
Publ. RIMS, Kyoto Univ.
9 (1974), 285-296

On the Isomorphism Problem for Endomorphisms
of Lebesgue Spaces5 1

By

I. KUBO*, H. MURATA** and H. TOTOKI

§1. Introduction

f). vS. Ornstein and others solved the isomorphism problem for Bernoulli

automorphisms of Lebesgue spaces and got some conditions for automor-

phisms to be Bernoulli. The main result is that two Bernoulli automor-

phisms with the same entropy are isomorphic. Another result of them tells

us that mixing Markov automorphisms are Bernoulli. Their results can be

rephrased into the terminology of the representation of stationary processes

as follows. Let {?„; 7&=0, ±1, ±2 , - - - } be a strictly stationary process and

S be the corresponding shift transformation. If S satisfies one of conditions

given by D. S. Ornstein and others, then {?„} can be represented in the

form

where yQ is a measurable function of {?„} and f]n = SnfjQ, 7i=0, ±1, ± 2 , - - - ,

are independent,

In this connection, there is an important problem called "innovation

problem". We will state it in the formulation given by M. Rosenblatt.

Let 38 n denote the (T-field generated by %k,k^n, and j/n the (T-field

generated by ?;„. Can one find a random variable 77 0 measurable with

respect to ^09 independent of ^_ l 5 ,^0 — ̂ -i Vj/0 and such that fff is
n

measurable with respect to Vja^,-?
— 00

We now consider an isomorphism problem for automorphisms which

is equivalent to the innovation problem mentioned above. Let T be an
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automorphism of a Lebesgue space (X, &, {£), and P its generator (i.e.
°° ~ ~
\/TnP = e). In this situation, can one find a Bernoulli generator Q of T

— 00

o o ~
such that V TnQ = V TnP ? Define the factor endomorphism T of X=

X/V TnP induced by T, then the above question is also equivalent to ask
— oo

as follows. Is the endomorphism T isomorphic to a Bernoulli endomor-

phism? Concerning with this problem Ya. G. Sinai got an interesting result:

Every endomorphism T with positive entropy A(T)>0 has a Bernoulli

partition with the same valued entropy as h(T).

In this paper (Part I) we will be concerned with the above mentioned

problem. Firstly we study the isomorphism between two Bernoulli endomor-

phisms. We will see that they are not isomorphic (even if they have the

same entropy) except trivial cases. Next we give a condition for a class

of Markov endomorphisms to be Bernoulli, which is a generalization of the

condition given by M. Rosenblatt.

On the other hand, several authors discussed the Bernoulli property

of some special number-theoretical transformations. Those transformations

are not automorphisms but endomorphisms, so they proved actually that

natural extensions of them have Bernoulli generators. We are interested

in the Bernoulli property of those endomorphims themselves not of their

natural extensions. We will prove in Part II that the continued-fraction

transformation, /?-expansion transformations and linear mod 1 transforma-

tions are not Bernoulli except the trivial cases.

We are also interested in the isomorphism problem for more general

endomorphisms, for example the isomorphism between Markov endomor-

phisms. We will discuss this problem in Part III.

§ 2. Preliminaries

Throughout this paper (X, ^, JJL) denotes a non-atomic Lebesgue

probability space. A measure-preserving transformation T of X (i. e.

^-ijs-cjjr an(j ju(T~lA)=/ji(A) for all ^eJ5") is called an endomorphism

of (X, &, A). In addition if T is invertible (i.e. T is 1-1 and T^ = &},

T is called an automorphism. We denote partitions of X by P, Q, /? , • •• ,

which are always assumed to be measurable. Let us denote the cell of

partition P containing the point x by CP(x). As usual e stands for the
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partition into the individual points of X and v stands for the trivial parti-

tion consisting of the unique cell X. For each measurable partition R there

corresponds the canonical system of measures (the conditional measures)

{#(«|r); rei?}. We refer the paper by V. A. Rohlin for these notions.

