—0,, 0] and 8, <0, one can choose

a(s)=(s—1/49)(1—2(0—0,)).
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For |a(s)|<1/4, we have |a(s)(1/4— |a(s)|)/sin47ma(s)| <25 due to
| x/sin x| <7w/2 for |x|<7/2 and sin (7 —x)=sin x. Hence

[ “asliot . hl 22— 4@ -8 7L 1o 20-,)|

<nL|log2(0—0,)].

Since
L(n)lxr=e*—1—x<x%%/2, x=0,
n=2

we have

llef(@DI=L’, Im z&[ -0, 0.

By analytic continuation of (4.9), ¢{1(Q;) has the following analytic con-
tinuation:

1 1
o1 =Exp,({ 5 iz0,(h)ds )otQExp,({ ; —iz0%(ho)ds),
0 0
By (5.6), (5.9) and SF(t)dt:Z, we have ||ot;,(h))||S2L for 0<s5<0,
and hence ||67%;,(Q))|| < |l0%;5,(Q)|| exp4d, L<(L?+(1+ L)L )e"'2.
Finally, Q,%,=Q% follows from formula (2.15) of [37].
Q.E.D.

Lemma 5.3. Let QM be such that Q¥ € Vy, d2QeIM for Im ze
[—8,07, (0, 1/8) and ||o*;,Q—1||< Lo,

(5.13) L,<(4mlogd)2
Then there exists he IR, h*="h such that Q¥ =¥ (h).

Proof. We fix 0,=2""0, n=0,1,.... By Lemma 5.2, we obtain a
sequence of vectors ¥,, operators Q,=, operators h,=Y and positive
numbers L,, n=1,2,... such that ¥, =¥, ,(h,), ¥,=¥, h¥=h,, ||k,
<2L,,, wy =¢,, 0{"Q, has an analytic continuation ¢¥»Q, for Im z€
[=0,, 00, 110%3,(Q) = 1S Ly QF,=Q¥(E V), L,=(Liy+(+L,y)
L!,_)el»1/2 and
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(5'14) n 1_(1/2){7ELn 110g 2(67; 1—6 )}zexP{ ELn 110g 2(671 1 n)}

We prove that L,<27 "L, inductively. Assume that L, ;<2 UL,
We have

{mlog 2(0,-1—0,)}?L,  <n2(log 6 —(n —1)log 2)22-(»-D [,
<272(log 8)2Ly+ 2w2(log 2)%(n —1)22=(»-V L,
Since n22"<9/8, we have (log2)%(n—1)?2--1<(logd)? and
{mlog2(0,-,—0,)}?L, 1 <4n%*(log 0)*L,<1/4
Hence we also have
exp{ —7log 2(0,,—; —0,) L, } exp(L§'?/2)
Since L, <L,<27%, we have
L,/Ly =Ly +Q+L, )L, /L,
<274+ (14274)(1/8) exp(1/8))et/32<1/2.

This proves L,<27"L,.

Since ||k,||<2L,_,, h= )}, is norm convergent and hence lim &, =¥ (k)
by Lemmas 4.5 and 4.1. Since Q,¥,€Vy=Vy, , where ¥, =¥(h;+---+h,)
is cyclic and separating by Corollary 4.4, ¢! »(Q,) has an analytic continua-
tion ¢¥»(Q,) for Im z&(0,1/2) and (0%(Q,)*=0%2;,(Q,). Hence we
have the analytic continuation ¢%»(Q,) for Im ze[ —0,,1/2+0,] and by
proof of Lemma 6 of [2],

10, — 1= lot35,(Q) — 1| L,.
Hence lim||Q,—1||=0 and we have
Q¥ =1imQ, ¥ ,=¥(h).
Q.E.D.

Proposition 5.4. Let Q€M be such that J,Q¥ =Q¥ and c(Q)
has an ‘“‘analytic continuation” ¢%Q for Im z€[—1/2,0]. Then there
exists he IR such that h*=h and e°¥ =¥ (h).
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Proof. By assumption, Q¥ =J,Q¥ which implies 47'2Q¥ =Q*¥.
Hence ¢{(Q) has an “analytic continuation” ¢%(Q) for Im z&[0, 1/2] by
Lemma 6 of [2]. It satisfies ¢7,,(Q)=Q*, which implies 0¥(Q)*=
0%,;2(Q) for Im z=0 and hence for Im z€[—1/2,0] by an “analytic

continuation’. In particular

04(Q)*=0%,(Q).

