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On Besov Spaces and Sobolev Spaces of Generalized
Functions Defined on a General Region

By

Tosinobu MURAMATU

§1. Imtroduction

In this paper we shall take a new approach to the theory of Besov
spaces (or Lipschitz spaces) and Sobolev spaces of generalized functions or
distributions defined on an open set with the cone property. These func-
tion spaces on the whole n-space R” has been extensively studied by many
authors, see e.g. [1], [2], [6], [7], [12],[22], [31],[32],[33]. However,
it seems that theory of the spaces on an open subset £ of R” has not been

completed up to now. To study it we shall employ the integral operator

of the form

(L.1) Sat"d*tSK(t, %, —z, atte)f(x+iz)dz, or
0

(1.2) S“zad*tSK(z, X, —z, x+t2)ult, v+tz)dz,
0

where K satisfies appropriate conditions stated below. A representation of
generalized functions by means of the integrals as above, stated in
Theorem 1 and proved by an elementary calculus, make it possible to
discuss the various problem, such as extension to the whole n-space,
imbedding and determination of the interpolation space and the dual space,
without any help of approximation of generalized function by smooth func-
tions. Another key result in this report is Theorem 2, a characterization
of the function spaces by means of ‘“‘regularization’, which was suggested
by H. Komatsu to the author. Taibleson [32] gave an analogue to this
for Besov spaces on R*, which is an n-dimensional version of the result by
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Hardy-Littlewood [[117], and E. M. Stein proved the fact that L?(R")-norm,
1< p< 0, is equivalent to that of the Littlewood-Paley g-function which
is very similar to our results for Sobolev spaces, see for example [ 31 ]
But their theory depends on the Poisson integral, while ours on the con-
volution with smooth functions having compact support. Our theory for the
interpolation space of Sobolev spaces leans on the L?-boundedness result
for a class of pseudo-differential operators, instead of the theory for maximal
function, g-function and harmonic functions.

Let us explain our notations:

Notations. x=(x,,..., %,), ¥, z will denote points in Euclidean

n-space R*, and a=(ay,..., &,), 3, r multi-indices of non-negative integers.
lal :a1+"'+an: a':al'an'i leZ:x%—F-{-xfﬁ xa:‘x%l"'xg";
D;=0/0x;, D*=D¢---Dgn.

We say a=pg if a;z8;,i=1,..., n.

@):"(a——aﬁ'ﬁﬁ for 0<B<a,

and is equal to zero otherwise. By I we will denote the interval [0, a]
with 0<a<t, For t€l dyt=1t"1dst, for yeR" dyy=|y|"dy, where
dy=dy, --dy,, the usual Lebesgue measure. R* is the set of positive
real numbers. Moreover we will make use of the following abbreviations:

K(a,%ﬁ)(t, X, Z, y)=Df:DZD§K(t, Xy %, }’),

WD (1, ) =D2u(z, %), 2;,,= N (R—k).
£=0
X, Y will denote Banach spaces, and L?(M, du; X) the space of X-
valued L? functions on a measure space (M, du).
L (2; X)=L1*(2, dx, X),  LLA(R*; X)=L*(R", dyx; X),
and L.?(I; X)=L*(1, dyt; X).

C=(2; X)=¢&(2; X) is the spaces of X-valued infinitely differentiable
functions, C5(2; X)=2(2; X) the space of all p= C=(2; X) with compact
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support contained in £, and #~(2; X) is the space of feC~(2; X), whose
derivatives of all order are bounded on £. On the other hand, 2'(2; X)
is the space of X-valued generalized functions or distributions on £, and
&’'(2; X) is the space of those with compact support contained in £2.
LA()=L*2; C), C=(2)=C~(2; C), etc.

(X, Y), , is the mean interpolation space due to Lions-Peetre [17],
and [ X, Y, is the complex interpolation space due to Calderon [ 8] and
Lions [157].

Now, we shall give the definition of the spaces and a few remarks
about our results.

Definition. As wusual, for a non-negative integer m W7T(2; X),
1= p= oo, will denote the set of all LP(2; X) functions whose generalized
derivatives of order up to m belong to L?(2; X). For a megative integer
—m, W,™(82; X) will denote the set of all X-valued gemeralized functions
f on 2 with

(1:3) f@)= % Difu(n), foln)eL¥X).
The norm of the space is
(1.4) “f“W;"‘(.@;X) =inf IMZSm Hfa(x)”LP(JZ;X),
the infimum being taken over all {f,} satisfying (1.3). Wi5=NWE,
k
Wy>=UWtk.
k
The space B (2; X), 0 real, 1= p, g=oo, is defined as follows: For

the case 0=Fk+0, where 0<0<1, k is a non-negative integer, Bg (£2;X)
is the set of functions f such that fe Wi 2; X) and

(1.5) ]][Hf(“)(x + ) —f-(u)(x)”LP(!h,y:X) | )/I ) H:]”L;‘k(w‘)

is finite for amy multi-index o« with || =k.

The norm is the sum of the norm of W% and the above semi-norins
for all \a|=k. For the case 0=k+1, where k is a non-negative integer,
the Besov space B (8; X) is defined analogously except that (1.5) is
replaced by

1.5 O +29) =2f (2 + )+ @) iscon,i0 ¥ g can-
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For the case 0=—k+0, where 0<0Z1 and k is a positive integer,
Bg (2; X) is the space of gemeralized functions f such that
f(x)=mZ Difo(x), foEB} (2;X),

=k
and the norm is

inf |§§k”f"‘“31§, R

Finally, the space H3(2; X) is
Hy(2; X)=[Wi&; X), WE1(2; X)],,

if 0=k+0,0<0<1, and k is an integer; H3(2; X)=We(2; X) if 0=k
is an integer.

In the following of the paper we shall always assume that £ is an
open set with the come property, that is, there exist a function
Y(x)e#~(R*; R*) and a number ¢,>0 such that for any x=£ and
0=t<ty x+t¥(x)+tB is contained in £, where B is the unit ball in R”
(in regard of this point, see [20] §1). Replacing ¥(x) by (7+&)¥(x),
7=1¢e>0, and t, by t,(y7+¢)7!, if necessary, we may assume that for any
xe @, the closure of 2, and 0<t<t, x+1¥(x)+tyB is contained in L.
In connection with this we shall denote by A(t, x) the closure of the set
of all points z such that there exist ¢ i,,..., 1,20, z,..., 2" e B with
t=t;+ -+t =2+ 6T () + 120, %= 2,4+, (x,)+1,2?,..., and
Xpy=%+12= %,y 1+ t,7 (X 1)+ 1,2, It is evident that, x+1A4(z, x) C 2
if xe2, 0<t<t, or if xR, 0<t<t,, and that

(1.6) A(t, x)CbB for 0< <y,
where b=sup|¥(x)|+1. Also by definition we find that
we AL, x), tz—t,we(t—1t)A(C—1t,, x+t,w)

with 0=<¢,<¢ implies z€ A(t, x).
It was proved that for any open set £ with the cone property the space
B3, ,(£),0<0<2, is identical with the set of functions f& L?(£) such that

ILIf (o +25) =2f(x + y) +F (@)l Loy | ¥ rgcrn
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is finite. (see [187]). The same fact is valid for the X-valued case.
Sometimes the space H3(R") is defined by Fourier transform, (see e.g.
[8], [15], [27]) and H3(2) the restriction of H3(R") to £. However,
from Theorem 6 this space coincides with H5(f2) defined above for the
case 1< p<oo,
Next, let us introduce the space of generalized functions with ‘‘zero

boundary value’:

Definition. Let #(2; X) be a space of X-valuecd generalized functions.
By Fo(R*; X) we denote the set of feF(R*; X) with support contained
in 2.

Then, from Theorem 5 Corollary C35(82; X) is dense in B3, o(R"; X)
for 1= p, y= oo and dense in Hg ,(R"; X) for 1< p<oo. In addition, for
1< p, g< o, B; (£) and B}7 o are dual each other. H3(2) and Hy7,
are also dual each other (Theorem 11). Hence our negative norm is a
generalization of the one due to P.D. Lax [14].

Finally let us state the conditions imposed on the kernel K of the

operator (1.1).

