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Relative Hamiltonian for Faithful Normal States
of a von Neumann Algebra
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Huzihiro ARAKI

Abstract

Let W be a cyclic and separating vector for a von Neumann algebra 5ft
and Jr be its modular operator. For any elements Qi,...,Qn in %R and complex
numbers 2r lv.., zn such that Re Zj^>Q and I Re z^l/2, F is shown to be in
the domain of A^Q,...A^Qn and \ApQi... A'w«QnV\^\Ql\...\Qn\\Vl

A self adjoint operator h=h(<p/</))^'>ffl is called a Hamiltonian of a faithful
normal state p of 9# relative to another faithful state 9) of %R if vectors £„
and £$ representing <p and <p (in the canonical cone F£/4) is related by

f,= £ (-l
n = 0

The operator

is shown to be an intertwining unitary operator between modular automor-
phisms a\ and <s\ for states ^ and (pi

The relative hamiltonian h(^/^) is unique for given states (p and (p. It
exists and satisfies log/1^-h(y?/^)^log/2 if / J /2^^^^/2

1/2^, where ^j^^g
means that 0j — 02 is in the canonical cone Vy*. In particular, if /^
then h((p/(/)) exists and satisfies the above inequality.

The modular operators As<p and Jff are related by

where / is the common modular conjugation operator for %v and ^. The
chain rule h(^1/^2)4-h(92/^3) = h(^1/^3) is satisfied.

§1. Introduction

Let 2Ji be a *-algebra of finite matrices and (pQ be a faithful tracial

state on 3K. Then every positive linear functional (p on 971 is uniquely

Received December 7, 1972.



166 HUZIHIRO ARAKI

represented by a positive element p9 of 2ft by

(1.1) ?(*) = Po(P,*), *e2R.

The corresponding modular automorphism 07 is given by

(1.2) <rK*) = pJf*p;«, *e9W.

The Z,2-norm ||^||2 = ^o(^*::c)1/2 makes Wl a Hilbert space which we shall

write «t>. The vector corresponding to leSJl is written as ?0.

To each ^e2JlJ, there corresponds a canonical vector ^ = pj / 2f0
 sucn

that the expectation functional a)^ by the vector $9 is #?. The set of £9

is a selfdual convex cone 2ft+<?0
 m §> which has been denoted as FJO or

F|£4 in Q2]. The modular conjugation operator / for £9 is common for

all faithful ^e2ftj and is given by

(1.3)

The modular operator A^v for $9 is given by

(1-4) Jt,xe<> = P9xP?£Q.

In statistical mechanics, h9= — Iogp9 for a faithful ^ e TO J is called a

Hamiltonian, (5% is called a time translation automorphism and cp is called

the Gibbs state for this Hamiltonian (with an inverse temperature 0 = 1).

We shall be concerned with a Hamiltonian of a faithful state cp relative

to another faithful state 0 defined by

(1.5) h(?/0) = &,-A,

The original h9 is h(^?/^0). Since a tracial state is not available for a

purely infinite von Neumann algebra, we are forced to work with the

relative Hamiltonian in the general case.

From (1.2), we immediately see that the unitary operator

(1.6) M?* = PiV/

intertwines modular automorphisms of (p and 0:

(1.7) tt?*<rf(*) = <r?(*)n?*, x^m.

The operator in (1.6) has the following perturbation expansion
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(1.8)

n=Q

where /i = h(<^/0).
For two faithful states 0 and q> in 2JIJ, there exists a unique

e2ft such that A(<^/0)f(/) = c^. It is the Radon-Nikodym derivative satisfy-
ing the chain rule [2T\ and is given by

(1.9)

which has the following perturbation expansion:

(1.10) £,

where the integration is over the following simplex

(1.11) /i'zs{(^,..., AJ; A^O,..., AB5:0, 1/2^ + -.. + !„}.

These expansion formulas are of the same form as the covariant per-
turbation expansion in an interaction picture used in quantum field theory

and has been discussed in p] in the Banach algebra context.

The purpose of the present paper is to show that the relative hamil-
tonian h(<p/0) exists for a certain class of the pair <p, 0 in 5D?J, it is

unique and it satisfies (1.7), (1.10), the chain rule

(1.12)

and

§2. Multi- variable three-line theorem

The following is an immediate generalization of the three-line theorem
of Doetsch to the case of many complex variables.

Theorem 2.1, Let f(z) be a function of n complex variables z =
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(Z-L...ZH) satisfying the following two conditions:

(i) f(,2r) is holomorphic in the tube

(2.1) T(B) = {z',Imz^B}

where B is an open convex set in Rn.

(ii) f(z) is continuous and bounded in the closure T(B)

Let

(2.2)
X

Then logg(j) is a convex function of

Proof. We have to prove the inequality

(2.3) lo

for O^^l, ya^B and

If g(y0) = 0 at one point y0, then f(A; + jj0) = 0 for all x^Rn and

hence f(z) = 0 identically (by the edge of wedge theorem if j0e95). In

this case, logg(y)= — oo for all y^B and (2.3) holds. We now assume

that f(z)^0 and hence g(y)^0.

For each ya and yb, we may restrict our attention to a compact

convex subset of B containing ya, yb and a non-empty interior. Hence

we may assume that B is compact without loss of generality.

First consider the case where ^ ya + (l — fy yb^B for 0<A<1. Consider

a function of one complex variable ZQ:

If Re2r0e(0, 1), then fx(zo) is holomorphic by the tentative assumption,

continuous and bounded in the closure. By Doetsch's three-line theorem,

log sup 1^(^ + 1(7)1 is a convex function of A in Q),l]. Since the supremum
a&R

of a family of convex functions is convex, we have the convexity of

sup log sup | f X(A + iff) | = log g(A ya + (1 - A) yb)

in ^ and hence (2.3).

For general points ya and j& in B, we consider a sequence of points
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yn
a and yl such that lim y%= ya, lim y%= yb and ^ y? + (l — ̂ ) J?^^ for

0 < A < 1 and all TI. Instead of f, we first consider the function

f,(*) = f(20exp(-0S*J). 09 >0.)

For compact B, i^(z) tends uniformly to 0 as z tends to oo in T(B).

Let

Then it is continuous in jeB. By what we have already proved we have

By continuity, we have

We can now complete the proof by showing that

for each y^B. First we have

|exp(-/?I>?)| ^expO? sup Z j|)->l
^eS

as /?-»0. (S is assumed to be compact at this stage of the proof.) Hence
for sufficiently small /?,

for any given £>0. There exists x such that

For this x, we have i^(x-\-iy)\ ^g(j) — e for sufficiently small /?. Hence

for sufficiently small /? for any given e>0. Q.E.D.

Remark, The convexity of log g( j) implies the convexity of g(j).
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By considering exp f(z) instead of f(z), we also obtain the convexity of
sup Re f(# + i y).

X

Corollary 2.2. Let B in Theorem 2.1 be a simplex

B = I«n = {y; J1>0S...J yn>0, a>yi + •- + ?„}, a>Q.