Let 0,=¢%%, ¢,=w,,. By Theorem 3 (7) of [2], o ,(e’®)=exp
ta?,(Q)=0 implies @, Vy for real ¢.
By Lemma 7 of [27], we have

452Q0,=€'%0,,(Q)e ™0,

By Lemma 6 of [2], ¢%¢(Q) has an ‘‘analytic continuation” for Im z€&
[—1/2,0] and

lo3(Q)l| Sa=max{[|Q]l, ¢*1'[lo;,(Q)][}.
We now choose NN such that
exp(a/N)—1 < (4logd)~2
for a fixed 6<(0, 1/8). Then
15%45(e@ —1)]| = lexp{o245(Q)/N} 1]
< exp{[|04(Q)II/ N} — 15 (410gd) 2.

We can now apply Lemma 5.3 and find A,e9t for each integer
nEl:O, N:] Such that Q",N=@(n_1)/1v(h,,), h?::hn Then

N
¥ = Oy =T ( 3 hy).
Q.E.D.

Remark. Vectors e®¥ satisfying the condition of Proposition 5.4 are
dense in ¥V, which can be seen as follows.

The vectors 4y*x¥, x=IM, x=0 are dense in ¥, by definition,
Furthermore
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[[4Y4(x — =" |?<2]|(x — x|

for x —x'=(x—x')*€IM by equation (3.13) of [2]. Let x=SldEM x;=
%(EL—Ey)+Q/L)Ey 1 +(1—Ep), y1,5=og x1)(f§). Then

lim lim eY2.s¥ =x¥
Loee 8-+0

and hence Q z=0%;,y;, s satisfy

lim lim e9ne¥ =44V,
Lo g—+0

o“z”QL,ﬂ is an entire function of z and JyQ ¥ =Q; ¥ due to 0,4,(Q; s)
=vyr,8=y% s Hence Q; s satisfies the requirement for Q in Proposition
5.4.

§6. Existence Proof (II)

We use the technique introducted by Connes. (See [5].)

Lemma 6.1. Let @ be a cyclic and separating vector for a wvon
Neumann algebra Y on a Hilbert space O and heMM, h*=h+0. Let N
be a type I, factor on 4 dimensional space R, {u;;} and {u};} be matrix
units of N and W, and {e;;} be an orthonormal basis of K such that

u"jek’=6jkeu and u;_,-ek,=6‘j,ek,-. Let ﬁ]z=wt®m, 0<l<1 and

(6.1) =4V Qey; +(1- D)V (h)RQey,.

Then %, , is a cyclic and separating vector of SfTé, the modular conjugation
operator for %, , is JyQJ,, e=ey,+ ey, and the modular operator 4 for
Xp,, 1S given by

(6.2) 4( {\; ¢ij®eij)= ’Z]: (Aijmij)®eij,
(6-3) 41,=dy, A22=A!F(h):
(6.4) 41,={2/(1— )} exp(— Hy — j(h)),

(6.5) 4y, ={(1 =)/ A}exp(— Hy +h).
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Proof. Any Qe can be decomposed as Q=3Q;u;;, Q;;=
22U Qu;p,eMR1. For J=JRJ,, we have
k

(%20 Q7(Q)%4,5)
=27, Q11]w(Q1)T)+ 221 = )VH, Q12]¢(Q12)¥ (h))
+AM2A=DYEF(h), Q217w (Q2)¥) + (1 —2)(F(h), Q22]w(Q22)¥ (h)).

Due to ¥V, and ¥(h)E Vy, the right hand side is positive. Since J=
Jy®J, obviously satisfies JileJ=§iR’ (=MQRXN), Jx, =%, and is an
antiunitary involution, it is the modular conjugation operator for x,, by
Theorem 1 of [2].

Since wy, ,(1Qu;;)Q)=wy, (Q(1Qu;;)), 1Qu;; commutes with 4.
Hence 1®j,(u,,) also commutes with 4. Since u;;j,(uzz)e; =006,
we have

AIIZ Z mij®ez] Z Al/zmu®eu
ij

FOI' Q=ZQijuij and @=Qxh,x=2@ij®eij, we have Allexh‘)v:]Q*Xh,x.
Hence

(6.6) 41200, ¥ =JpQHhY = 45201, ¥

(6.7) 437°Q2¥ (k) =JyQ5:¥ (h) = 435, Q2:¥ (h),
(6.8) A12Q1,¥ (h) = JpQ¥(1— 2) 1122012
(6.9) A42Q0, ¥ = Jp QA7 2(1— )V 2W (h).

Since iﬁixhx is a core of 42, Q¥ (¥,=¥, ¥,=¥(h)) must be a
core of 4}/2. (6.6) implies that two selfadjoint operators 41{* and 4}'%
coincide on their core and hence must be equal. Similarly (6.7) implies

442=4}%,. Hence we have (6.3).