Definition. We say K(¢, x, z, y)eX, if it is a B°(R"xR*xXR")-
valued continuous function of 0=t=<t, and if its support regarded as a
function of z is contained in — A(t, x) for any fixed t, x, v. KeX';, where

J is a positive integer, if

K(t, x, z, y)=' o Koo, %, z, )

al=j7
for some K,ex', |a|=j. KexX;, if

K@, » 2, = 2 K0, 5, 2, 5)

Sfor some K, €, with SK"‘(t’ x, z, y)dz=0, |a|=j-1.

It is obvious that 4 ;c ;.

§2. Calculus of Generalized Functions

Definition 2.1. By #:(Ix82; X), (or 43I x2; X)), 1Sg= 0, we
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denote the set of all 2'(2; X)-valued (or 2g(R*; X)-valued) functions
u(t, x) of t€1l such that for every compact subset C in 2 (or in R®)
there exist a non-negative integer k and functions

ua(t, x) € LYLI; LI (2; X)), |a|<E,
(or uu(t, )€ LL(I; Li,(R*; X)),
satisfying
u(t,x)= Ig‘_ékD;;‘uw(t, x) on C.

Example 2.1. If peLi(l), fe2'(2; X), (see [26], note that every
Banach space is a complete (DF)-space), then 0(¢)f(x)e#4(Ix82; X).

Example 2.2. Let 1< p, g<o. Then
Lr(Q; LI X)) ca*(Ix 2; X),
(U L2, X)) ca(IX2; X).
Lemma 2.1. (I) Let K(¢, x, z, y) belong to A ,. Assume that
o(e)tm e Li(I). Then
(@) for any p=&(R) the integral
0, )= K, %, =z, x+12)p(a+12)dz,

=t‘”SK<t, x~x;—y y)w(y)dy

is well defind and

(i) o(t, x)EE(R) for every fixed 1,
(ii) o(t, x)—k(x)p(x) in £(2) as 1—0,
where

k(x)=gK(0, %, 2, %)dz,

(iii) Saqo(t, 0)O(8) Ayt is convergeni in &(8).
0
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In particular, in the case where £ =R" the same facts are also valid when
&(82) is replaced by 2(R").

(b) For any o€ D(82) the integral

na x)=SK(t, wttz, 2, ©)P(x+1z)dz,

=t ”SK(Z, ¥s y;x , x)(b(y)dy

is well defined and

(i) O(t, x)=2(82) for every fixed ¢,
(ii) O(t, x)—k(x)P(x) in 2(82) as t—0,
(iii) Sagb(t, x)0(2) dyt is convergent in D(8).

(I1) Let X be a Banach space and let K(t, x, z, ) belong to X .
Then

@) for fe2'(2; X) and t>0

U(z, x)=SK(t, x, —z, x+tz)f(x+iz)dz,

=r"<K<t, %, x;y, y>, Fn>,.

(<,> denotes the duality between 2(2) and 2'(2; X)) is well defined and
(1) U@, x)eC=(2; X) for every fixed t>0,
(i) Ui, x)—k(x)f(x) in 2'(8; X) as t—0,

(h) Jor any geD4(R"; X), and 1>0

Vs, x)=SK(t, x+tz, z, x)g(x+1z)dz

= K(t, ¥, y=x x), g(n>,

is well defined and
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6)) Vi, x)eC(R*; X), supp(V (¢, x))c L.

(In particular, if ge&'(2; X) then V(t, x)eC5(2; X)) for every fixed
£>0,

(ii) V(t, x) > k(x)g(x) in 2'(R*; X) as t —0.

Remark. 1t is convenient to write the duality between distributions
and differentiable functions by the integral. Hence we make use of this

convention in the following if no confusion occurs.

Proof. (I) (&) The integral ¢(z, x) is well defined, since for fixed
t and x4

supp[K(t, x,-%':—y, y)]cx—{-tA(t, x).

Part (i) is evident. To prove part (ii) we observe that for any compact
subset C in £ the set

Ix{(x, —z, y)|x€C, z€ A(t, x), y=x+1z,0=t=<a}

is compact, therefore, D2{K(t, x, —z, x+tz)p(x+tz)} converges to
Dz{K(0, x, — z, x)¢(x)} uniformly on the above set as ¢—0. This implies
that D2¢(¢, x)—>D2{k(x)p(x)} uniformly on C as t—0. Hence ¢(z, x)—
E(x)p(x) in £(2). In the case where 2=R”* and g 2(R"), using the
fact

supp ¢ (¢, x)]csupp(yp)+tbB,

as is readily seen, we find that
o(t, x)—k(x)p(x) in D(R”).

In order to establish part (iii), we first consider the case m=0. Let ¢ be
a positive number, and set

0= "0t D00 duc,

Since for any compact set C in £ the set
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2.1) A={ylyex+14@, x), x€C, 0=t=a}(C2)

is compact, it follows that

| D0 (x) = D0, (0) | < | (0 dut || DHK e, 2, ~ 2, v+ e2)p(a+ 12} da

=€ sup sup [ D70(»)| | p(0) dyt—>0
B=a 5

as g, 0—0. Therefore, ¢.(x) is convergent in &(£). Part (iii) for the
case m=1 follows immediately {rom that for the case m=0 with the aid
of the following identity (cf. Cor. 2);

e, ¥)— 2] SK;"-""”(I, X, —a, v iz)e(x Fiz)dz,

lal=m

=" ) Z(g)gl{;"""“"/”(t, X, -z, x4+ L) B (x4 t2)dz.
lal=m B P

(I) (b). Since p=2(R"), it is evident that ¢(z, x)=C~(£2). Let C be

the support of ¢. Then the set 4 defined by (2.1) is compact and contains

the support of ¢(z, x) for every ¢. Hence the fact ¢(1, x)—k(x)¢(x) in

2(8) as t—0 follows from the fact

D2{K(t, x+1tz, z, x)p(x+t2)}>D2{K(0, %, z, x)P(x)}

uniformly on 4 xXbB since I X AXbB is compact. Part (iii) can be verified
in the same manner as (I) (a) part (iii).

(II) (a). Since for fixed >0, x= £ the function K(z, x, (x— y)/t, ) of
ye £ belongs to 2(2), U(t, x) is well defined. Part (i) is immediately
verified by the definition of generalized functions. Let us consider part
(ii). From Fubini’s theorem it follows that for any ¢ € 2(R2)

Jue, o dr=<k (1, 225, ¥ 9@, FDBL> ey

x —

2, 5 @) d, f()>,,

=< gt‘”K(t, x,

=<, M, f(9)>,,
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whence, applying (I) (b) (ii), we obtain

[ute, 0 dx— <k, £(5)> = <o), BAF)>
as t—0.

(1) (b). Since for any fixed ¢>0, x, the function K(z, y, (y—=x)/1, x)
of y belongs to 2(R"), V' (¢, x) is well defined. It is easily find that

supp F (¢, v)c{x|x= y+1A(t, y), yEsupp(g}c L.
The remainder parts of (b) can be shown similarly.

Corollary 1. With the same assumptions and notations as in the

lemma, we have

(o, 20 dz=<9tt, 2, f()>
for fe2'(2; X), p€2(2), and

[r. eedr=<o 2, g >

for either geé&'(2; X), pé(Q) or ge25(R"; X), o= 2(R").

Corollary 2. With the some assumptions and notations as in the

lemma, we have
D=U(t, %)= ;(g)r'ﬂ'gK(“‘ﬁ’/”'O)(t, %, —z, x+12)f(xn+12)dz,
DV, x)=Zﬁ](g)(—t)"ﬁ’gK("'f"'“'ﬂ)(t, w41z, 7, %) g(x+1z)dz,
SK‘o’“'O)(t, %, —z, %+ t2)f(x+12)dz
=t'“'§g(g>K(°'°’“'ﬁ)(t, %, —z, 5+ 12)f B (% +12)dz,
SK(O’“:O)(t, x+1z, z, %) g(x+1z)dz

:(—I)""%;(g)gl{(”‘”"’"’)(t, vtz z, 0) g (x 1) dz.
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Proof. 1Tt is easy to find that

DeU(t, x)= rn<Dg{K<¢, x

o>

= Z(%)t_ﬂﬁlﬁi <K(a—ﬁ’ﬁ'0)<t7 X i y

[}

y>, fn>,

and that

DaV (i, x)=1"< D;{K<t, y, L2 v)} g(y)>

_ AN\, 1810 1)I8! (0, 8,a-8) y—x >
5(§)e <k (8 255 %) >

From the identity

(2.2) /32 (_1)111—/3(%()(?):{ 1 for a=ry,

0 for a#7,

it follows that

%]t'”(%>< K(o,o,a—/s)<t7 x, x;y , y>, F®(y)>

_ ;t—n(_1)Iﬁi<‘b§><D§{K(°-°’“'B)<t, x, y)},f(y) >

:Z/:;t—n(_l)lﬁ-y)( )(B): 17l < K (0,70~ 7)(t x’x__ >f(y)>

X

:tofz~|al<K(0,a,0)(t, x, ;y, y>’ f(y)>

Similarly, we have

Ltﬁn< >< K(a-5,0, ())< ¥, y_l_x , x)., g(ﬁ)(y)>

:flﬂz-lol(_l)lnl<K(0.a,0)<L, ¥, Y;i’ x), g(y)>.