Let Pt be measurable partitions of Xi9 i = l, 2, respectively. We denote

dist(P1) =dist(P2) if the distributions of Pl and P2 are of the same type,
namely if they have no cell with positive measure or if they have the same

number of cells with positive measures and there is a 1-1 correspondence

between these cells such that the corresponding cells have the same

measure. We use also the notation dist(7T(1)) =dist(7T(2)) for probability

vectors TT ( / ) = (n(ji] ; l^/^/) of which definition is analogous to the above

one (so we omit to state it). For measurable partitions P and R, dist(P|r)

stands for the distribution of P with respect to the canonical measure

X-|r) for reU.
Two endomorphisms Tf of (Xi9 ^i9 /*,-), & = 1, 29 respectively are

called isomorphic if there exists an isomorphism (mod 0) V from Xl onto

X2 such that ^Tl = T2^.

A measurable partition P is called a generator of an endomorphism T
oo

if V T~nP = e. A measurable partition P is a Bernoulli partition (a Markov
o

partition respectively) for T if {T~nP; n^Q} are independent (Markovian),

that is #(A\ vT-nP)=y(A) (ju(A\ V T~nP}=/j.(A\ T^P)) a.e. for all P-
n=l n=l

measurable A.

An endomorphism is called a Bernoulli endomorphism (a Markov endo-

morphism respectively) if it has a Bernoulli generator (a Markov generator).

§3. Isomorphism Theorem for Bernoulli Endomorphl§ins

In this section we will study the isomorphism between Bernoulli

endomorphisms. We remark firstly the followings.

1° Let P, Q9 R be measurable partitions of X, If P^R = Q^R, then

dist CP|r)=dist(@|r) for a.e.

2° Let T be an endomorphism of (X, J^, #) with Bernoulli generator

Q. If P is a generator of T, then dist(P|r)=dist((?) for a.e. revT-^P.

Especially if P is also a Bernoulli generator, then dist(P)=dist((?).
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Indeed, noticing V T~»Q= V T~nP = e and \/T~nQ= V T~nP=T~1e,
0 0 1 1

apply 1°.

Theorem 1. Let T{ be Bernoulli endomorphisms of (Xh J^-, ju^) with

Bernoulli generators P,-, j = l, 2, respectively. Then they are isomorphic if

and only if

Proof. Assume T1 and T2 are isomorphic. Then the image P of P2

by the isomorphism is also a Bernoulli generator of 7\. Hence by 2° we

have dist(P1) — dist(P) =dist(P2). The converse is evident,

We will now discuss the uniqueness of Bernoulli generator. Let T be

an endomorphism of (X, & ', //). Put

where CT-\£(x) denotes the cell of the partition T~1s containing the point

x. The function /JLT is obviously measurable and invariant under isomor-

phisms, and the reciprocal value I/JUT(X) is called "Jacobian" by W.

Parry. Let RT be the measurable partition of X generated by fJLT (i.e.

the partition into the inverse images of points). We call RT the proper

partition for T,

Assume that T has a Bernoulli generator P. Then for a.e. p&P we

have

by 2°. Therefore it is easy to see RT^P. Thus RT is a Bernoulli parti-

tion for T, Moreover if P is countable and the distribution of P has distinct

probabilities, then RT = P.1^ Thus we have

Theorem 2* If T has a countable Bernoulli generator with distinct

probabilities, then RT is the unique Bernoulli generator of T,

§4* A Criterion for Markov EmdomorpMems to foe Bernoulli

In this section we consider endomorphisms with countable Markov

generators and give a criterion for such endomorphisms to be Bernoulli.

1) A countable partition is a measurable partition which has only the cells with
positive measures.
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Let T be a Markov endomorphism with countable Markov generator

P = {pl, p 2 , - - - } . Let n = (nij; i, y = l, 2 , - - - ) be the transition matrix

defined by ( T9 P) where

Let ;r(/) = (7r / l5 7 r / 2 , - - - ) denote the /-Lh row vector of //. From -2° of ^3

we get

1° If T has a Bernoulli generator, then

(U) there exists a probability vector p = (pi, P2?1") with positive p/s

SMC/& £/2fltf dist(7T(t')) = dist(p) for all i.

In this case p is the distribution of the Bernoulli generator.

We call a Markov generator P satisfying the above condition (U) a

uniform Markov generator, and p the common distribution of P.

2° If T has a uniform Markov generator P with the common distribu-

tion p consisting of distinct probabilities p,-'s, then the proper partition RT

for T defined in § 3 is a Bernoulli partition for T and has the distribution

p.