To prove (6.4) and (6.5), we first consider the case where £ is
replaced by hgz=h(f$). Then ¥(hg)=AY =j(A¥, T=A"F(hy)=
J(A T (hg) where A€, A1 and A=Expr<gzlz; 0%, (hg)ds). We
have
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JrQH¥ = 4Y2Q1,¥ = 4Y2Q 5 jy(A)¥ (hg)

llzjqr(A 1)Q1z¢(hﬁ) ]w‘("zr”zfl 1)Q12¢(hﬂ)

1/2
The inverse A‘1=Exp,<S ; —0“£,~s(hﬁ)ds> is an analytic continuation of
0
11
(6.10) utr=(upty=Exp( | 3 —iok(hs)ds)
0

1/2
=Exp (| 5 ~i(20)0%,,(hs)3s)

to t=—1i/2, where ¢=wgu,. By an analytic continuation of (4.15), we

obtain
47247 =exp((Hy —hg)/2)

which holds on AD(43'/%). (See second paragraph of proof of Proposition
4.12.) Hence we have

1IZQ12¢(hﬂ) /(- }*))llzjy{eXP((Hyr hﬂ)/z)}lew(hﬁ)
=(/(1—2))"%exp (— (Hy + j(h))/2)Q1.¥ (hg).

Since M¥'(h) is a core of 4};? and both 415? and exp(—(Hy+ j(hg))/2)
are selfadjoint, we have (6.4) for hg.

Hence
=/ =) exp(—it(Hy + j(hg)))
=(4/(1 =) j{exp(—it(Hy — hg))}
=(/(L= 1)) j{ug 44}

As B—+0, 4% for x,,, tends strongly to 4 for x,, by Theorem 10 of
[2], and uf? for = Wy(r, tends strongly to u?? for ¢=wygyy. Hence
we have (6.4) for a general h.

From (6.9), we have

432Qn ¥ =(A =)/ )24y 4%Q,, ¥ .

1/2
Since A*:Exp,(S ;Gil’s(hﬁ)ds> is an analytic continuation of (6.10) to
0



ReLATIVE HAMILTONIAN FOR FArruruL NORMAL STATES 203
t=1i/2, we obtain as before
42 A*=exp(—(Hy—hg)/2).

By taking the limit 8— +0, we obtain (6.5). Q.E.D.

Remark. If u’ is a unitary operator in 9’ and
2= Qe +(1 -2 W' (h)Ress,
then

2'=1Qj(u)+ v ®j(ussz)

is a unitary element of iﬁt’ and x=1i'%,,. Hence modular conjugation
operator and modular operator for such x are given by &'(Jy®J,)(4')* and
i’ 4(a")*.

Lemma 6.2. If h,eI, h¥=h,, im¥(h,)=0 (strongly), @ is cyclic
and separating and YU =¥ (h,)=1*¥ for strictly positive 1, and 1,
independent of n, then h=w-lim h, exists and O =¥ (h).

Proof. Let x,=x,, , be defind as (6.1) and
1=12TRe;; +(1—-)V20Re,,.

Then @=1im¥(k,) implies x=limx,. x is cyclic and separating and by
Theorem 10 of [2]

(6.11) lim 4% = 4i, lim di,,, = 43
n n

where the convergence is in the strong operator topology and is uniform
over a compact set of Z.

Since (4x,)h ®usaj(ur))=4¥,(1®usj(u11), and (4@ usj(ur)
=d4¥(1Qu355(uy,)), we have

(6.12) limexp it( — Hy + h,) =exp it(log(dy)s1)

by (6.5) where the convergence is uniform in ¢ over a compact set.
By multiplying e~? and integrating over t€[0, o), we obtain
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(6.12) Hm {(—Hy+h,)+ i} ={log(dx)z + 1}

Hence, by subtracting (—Hy+1)"!, we have
lim(—Hy+i) th,{(—Hyp+h,) +i}
=(—Hp+i)t—{log(dy); +i}7L.
By Corollary 4.11, ||A,|| is uniformly bounded. Hence we obtain
(= Hy +2)~ h,[{(— Hy + k) +i} 1 —{log(dy)gr + i} || —0.

Hence (—Hy+1i)1h,y is strongly convergent for any 7% in the range of
{logd,, +i}!, which is a dense set. Since ||(—Hy+1i)7th,|| is uniformly
bounded, we have the existence of

lim (— Hy+i)th, = hy.