Corellary 3. Assume thai
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K(t: %X, &, y)=|a;=mexo’ a'O)(ta Xy Zy j’),

where K, €, and set for every |B|=m

@8) Ryt 7z )= 5 (=D P KE 00 5, 2, ),

l=m

@) Kot x 2 0= 0 (FU-DAKLO 1, x, 2, )

(Note that K,3=I€ﬁ=f€ﬁ for |B|=m).
Then for fe2'(2; X) and ge 25(R"; X)

UG, x):SK(t, %, =z, x12)f (vt 15)dz
=t'",ﬂ}'j§ml)§g[€ﬁ(t, %, —z, x+tz)f(x+1z)dz,
v, x)=gK(t, w4z, 2, %) g(x+1z)dz
=(—t)mlﬁ;§mD§SIzﬁ(t, xtiz, z, %) g(xn+iz)dz.

Proof. From Corollary 2 and from (2.2) it follows that

tm%}nglzﬂ(t, %, —z, x+tz)f(x+tz)dz
=zztm-w(f)gﬁ,gﬂ—m°>(t, %, —z, -+ t2)f(x+1z)dz,
B

=; § ial:mt”‘—lvl(?)(cg)(_1)|a-/3ISK‘(xa—7,7.0)(t, %, —2z, x+tz)f(x+tz)dz

SI 2 KO0, %, —z, x+tz)f(x+t2)dz=U(1, x).

The proof of the second identity goes the same way.

Lemma 2.2. Let K(, %, z, y)EX,.
(@) Let u(t, x)ct'(Ix82; X) and let

UG, x)=SK(t, %, —z, n+t)u(t, x+i2)dz.
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Then the integralguU(t, x)dyt is convergent in 2'(2, X).
0
(0) Let v(t, x)e M Ux2; X) and let

Ve, )c)=SK(t, x+tz, z, x)o(t, x+tz)dz.
Then the integral SQV(t, x)dyt is convergent in DH(R"; X).
0

Proof. (a) By Lemma 2.1 Corollary 1 we get
SU(t, D)(x)dx= <P, x), u(t, %)>,

for every ¢ 2(82), where ¢(¢, x) is the function defined in Lemma 2.1
I. (b). Let A be the compact set given by (2.1) where C is the support
of ¢. .Then the support of ¢(¢, x), ¢ >0, is contained in 4. Since ue.#1,
there exists a representation

u(t, )= % Doug(t, x),  u Ly, L1,.(9)

on A, so we obtain

<¢(¢, %), ult, x)>=I ISk(—l)'“i<¢<°“(t, %), ug(t, x)>.

But

Pz, x):%“(%)(_t)—lﬁ(t—nSK(O,B,a—B)<t’ ¥ y:x ’ x)gb(y)dy

= ‘VL‘ %(g)(ﬁ)r"SK(ﬁ—v'0’“_ﬁ)<t’ ¥, y:x , x)¢("”(y)dy,

which gives

|9z, x)| < ¢ sup sup [0® (%) | <c||g]],

where ¢ is independent of ¢, ¢, & and ||¢||,=sup sup |¢‘@’(x)|. Therefore,
lalsk =z

we obtain
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[l 2 <0 2, uale, > lxdst

8
&
)

<cllgll 3 luatt, Dliurcan dut =0

as ¢, 0—0. This completes the proof of part (a). (see [26] or [34])).
(b). By Lemma 2.1 (II). (b) we find that the support of V(¢, x), ¢>0,
is contained in £, which gives V (¢, x) & (R”). Therefore, it will suffice
to prove the convergence in 2'(R*; X). Suppose that ¢(x)e 2(R”) and
let ¢(z, x) be the function defined in Lemma 2.1(I) (a). Then by Lemma
2.1 Corollary 1 we have

SV(t, )e(x)dx= <oz, %), v(t, x)>,.

Combining this with the fact that the support of ¢(¢, x), ¢t >0, is contained
in a compact subset in R” which is independent of z, we obtain

SV(t, Do) dz= T m(—l)'“'g(ﬂ(“)(t, 2oyt x)dx,

where v, Li(I; L},.(R”)). Hence we obtain our assertion by discussing

in the same manner as part (a).

Corollary 1. Let 1=q=oo, and let 0 be a real number. Assume
that KeX';, where j is a non-negative number such that j+0=0 when
g=1 and j+0>0 when g=1.

(@) For u(t, x)e M (IXL2; X) let us set

e, x)=SK(c, X, —z, 5+12)ult, x+12)dz,
a
Then S 1oU(t, x)dyt is convergent in 2'(2; X), and
0

D S U, x)d*t=gat’D;‘U(t, ) dyt.
0 0
() For v(t, x)e M5 Ix2; X) let us set

70 x)=SK(t, x4z, 2, 2)(t, x+12)dz.
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Then
Sat"V(t, x%)dyt is convergent in 9'(R"; X),
0
whose support is contained in 2, and
a a
D;’S 2V (L, %) d*tzg 7DV (2, %) dyt.
0 0
Proof. From the identity

Uz, x)=gI > Kya0(, x, —z, x+tz)u(t, x+tz)dz,

al=j

— z(%‘)SK;O,O,a—m(t, X, —z, 5+12)uB(, x+tz)dz,

lal=j B

the fact that #/*ou(® (¢, x)e . #1(Ix ) which is an immediate consequence
of Holder’s inequality, and from the lemma the convergence of the integral
follows. Since

DzU(z, x)=Z(g)::“’s'gK(“‘ﬁ’ﬁ'O)(t, %, —z, x+tz)u(t, x+tz)dz,
3
and since K@ #8890, ,, it follows that
a
S DU, %) dyt
0

is convergent in 2'(2; X). Therefore, we obtain the formula of differen-

tiation under integral sign by letting ¢—0 in the identity
a ‘a
Dgg U, x)d*t——-s DU, x) dit.
& &
The proof of part (b) goes the same way.

Corollary 2. Let Kex';, 0(t)t’ € Li(I). Then
(o) for f€e2'(8; X) and ¢=2(82) we have

< (), SZp(t) d*tSK(t, %, —z, %+ t2)f(x+iz)dz>

:<S:p(t)d*tSK(t, x+tz, 2, x)P(x+tz)dz, f(x)>;



340 TosINOBU MURAMATU

) for ge&'(2; X) and o&(2) or for ge DH(R*; X) and p= 2(R")

we have

<g(x), S:p(t)d*tSK(t, x+tz, z, x)g(x+tz)dz >
=<S:p(t)d*tSK(t, x, —z, x+tz)p(x+tz)dz, g(x)>.

Proof. With the aid of a limitting argument, these identities follow

from Corollary 1 and Lemma 2.1 Corollary 1.

§3. Integral Representations

Lemma 3.1. Let K,(x, z, y)EX", and set

Ku(x, 2, P= % —-De{z°K,(%, z, )},

laT<m !
Ra(w, 2, )= 5 oeDH{zKi(x, z p)}.
Then, for fe2'(2; X) and g€ 25(R*; X)
t%sKm(x, 2, wtt2)f(xtiz)dz= —me(m(x, —z, %+ t2)f(x+t2)dz,

and

t%SK’”(x—i_tz’ z,x) g(x+tz)dz= —mSKm(x+tz, z, x)g(x+tz)dz.

Proof. From the identity

e 7))
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and the identity

nKm(x’ Z, _’)’)+Zn: Z;j aaKm (xa 2, 9’)=me(9\9, zZ, }’),
7=1 Zj

the first identity follows. In the same way we get the second identity.

Corollary 1. (Integral representation) Let us choose w(z)e< Cy(R")
such that supp o is contained in the uwnit ball B, and that its integral is
equal to 1. Put

01(%, 2)=0(—z —F(x),

3.1) on(x, = T ZrDe{zo0(x, D},

(3.2) M(x, z)=iaémén—!—D§{z“w1(x, 2)}.