Then g(y) takes its maximum value in B at one of (ra + 1) extremal points

of B: J° = (o,..., 0), ^ = (a, 0,..., 0), ^ = (0, a, 0,..., 0), ..., A» = (0 f . . . , 0, a).

Proof. Since log g( y) is convex, it takes its maximum value in a

compact convex set B at one of its extremal points.
Q.E.D.

§3. Multiple KMS Property

Theorem 3.1. Let W be a cyclic and separating vector with a modular

operator Aw. It is in the domain of

(3.1) J^1J^a...^-0. = A(*)

if Qk<=%fl, k = l,...9n, and z = (zl...zn)<=T(-Il
n

12). The vector valued

function A(z)¥ of z is holomorphic in the tube T( — 7^/2), strongly con-

tinuous and uniformly bounded in its closure T( — /^ /2):

(3-2) \\A(zW\\^\\n\\Qi\\" '\\Qn\\.

Proof. We prove Theorem by induction on ji. When n = 0s there is
nothing to prove. Assume that Theorem is true for n<m except that the
strong continuity is temporarily replaced by the weak continuity and

consider the case n = m.

Let 0eD(Jp). Then 0eD(JSrzl) for Im ̂ eQ-1/2, 0]. Consider

By Lemma 4 of p], we have
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Hence 02 is a uniformly bounded and strongly continuous function of zl

for 2r1eT( — /i /2). By inductive assumption, @1 is a uniformly bounded

and weakly continuous function of ( z 2 , . - - , zm)^T( — I^?.l). Hence f(*)

is a uniformly bounded continuous function of z = (z1,...9 zn) in T( — /i /2)

XT( — I^-i), which contains T( — /J/2). Since $2 is holomorphic for

^eTC-/!/2) and ®l is holomorphic for (*2,..., zJeTC-/!/^), f(*) is

holomorphic in T(-/];/2) xTX-JJ/2!) by Hartogs' theorem.

We now consider |f(*)| when Im z is at one of extremal points of

We have

If Im Zj = Q except for j = k and Im zk=— 1/2, we have

where A;/ = Rez / and Q(t) = A^QAylt. Hence we have

for all 2:eT( — /J/2). By Riesz theorem, there exists a vector ®(z) such

that f(*) = (0(*), 0) and I^WII^I ISFII I IOi l l " ' !^ ! ! - Hence 0! is in the
domain of Aizi and (3.2) holds for ?i = m.

Since f(z) is holomorphic in T( — /J/2) and continuous in, T( — /J/2),

the uniform boundedness implies that 0(<2r)=A(z)5T is weakly continuous

in T( — /J/2) and weakly holomorphic in T( — /J/2). Since the weak and

strong holomorphy are the same due to Cauchy integral formula for

polycircles, we have the desired properties for n — m.

To show the strong continuity from the weak continuity, it is enough

to show the continuity of the norm. This follows from the next Theorem.

Q.E.D.

The following Theorem states a multiple KMS property and has been
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derived in somewhat different but equivalent context in []1], except for (4).

Theorem 3.2, There exists a function F(*) of z = (zl9..., z^) for a

given cyclic and separating vector ¥ and operators Ql9...9 Qn+l^Wl such

that

(1) F(z) is holomorphic in zeT( —/*),

(2) F(z) is continuous in ,zeT( — /*),

(3) F(z) is uniformly bounded in z^T( — /J):

(3.3) |F(z)|

(4) if z^T(-IlJ and

then F(» = (0i, $2) where

non-negative real number satisfying

1/2 + ImC*! + • • • + ^_i) ̂  a ^ - 1/2 - Im(zA + • - • + -»„),

(5) (/" Im 2 = 0, //?««

F(z) - a>r(e,+ie.(*,)C.-i(*.-i + *.)•• -<?i(^i + ' ' ' + *„)),

(6) z/ Im 2^ = 0 except for Im Zj=— 1, £/&ew

z) = fl)r(^X*y+--- + O...^i(A;1 + --- + O^+1...^1(a;^

- = Re^- and Q(t} = A^QAy1*.

Proof. Let QSl/3 = Qj(f^) where /g is given by (3.11) of [2] and the
notation Q(f) is given by (3.7) of pT], Qj,p(t) has an analytic continua-
tion ^/3(<2r)e9Jl for any complex number 2 and
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is an entire function of z. By Theorem 2.1, |F^(,2r) — F^\z)\ for ze

T(-/J) is bounded by the maximum of |F*(*-i7(''0-F^*-iA(>>)l
for / = 0, 1,..., n and real x where A(y) is as in Corollary 2.2 in which

we set a = l.

By usual KMS condition, we have

Since \\Qj.p\\^\\Qj\\,limQj,p = Qj and Urn Qfifl = Qf, |F*-F*' converges
0-^0 /3-+0

to zero uniformly in z in any compact subset of T( — /*). Let F(z) =

lim F^(2r). As the uniform limit of a continuous and holomorphic func-
£-0
tion, F(z) is continuous on T( — /J) and holomorphic in T( — 7J). Since

2> (3) is also satisfied. Hence F(*)

so constructed satisfies (1), (2), (3), (5) and (6). It remains to prove (4).
Consider

in the domain

f(z) is holomorphic in this domain.

If Im (*! + ••• + *„+!) ̂ -1/2, then

By the weak continuity of Theorem 3.1, f(z) is continuous in zeT( — /J+2i).

At Im^ = 0, we have f(2r) = 0. Hence f (*) = () identically by edge of
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wedge theorem. This proves (4) for z e T( — /J) satisfying

- a + lm(zl + • • • + 2rA-i) > - 1/2, Im(2rA + • • • + z J + a > - 1/2.

For a fixed zl...zk-l, we obtain (4) for zeT( — /J) satisfying

by the weak continuity. For fixed zk...zn+i, we then obtain (4) for

*eT( — IJ) satisfying

by weak continuity again. Q.E.D.

§4. Relative Hamiltonian

Proposition 4.1. L0J AeSft, h* = h and W be a cyclic and separat-

ing vector. Then

(4.1)

converges absolutely and uniformly over bounded h, where the integrations

are over the region

(4.2) Ji/2 = {(^...O; *i^0,..., *^0, ^ + ... + ̂ ^1/2}.

W(h} defined by (4.1) is in VW9 namely the closure of J^42K+F [2]. If

a sequence hn converges to h strongly, then W(hn} converges to W(h)
strongly.

Proof. By Theorem 3.1, we have

Hence (4.1) is dominated by 2(n^~l\\h\\n\\W\\ = e^\W\\ and hence con-

verges absolutely and uniformly over a bounded set of h.

Since converging sequence is uniformly bounded and multiplication is

continuous on a bounded set, we have

lim
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for each tl...tm. By Lebesgue dominated convergence theorem, we have

the strong convergence (i.e. weak convergence plus the convergence of

norm) :

(4.3)
n

for any Ll functions fi...fm, where

We shall use f% given by (3.11) of [2].
If F(zl...zn) is a vector valued function holomorphic in {z ; \ Zj — zj \

and bounded by A, then for \Zj — Zj\^d/29 we have

. (4.4)

^4: Ad'1.

