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On the Isomorphism Problem for Endomorphisms
of Lebesgue Spaces,

By

I. KUBO*, H. MURATA** and H. TOTOKI

This is the sequel to the preceding Parts I and II. In Part I we have

studied the Bernoulli case, and then we have seen in Part II that some

number-theoretical transformations are not Bernoulli. We will now try to

study the isomorphism problem for Markov endomorphisms. Firstly we

will give a general isomorphism theorem for Markov endomorphisms with

countable generators in §8. We are also concerned with Markov endomor-

phisms having no uniform Markov generator. In §9 we will study the

mixing property of a kind of skew product transformation in preparation

for further investigation of isomorphism problem for Markov endomorphisms.

In §10 we will give an isomorphism theorem for a typical class of Markov

endomorphisms (which are uniform but not "point collapsing"). In the

last section we will classify (2 x 2) and (3 X 3)-Markov endomorphisms as

examples of applications of our theorems given in the preceding sections.

Throughout this part, T denotes a Markov endomorphism of Lebesgue

space (X, J^, #) with a countable Markov generator P— {pjl y = 0, 1, 2 , - • • } .

Its transition matrix will be denoted by /7" = (7T,-y; i, y = 0, 1, 2 , - - - ) . We

define a measurable function f (#) by

(1) £(*) = £(*; P) = /, for xt=P/.

We also use the notations given in Part I.

We will appeal to the following two invariants. The first one is

JUT(X) = JU({X}\ CT-i£(x)) which was introduced in Part I, and we have

(2) /M>) = /*(/?£(*) I r~Vf(r*)) = ^cr*),f(*) a.e.
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for the Markov endomorphism T. Another one is introduced as follows,,

Let D(T) denote the family of all distributions p such that p = dist

(e|Cr-i£(#)) on a set of positive measure. D(T) is evidently an invariant.

If T has a Markov generator P={p.}9 then

(3) D(r)={dist(P|r-1
jo,) = dist(ff ( ' )) ; i = 0,l ,2, . . .},

where n^ = (niQy 7r a , - - - ) denotes the i-th row vector of II as in §4. Put

f(p) = {#; dist(s| CT~i£(x)) = p} for peD(T) and define a measurable

partition1 }

(4) RT=ir(P^; P^D(T)}.

Then it is easy to see that RT is independent of the choice of Markov

generators and RT^ T~le.

§8. Isomorphism Theorems for Markov Endom<orphlsm§

We will firstly consider general Markov endomorphisms with countable

generators.

Theorem 5. Let T and S be ergodic Markov endomorphisms with

transition matrices 77" = (TT^) and F = (jij) respectively. Then T and S

are isomorphic if and only if there exists a measurable integer-valued func-

tion y(x} such that

(i) 7'*(r*).9(*) = 7r«zi*),«*) a-e-
(ii) Q={qj={x; i](x) = j}; j = 09 1, 2 3 - - - } is a Markov generator of Ta

Proof. "Only if" part. If T is isomorphic to S9 there obviously

exists a Markov generator Q={qj} of T such that ju(qj\T~1qi) = ?ij.

Hence defining y(x} = j for x^qj9 we have

"If" part. Since

a.e.

1) Here T is assumed to have a countable Markov generator.
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we have ju(qj T lqi) = TiJ if #(?_/ n T^q^X). Therefore we have

; fl T~1ql) = /t(qi)rij f°r a11 i and /> and so

for all y, which implies {/*(qr,-); i = 0, I , - - - } is a stationary distribution of

/\ Since S is ergodic, the stationary distribution of F is unique, and

hence denoting the Markov generator of S with transition matrix F by

(?' = {?<; * = 0, 1,2,...} we have X?*) = K?0>01) and X?yl 2T"1?0 = r<y =
Kj/l'S"1?;) for all i and /. Then the natural mapping induced by (T, Q)

and (S, Q') is an isomorphism between T and S.

Let us now consider the class of Markov endomorphisms each of which

has a countable Markov generator satisfying

(D) dist(7Ta)), i° = 0, 1, 2 , - - - , are all different.