Then, for fe'(2; X) and g D5(R*; X),
f(x)=S:d*tSM(x, —D)f(x+12)dz+Up(a, 2),
g(x)=§:d*tSM(x+tz, ) g(x+iz)dz+V(a, %),

where

U, @:Swm(x, —2)f(x+i2)dz,
V., x)=gw,,,(x+tz, 2) g(x+12)dz.

Proof. It follows from the lemma that

U, (e, %)—U,(a, %)= —S:t aau;,,, d*t=S:d*tSM(x, —2)f(x+12)dz.

Letting e—0, we obtain the first identity by Lemma 2.1 (II) (a), since
Sa)m(x, z)dz=1. The second identity is proved analogously.

Corollary 2. Let k and m be fixed integers such that 0<k=<m+0,
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and let w, U,, and V,, be the same functions as in Corollary 1. Set

(B3 Mo(wr, )= % 8 (=D (GN}) I DE D001, (5, 2)

al=k Iy1Sm—s aly!
Jor |B| =k, where
(3.4) W (x, 2)=2%0(—z~-¥(x)).
Then, for f€2'(2; X) and g 2D5(R"; X)
f@= ngatkd*tSMﬂ(x, — )f(x+12)dz+Up(a, 2)
Blsk 0

g(x)=(—1)F D,‘}S:tkd*tSMa(x—i- tz, 2) g(x+12)dz+ V(a, %).

lal=k

Proof. Since M(x, z)=I lZ MO-* (%, z), the identities follow from
al=k

Corollary 1 and Lemma 2.1 Corollary 3.

Lemma 3.2. Let m be a non-negative integer and let ¢ be a real
number. Assume that K(t, x, z, y)yei,, and 0+m>0.
(a) If fe2'(8; X), then

t"SK(t, %, —z, 5+ 12)f(x+12)dz e I 2; X).
®) If ge25(R*; X), then
t’gK(t, xtiz, z, ) g(x+iz)dzeabIx3; X).
Proof. (a). Let C be a compact set in £, and let 4 be a set defined

by (2.1). Since A is compact, by the theorem on local structure of

distributions ([26_]) we obtain that f is equal to a expression
T D), faeCR: X,

in a neighbourhood of 4. Hence for x=C

t"SK(t, %, —z, x+i2)f(xn+1z)dz
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=gk Y g(—DZ)“{K(t, %, —z, x+12)}f(x+12)dz,

lal=k

- = 2(‘5)(—1)'a—mtv~w SK(O’ﬂ’“‘ﬁ)(t, %, —z, x+ia)fo(a+iz)daz.
al=k R R

Since K(-#e=8)eK 4., it is sufficient to consider the case where f is
continuous in a neighbourhood of A4, and in this case the assertion follows
from

t"gK(t, %, —z, x+tz)f(x+tz)dz

:t"*"”lﬁém DESKﬁ(t, %, =z, s +iz)f(x+iz)dz

(Lemma 2.1 Corollary 3)

and

"Slzﬁ(t, %, —z, x+tz)f(x+tz)dz

Zcsup|| f(x)|lx.
LP(C:X) xefllf( lx

The proof of part (b) goes the same way.
Lemma 3.3. Let 0>0,0=0,1<p=<oco and let 1<EXyE oo,
@) If UG, x)et(Ix2; X) (or #5Ix2; X)), then
u(t, x)=t"S:t(’s‘9U(s, x)dyse.an(Ix2; X)
(or exI(Ix82; X)).

In particular, the operator U—u is a bounded linear operator from Li(I;

L#(Q; X)) into LI(I; L*(2; X)), or from L*(2; Li(I; X)) into L*(2;
I(I; X)) with norm =<a°/0.

@) If UG, x)eat(Ix82; X) (or #5(IXx2; X)) then

¢
0

u(t, x)=t"g 050U (s, %) dys e A(IX 2; X)
(or eaY(Ix8; X)).

In particular, the operator U—u is a bounded linear operator from Li(I;
L*(R2; X)) into LL(L; L*(2; X)), or from L¢(R; L&(I; X)) into L*(2; L1
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; X)) with norm =a°/6.
Proof. These facts follows from [20] Lemma 2.5, because

Sat"s“’d*sgi st"s“’d*t=—1—, t%s76<1 for t=<s.
t 0 )o 0

Now we are in a position to state and to prove a new integral repre-
sentation of generalized functions which is frequently used in the following

discussions:

Theorem 1. (Integral Representation). Let h, k, I, m be non-negative
integers such that 0Sh=<I[,0<k<m, Ix0, mx0. Let w(z) be a function

such that w(z)e C5, suppwcC B, Sa)(z)dz=1. Set

0y (x, 2)=z%(—2z—-¥(x))

on(t, )= B rD50o(%, )
— l AL a— a-— v
Ly, = % 5 (1) (G) -0« De D0, (. 2),
(181=h)
-1
e, iy BB Q#0001
(181=k)

L(x, 9= % L Do, (%, 2)= 3 D2L(%, 2),
lat=; a! laT=4

M(z, )= 5 5Di0g(x, 2)= 3 DiM.(x, 2),
lal=m &: lal=%
(@) For fe2'(2; X), |a| <k, |B|=h, let us write
U=(s, x)=S%(%)s""ﬁ‘ﬂ“‘ﬂ-ﬁ)(x, —w)f(x+sw)dw,

e (, x)=gatks“kU“(s, %) dys,
t
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U5, %)= Lo, —w)f Gatsw)dus,
u4(t, x)=S:s”t"‘Uﬁ(s, ) dys,
f,,(x)=gw,(x, —z)f(x+az)dz,
(@) ()= Do = o2 (a=B.B (5. —2)f(x+az)dz
£ (@) =Dg fulw) = 3§ )05 (5, —2)f (5 +az)dz,

fﬁ(x)=S:thﬁ(z, %) dst,

Then
(3.5) J(x)=F(x) + Fy(2) + F3(x) + Fy(),
where
Fl(x)~‘ 3 kg d*tSMa(x, —2)u*(t, x+1tz)dz,
Fyw)= 7 hgad*tSM‘o'/’)(x — D) th 18w g(s, % +12)dz
(3.6)
Fy(x)= Zi X d*tSMa(x —2)thf@ (x+12)dz
F4(x)=|mSha“/9'Sw(° B (x, —2)fg(x+az)dz

+Swm(x, —2)fu(x+az)dz,

In particular,

Fl(x)=S:d*th(x, —z)dzgjd*sgL(x+tz, —w)f(x + bz +sw)dw,
Fz(x)=S:d*tSM(x, ——z)dzg;d*sSL(x+tz, —w)f (% + v+ sw) dw,

Fs(x)=S:cl*tSM(x, —2)fu(a+i2)dz,
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F4(x)=Swm(x, —z)f(x+az)dz.
(b)) For ge2z(R*; X), |a| =k, |B|=h, let us write

Ve(s, x)sz(o'”(x—i—sw, w) g(x +sw) dw,
va(t, .”G):Satks'l"‘lV“(s, ”C) d*s,
t
V g (s, x)zSLﬁ(x—Hw, w) g(x +sw)dw,
t
ve(t, x)=3 Ehsh Y o(s, x) dyes,
0
g.,,(x)zga),(x +az, z2)g(x+az)dz,
g,f:’"(x)=(—1)'“'a“'“'3w,(°'“)(x+az, z2)g(x+az)dz,

gs(x)= ght” Va(t, x)dyt.
0

Then
G.7) () =G1() + G3(%) + Go(%) +Go(),
where
cl(x)_mékg d*th (2 +t2, 2)v°(¢, +12)dz,
o) W:hg d*tSDﬁ{M(x-l—tz Do,(t, x+12)dz,
(3.8)

Gy(x)= Skg S (x4 1)t (= 1)lal g (x + 12)dz,

+ Swm(x +az, z) g.(x+az)dz.
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In particular,

Gl(x)zgad*tSM(x—i-tz, z)dzgad*sSL(x+tz+sw, w) g(x+ 12+ sw)dw,

0 t

Gy(x)= gad*tSM(x +tz, z) szt d*sSL(x +itz+sw, w) g(x+iz+sw)dw,
0 0

Gs(x)=§:d*t§M(x+zz, ) ga(v+1z)dz,

G4(.\')=go),,,(t—|-a:, )gla+asz)ds.
First we shall show the following.
Lemma 3.4. Let