Hence \\F(z)-F(z')\\^4A8-1\z-z'\ for \z]-z*i\£8/2, |*J-
Since

is holomorphic in z = (s1 + itl,...9 sm + itm) for Re ze/J/2 and bounded

uniformly for a bounded set of Aw, it has the equicontinuity in (£ l5 ^ + ^2?

.. . .^H ----- hiw) and hence

lim As^hn(f%}...A^hn(f%W = J^A.. . . J J-A.y
/S-» + 0

strongly and uniformly over n for each fixed (sl...sm) in /J/2. The same
equation holds when Aw is replaced by A.

Furthermore,

where

Hence by (4.3) we have
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Therefore, by taking the limit as £— » + 0 and exchanging the order of limit

in n and, #, we obtain

lim As
¥

lhn...A¥
mhn¥ = As

w
lh...A¥

mh¥

for each (Sl...sm

Since As^hn...A
s
w

mhJF is uniformly bounded by (sup ||&J|)W||F||, we have

by Lebesgue dominated convergence theorem.

We now show that F(A)e Fr. Let hft = h(f%). Then ||^||^||A|| and

lim A£ = A. If we show W(h^ Vw, then r(A) = lim F(A^)e Vw.
^Q-»-t-0

The closure of Awh^A¥
s is given by

A^( - is) = (A^hA^f^t + is)dt e M.

Hence

Changing integration variables to 5X = tl H ----- h tn, s2 = ^2 H
we obtain

°° f l / 2 fsi fSn-l

(4.5) y(A / ? )=S\ d5l d52...
»=oJo Jo Jo

G l /2
; hfi(-isy

where the expansional Expr is defined in

By formula (3.5) of [3], we have

G l /2
; hft-is
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Since

= JTh^(i(Sl - 1/4)) . . .hf(i(sH

we have

G l/4 \ / f l / 4 \
; hff( - i(s + l/4))ds W = JFExp,( \ ; hff(i(s - l/4))da W.

o / \Jo /

By formula (2.10) of [3], we have

G l /4
;

Hence

where

Q.E.D.

Definition 4.2. LeZ ̂ e5K{, 0e5KJ anJ £,,, ^f/J &g unique representa-

tives of <p and (/) in Vw. If f^ = f0( — A), AeSJJ, h = h*, then h is called

a Hamiltonian of <p relative to 0 and denoted by h(<p /</>).

We shall prove the uniqueness in Lemma 4.6.

Remark. There is an unfortunate small discrepancy in the notation of

mathematicians and physicists. As explained in Introduction, the time

translation automorphism of physicists differs from the modular automor-

phisms of mathematicians by sign of the variable, which also causes a

sign change in the statement of KMS condition. In the present definition,

it would be simpler mathematically to call —h as a relative hamiltonian,

but we would like to avoid a further discrepancy in terminologies and we

define the hamiltonian as it appears in statistical mechanics. In the present
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article, we follow mathematician's notation regarding modular automor-

phisms, MSK conditions and inner product of a Hilbert space.

Proposition 4.3. Assume that h(<p/</>) exists for faithful (p and <]) in

9JJJ. Let 07 and o~f be modular automorphisms for (p and 0. Let

(4.6) n?*

(4.7) fi?*

(4.8) (*?*)*=*?*, ufuTl>

(4.9) uffff(x) = ^(x)uf,

Proof. The first equation in (4.8) follows from definition. The second

equation in (4.8) follows from formulas (2.14) and (2.15) of Q3]. To prove

(4.9), we consider

where &=-h(<p/0), hft = h(f%) and f% is given by (3.11) of [2]. we

first prove (4.9) for (p$ instead of (p.

We have

where

(4.10) hft(z)

We compare two functions

(4.11) Fj(0 = <
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and

(4.12)

where x,

G l / 2
;

and the second equalities of (4.11) and (4.12) are due to (4.5). We shall

first prove that kt and kt have analytic continuations to the same entire

function and &,_,- = £,.

By formulas (4.2) and (4.4) of pT], we have

= Expr(V ; -^(-
\Jo

By formula (2.8) of [3], we have

Expr(\ ; -iA,g(-
\Jo

The right hand side is an entire function of t and its value at t = ± is is

given by

due to formula (2.8) of £3] where s is real positive. Hence the analytic

continuation of ExpJ\ ; —ih0( — ff)dff] to z = t±is is given by
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By formula (2.11) of [3], we have

Hence

rt+it2

We also have

G l / 2
; -/^(i

due to h0(-iff)* = h0(iff) and formulas (2.17), (2.14) and (2.15) of [3].

Hence

Therefore kt and kt have analytic continuations to the same entire func-

tion and kt-i = kt.

Since Exp r f \ ; — ihp( — (T)d(T J has an inverse

for all z = t±is, k^1 and £^x have analytic continuations to the same entire

function and k^{ = kjl.

Returning to F1(^)9 it has an analytic continuation to z = t — i/2:
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On the other hand F2(z) has an analytic continuation to z = t + i/2 :

F2(t + i/2) = (A*xA¥, Ji-'^C&r 1 7

Since kz = k29 they coincide. Hence the ^-automorphism

satisfies the KMS condition for (p^. Hence it must be the modular auto-

morphism of (ppi

If /?-» + 0, hp tends to h scrongly. By Proposition 4.1, V(h^ tends

to W(h) strongly and hence <p0 tends to cp in norm. By Theorem 10 of

Q2], fftf(x) tends to G%(x) strongly for x^Wl.

On the other hand, ^(/^...d"'/'^/^) converges strongly to G^JJi)...

0fB(&) and hence u%** and u1*+ converge strongly to uf and uf by

Lebesgue dominated convergence theorem. Hence we have

which proves (4.9). Q.E.D.

Corollary 4.4. If W is cyclic and separating and h^yjl, h* = h,

then W(Ji) is also cyclic and separating.

Proof. By the proof of Proposition 4.3, W(h) satisfies KMS condition

relative to the group of ^-automorphisms

where

and the group property of the *-automorphisms follow from the cocycle

equation
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which is formula (4.2) of p]. It is known that a KMS state is faithful

if it is faithful on the center.

Let E be a central projection. Then E{W(K)} = (EW)(Eh), where we

restrict our attention to EWl and the restriction EAW of Jr (which com-

mutes with E) is AE¥. Since W is separating E¥^Q unless £=0.

We now prove $(A)^o for any non-zero cyclic and separating 0. We

then have E¥(h)^Q and hence W(h) is separating for M. Since

Fjr, W(K) is then also cyclic and the proof is complete.

To prove 0(h)3=Q9 we define

The integrand is continuous for Re seQO, 1/2], holomorphic for Re^e(0,

1/2) and uniformly bounded by ||&|h|0|| for Re*eE[0, 1/2]. Hence $Z(K)

is continuous for ResreQO, 1/2] and holomorphic for Imze(0, 1/2).

Next we prove the following formula:

where t is real,

and <p = cd#. If this formula is proved, then $(/&) = 01/2(A) = 0 implies

®ii2+itW = ® and hence 0z(h) = Q by the edge of wedge theorem. In
particular 00(&) = 0 = 0. Since (^^0 by assumption, we obtain 0(A)=£0.