1° If there exists a Markov generator satisfying the condition (D) for

an endomorphism, then it is unique.

Indeed, if T has a Markov generator P which satisfies the condition

(D), then it is easy to see f (dist(7T(O)) = T~lp{ i.e. p{= rf(dist(7T(0)).

Hence we have P= TRT, where RT is defined by (4).

The following is a direct conclusion of 1°.

Theorem 6S Two ergodic Markov endomorphisms with Markov gene-

rators satisfying the condition (D) are isomorphic, if and only if their

transition matrices are the same except the numbering of the cells of Markov

generators.

Let T and S be ergodic Markov endomorphisms with Markov generators

satisfying the condition (D), of which transition matrices are denoted by

U=(nij) and r = (ji3) respectively. Then Theorem 6 implies that T and

S are isomorphic if and only if there exists a permutation (a one to one

onto mapping) o~ such that 7tij = j'0.ii<rj.

§9, Mixing Property of a Skew Product TFansformation

In this section we are concerned with a special kind of skew product

1) v denotes the invariant probability measure of 5.
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transformation in the sense of H. Anzai [1], and we will study its mixing
property in preparation for the following section.

Let T be a Markov endomorphism with a Markov generator P= {pQ,

Piy-9 PN-i}y °f which transition matrix is n = (7ClJ; 0^ i, j ^N— 1). Let
NQ^I be a divisor of N and Y=Z/NQI> where 1 denotes the additive
group of all integers. Define X~ Xx Y and fi = {txv where v is the
normalized Haar measure on Y.

Let us consider the skew product transformation T defined by

?(*, y)=(Tx, /Sj+rfW), (*, y)eX,

where 0 and r are integers such that (/?, 7V) = 1.1) Evidently I1 is an

endomorphism of (Jt, /£)•

Theorem 7. (i) T ^'s « Markov endomorphism with Markov generator

P = PxsY
 and its transition matrix H is given by

(ii) T is mixing if and only if T is mixing, (r37V0) = l and there
exists an integer M satisfying that for any Q^q^NQ — l there is a sequence

{a(j; q)\ 0^/^M} such that a(0; q)=a(M; j)=0,

Proof, (i) Let us denote g(x9 y) = (£(%), y). Then we have

1) (^, JV) denotes the greatest common measure of £ and JV, and f (^) is defined by (1).
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n
X II Oa(£) , T a( fc - l

On the other hand it is easy to see

Thus we get the assertion (i).

(ii) "Only if9 ' part. Since T is mixing, there is M such that all

components 7T (
( ^J & ' ) f ( 0 t b } of matrix ffM are positive. Hence T is also

mixing. Especially n[%\)t ( 0 ,o) >0 implies that there exists a sequence

a(0)=0, a(l) , --- , a(-M-l), a(Af)=a such that

and

rMX pN-i-Ja(f)=b, modN0.
j=o

Furthermore putting 6 = 1 we have (r, j/V0)=l. Applying the above argu-

ment to a = 0 and b = rq, we get the required sequence {a(j; q)\ O^y^M}.
6'If" part. Since T is mixing, there is n0 such that 7r^o)

a>0 for all

a and a'. We will prove fi[*ty+
}?(lb}>Q for all (a, 6), (a;, 6') and for all

n, m^n0. Firstly we have sequences a(0)=a, #(!),•••, a(n — 1), a(^)=0

and a(0)=0,o(l),---, a(m — \),a(m)=af such that 7r t t (y-+1)fa(/)>0, O^y^ w — 1,
and 7ra(y+1)>a(y)> 0,0^y^77i-l. Put

and choose q(Q^q^NQ — 1) as follows:

where r*r = /S*/9=l9 modJV0, and define
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On account of

f 2 ftn+M+m~J~la(j) = — @mTq + b/ — 0n~i'M+mb, mod N09

and

we have

and a(Q)=a, a(n + M+m)=a'. This means K\n/^™(lib} >0. Thus T is

mixing.

The following is a direct consequence of the theorem.