Indeed, first we notice that RT = {rl5 r25-"}5 r{ = {x ; #r(#) = P/}, &' = 1,

2 , - - - . Given k and i there exists the unique j such that nkj- = pi9 so we

define

and

inductively. Since J£T(X) = A({^} I Qr-ifC^O^X.ftl T~lpk) = Kkj for

^ e T~lpk n jpy, we have

and hence

Using the same argument we get
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and hence

(i)

Thus 2° is proved.

Let T be a Markov endomorphism with countable Markov generator

P={pl9 p2,--}. Assume that T has a Bernoulli generator (which is

necessarily countable by 1°) with distinct probabilities. Then by Theorem

2, the proper partition RT is the unique Bernoulli generator of T.
n

Let us calculate the conditional probability JU(PJ\ V jT~'.Rr) for later

uses. Let

,.., n • • • n

be any cell of V T~1RT, We have
o

(2) Pjnc

where D(j; s H 9 - - 9 sQ) = {k;ir(k'9 s H 9 - - 9 50) = ;}3 and so

(j;sn,-, so)

Comparing this with (1) we get

(3)
k£D(j;sn,—, s

for ^e r -% n n- - -n r s o .

Now we will state

Theorem 30 Let T be a Markov endomorphism with Markov generator
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P={pl9 p2,---}> In order that T has a countable Bernoulli generator

with distinct probabilities, it is necessary and sufficient that P is a uniform

Markov generator with common distribution consisting of distinct probabilities

and satisfies the condition

(P) for any <J>0 there exist jQ, m, I „,,-•-, i0 such that

Proof. For the proof of the necessity it remains to prove (P).
Suppose the condition (P) is not satisfied, then there exists <J>0 such that

Z tt(pk)^ — ® f°r aH /> m> & « » • • • » &V Hence by (3) and the fact
ks=D(j;im,...,iQ)
that RT is a generator of T we get

a.e.

which is a contradiction.

To prove the sufficiency it is enough to show that the proper partition
oo

RT for T is a generator of T. For this we will prove P^ V T~nRT.
o

Given £>(), we take y0, m, im,'-9 i0 in (P) and put

f min {f^O;
r(*) =

1 oo, if {t^

and

Then we have E^dT^B and £(f) is V r~w^r-measurable. Moreover
o

/«(r(^)<oo) = l i.e. /*(w£XO) = l because J?r is a Bernoulli partition.
o

t + m
Take a cell F of V r~w.RT such that FcE(t). Since Fc 3T-'5, F should

o
be of the form

F=F(st-it- - , s0) = r-'-"r,m n • • • n r-v,0 n r-'-v,,^ n • • • n rsa,

and moreover using the expression (2) we have
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if j = i r ( ] Q ; s t - i 9 ' - - 9 s 0 ) and T~* phr\ pjnF = $ otherwise. This implies

Define a partition P' = {p'l9 p'z,--}

p'- = V \J

then we get

n JD; |F)-
y y

which implies

Hence partition P can be approximated by V T~w.l?r-measurable partition
o

28 «« oo

(i.e. PC V T~nRT for any ff>0). Thus we get P^V T~nRT which com-
o o

pletes the proof.

Remark 1. Let's define matrices M(i) = (mkj(i))9 i = 1, 2 9 - - - 9 by

f 1 if ^ = p f>0,
"**y(0 = |

I 0 otherwise,

and let mkj(im9-"9 i0) denote the (A, y)-element of the product M(iw)

M^.O-'-MCio). Obviously mkj(im9'~9 £0) = 1 if and only if

io) = j. The condition (P) is equivalent to

(P') /0r «^y J¥ there exist jQ9 m9 im,---9 iQ such that
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mkjo(im9'"9 i0) = l for l^k^N.

Notice this condition is a generalization of what is called "point collapsing"

by M. Rosenblatt.

Remark 2. We were so far concerned with a uniform Markov generator

jP with common distribution consisting of distinct probabilities. Even when

the common distribution of a uniform Markov generator P of T does not

consist of distinct probabilities, we can formulate a sufficient condition for

T to be Bernoulli by modifying the definition of matrices .M(&)'s. Let us

construct matrices M(i) = (mkj(i)), i = l9 2 , - - - , with the properties (i) each

row vector consists of only one 1 and others 0, (ii) if mkj(i) = l then

Kkj = p.>Q and (iii) 2^^(0 = 1 f°r all & and j. Notice such constructions
i

of M(z)'s are not unique. If there exists a sequence of such matrices

{M(i); i = l9 2 , - - - } satisfying the condition (P7), then T is a Bernoulli

endomorphism.