Since w? is a unitary operator strongly continuous in h and ®z(Ji) is

also strongly continuous in A by the proof of Proposition 4.1, it is enough

to prove the formula when h is replaced by h/3 = h(f<§). For h^ the

formula reduces to

which holds for Re* = 0 due to the formula (2.8) and (4.2) of [3] and

hence for Re^e^O, 1/2] by the edge of wedge theorem, Q.E.D,
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Proposition 4.5. If ® = W(h), then ®(-h) = V. If ^^(Aj) and

®l(h2), then Q^

Proof. First we consider

Then we have

G l / 2

i

where hl/3(z) and h2^0(z) are analytic continuations of

and h27/3(t) = ff^(h27/3)9 and 0 = fl)r,
By Proposition 4.3, we have

G * \ /ri
; z'&1/3(s)ds) = ExpJ \ ; ithl/3(ts)

o / \Jo

By analytic continuation of the right hand side, we obtain the analytic

continuation of the left hand side:

rn ; izhl/3(zs)ds\

Hence

By formula (3.10) of

G l / 2
;
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In the limit /9-» + 0, &1/3 tends to hl9 and hence $1/3 tends to 0l

strongly. By the proof of Theorem 10 of Q2], Jjfltf tends to J^ strongly

(uniformly over bounded t) and hence

tends to

which is an analytic continuation of

Therefore A27/g tends to A27 strongly and ®i/3(h27/3) tends strongly to

*i(A2y)- BY Proposition 4.1, yr(hl0 + h27^ tends to F(A1 + A27). Hence

In the limit f— > + 0, A2y tends to A2 and hence by Proposition 4.1

By taking hz=-hl, we have ®(-h) = ¥ when 0 =

Q.E.D.

Proposition 4.6. For '̂vew faithful 0 «W6/ ̂ eTOJ, h(^?/0) w unique

if it exists.

Proof. Any cone Fr is related to any other cone Fy' by a unitary

w'eTO7: z^ /Fr
r=Fr '. Hence the choice of Fr does not affect the defini-

tion of h(0>/0). We fix one Fy. Assume that

By Proposition 4.5,

By Proposition 4.3, Exp r f \ ; iff^fji-^ — hz)As\ must commute with all ff'l'(x),



RELATIVE HAMILTONIAN FOR FAITHFUL NORMAL STATES 185

x^Wl and hence is in the center of 2JL By differentiating by t at £ = 0,

we see that hl — h2 is in the center of TO. We then have ff<t(h1 — h2) =

hl — h2 and hence

i - h2) = exptfAi - h2)/2}W = W.

Since W is separating, we have hl — h2 = Q for self adjoint hl — h2.

Q.E.D.

Proposition 4.7. u?*=uf*.

Proof. By (4.9), we have

By formula (3.10) of [3], we have

By Proposition 4.5, the right hand side is 1 and hence

U> j Uf £ lit j U> f Ul f m

Q.E.D.

Proposition 4.8. Let ® = ¥(-h), h^m, h* = h, H¥= -logJr, H0 =

0. Then

(4.13)

where j(h') = J¥hJ¥=J0hJ0. For a)0 = (p, o)r = 0,

(4.14) ufJtf

(4.15) J?tuf

(4.16) Ail = j(
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Proof. By Remark to Proposition 16 of pQ and equation (4.6), we

have the first equality of (4.14) where H¥ + h is selfadjoint. By Proposi-

tion 4.7 and equation (4.8), we have

Hence by Remark to Proposition 16 of Q3], we have the first equality of

(4.15), where H0 — h is selfadjoint. ((4.15) can be obtained also from

(4.14) by taking adjoint and interchanging cp and 0.)

Consider

For x^yfl and ye TO', we have

wxj(j\y» = W'j\u*)u^

= A"

Hence w^mnW ( = (3HU3K')')- Obviously w is unitary. Since Vw =
V$ is invariant under multiplication of J|/, Jjf and Qj(Q), Q= u^^Wl,

we have wVwaVw. By the next Lemma, this implies w^O and hence

w = l. Hence we have the first equality of (4.16). By taking adjoint

and changing the sign of t, we obtain the second equality of (4.16). From

w = l, we also obtain second equalities of (4.14) and (4.15).

By (4.14), (4.15) and w — l, we have

where we have used the property j(H0)=—H^ which follows from J^A^J^

= A^1. Since both H¥ + h and HQ + j(K) are selfadjoint operators, we have

(4.17) H¥ + h = H0 + j(h\

Since Hp + h and Hw + h — j(K) have the same domain, which also coincides

with the domain of H0 by (4.17), we have (4.13). Q.E.D,
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Lemma 4.9. If w<=Wlr}Wl' and wVwc.Vw, then w^O.

Proof. Since -JR n 2ft' is commutative, w is normal. Let E be a

spectral projection of w for an open set contained in the upper half complex

plane. Since E<=mnmf, Ejw(E) = EE* = E by Lemma 3 of [2] and hence

EVW<^.VW. Therefore, for any ®<=VW, we have E0^V¥, w®^V¥ and

hence a)0(Ew)^Q. On the other hand, E is a spectral projection of w for

an open set in the upper half plane and hence Im a)0(Ew)>Q unless E0 = Q.

Therefore we have E0 = Q for any ®^V¥ and hence E = Q. Similarly w

can not have a spectrum in the lower half plane nor in the negative real

axis. Hence w^Q. Q.E.D.

Proposition 4.10. // 0:gZ1/2F (i.e. 1II2¥-@<=F¥) and if

exists for a)0 = <p, a)¥ = </) then —

Proof. For AeSft, h* = h, we define

(4.18) V(t\ h}=
n=OJO Jo

W(h) defined earlier is W(l/2\K). We shall first prove the following

formula :

(4.19) (J)
t(x) = (A(

= (xJ¥V(t/2;K),

First consider hl3 = h(f(^) instead of h. Then

¥(t; ^) =

Hence

(XJwW(t/2; h,), J¥¥(t/2-
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where

G tl2 \
; h^(-is)ds).

o /

Since the closure of JJ/2A;*Jy* /2 is given by

G tl2 \ / f ^ 2

; hf3(i(s-t/2))ds) = Expr(\ ; h0(-is^
o / \Jo

due to formula (2.11) of Q3], we obtain as the closure of

Ct!2G tl2

;

t

o

by formula (3.5) of pT]. Hence (4.19) is proved for h = h/3.

By taking the limit /?— » + 0, we obtain (4.19) by continuity of W(t\ h)

on h, which can be proved in exctly the same way as the continuity of
F(&) in h.

Assume now 0 = W(h), ®^1II2¥ For a general ae[0, 1/2], the
closure of JfTO+?r is denoted by P$ in [2]. By Theorem 3 (5) of [2],

it is dual to Vy2~a. By Taking x<=Tl+ in (4.19), we obtain

(4.20)

We now prove

(4.21)

by induction on n. It is true for n = l by our assumption.