K, x, z, y)=I 2 K@®0(t, x, z, ), K.exty.
al=k

(@) For fe2'(2; X) let u®, ug, f\ be the functions given in Theorem
1, and let Kﬁ, |B|<m, be the functions defined by (2.4). Then

SK(t, %, —z, x+tz)f(x+tz)dz

=7 g(—l)k“’“'Ka(t, x, —z, x+tz){u*(t, x+tz)+t*f P (x+tz)}dz

lal=k

+ 7 (—1)*E'Sth—lmpg{1<(t, %, —z, 5+ 1)} uglt, x+12)dz.
B

I=h

(b) For ge23(R"; X) let v¥, vg, g be the functions given in Theorem
1, and let K, |a| <m be functions defined by (2.3).
Then

SK(t, x+tz, z, x)g(x+iz)dz

= ¥ \K,(t, x+tz, z, 2){v*(t, x+t2)+ (=Dt g@ (x+12)}dz

lal=k

+| | SDf{K(t, x+1z, 2z, 2)}vg(t, x+1z)dz.
Bl=h
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Proof. From Lemma 3.1 Corollary 1 it follows that

f@) = dus[ Lz, —)f G52y dztfula)= | UG, ©)dss-+ ().

Substituting this, we obtain

S.K(t, %, —z, x+tz2)f(x+tz)dz=u,(t, %)+ uy(t, x)+us(t, x),
where
1t x)=SK(t, X, —z, x—i—tz)szjU(s, x+12)dys,
u,(t, x)=gK(t, x, —z, x+tz)sz;U(s, %+ 12)dys,
wy(t, x)=SK(t, %, —2, 5+ t2)fu(%+12)dz.
By Lemma 2.1 Corollary 2 we have

ui(t, ®)=1* 3 Z(%‘)SK;OM-B)(;, X, —z, x+tz)szaU(ﬁ)(s, w4+ 12) ds,
ai=k B t

=L‘"l ; S(—l)""mKﬁ(t, x, —z, x+tz)szaU(’9)(s, x+t2)dys.
AT=r t

Combining this with
UWB(s, x)= s 17! <§>SL(B—~/.7)(,C, —w)f (% + sw) dw,
7
=s5"*U5(s, x),

which is a consequence of Lemma 2.1 Corollary 2, we obtain

u, (2, x)=la%kg(—1)”"‘“'f(u(t, %, —z, &+12)us(t, x+12)dz.

At the same time by Lemma 2.1 Corollary 3 we obtain

> thDfu (G, x)=S'shd*s 5 DfSLB(x, —w)f (% + sw) dw
181=h 0 181=h

- S:U(s, %) dys,
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so that, integrating by parts,

| S(-—l)‘ﬂ‘Df{K(t, %, —z, x+t2)}t" Py g(e, x+tz)dz
AT=h

= o SK(t, %, —z, x+t2)t"DEug(t, x+1tz)dz,
BlIsh

=SK(t, %, —z, x+1tz) dzgt U(s, x+1z)dys,
0
=u,(t, x).

Also by Lemma 2.1 Corollary 2 we obtain

14(t, x)=| IL SK,(,‘"“"”(Z, X, =5, a4+ 4z5) (x4 t2)dz,

-
al=k

= 2 (—1)"*“3‘313,3(1?, %, —z, %+ E2)tHfE (x+tz)dz;
Bl=k

and this completes the proof of part (a). Similarly, we can verify part

).

Proof of Theoremn 1. By Lemma 3.1 Corollary 1 we obtain
_f(x)=gad*tSM(x, —z)f(x+tz)dz+3wm(x, —2)f(x+az)dz.
0

Applying Lemma 3.4 to the first term, we find that this term is equal to
F,+F,+F; in the theorem. In order to complete the proof of (a) there
only remains to obscrve that the second term is equal to F,(x) in the

theorem. This fact is proved by substituting the identity

f(x)= 23 Dofp(x)+fu(x)

1B1=h

(Lemma 3.1 Corollary 2) and by integrating by parts. Thus, the proof of
part (a) is completed. The proof of part (b) is almost identical with that
of part (a).

By our proof of the theorem we have

Corollary. (a) For f€2'(2; X) set
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Unt, =0, (5, —2)f Ga+12)dz.

Then
Uy(e, x)=F1 (%) + Fy o(x) + F3 (%) + Fy (%),

where F; (%), j=1,2,3, are given by (3.6) with modification that the
inlegration relative to 1 is taken over e<tZa.
(b) For ge2y,(R*; X) sc

I, \‘):S(om(.\;%—t;, s)g(v+tz)ds.

Then
Vale, )= G, (x)+ Gz, () +Gy, £(2)+Gy(x),

where G; (%), j=1, 2,3, are given by (3, 8) with the same modification as
that of F; ..

§4 A Characterization of Differentiability of
Functions and Distributions

Lemma 4.1. Suppose K(t, x, z, y)efi and i is a non-negative
integer. For fe2'(2;X) we write

(4.1) UG, x)=SK(t, %, —z, x+12)f(n+iz)dz,
and for g€ DH(R*; X) we write
(4.2) Vi, x):—SK(L, x+tz, z, x)g(x+12)dz.

(D) Assume that 0<i.

(a) If 1<p,q<o0 and if feBg (2; X), then
t—oU@, x)e Li(I; L(2; X)).

(b) If 1<p, g and if g€Bs , o(R"; X) then
7V (e, x)eLi(I; L*(2; X)).
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(1) Assume that 0+1=i, and that X is a Hilbert space.

(a) If 1< p< oo and if feHy(2; X), then
t=U(t, x)eL?(2; Li(; X)).
) If 1< p< oo and if geHs qo(k*; X),

then 1=V (i, x)e L(2; Li(I; X)).
Proof. (1) (a). Case 0<ad- 1. From the identity

Ao, — s, v Hi2)= KO, v, =0 4 rA v, 5),

N L SEEEIN L T
where A (7, v, 3) —S” jzj i (?ﬂ)? (1, vy —z, v Fisz)ds,
we have

U, @:SK(;, P x)f(.r—%—t:)tlz%—tglfl(t, %, 2)f(v+02)dz,
=U,, x)+iU.(, x).
Since K€, it follows that
4.3) Uy, x)=ggw1(x, —w)K(t, %, —z, ) flx+12)—f(x+ow)} dz dw,

where w(x, z) is the same function as in Lemma 3.1 Corollary 1, and
this gives us, with the aid of Jessen’s inequality (or generalized Minkowski’s

inequality),

106t Dllzran= €l (| Fi(es—uwydzaw,
bBJbB

~ Clb”a,,g P (1) ds,
20D

where

F=| £ (L)t i)

J
25,= N2~ k).

2
LP(2,,43X)

Therefore, we have

o= Uyt -")}IL;(I,LJ'(Q;X));:f C”fHB;‘q(‘Q; X
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(see the proof of [187] Lemma 2.3). Since
U (¢, 2| 1ocos xy = Cll fll ocos xys
it follows that
|62~ Us(¢, 2)|28r32000530 = Cll fllocas s

which, combining with the estimate for U,, proves the assertion.

Case 0=1. From Taylor’s expansion it follows that

UG, x)=SK(t, %, — 2, 2)f(x+iz)dz
+tSK1(t, %, —z, x)f(x+tz)dz

-I—tZSKZ(t, x, 2)f(a+12)dz,

=Uy(t, 2)+tU, (¢, x)+t2U,(¢, %),
where

K1<ts Xy Ry y)=1§13,~'g—§§(t, Xy 2y y)y

1
Kyt, % 2= 7 az_,g (1—5)2zeKO0.9(z, 5, —z, x+152)ds.
al=2 < Jo

It is easy to see that
[[6-2e2U,(¢, x)||L§(1;Lv(a;X))§ Cll fll Locg: x5
Also, since

92K,

t’ x’ z! )’
9’1( 7

and since fe B ,(2; X), 0<e<1, ([18] Theorem 1.1), it follows that

lle=teU, (2, x)”Li(l;LP(.Q;X))
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<a®||t72 U, (¢, x)HL‘Zk(I;LP(SZ;X))é Cl”f”Bz’ q(g;X)é CHfHB},,q(!J;X)'

Hence, to prove the assertion it suffices to estimate U,. From the identity

Us(ts =3, S(-%)Kk(t, %, —z, X)f(x+12)dz,

Il

Dt SKk(t, %, —z, D)fatiz)dz,  (fa=Duf)

— Zk:tSSKk(t, %, —z, D)0,(x, —w){filx+12)

—fr(x+tw)} dzdw,

= ; tSSKk(t, x, — z, x)a)1<x, —z_iz_w>{fk(x+tz)

— i 5+ 25 dz dw,

=SSK(t, x, z, w){f(x+tz)—2f<x+tz_l2_tw>} dzdw,

where

K@, x, z, w)=;<—0—azk_>{Kk(t’ x, —z, x)a)l(x, _z—lz-w },

(the last identity is obtained by integrating by parts), and from SSI?(::, x,
z, w)ydz =0, it follows that Uy(¢, x) is equal to

SSK‘(:, %, z, w){f(x +12) —2f(x +‘i”2L—‘i”)+f(x + zw)} dzdw.