§ 50 Examples

We will now give some concrete examples. Firstly we consider (2 x 2)

and (3x3)-Markov endomorphisms (i.e. endomorphisms with Markov

generators of 2 cells and 3 cells).

Example 1. Tow (2x2)-Markov endomorphisms are isomorphic if and

only if their transition matrices coincide up to the change of numbering.

Example 2. The classification of uniform (3 x 3)-Markov endomorphisms

with the common distribution (a, b, c).

Case 1. a, b and c are positive and distinct. This case is divided into

the following five classes which are mutually not isomorphic:

(i) (a

cu
b

a

c

c ^
b

a t 9

/a

b

\c

c

a

b

b\

c

a I
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(ii) / b c a\ / b a c \

a b c

\c a b ),

(iii) c a b \

b c a

\

c b a

\a c b),

( c b a]

a c b

a b c /, \b a c/,

(iv) /b c a\

c a b

a b c/,

( c b a\

b a c

a c b J,

/ c a b\

a b c

b c a /,

/a c b\

c b a

\b a c/s

la b c\

b c a

c a b

b a c\

a c b

c b a),

(v) others.

All endomorphisms of the fifth class satisfy the condition (P') and hence

they are Bernoulli.

Case 2. a = b. This case consists of only one Bernoulli class.

Example 3. Uniform (3 x 3)-Markov endomorphisms with the common

distribution (a, 6). Notice that Theorem 3 includes also this case, so we

can see which endomorphism of this case is Bernoulli using the condition

(P7). For example, the following three Markov endomorphisms

(i) ja

a

\a

b

0

b

°1
6

o/

la

a

, Vo

0

b

a

b\

0

b/ 9

a

a

0

b

0

b

0

b
a

are Bernoulli which are of course all isomorphic to Bernoulli endomorphism

with the distribution (a, 6). On the other hand the following six
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(ii) O a b\

0 a

\a

(iii) a b 0

0 a b

b 0 a),

(iv) b 0 a

a b 0

0 a 6

(v) 0 a 6\

a b 0

k^ 0 a /

(vi) / 0 a 6 N, (vii) / 0 a 6 \

a 0

Q b a / ,

0 b a

b a 0 /

are not Bernoulli, and moreover they are not mutually isomorphic. Any

one of this case of Markov endomorphisms is isomorphic to one of the above

seven types of Markov endomorphisms. For the details see Part III.

Example 4. Number-theoretical endomorphisms. Continued-fraction

transformation defined by

where { y} denotes the fractional part of j, is neither a Bernoulli endomor-

phism nor a Markov endomorphism with countable generator, ^-expansion

transformation defined by

where /3>1, is a Bernoulli endomorphism if and only if 0 is an integer.

Linear mod 1 transformation defined by

where /9^2, 0^a<l, is a Bernoulli endomorphism if and only if /? is an

integer.

We will explain the details of the above examples in Parts II and III.

References

[ 1 ] Ornstein, D. S., Bernoulli shifts with the same entropy are isomorphic, Advances
in Math. 4 (1970), 337-352.

[2] - , Two Bernoulli shifts with infinite entropy are isomorphic, ibid. 5
(1971), 339-348.



296 I. KUBO, H. MURATA AND H. TOTOKI

[ 3 ] Friedman, N. A. and Ornstein, D. S., On isomorphism of weak Bernoulli trans-
formations, ibid. 5 (1971), 365-394.

[ 4 ] Smorodinsky, M., On Ornstein's isomorphism theorem for Bernoulli shifts, ibid.
8 (1972), 1-9.

[ 5 ] Rosenblatt, M., Stationary processes as shifts of functions of independent
random variables, /. Math. Mech. 8 (1959), 665-681.

[ 6 ] Sinai, Ya. G., Weak isomorphism of transformations with invariant measure,
Mat. Sbornik 63 (1964), 23-42.

[ 7 ] Rohlin, V. A., On the fundamental ideas of measure theory, ibid. 25 (1949),
107-150.

[ 8 ] Parry, W., Entropy and generators in ergodic theory, Benjamin, 1969.