Assume that

Since A^~t}l2xW^. V^2~tl2 = (V^2y for x^m+, we have

Hence a ) x ^ l t ( p for x = J¥¥(t/2; h). Hence, there exists yt^^Sl' such that
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Let xt = jwy

By Theorem 3(2) of [2] and equation (4.20), we have

J¥¥(t/2; h} = A£-»^¥(t/2- A).

Hence

By Lemma 6 of Q2], 0"f(#/) has an analytic continuation to ImseQ), t/2)

and ||0"f(#f)|!^5 | |#f | |^Z* / 2 for the analytic continuation. In particular,

Q^G'ltU(xt)^lil2' where the positivity comes from W(t/2\ /i)<EF|/4 and

Theorem 3(7) of [2]. Hence

This completes the inductive proof of (4.21).

We have

where the last equation is due to the estimate

and

t-*o o

Hence we have

(4.22)

Since p1/2-'*r|i:g2||*||||3H| for x^m *e[0, 1/2], and

is strongly continuous in te[_0, 1/2J, we have
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whenever ||0W-0||-*0. By (4.22) and (4.21), we have

for all x^m+. Hence (log Z - h}¥ e V$ and we have

logl^h.

Q.E.D.

Corollary 4.11. // l\' 2¥ ^ 0 ^ 11
2<

 2¥ , <p = u>^ </> = a)¥, and h(<?/0)

exists, then

(4.23) log/x^-hfo/^log/a.

Proof. By Proposition 4.10, we have — h(#?/0)5^1og Z2. Since F^

, we have — h(0/^?)^ — log /!. Since h(^?/0)= — h(0/^), we have
Q.E.D.

Proposition 4.12. For Ae9ft, A* = A, a cyc/z'c <z#d separating vector

is in the domain of exp z( — H¥ + K) for Re -sre^O, 1/2],

/A^ vector

(4.24) F(*)
n=0 Jo Jo Jo

is holomorphic in z for Re ^e(0, 1/2) a^fi? strongly continuous in z for

Im zeQ), 1/2]. /jf Aw tends to h strongly then

(4.25) limexp z(-Hp + hn)¥ =
n

strongly for Re z<=[0, 1/2].

. For z = i^ with real t, we have

«=o Jo Jo Jo
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where (D = ¥(h\ (p = a)0, (/> = a)¥ and Proposition 4.8 is used. Hence (4.24)

holds for pure imaginary z.

If H is any selfadjoint operator and ezH¥ with pure imaginary z has

an "analytic continuation" 3F(z) holomorphic for Re ze(0, $) and con-

tinuous for Re z e [0,5], then W is in the domain of ezH', Re ze[0, 5]

and ¥(z) = ezH¥ due to the following argument:

Let .ff=Udl?x and D be the union of ranges of EL — E_L for all L>0.

D is a core of ezH for any z. For each (D^D, we have

(?(*), «) = (?", e2*$)

for pure imaginary z. Both sides are holomorphic in z for Re ze(0, <J)

and continuous in z for Reze[0, 5]. Hence the equality holds for all

z with Re ze[0, <J] by the edge of wedge theorem. Since D is a core of

e*H, the equality holds for all 0^D(ezH). Hence ¥<=D(ezH) and W(z} =

ezHW.

Therefore we obtain Proposition if we show that the right hand side

of (4.24) is holomorphic for Re ze (0,1/2), is strongly continuous for

Re ze [0,1/2], and sequentially strongly continuous in h.

Due to (3.2), the sum in (4.24) converges uniformly in norm for

Reze[0, 1/2] and over a bounded set of h. Due to Theorem 3.1, the

integrand in each term of (4.24) is holomorphic for Re ze(0, 1/2) and

continuous for Re ze[0, 1/2]. Since the integrand is dominated by

11h\\n\\¥\\ irrespective of sk and z, we obtain the holomorphy of the integral

by Fubini's theorem applied to Cauchy integral formula. We also obtain

the strong continuity in z by Lebesgue dominated convergence theorem

applied to the inner product with other vector and the norm. Hence we

have holomorphy and continuity of the sum by the uniform convergence.

Exactly the same proof as Proposition 4.1 shows that the right hand

side of (4.24) is sequentially strongly continuous in h.

Q.E.D.

Proposition 4.13. Let /ie2Ji, h* = h, W be a cyclic and separating
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vector, 0 = ¥(h)9 0 = o>r and (p = o)0. Assume that 1\I2¥^®^1\IZ¥ for

some I-L and 12. Then there exists an invertible A(z)e2J£ for Re ze

Q), 1/2] such that A(z) is holomorphic for Re £e(0, 1/2), strongly con-

tinuous for Re *e[0, 1/2], ||A(*) |:gmax(Zp, 1), IIAC^II^maxCZj1 '2 , 1),

}, A(0) = l, A(1/2)F = «, ¥(z)=A(z)¥.

Proof. Consider ¥(z) of Proposition 4.12. We have

(4.26) ¥(s + it) = expjf( - H¥ + A)F (5) - uf

due to (4.14). By Theorem 3 (8) of [2], there exists A<=Wl such that

<D = A¥, \\A\\^l{'2, \A-l\\^l^'\ Hence

(4.27) ¥(it)=uf¥,

For a vector % and (^eSUT, consider

f ( z ) = (¥(z), (?*%).

Since ||?r(-2r)||^ell*ll||5!r||, f(^) is uniformly bounded for Re *e=[0, 1/2].

By Proposition 4.12, it is holomorphic for Re 2re(0, 1/2) and continuous

for Re *e[]0, 1/2]. Furthermore, by (4.27), we have the following bounds

on the boundary lines:

it)\ = \(u^ff*(AW, Q*x)\ =

Hence we have

This implies the existence of operators A(z) such that

due to Riesz theorem and

Since f ( z ) = (Q¥(z), x), we have
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Hence [A(», Q^Q¥=Q for any Q, Qf €^W and hence A

By interchanging the role of ¥ and $, we obtain B(2r)e3Jl such that

B(iO = B?" and ||B(z)||rgmax(Z21/2, 1). Since A(fOB(/0 = K?Mv = lf
 we

have A(*)B(*) = 1. Similarly B(*)A(*) = 1. Hence HAC*)'1!! = ||B(*)||^

maxC/j1'2, 1).

Since ?"(*) is strongly continuous for Re z eQ), 1/2], we have the

strong continuity of A(z)Q'¥ = Q'¥(z) for all @'e3K. Since A(s) is

uniformly bounded, it is strongly continuous for Re zep), 1/2].

Since ¥(z) is holomorphic for Re £e(0, 1/2), we have

for any ^'eSJi7 and any simple closed curve F9 encircling the point z and

contained in the strp {z; Re <ze (0,1/2)}. Hence A(z) is holomorphic

for Re*e(0, 1/2).

The equality A(s + i t ) = u f f f l ' { A ( s ) } follows from (4.26) and ¥(z} =

A(z}¥. Q.E.D.

Proposition 4.14. In Proposition 4.13, tff(/i) has an analytic con-

tinuation to Im ze( — 1/2, 1/2).