Thus we have

tz—t
10t zrcarns | da P55z,

- Ca,,b”ﬁ”S Fy(t2)dz.
bB

2

Using this and [18] Lemma 2.3 (ii), we obtain the estimate
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[[171U, (2, x)”Li([;LP(Jl;X)) = C“f”B}}’ JEX)

Case where 0=k+0,0<0=1, and k£ is a positive integer. Since k<1,

there exists a representation

K(t, x, z, y)= 2 K@, x, z, y),

lal -k

therefore, by Lemma 2.1 Corollary 2 we obtain
UG, x)=1+ 3 (m1)k~'/ﬂgkﬁ(z, w, —z, ¥+ 12)f D (x+i2)dz.
18T=k

This, with the aid of the result for the case 0< ¢ <1, which was already
proved, gives the assertion.
Case where 0 <0. By definition there exists a representation

Je)= 21 Dof,, fo€Bj (2; X),

lal=m

where 0= —m+60,0<60<1, m is a positive integer. Since

UG, x)= Y. (-1)—!31805{1«1:, %, —z, x+t2)}f(x+12)dz,

1Bl=m

the assertion for this case follows from that for the case 0< o =<1.
(Il) (a). First consider the case where ¢ is a non-negative integer £.

Since

K@, x, z, y)= |Z Ko a0(t, %, z, v), K,ed,

al=k

we obtain

UG, 2)= ¥ (—1)k-!mgKﬁ(t, %, —z, 5+t2)f O (n+1z)dz.

1=k

Hence, by [217] Theorem 3 Corollary we obtain our assertion.
Next, consider the case where ¢ is a negative integer —m. By

definition we have

f@)= % DYfu  faSL¥2;X),

=m

Hence, it follows that
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UG, )= 3 t”’"lﬁlgDE{K(z, %, —z, v+ 1)} f5(x+tz)dz,
=m

which, with the help of [21] Theorem 3 Corollary, gives us the estimate.

Finally, consider the case where ¢ 1is fractional. Take m such that
m<o<m-+1. Since m+2=i, the results just proved imply that the

operator f—U is a bounded linear operator from H7'(£; X) into L2(&;
LE»(1; X)), and also from HP"H(2; X) into LA(&; LE™''(/; X)), where

L&o(L; X)=Le({l, 174 Yde; X).

Therefore, from the interpolation of operators (87, [[15]) it follows that
this operator is bounded from H9$(2) into L?(2; L%°(I; X)), which is our
assertion (note that [L?(82; L%&™), L*(82; Ly™ ') ],=Lr(£2; L:?)).

@) (b), (AI) (b). Since the support of V(z, x) is contained in £, we may
consider only the case where £=R”, and for that case part (b) is identical
with part (a).

Thus the proof of the lemma is complete.

Lemma 4.2. Let K(t, x, z, y)EX;, where j is a non-negative
integer.

() Assume that —0<j,1<p, g< oo, and that uwe Li(I; L*(2; X)).
Then

(a) HS:t"d*tSK(t, x, —z, x+tz)u(t, x+iz)dz

o

Bp, q(2:X)

éc””’”Li([;LP(!Z;X));

(b) HSZt"d*tSK(t, xtiz, 2, D)ult, x+1z)dz

o
Bp, g(R™; X)

éc]]u”Li(l;LP(.Q;X))-

(1) Assume that j>1—0,1< p< oo, that X is a Hilbert space, and that
vel?(2; Li(I; X)).
Then

(a) “S:tﬁi*tSK(t, x, —z, x+tz)u(t, x+tz)dz

Hp(2:X)

= CII uHLP(JZ;Li(I;X));
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(b) Hgat"d*tSK(t, xttz, z, ®)ult, x+i2)dz| .
0 Hp(R";: X)

< Cllullzocos 1213)-
Proof. (1) (a). Case 0>0. The proof is similar to that of [18]
Lemma 4.2 (A) (ii). Case 0<0. Write 6= —m+0, where 0<0=1, m

is a positive integer. Since j=m,

K(ta X, Z, _’Y)= Z Kéto’a’m(t, X, 2, y),
lal=m
so that, using Lemma 2.1 Corollary 3,

(4.4) gat"d*tSK(t, ¥, —z, x+t2)u(t, v+1z)dz
0

= Dgg”wmd*tgkﬂ(z, x, —z, x+t2)ult, x+1z)dz.
=m 0

From this and from the result for ¢ >0 the desired result follows.
(I1) (a). Case where 0=1£k, a non-negative integer:

For any |a| <k, we have

D;‘Satkd*tSK(t, %, —z, x+tz)u(t, x+tz)dz
0

=Z(g)gatk"ﬁ'd*tSK(“‘ﬂ*ﬁ'w(t, x, —z, x+tz)u(t, x+itz)dz.
B8 0

Hence, by [21] Theorem 3 Corollary we obtain the estimate.
Case where 0= —m; a negative integer. Since 1+mx=j, it follows

that
K(t, %, 2, )= 5 K@«0(, % 2, ),

with K,ex";_,,. From (4.4) and from [217] Theorem 3 Corollary our
assertion follows. For the case where ¢ is fractional the estimate is
proved in virtue of the interpolation of operators.

@ (b), (I) (b). The proof of part (b) is very easy, in view of the
result of part (a). (See Proof of Lemma 4.1).

Now, we shall give a characterization of differentiability, which is one

of the basic theorems of our investigation:
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Theosrem 2. (Characterization).
Q) Let 1=p,q=oco, 0 be a real number, and let i be a non-negative
integer with 1>0.

(@) feBs, (2;X)if and only if f€ W;(2; X) and for any K(x, 2)EX;
t“"SK(x, — ) +t2)dze LAT; L(2; X));

(b) geBs3,, BR*; X) if and only if geW,3(R"; X) and for any
K(z, 2)ex;,

z—ng(tz, ) g(x+tz)dze Li(T; LH(R2: X)).

(1) Let 1< p<oo, 0 be a real number and let i be a non-negative integer
with 1+0=i. Assume that X is a Hilbert space. Then

(@) feHy(R;X) if andonly if feW,~(2; X) and for any K(x, z2)EH ;,
r‘fSK(x, —)f(x+tz)dze LH(Q; Li(T; X));

(b) geH;(R*; X) if and only if geW,3R"; X) and for any
K(z, 2)ed;

t“’SK(x tiz, 2)g(x+i2)dze L¥(2; Li(I; X)).

Proof. Necessity: by Lemma 4.1.
Sufficiency: by Lemma 4.2, Lemma 3.2, and by Theorem 1. (choose m, k,
l, h so that m—kz=j, [=Zi, k—0>0, h+0>0, where j is the smallest
non-negative integer such that —¢<j in (I), or 1—0=j in (II).). Since
feW,;=(2; X), it follows that f.(x)eW5(£; X). This completes the
proof.

Remark. Let k, h,l, m be as in the proof of Theorem 2, and let
U?, Ug, fs, f~ be the functions defined in Theorem 1. Then f€ B3 (2; X)
if and only if

t7oUe(t, x), t7Ug(t, x)e Li(I; L(2; X)) for |a| =k, |B|<h,

fe(x)eL?(2; X) for |B|<h,
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and f.(x)eWi(2; X). And Bj (2; X)-norm is equivalent with the norm
lazlzk”t_”U“(ta x)iILi(I;LP(JZ;X))_‘“lﬁ%h”t‘gl]ﬁ(t’ )l 24z 20¢25 )
+lﬁéhnfﬁ(x)llu(:z;xr"”fw(x)”wg(g;X)-

The analogous facts hold for H5, BS , , or H5 ,.