For &¢,eD((—Hy+1i)*), we have

[(hoé1, (—Hyp+i)*E,)] =lim|(h,,$1, €2)| <sup||h,|l[I€1]I]€2]]-

Hence ho&,€D((—Hyp+1i)) and ||(— Hy+1i)ho||<sup||h,|]. We have
w-lim h,=h=(—Hy+1i)h,.
By (4.14), we have
(6.13) u?={exp it(— Hy+h,)} 45",

which is strongly convergent, uniformly in ¢ over a compact set, due to
(6.12), where @,= Wy,

By Proposition 4.13, there exists A, (z)eIMM for Re z€[0,1/2]
such that A,(z) is holomorphic for Re z=(0, 1/2), strongly continuous for
Re z€[0,1/2], ||A,(2)[|Smax(l}'?, 1), ||A,(2) H|=max (313, 1), A,(s+it)
=ufo}{A,(s)}, A(0)=1 and A,(1/2)¥ =¥ (h,).

Since A,(it)Q'¥ =Q’ {exp it(—Hy+h,)}¥ and A4,(1/2)+ie)Q'¥ =
Q' utrtat{4,(1/2)Y¥ =Q'{exp it (—Hy +h,)}¥(h,) for Q'€ are strongly
convergent, uniformly over real ¢ in a compact set, and since ||4,((1/2)
+it)|| and ||4,(it)|| are uniformly bounded, 4,((1/2)+it) and A,(it) are
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strongly convergent, uniformly over real ¢ in a compact set.
Since A,(z) is holomorphic for Re z€(0, 1/2) and is continuous and
uniformly bounded for Re z€[0, 1/27], we have

(6.14) e’A,(z)= (271')‘151"(2' —it) e A, (it)de

—(2n)-1g°° (z—it—1/2)1e-G=i12PA (iy4+1/2)ds
for Re (0, 1/2). Hence

(6.15) (d/dz)e?’A,(z)
=(277:)‘lga_°m(z —ir—1/2) %e-G—i2PA (it 1/2)dt

—(277.‘)‘1S1(z —it)%e A (it)dt.

Since ||A,(i¢)|| and ||A,(it+1/2)|| are uniformly bounded in ¢ and n, the
integral converges uniformly in n. Hence (6.15) is strongly convergent
as n—oo, uniformly in z over any compact subset of {z; Re z=(0, 1/2)}.
By 12T =2¥(h,)=13?¥ and @=1im¥ (h,), we have [12¥ =0 =[}2¥,
By Theorem 3(8) of [2], there exists 4= such that AV =0, ||4||<1}/2
and ||47Y||<13'2. Then A=Ilim A,(1/2).
For Q'MW we have "

ll(g3"{A,(1/2)7 '} —0i{4*})Q'D||

=1Q"(67"{A(1/2)" 1} ¥ (h,)—07{A"}D)
—Q'ot{A,(1/2) (¥ (h,)— D)|

= QINCAF o — 4N +[1Q 1125 2|[# () — D]

which converges to 0 as n—oco uniformly in ¢ over a compact set due to

lim¥(h,)=0 and Theorem 10 of [2], where ¢ =w,. Hence
lim 03{A,(1/2) 1} =07{ 41}
n

uniformly in ¢ over a compact set.
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By (6.11),
ufPn=AP(4y, )3 {4/ (1= )}

is strongly convergent, uniformly over a compact set of i.
Since ||A,(z)7!]| is uniformly bounded, the analyticity and the con-
tinuity of A,(z) imply the same properties for A,(z)~!. Hence

(6.16) A,(s+i) T =07(A () Duf®=uf*o7n(A,(s)™)

is strongly convergent as n— oo, for s€[0, 1/27], which is proved in exactly
the same way as before by use of the Cauchy integral formula of the
form (6.14).

Combining the convergences of (6.15) and (6.16), we have the strong

convergence of

A,(2)71(d/dz){e”*A,(2)} =F,(2),

as n—oo uniformly in z over any compact subset of {z; Re z€(0, 1/2)}.
By Theorem 1 of [37] and (4.6), we have

(d/de)ui*=iu"*ai(h,).
Hence
(6.17) e *'F (z)—2z=0",,(h,)EM
for z=1it. Hence
(e7*’F,(2)—22)Q'T =Q 43h, ¥, Q' W

which holds for all z satisfying Re z€[0, 1/2]. Since w-lim h,=h and

F,(z) has a strong limit, we have

lim(e~*'F ,(z)—22)Q'¥ = Q' 43h¥

for Q' WUy, (see §3 of [2] for the definition of y,) and Re z&(0, 1/2).
Since limF,(z)e W, this implies the existence of an analytic continuation
o¥(h) of a¥(h) to z in {z; Re z€(0, 1/2)}.