Proof. Since A(z) and A(z)"1 is holomorphic in z for Re ze(0, 1/2),

the operator

(4.28) B(^r) = A(z)-1(d/d^)A(z)

is also holomorphic for Re ze(0, 1/2). For pure imaginary z = it, we

have A(z)=uf' = Expr(\ ; iff*(Ii)ds) and hence

Since B(z) is holomorphic for Re ze(0, 1/2), B( — z)* is holomorphic

for Re *e(-l/2, 0). We also have B(i'0 = B(-^)*. By edge of wedge

theorem, there exists an operator valued analytic function h(.z) for Re z^.
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(-1/2,1/2) such that h(*) = B(*) for Re z<= (0,1/2), h(*) = B(-*)* for
Re z e ( - 1/2, 0) and h(*0 = fff(h). Q. E. D.

§5. Existence Proof (I)

Lemma 5.1. Let

(5.1)

(5.2)

Then 0$ is in D( A*/) for Imze( — 1/4, 1/4), it is in Vw and satisfies

r i / 4
(5.3) 0 = \ J'rQfdt.

J-l/4

If ® = QW, (?e5W, rtew 0F = Qf¥ where </> = a)¥ and

(5.4)

Proof. We have

(5.5) F(w)

Hence 0F=F(log Aw)9 is in the domain of A\f for Im z e ( — 1/4, 1/4)

because eo:aF(^) is bounded for |Rea|<l/4. We also have

r i /4 ^
\ F(i^)e^d^ = l.
J-l/4

Hence (5.3) holds.

Since Vw is a convex cone invariant under A if and F(z)>0, we have
0F£EF¥. If ® = QW, then (5.4) follows from (5.2) due to Ayit¥ = ¥.

Q.E.D8

Lemma 5.2. Let <?e2Ji te s«cA /Afl^ (^e Fgr, (7?((?) Acs flw "analytic

continuation" <rJ(0)e3W /or Imze[-5, 0] a»rf ||(Tt«(^)-l||^i
number in (0, 1/8). Le/ ^F fe '̂v^n fty (5.4). Then (T]f(
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has an "analytic continuation11 (f£(()F)<E M for Im z<=( — d — 1/4, £ + 3/4),

(5.6) h, = <T ?/4(<2F) - 2 = 44{(<? - 1)F}

is in m, hf = hl9 ||A1||^2£,

G l / 2
; ffiis(h0

and

G l/2 \
; -(7*,.(Ai)d*)

<rl((?i)e3K/0r Im ze[-£l5 0],

L/-(l/2){7rZlog2(£-51)}
2exp{-7Tl, log 2(5-50},

zs ^zn^ number in (0, 5).

. By Theorem 3(7) of [2], QW^VW implies that (Tf(<3) has an

"analytic continuation" jt(0e5m for Im *e[0, 1/2] and (<rj((?))* =

(Tf+f-/2(^). ("Analytic continuation" here means a function continuous in

the closed strip and holomorphic in the interior.) By assumption, we also

have an "analytic continuation" #£(()) e 2ft for Im zeQ — 5, Oj. By edge

of wedge theorem, we have *£(()) e=5K for Im *€=[>0,

and

(see proof of Lemma 6 of

By (5.4), we have an analytic continuation

(5.10)

whenever z = zl + z2, Im ̂ ^(-5, 1/2 + 5) and Im *2e(-l/4, 1/4) i.e.

for Im <2re(-5-l/4, 3/4 + 5). Since QF¥<= V¥9 we have

by Theorem 3 (7) of [2]. Hence hf = hl. Since F(0) = 2, 1F = 2 and we
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have the second equality of (5.6). By proof of Lemma 6(4) of pT] and

the equality 420?F-2) = 0?F-2)*, we have H^ £||0F-2||£2||0-1||£
2\\ffti8(Q — 1)||^2Z, where the third inequality follows from proof of Lemma

6(4) of [2] and (**(«)* = (^,
Let

G i /2
; -<

By Lemma 5.1,

i /2

-l/4

$1/2
fftLis(hl)ds = Q — 1. Hence the definition (5.8)

o
implies

(5.12) 0i=
We have

\\ffKQi)- ill ̂  HffJW) - i l l 2

w=2JO

By (5.10), (5.6) and (5.9), we have

^ L \ \F(t + ta
J-OO

if a(s) is chosen such that

Im z - s + a(5) + 1/4 e [ - ff , 1/2], | a(s) | < 1/4

If Im zeQ — (Jl9 0] and 5i<5, one can choose
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For | a(s) | < 1/4, we have | a(s)(l/4 - | a(s) | )/sin 4;ra(s) | ̂  2~5 due to

| x /sin x | ̂  7T/2 for | x \ ̂  n/2 and sin (TT — #) = sin A;. Hence

r i / 2

Jo

Since

we have

||(rf((?i)!|^i', Inns:-*!, 01

By analytic continuation of (4.9), (T'/^^!) has the following analytic con-

tinuation :

By (5.6), (5.9) and F(0d^ = 2, we have \\<Jtis(hl}\\^2L for 0^s^Sl

and hence II^CCOII^II^^i)!! exp451L^(i:2 + (l + JL)LOe^2.
Finally, QiWl = QW follows from formula (2.15) of [3].

Q.E.D.

Lemma 5.3. Let Q<=Wl be such that QW <= Vw, ff(l
zQ<=%tt for Im Z<E

[-5,0], 5e(0, 1/8) and \\ff<tisQ-l\\^L0,

(5.13) Z0^(4

Then there exists h^m, h* = h such that Q¥ = W(h).

Proof. We fix 5W = 2~W5, ^ = 0,1,.... By Lemma 5.2, we obtain a

sequence of vectors ¥n9 operators QMe3Jl, operators Awe9Jl and positive

numbers Ln, n = l,29... such that Wn = Wn.^(hn\ ¥Q = W, h* = hn, \\hn

<^2Ln_l9 o)¥n = </)n9 o~i'nQn has an analytic continuation ff%nQn for Im z

and
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(5.14) L'n_, = (l/2){7rLM_1log 2(ffB_1 -^)

We prove that Ln^2~"L0 inductively. Assume that Z,B_1

We have

l-5tt)}
2Ln_1 ^ 7T2(log S-(n - l)log 2)22-(»-1>

^ 27r2(log <J)2Z,0 + 27T2(log 2)2(re - 1)22-(«-1^0.

Since n22~n^Q/8, we have (log2)2(re-l)22-(B-1)^(log(J)2 and

{?rlog2(^_1 -Stt-)}
2Ln^ ^ 4^2(log S)2L0 ^ 1/4

Hence we also have

Since LW_1^L0^2~4 , we have

exp(l/8))e1/32 < 1/2.

This proves Ln^2~nL^.

Since ||AB||^2ZM_1, A = £^» is norm convergent and hence lim Wn = W(Ji)

by Lemmas 4.5 and 4.1. Since Qn¥n^ Vw=VWn, where ¥n = ¥(hl + -- + hn)

is cyclic and separating by Corollary 4.4, $'ln(Q^) nas an analytic continua-

tion ^(QJ for Im re (0,1/2) and (^X^))* = ̂ //2(A). Hence we
have the analytic continuation tftn(@w) for Im re Q — ffw, 1/2 + 5 J and by

proof of Lemma 6 of pT|,

Hence lim — 1|=0 and we have

Q.E.D.