Corollary 1. Under the same assumptions as in the theorem,
@D (@ feBs (&; X) if and only if feW;=(2; X) and for any
K(x, z)ed, and for any |a|=1
t'“"”D;‘SK(x, — )f(x+tz)dze LT LH(2; X));

(b) ge€Bsg ,z(R*; X) if and only if geW,3(R"; X) and for any
K(x, z)ex, and for any |a|=1

t’“""D,‘Z‘SK(x'i‘tzs z2)g(x+tz)dze LL(I; L*(2; X));

D (@) feHy(2; X) if and only if feW,~(2; X) and for any
K(x, z)exy and any |a|=i

tml—aD;SK(x, —2)f(x+tz)dzeL?(2; Li(I; X));

(b) geH; ;(R*; X) if and only if feW,3(R*; X) and for any
K(x, z)ex, and for any |a|=i

zlm—ngSK(tz, 2)g(x+tz)dzeL)(Q; Li(T; X).
Proof. (I) (a), (I) (a). From Lemma 2.1 Corollary 2 it follows that
DeK(x, —2) fla+12)ds = (3 ) (K203, —)f(wt12)dz
B

~ §(Z,‘>rlﬂl U, o(t, ).

On the other hand if feBj (2; X) (or € H3(2; X)), then fe By j*+Al
(or e Hy~l«l*181) put K@ BBex 4, |B]>0—|a|+|B| when |a|2i.
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Therefore, by the theorem we obtain
11810 U, o(t, x)ELL(1; LA(2; X)) (or € LA(2; Li(I; X)),

which gives
el al)ggl{(x, C (x4 te)yds e LA LA(R; A)) (or € L2(2; Li(T; X))

Conversely, assume that this holds for any K€ and |a|=i.
Let K(x, z) be

K(x, z)= ] 2 K99 (x, 2).

al=i
Then, we obtain by Lemma 2.1 Corollary 3 that

z—agqu, (x4 t2)dz =t"“"]ﬁ;§il)§?g[€ﬁ(}c, —2)f(xn+1z)dz

e LL(I; LA (2; X)) (or €L#(2; Li(I; X))).

() (b), (II) (b). Using the identities given in Lemma 2.1 Corollary 2 and
in its Corollary 3, we can verify part (b).

Corollary 2. Let m be a non-negative integer.
(I) Assume that 1<p,q<co. Then f&Bg (£2;X) if and only if
feW,=(2; X) and D*feBs(2; X) for any |a|=m;
(1) Assume that X is a Hilbert space and that 1< p<oo. Then,
fEH(2; X) if and only if feW,~(2;X) and DfeH;™(2; X) for
any |a|=m;

Proof. (I) It suffices to prove “if”’ part. Let 7z be a non-negative
integer such that >0, m, and let

K(x, z)= | > Ko9(x, z), K,edt;_,.

|=m

Then, using the identity

t“”SK(x, —)f(x+iz)dz= m;:mtm—fSKa(x, — ) (x+tz)dz,

and the theorem, we obtain the assertion.
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Corollary 3. If <t then B3 ,(2; X)DBj (2; X).

§5. Fractional Derivatives

Let fe2'(2; X), g€ 25(R*; X), and let 1 be a complex number.
Then by Lemma 2.2 Corollary 1 and by Example 2.1 the integrals

(5.1) Fx(x)=S:t*d*tSK(t, %, —z, x+12)f(%+tz)dz
and
(5.2) G,\(x):SZt*d*tSK(t, x+tz, z, x)g(x+1tz)dz

exist when K(z, x, z, y)€X4";, i+Red>0.
In this section we shall prove a theorem which shows us that F, and
G, are, in a sense, generalization of the fractional derivative and the

fractional integral.

Theorem 3. Let i, j be non-negative integers and let K(t, x, z, )
ex;.

I) Assume that j>0,0+Red>j—i and 1< p,g< . Then,
J J b 9q

(a) the operator f—F, is a bounded linear operator from B ,(2; X) into
By (2 X);

(b) the operator g—G, is a bounded linear operator from BS , ;(R"; X)
into B3'REMR" X).

(1) Assume that j>0,0+Red>j—i+1, X is a Hilbert space, and that
1< p<co. Then, (a) the operator f—F), is a bounded linear operator from
H3(82; X) into Hy*RM2; X); (b) the operator g—G, is a bounded linear
operator from Hj o(R"; X) into Hy'FM(R"; X).

Proof. We shall prove only part (I) (a). The other parts are proved

similarly.

(i) Case j<i. From Lemma 3.4 it follows that
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SK(t, %, —z, x+12)f(xn+1z)dz

= S(——l)”"“'[?a(t, X, —z, 54120, x+12)+F D (x+12)}dz
al=k

+ 3 (~0W (DK, 5, 2, 5+ )} uge, w12 dz,
BIsh

where K(¢, x, z, y)=2KQ (¢, x, z, y), and u%, ug, f. are the functions
defined in Theorem 1 with A+0>0,l—h>0, k>0, i—k>—0—Red.
With the aid of Theorem 2 and Lemma 4.2 this shows our assertion.

(ii) Case j>i. Let |a|=j—i. Then, from Lemma 2.1 Corollary 2 it
follows that

D"‘Fx(x)z Z(%)S“thlﬂid*tSK(a—B.ﬁ,O)(t’ %, —Z, x-l—tz)f(x—i—tz)dz
B 0

Since B§,,c B57**'81(|B|<j—1), and since K@ 880K, . with the
aid of the result in (i), this gives D*F,(x)& B3 j*R<*. Similarly, we have
F, € Bg7j*i*Rex and by Theorem 2 Corollary 2 we obtain F, € B3R} ; X).
This completes the proof.

Corollary 1. Let m be a positive integer.
(I Assume that 1< p, g<co. Then,
(@) for any feBg (2; X) there exist f,eB7(2; X), |a|<m, such
that f= Z D“f
(b) for any gEB; , o(BR"; X) there exist g,€Bp7(R"; X), |a|<m,
such that g= m};,mD“f,x
(I1) Assume that X is a Hilbert space and that 1< p<oo. Then, (a)
Jor any feHy(2; X) there exist f,eHP*(2; X), |a|<m, such that
f= Z D“fa; () for any g€ H3 o(R"; X) there exist g, Hpy(R*; X),

|ac|Sm such that g= 3, D%g,.

lal=m

Proof. These are direct consequences of the theorem and Lemma 3.1
Corollary 2.

Corollary 2.

U B3 (9; X)=W;~(2; X).

—l gl
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If p<q then W,=(2; X)cW;~(2; X).

Proof. By Corollary 1 and by [ 20| Theorem 1 (this theorem is also
valid for X-valued functions, cf. §7).

Example. Let 0<Red<1, m*0, x=R?!, and p= C7(R?) with support
contained in —2<z< —1. Then

X;t"d*tgqa(—z)e"’”("”")a’z
=e"”'"S:t*d*tgjme"’”"'go(z)n’:~|—c,,(/l, e,
where
(2, m)=S:t’“d*tgﬂe"””zgo(—z)dz.
A simple calculation shows that
S:t*d*tgle“'”‘”qo(z)dz r=m’~5:¢(t)t’"’1dt for m>0,
L - —m’"glq‘p(t)tx‘ldt for m<0,
where
2= p(@eda.

Since @(¢) is an entire function such that |$(¢)| < Ce 1™t for Im¢=0, we
obtain

S”@(;)z»-ld::: —S" o)1 di = ()i
0 —c0
Therefore, for f(x)=icmei””‘ we have

Szt’“d*tgga(—z)f(x—i-tz)dz=c(l) SmPepei ful ),

where
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fel®)= T2, m)c,eins e C=(RY),
since

lca(A, m)| = C, 4| m|7*
for any £>0. Note that
Siim) e eine
Is the fractional derivative in the sense of Hardy-Littlewood [ 117].
Next, we shall discuss the product of the operators defined by (5.1) or

(5.2).