Corollary. // 7T / y>0 for all Q^i, j^N-I and (r, JV0)
 = 1» then f

is mixing.

Example. Even if T is mixing, T is neither necessarily mixing nor

ergodic. For example, let T be the Markov endomorphism with transition

matrix

/ O 0 1 / 2 1 / 2

1 0 0 0

0 0 0 1

\0 1 0 0

and #=r = l, then f is not ergodic. Indeed f has two irreducible com-

ponents {(0, 0), (1, 0), (2, 0), (0, 2), (1, 2), (2, 2), (3, 1), (3, 3)} and its

complement.

§10o Uniform Markov Endomorphisms

In this section we will study the isomorphism problem for a special
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kind of uniform Markov endomorphism using the result of the preceding

section. Markov endomorphisms studied here are uniform Markov but not

"point collapsing9'. Namely we are concerned with Markov endomorphisms

satisfying the condition

(G) there exists a finite uniform Markov generator of which common

distribution p = (pi; Q<^i ^N— 1) consists of distinct positive pfs, and its

transition matrix II = (7^^; 0 ̂ z, j f^TV — 1) satisfies

for some Q5^£, t0^7V— I such that (TV, ^) = 1, where the addition is taken

to be modJV.

Theorem 8. Let T and S be Markov endomorphisms with transition

matrices n = (nij; O^i , j^N—l) and F = (?ij\ O ^ z , j^N—l) respectively,

which satisfy the condition (G) with the same common distribution

and (N9 t) = (JV, 5) = 1 . Then T and S are isomorphic if and only if t = s

and SQ — IQ is a multiple of

Proof. "Only if" part. Assume T and S are isomorphic. Then

Theorem 5 implies that there is a measurable function rj(x) such that

where ?(#) is defined by (1) for the Markov generator of T. Since p,-'s

are distinct we have

(5) f(r^)-^(r^)--5(^)-^))-(i-^(^) + 50-^0 s a.e.

Let us firstly suppose t^s. Put c = (t-s,N), N0 =N/c, r = (t — s)/c

and @ = —s. Note (N, j8) = (N0, r) = l. Let us consider the skew product

transformation T(x, y)=(Tx, 0 y+r?(x)) on X=Xx Y where Y=Z/N0%.

Corollary to Theorem 7 in §9 implies T is mixing. Now define a meas-

urable function

h(x, y) =

where o)(a)=ex.p(2nia/N). Then we have
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Since (JV,£) = 1, there is an integer M such that @M = I and lf/9'=0
y=o

(mod TV). Hence we have h(TM(x, y)) = h(x, y)9 which contradicts the

mixing property of T.

Assume now t=s9 and consider the function

AOO = *>(£(*) -?(*))•

Taking the same M as above, we have h(TMx) = h(x). Since T is mixing,

h(x} is a constant function i.e. there is Q^d^N— I such that £(#) —

^(A;) = cf , mod 7V, a.e. This and (5) imply

— t09 modN, a.e.

and so (1 + t)d = (l -@)d = sQ-tQ (mod TV).

"If" part. Assume £=s and 50 — tQ is a multiple of (z + 1, JV). Then

there is an integer d such that s0 — ̂ 0 = <f(£ + l) (mod TV). Defining

?7(A;)=f(A;)-J:) modJV,

we have

and so 7rf(r*) ffU)=r9(r*) f V(*)- Since f](x} define the same partition as £(#),
which is of course a Markov generator of T, Theorem 5 in §8 implies

that T and S are isomorphic.

§11. (2x2) and (3 x 3>HarkoY Endomorphisma

As examples of applications of our theorems, we will classify (2x2)

and (3 x 3)-Markov endomorphisms (i. e. endomorphisms with Markov

generators of 2 and 3 cells respectively) by means of the terminology of
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their transition matrices. Since we always neglect events of measure zero,

we do not consider matrices having transient states.

Ae Classification of (2 x 2}-Markov endomorphisms.