Proposition 5.4. Let Q^m be such that JWQW = QW and fff

has an "analytic continuation11 ff^Q for Im z^[_ — 1/2, 0]. Then there

exists h^Wl such that h* = h and
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Proof. By assumption, Q¥ = J¥Q¥ which implies Ayll2QW =

Hence 0f((?) has an "analytic continuation" 0t((?) for Im *e[05 1/2] by

Lemma 6 of [2]. It satisfies 0f/2((?) = (?*, which implies <rj(())* =

(rt+i/2«?) f o r l m * = 0 and hence for Im *<=[]- 1/2, (TJ by an "analytic

continuation". In particular

Let 0t = etQ¥, <pt = (0,t. By Theorem 3 (7) of [2], tff/

4(@)^0 implies 0t^F¥ for real £.

By Lemma 7 of pT], we have

By Lemma 6 of Q2], (T^(^) has an "analytic continuation" for

[-1/2, 0] and

We now choose N such that

for a fixed fle(0, 1/8). Then

We can now apply Lemma 5.3 and find ABe9JZ for each integer

n e [0,7V] such that ^W = (5(B_1)/JV(AB), A* = AB. Then

Q.E.D.

Remark. Vectors eQF satisfying the condition of Proposition 5.4 are

dense in Vw, which can be seen as follows.

The vectors A^^xW, #e2J£, #^0 are dense in Vw by definition.

Furthermore



200 HUZIHIRO ARAKI

for *-#' = (#-a')*e5K by equation (3.13) of [2]. Let x = }idEX9 XL =

X(EL-EIIL) + (1/L)EIIL + (1-EL1 yL.e = (lagxzXf$. Then

lim lim &*••»¥ = xf
L-^°° £-»+(}

and hence QL^ — ̂ -H^JL^ satisfy

lim lim eQL'^¥ = A^ux¥.
L-+°° J3-++Q

G'zQi.p is an entire function of z and J¥Q L ^ = Q L ^¥ due to <rf/4(^ f /g)

= yL,/3 = J*,/9- Hence @£ j /? satisfies the requirement for Q in Proposition

5.4.

§6. Existence Proof (II)

We use the technique introducted by Connes. (See Q5].)

Lemma 6.1. Let W be a cyclic and separating vector for a von

Neumann algebra 37£ on a Hilbert space $Q and Ae9K, h* = h=£Q. Let 31

be a type I2 factor on 4 dimensional space ^, {u{j} and {u'{j} be matrix

units of 31 and W, and {e^} be an orthonormal basis of $ such that

and u ' e ^ S e . Let Wl = 3Jl03l, 0 < A < 1 and

(6.1) *„,

.A.

Then xh^ is a cyclic and separating vector of 2JZ, the modular conjugation

operator for % A > X is JT®Je, e = eu + e22, and the modular operator A for
X A,X zs given by

(6.2)

(6.3)

(6.4)

(6.5)
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.
Proof. Any Q^Wl can be decomposed as Q=HQijU>ij, Qij

. For J=J¥®Je, we have

Due to W^V¥ and W(h)^Vv^ the right hand side is positive. Since /=

/r®/« obviously satisfies J$lJ=3jlf ( = 5K/(g)5Jl/)» J%h,\ = Xh,\ and is an

antiunitary involution, it is the modular conjugation operator for xh >x by

Theorem 1 of [2].

Since fl)Xft>jl((l(g)wyy)^) = ft)Xft>,l(^(l(8)Myy)), l®Myy commutes with J.

Hence l®je(ukk) also commutes with J. Since uJjje(ukk)eil=Sijdklejk9

we have

For Q = IQilUii and tf = Ox» f X = ^fly®ey, we have
Hence

(6.6)

(6-7)

(6.8)

(6.9)

Since TO%^>X is a core of J1/2
5 Q^W^W^W, W2 = ¥(h}} must be a

core of 4}y2. (6.6) implies that two self ad joint operators A\^ and Ay2

coincide on their core and hence must be equal. Similarly (6.7) implies
ji/22 = ^/(2)B Hence we have (6<3)B

To prove (6.4) and (6.5), we first consider the case where h is

replaced by A^ = A(/g). Then W(hl3) = AW = j(A}W, ¥ = A~l¥(h/3) =

01/2 \
; (Ttf/A^dsJ. We

have
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The inverse A~1=Exp,(\ ; — fftis(h^)As\ is an analytic continuation of

(6.10) u* = («f*)*

to t=—i/2, where y = a>V(h^. By an analytic continuation of (4.15), we

obtain

which holds on ^4D(J^1/2). (See second paragraph of proof of Proposition

4.12.) Hence we have

- ^

Since Wl¥(h) is a core of A^ and both A^ and

are self adjoint, we have (6.4) for h^.

Hence

- it(HT -

As /?-> + 0, J" for % A f l X tends strongly to A'' for %A > X by Theorem 10 of

[X], and uj* for (p = u>r(h/i-j tends strongly to uf' for ^ = a)r(A). Hence

we have (6.4) for a general h.

From (6.9), we have

01/2 \
; Gis(hp}&s ) is an analytic continuation of (6.10) to

o /
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= i/2, we obtain as before

By taking the limit /?-» + 0, we obtain (6.5). Q.E.D.

Remark. If u! is a unitary operator in Wlf and

then

is a unitary element of 3Jlf and %—u'%hi^. Hence modular conjugation

operator and modular operator for such % are given by u/(/r(x)/e)(il
/)* and

Lemma 6.2, If hn*=<m, h* = hn, HmF(&w) = 0 (strongly), 0 is cyclic

and separating and l\l2W^W(h^)^l\l2W for strictly positive Zt and 12

independent of n, then & = w-lim hn exists and ® = W(Ji).

Proof. Let xn = xhn,\ be defind as (6.1) and

Then ® = lim¥(hn) implies % = lim %w. % is cyclic and separating and by

Theorem 10 of [2]

(6.11) lim^m = ̂ , limJ¥{kn}=W
n n

where the convergence is in the strong operator topology and is uniform

over a compact set of t.

Since (4Xn)i\ ®u22j(ull) = A%n(l® u22j(ull}}, and (^%)

22/(^ll))» we have

(6.12) limexp it( —

by (6.5) where the convergence is uniform in t over a compact set.

By multiplying e~t and integrating over £^Q), oo)? we obtain
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(6.12') lim{(-JHr + A,,) + »}-1

Hence, by subtracting ( — H¥
Jri}~1, we have

By Corollary 4.11, ||AB|| is uniformly bounded. Hence we obtain

Hence ( — H¥ + i)~lhny is strongly convergent for any iq in the range of

{logJ2i +
 i}~1» which is a dense set. Since ||( — Hw + i)~lhn\\ is uniformly

bounded, we have the existence of

For £2eD((-.Hy + i)*), we have

Hence A0f1eD((-JJr + 0) and ||(-#r + 0^oll^suppj|. We have

w-lim hn = h = ( — H¥ + i)h0.