By (6.15) and the uniform boundedness of A,(z), we obtain the
uniform boundedness of ¢%(k,) over any compact subset of {z; Re z€(0,
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1/2)} and over all n. Hence lim 6%(h,)=0%h) and
n

diph dinih,.. AGh,T
=0%5,(hp)...0% ¢ brtny (BT
is strongly convergent as n—oo for ¢;>0, ¢;+---+¢,<1/2.
Since ||A,|| is uniformly bounded by max (|logl,|, |logl,|), we have

lim @(h,) =¥ (h)

by Lebesgue dominated convergence Theorem (for inner product with other
vectors and for its norm). Hence @ =¥ (k). Q.E.D.

Theorem 6.3. If 1,=0,>0 and 1T =0=13?¥ for cyclic and
separating ¥ and O, then there exists heI such that h*=h, O=¥(h)
and logl,=h=logl,.

Remark. If ¢ and ¢ are normal faithful states satisfying l,¢ =9 =1,¢,
then the unique representative &, and §, in a fixed canonical cone Vy
satisfies [1/%6,=¢,=1}/%, by Theorem 3(8) and (9) of [2] and hence
there exists A€M such that A*=h, 0 =%(h) and logl,=h=logl, due to
this theorem.

Proof. By Theorem 3(8) of [2] and the assumption [}/?¥=0=]}/2¥,
there exists QM such that O=Q¥. By Theorem 3(7) of [2] and
P >Q¥ 2132¥, (4¥#Q47*)~eIM for Im z€[0,.1/2] and

12> (4z14Q4) %) = 1}/2
where the bar indicates the closure. Let
k=log(4z'*Q4¥*)".
Then k=Wt and logl, =2k =logl,. We have

0 =QF =AY (47" *QAY T = 4}/ +eP.

Let kﬂzgo“t”(k)fg(t)dt where f§ is given by (3.11) of [2]. Then
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k%=kg, ||kgl|<||k|| and limk,=k. Hence
80

[|43/%(e*s — eM)Z || < 2]|(e*s — eM)Z'||2—0
by (3.13) of [2] and 4}%(e*s—e*)¥ = Jy(e*s—e*)¥. Let
0=Ad}Y4e*¥.

We have @z V¥V, and lim @,=0.
Since gfg(t)dt=1 and f§(¢)=0, we have

logl,=2ks=logly, 112z ek = 1}/2.
By Theorem 3(7) of [ 2], we have
1> 0,213,
Since
0f(exp kg)=expoi(ky)

and o“,”(k g) has an analytic continuation to an entire function
o‘f(kﬁ)=go‘¥’(k)fg(t—z)dtei)ﬁ,

(dife*s 45i*) has an analytic continuation to an entire function expd¥(kp).

Hence
Os=(dy et dzt ¥ =exp(0t;,(kg)¥.

Since Q, =0?;,,(k) satisfies JpQ,¥ (= 4}/?Q¥¥)=Q,¥ and has the property
that 0$(Q,)=0}_;,(ks) has an analytic continuation to an entire function
0%(Q,)=0%_;4(kg), Proposition 5.4 is applicable and there exists hgzeMM
such that @z=¥(hg), hf=hg. Lemma 6.2 then implies Theorem.
Q.E.D.

Remark. The above proof implies that if @ = 4}/4e*¥, k=k*=IN, and
logl,<2k<logl,, then there exists heIM, A*=h such that O =¥%(A), and
logl,<h=<logl,.
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Note added in proof: Theorem 3(8) of [2] has been misused in
proofs of Propositions 4.13, 4.14, Lemma 6.2 and Theorem 6.3. Hence
we need the assumption [}/%2w,=w,=1}'%w, in Propositions 4.13 and 4.14.
However, Lemma 6.2 and Theorem 6.3 hold without modification.

For Lemma 6.2, we modify its proof after (6.13) as follows: Since
h—h, is weakly convergent to 0 and (—Hy+i+h)~! is strongly conver-
gent,

(—Hy+i+h,) " —(—Hy+i+h)
=(—Hy+i+h) Y (h—h,)(—Hy+i+h,) !

is weakly convergent to 0. By (6.12), (4x)1 =exp(—Hy+h), which
implies that @ and ¥ (A) have the same modular automorphisms. Hence
O =e*¥ (h) for a selfadjoint o affiliated with the center. Then (4y4),; is
calculated to be exp(—Hy+h+ca). Hence a=0 and O =¥ (h).

For Theorem 6.3, [}?¥T =0=1}?¥ directly implies @ = 4}/*e*¥ for
a ket and log [, =2k =log [,.