Let us denote the transition matrices by ( a *

Case 1. dist (a, 6)=£dist(c, d). Theorem 6 implies that two Markov

endomorphisms of this case are isomorphic if and only if their transition

matrices coincide up to the change of numbering.

Case 2. dist(/7, 6)=dist(e, d) and a ̂ b. This case is divided into three

classes (i) Bernoulli class ( « J ), ( * « ), (ii) ( J J ) and (iii) ( J « ).

These three classes are not mutually isomorphic. Indeed Theorem 3

implies that (ii) and (iii) are not isomorphic to (i). We can see that (ii)

and (iii) are not isomorphic applying Theorem 8.

Case 3. a = b = c = d = l/2,

B. Classification of (3 x 3)-Markov endomorphisms,

In order to classify (3 X 3) -Markov endomorphisms we appeal further

to the following lemma.

1° Consider two ergodic Markov endomorphisms T and S with transi-

tion matrices

b' c\

r=
'a b c\

a b c

, d e f

respectively. If c>05 (af, &') = (o"> &") = (<*> 6) and (d1 , ef)^(d, e)l\ then
T and S are isomorphic.

Indeed, let P = {p09 pl9 p2} be a Markov generator of T with transi-

tion matrix IT, and define a(i, y), 0^i^25 O^/^l, as follows: 7r0}Q:(0}0) =
7ri i«(i.o)=a> tfo.aco. i) = 7ri. «( i f i ) = *, ^2,a(2tQ) = d, K2,a(2s i) = «• Then putting

1) (a'9 &')£(«, &) means (a7, &0 = (^ b) or (a', 6/) = (^, «)•
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2

qi = }

we get a Markov generator Q = {q0, ql9 q2} of T with transition matrix F.

To see the Markov property of Q, it is enough to note that ju(qj\ CT-i£(x))

is constant a.e. on each T~1qi,Q^i, /^2. We can prove that Q is a

generator of T by means of an analogous idea to the proof of Theorem 3

(in Part I) noting that Tnoc, n^09 visits certainly q2=p2 for a.e. x.

Now we are in a position to state the classification of (3 x 3)-Markov

endomorphisms. We will naturally restrict ourselves to ergodic ones. Let

H = (7tij; O^z , /^2) denote the transition matrices.

Case 1. dist(7T(fI))5 0^z<;29 are all different. Theorem 6 gives us the

classification of this case. Namely two Markov endomorphisms of this case

are isomorphic if and only if their transition matrices coincide up to the

change of numbering.

Case 2. Two of dist(7T(0)9 0^z^2 9 are the same and the rest is

different, that is D(T) = {p1> p2}9 Pi=£p2- Consider two (3x3)-Markov

endomorphisms T and S with transition matrices 77" and F of this case

respectively. Suppose firstly that T and S are isomorphic. Then we have

=D(S) = {pi5 P2}° Choosing a suitable numbering we can assume

f dist(7T(0)) =dist(7T(1)) =dist(r(0)) =pl

(6)
I dist(7T(2))=dist(r(2))=P2

without loss of generality.

Case 2.1. dist(7l(1))=p1. Let P = {pQ, pl9 p2} be a Markov generator

of T with 77. Then the partition defined by (4) has the following two

elements

?i =r(Pi) = r-^o U T~lpl9 f2 =f(pa) = T-*p2.

By our assumption T has also a Markov generator Q = {qQ, qi9 q^ with F9

and then we have f2=T~lq2 and so q2= p2 and 7*22 — ̂ 22- Moreover we

have
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( 7T,2, for x e T~lph
(7)

Since the left hand side of (7) is independent of the choice of Markov

generators, we have (7T02, 7r12)^(r025 Tiz)-

First we will prove that if 7r02^7r12 then P = Q and so H = F up to

the change of numbering. Indeed, noting that the left hand side of (7)

takes two different values on fl5 decompose fl into f0 and rl according to

its values. Then it is easy to see R = {r0, fls f2=r2} = T~1P. By the

same reason we have also R = T~1Q, and so P = Q.