By (4.14), we have

(6.13) i4»f/>

which is strongly convergent, uniformly in t over a compact set, due to
(6.12), where (pn = ti)w(hnY

By Proposition 4.13, there exists Aw(z)e9K for Re z<= [0,1/2]
such that An(z) is holomorphic for Reze(0, 1/2), strongly continuous for
Re* ̂ 0,1/2], ||AB(*)||^max(Z}'2, 1), llA.Cz^ll^maxC/a1", 1), AK(
= Up*ff+{AnW}, AB(0) = 1 and A.(l/2)F = y(All).

Since A,l(it~)Q'¥ = Q' {expit(-HF + hJ}¥ and
<3/w?»V|'{^K(l/2)}r = <?/{expz7(-Jffi, + AB)}2F(AB) for Q'eW are strongly
convergent, uniformly over real t in a compact set, and since ||^B((l/2)
+ it)\\ and |^ f f(ff)|| are uniformly bounded, An((l/2) + it) and An(it~) are
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strongly convergent, uniformly over real t in a compact set.

Since Aw(z) is holomorphic for Reze(0, 1/2) and is continuous and

uniformly bounded for RezeQO, 1/2], we have

(6.14) ez2An(z) = (2n)-l (z -i

for Re z e (0, 1/2). Hence

(6.15) (d/dz)e*2AKO)

l<\ O ~ it -

Since ||AW(^)|| and ||Aw(j'£ + l/2)|| are uniformly bounded in t and TI, the

integral converges uniformly in n. Hence (6.15) is strongly convergent

as n— »oo, uniformly in z over any compact subset of {z ; Re ze(0, 1/2)}.

By l\l2¥^W(hn)^l\l2W and ^-limF^J, we have 1\I2¥^®^1\I2¥.

By Theorem 3(8) of [2], there exists ^eTO such that A¥ = ®, \\A\\^l\12

and \\A-l\\^lz112. Then ^ = lim Aw(l/2).

For Q'^m' we have

^ i/2r(A j- *n
which converges to 0 as n-*oo uniformly in t over a compact set due to

\\m¥(hn) = 0 and Theorem 10 of [2], where 0> = o>f. Hence

uniformly in ^ over a compact set.
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By (6.11),

is strongly convergent, uniformly over a compact set of t.

Since HA^s)"1)! is uniformly bounded, the analyticity and the con-

tinuity of Aw(z) imply the same properties for An(z)~~l* Hence

(6.16) A^ + fO-^ftA.C^

is strongly convergent as n— >oo, for sep), 1/2], which is proved in exactly

the same way as before by use of the Cauchy integral formula of the

form (6.14).

Combining the convergences of (6.15) and (6.16), we have the strong

convergence of

as n— >oo uniformly in z over any compact subset of {z; Re ze(0, 1/2)}.

By Theorem 1 of Q3] and (4.6), we have

Hence

(6.17)

for z = it. Hence

which holds for all z satisfying RezeQO, 1/2]. Since w-limhn = h and

FB(.z) has a strong limit, we have

lim(e-z2FB(z) - 2z)Q'¥ = Q'A'wh¥
n

for (Xe§lr2 (see §3 of [2] for the definition of Slr2) and Reze(0, 1/2).

Since limFB(.2r)e3Dfi, this implies the existence of an analytic continuation

<rf(A) of <J?(&) to z in {^; Re *e(0, 1/2)}.

By (6.15) and the uniform boundedness of An(z), we obtain the

uniform boundedness of 0t(^«) over anY compact subset of {z; Re*e(0,
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1/2)} and over all n. Hence \im(J*(hn} = G*(h} and

is strongly convergent as n-*oo for tj>Q9 tl-\ ----- \-tm<l/2.

Since ||An|| is uniformly bounded by maxdlog/il, |logZ2 |), we have

by Lebesgue dominated convergence Theorem (for inner product with other

vectors and for its norm). Hence ® = W(h). Q.E.D.

Theorem 6.3. // Z^ZgX) and 1\I2¥^®^1\I2¥ for cyclic and

separating W and 0, then there exists AeSUl such that h* = h, ® = ¥(Ji)

and log Z^A^l

Remark. If <p and 0 are normal faithful states satisfying Z10

then the unique representative £9 and f ̂  in a fixed canonical cone Vw

satisfies I\l2£^9^l\12^ by Theorem 3(8) and (9) of [2] and hence

there exists h^Wl such that h* = h, ® = W(h} and log/^A^log/2 due to
this theorem.

Proof. By Theorem 3(8) of [2] and the assumption 1{I

there exists @<E2ft such that ® = Q¥. By Theorem 3(7) of [2] and

-^m for Im ̂ e0 5 . l /2 and

where the bar indicates the closure. Let

Then &e2Jl and logZi^A^log^- We have

Let A^ = (7f(i)/g(0d* where f% is given by (3.11) of [2]. Then
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k% = ka, P^l l^Pl i and \imka = k. Hence

by (3.13) of [2] and JJ/2(e*'-c*)P1 = /r(c^-c*)?r. Let

We have (DB<=VW and Iim0£ = 0.

Since f/g(0d* = l and/g(0^0, we have

By Theorem 3(7) of [2], we have

Since

and fff(k0) has an analytic continuation to an entire function

^^yf'0 has an analytic continuation to an entire function

Hence

Since Qi = fftiU(k^ satisfies J¥Q1W( = A\r
l2Q:fW} = QlW and has the property

that fft(Qi) = fff-ii 4(^/3) has an analytic continuation to an entire function

fft(Qi) = fft-u 4(^/3)9 Proposition 5.4 is applicable and there exists A^eTO

such that ®B = W(hB}, h* = hB. Lemma 6.2 then implies Theorem.

Q.E.D.

Remark. The above proof implies that if 0 = A^uek¥, k = A* e 3H, and

logli, then there exists h^Wl, h* = h such that 0 = ¥(h\ and
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Note added in proof'. Theorem 3(8) of p] has been misused in

proofs of Propositions 4.13, 4.14, Lemma 6.2 and Theorem 6.3. Hence

we need the assumption /i / 2<%^a)02^2 / 2<% in Propositions 4.13 and 4.14.

However, Lemma 6.2 and Theorem 6.3 hold without modification.

For Lemma 6.2, we modify its proof after (6.13) as follows: Since

h — hn is weakly convergent to 0 and ( — H¥ + i-i-}i)~l is strongly conver-

gent,

is weakly convergent to 0. By (6.127), (J%)2i = exp( — Hw-\-li), which

implies that 0 and W(h) have the same modular automorphisms. Hence

$=ea¥(h) for a selfadjoint a affiliated with the center. Then (j%)2i is

calculated to be exp(-H¥ + h + a). Hence a = Q and 0 = ¥(h).

For Theorem 6.3, 1\I2W^0^1\I2¥ directly implies 0 = ̂ ^e
k¥ for

a &<EE3Jl and log Z^&^log Z2.