Next, let us assume (6), dist(j(1)) =pl and 7r02 = 7T12. Then 1° implies

that T and S are isomorphic. Thus we obtain the following classification:

Suppose dist (7T(0)) =dist (TT(I)) =dist (r(0)) =dist (r(1)) ̂ dist (7i(2)) =dist (r(2)).

Then the condition

is necessary for T and S being isomorphic. Conversely, under the above

condition (8), (a) when 7T02=£7r12 T and S are isomorphic if and only if

II = F up to the change of numbering, and (b) when 7r02 = 7r12 T and S

are always isomorphic.

Case 2.2. dist(r(1))=p2. If pl or p2 consists of three positive ele-

ments, then considering the invariant #j(#), ^ anc^ $ are not isomorphic.

Otherwise T and S are reduced to (2 x 2)-Markov endomorphisms using 1°,

hence there are cases such that T and S are isomorphic.

Case 3. Uniform case. Let us denote the common distribution by

p = (a, 6, c), where we assume a and b are positive and c is non-negative.

Case 3.1. a = 6 a n d c ^ 0 . Remark 2 of §4 (Part I) implies that all

Markov endomorphisms of this case are isomorphic to a Bernoulli endomor-

phism with the distribution (a, a, c).

Case 3.2. a, b and c are positive and distinct. In this case we have

the following five classes:
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\ c b a / 9 \b a c /,

(v) others (Bernoulli class).

Indeed, all endomorphisms of the fifth class are isomorphic to a Bernoulli

endomorphism with (a, b, c) as they were already discussed in §5. Since

all endomorphisms of classes (i)~ (iv) do not satisfy the condition (P') in

§4, they are isomorphic to no endomorphism of class (v). It is obvious

that all matrices belonging to each class (i)~(iv) coincide with each other

by the change of numbering. Finally the first one of each class satisfies

the condition (G) in §10, for which (i) t = 2, tQ=Q, (ii) t = 29 t0 = I, (iii)

t=2, t0=2 and ( iv)£ = l s £ 0 = 0 by taking p = (p0s pl9 |p2) = (a, 69 c).

Therefore they are not isomorphic to each other by Theorem 8.

Case 3.3. a^b and c=0. The arguments about classes (i) — (iv) of

case 3.2 are still valid in this case (notice that Theorem 8 holds even if

one element of the common distribution is zero). Therefore we have the
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classes (i)~(iv) just putting c = 0 in case 3.2. The fifth class of case

3.2 is divided into three classes: (va) the ones isomorphic to Bernoulli

endomorphism with (a, b), which satisfy the condition (Px) in §4; (vb) the

ones which are reduced to the (2 X 2)-Markov endomorphism with transition

matrix ( ? ) using 1 °; (vc) the ones which are reduced to the (2 X 2)-\ o a J

Markov endomorphism with transition matrix ( ? ) using 1°. Examples\ a 0 /
of Markov endomorphisms of these three classes are as follows:

(va) '« b 0

o 0 h

a h 0

(vb) 0 a b

n 0 b

0 b a i

(vc) /O n b

0 b a

,b n 0 /

Except the class (va), no ondotnorphism of this case is Bernoulli. We

discussed already in A that classes (vb) and (vc) are not mutually isomor-

phic. Thus it remains to verify that classes (vb)5 (vc) and (i)~(iv) are

not isomorphic. Suppose that (vb) and (i) are isomorphic, for example.

Then we have two Markov generators P={pQ, p1? p2} and Q = {qQy qi}

with transition matrices belonging to class (i) and ( ? ) respectively.
\ o a /

Let R = RT be the proper partition for T defined in §3 (Part I). It is

easy to see R^P = P^T~1P and hence Fv V T~kR = e, and $v V T~kR = e
k=0 k=0

analogously. Therefore dist(P|r)=dist(e r)=dist(O|r) for a.e. re V T~kR,
k = 0

but it is easy to see that dist(P|r)=(l/3, 1/3, 1/3) and dist(()|r) = (l/2,

1/2) for a.e. r which is a contradiction. Thus we have the classification

(i), (ii), (iii), (iv), (va), (vb) and (vc).
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