Theorem 4. Lei i and j be non-negative integers, K(1, x, z, y)€A;,
L(t, %, z, y)ex;, and let A and p be numbers with i+Red >0, j+Reu>0.
Then there exist My(t, x, z, Y)EH ;4o b=0,..., i, and M(t, x, z, Y)EX
such that

Sas"d*ng(s, x, —W, x+sw)dwgat/‘d*t

0 0
SL(x, x+sw, —z, x+sw+tz)f(x+swtiz)dz

=§'_, Sat“f”kd*tSMk(t, %, —z, x+tz)f(x+tz)dz
#=0Jo

+Szad*tS]lZ/(t, %, —z, x+t2)f(x+tz)dz,

holds for any fe 2'(2; X); and there exist N, (¢, x, z, Y)EA j1;_4, k=0,...
i, and N(t, %, z, yY)EX 'y such that for g€ DH(R"; X)

Sas’“d*sSK(s, %+ sw, w, x) dwgal/‘d*t
0 0
SL(x, x+swtiz, z, x+sw)g(x+swtiz)dz

_¥ S“wwd*tSNk(z, xtiz, z, %) g(x+iz)dz

k=0J0

+Szad*tglv(t, x+iz, 2, x)g(x+i12)da.

a
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To prove the theorem we shall need the following lemma.

Lemma 5.1. Let K(¢, x, z, y), L(t, %, z, y)E€X 'y, and let Rel,
Reu>0. Then

® stThds t
So (1+S))“+>’k‘_z" SK<1+S’ %, —(1+s)w, x+tw>

st 1+s
L(m, w10, 15 (o ), y)dw

belongs to A ,.

Proof. Let

A
M5, %, 2 )= [K(350 % —Q 9w, 5+ 0w)

st 1+s )
L(l—l—s’ %+ tw, — (z+w), y)dw.

Then

(M2, s, %, 7, y)| < Clg , dw=Ca,b"(1+5)",

b
1+s

| M2, s, %, z, ¥)| §C1Sb_s3_z dw= Clanb”( 1—7—3 )n’

1+s
where a, is the volume of the unit ball B in R”, so the integral

K

SOM(” S, % & )1 syveee s = M, %, 2, )

is uniformly convergent and a bounded function of ¢, %, z, y. Similarly,
for any «, 3, v, the integral

shT8

S”D,‘;‘DyﬂD}jM(t, s, %, 2, ¥)
0
is uniformly convergent and a bounded function of #, x, z, y. Therefore,
M(t, %, z, y) is a Z~(IR3")-valued continuous function of 0=¢<¢,.

Next consider the support of M(t, x, z, ). Let us assume that for
some s M(z, s, %, z, y)*0.
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Then for some w

—(1+s)we — A(1+ >
1+s ts
*‘S—(Z‘{"W)E "‘A(m, x+t’w>,

so that, putting v=(1+s)w and tl-T ,we have

ve A(ty, x), —tz—twve(t—1) AU —t, x+10),

and, therefore, —ze A(1, x). Thus Mex .

Proof  of Thcorcin 4. Let fe2'(2; X), and assume that
K= Z K60, L= Z,' L‘O £:0_ By Lemma 2.2 we have

SK(S, x, —w, x—i—sw)dwgat/‘d*t
0
SL(t, x+sw, —z, x+swtiz)f(x+sw+tz)dz

=gatﬂU(s, t, x)dyt,
JO
where

U(s, t, x)=SK(s, x, —w, x+sw)dw

SL(t, x+sw, —z, x+sw+itz)f(x+swtiz)dz

Since by Lemima 2.1 Corollary 2 we find that

DZSL(t, x, —z, x+1z)f(x+1z)dz

= X ¥ ;(g)(g)grleutg—mB—S>(t, %, —z, 5+ 12)fO(x+12)dz,

Il
A

i ¢ T (Y +8—¢,0,8—7) _ \ )
jlﬁ|=j Ze; Z,':(??XE—,@)SL/} (&, v, —z, x+t2)f 7 (x+tz)dz,
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we obtain that U(s, t, x) is equal to
piti ZZ<€> 22 < 14 )U (s, t, %)
e 7 \1/ \yT=i 14T=5 e—f )" Bren\>
with

Ugye, (s, 6, x)= X3 <C;>SK;°’°'“'/”’(S, X, —w, $+sw)dw
lal=j

9

bN gL}}‘/”“f'O'*"l’([, A Fsw, —z, .v—i—sw-i—L.:)f(")(.\f-l—sw—{-tz)d;.

Hence, by the fact that

gaskd*sgat#U(s, Ly, x)dyt
J0 0

a i d.s 2a «l(t—a) shd.s
=3\ r'#d tS S S Wﬂd,tg z }U(
{So * 0(1+3>H”+ a ) -ayia L+s)MHe

=F(.’)G)-|—F0(JG),
and by interchanging the variables

¢ o~ l s -
Ts XMW gywt

dwdz=(1+s)?"s"dwdz,

we have

¢ is x)
14+s> 1+s”’ ’

F(x)= X S“zwwd*cg z(j)mmo,e—w(z, %y — 2, %+ 02)f P (% +12) dz,

i+jZlelzj)o P

(by Lemma 2.1 Corollary

2)

=3 S“::de*zg Y MOe0@, g, —z, xti2)f(x+iz)dz,
k=0J0

lel=i+j—k

_ g“wwd*ngk(z, %, —z, x+12)f(n+1z)dz,
k=0J0

where
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(.3) M., =, z, y)

. a r \(T  s*HTdys
N Io.zlj=i ;(7‘)”32»3:]'(5—5)30 (14s)rrutiti=2n

X SK&O' 0’“_”’)< 1 i o — (145w, x+ Lw)

Lys e,u,m(iﬁi vt I+ (0 =), v)dl(%
! 1+s s :
(5.1) M, v, =, )= o M0, vyl v).

lel—=i47 k

The fact that M,<x"; ;. is given by Lemma 5.1, The term Fy(x) can

be computed similarly. The second part of the theorem can be argued

in the same way and the proof of the theorem completes.

§6 Approximation and Extensionm

In this section we shall consider two problems. The first is the
approximation problem: Can any element in a given space (Besov or
Sobolev) be approximated by an infinitely differentiable {unction? The
second is the extension problem: How can elements in a given space of
distributions defined on £ be extended to R” with preservation of their
differentiability properties? In the following of this section we shall assume

that X is a Banach space, ¢ a real number, 1< p=< oo, 1Zg =00,

Theorem 5. (Approximation) Lel m be a posilive integer such thal
m>0-+1. Assume that w(z)e C5(R"), supp (w)C B,

Sa)(z)dzzl.
For fe2'(2;X) and geD5(R"; X) sel

U@, x)= Sa),,,(x, —z)f(x+1iz)dz,

7., .x;):Sa),,,(x%—Lz, z)g(ax+iz)dsz,
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where
On(x, )= 3 LDe{z%0(—z-F(x))}.
lal<m !

@) If feB; (2; X), then

U,(t, x)—f(x) in B (2; X) as t—0.
If geBg , ;(R*; X), then suppV ,(t, x)C 2 and

Va(t, 2)— g(x) in Bg (R*; X) as t—0.
(II)  Assume moreover that X is a Hilbert space and 1< p< oco.
If feH3(2; X), then

U,(t, x)—f(x) n H3(2;X) as t—0.
If geHs z(R"; X) then suppV,, (t, x)C 2 and

Ve, %)— g(x) in Hy(R"; X) as t—0.

Proof. From Theorem 1 Corollary it follows that
U, 2)=F, (2)+F, (2)+F;3 (x)+Fy(x),

(Here we make use of the same notations as in Theorem 1) And from

Lemma 4.1 and Lemma 3.3 it follows that, taking k=um,
ous(t, x), t7ug(t, x), 1ot fl@(x) e Li(I; LY(82; X)),

Therefore, F, ¢, F, . and F; . converge in Bj ,(£). Combining this with
the fact that

U, (e, x)—f(x) in 2'(2; X) as e—0.

which follows from Lemma 2.1, we obtain the first part of the theorem.

The remainder parts are verified in the same way.

Corollary. (I) W3(2; X) is dense in B3 (2; X), W3 z(R"; X) is
dense in B , 5(R*; X), also C5(82; X) is dense in B3 , ;(R"; X)
(1) Assume that X is a Hilbert space and 1< p<co. Then, W3(2; X)
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is dense in H3(2; X). W5 a(82; X) is dense in Hj (R*; X), also
5(2; X) is dense in H5 o(R"; X). From the imbedding theorem (cf. §8),
we have
W5(82; X)cC=(2; X),
W5 s(R"; X)c C3(R"; X).

Proof. 1t suffices to prove the denseness of C5(%; X). Since V,,(¢, x)
is a W3 g(R"; X)-function with support contained in £, taking ¢ C5(R")
such that

p(x)=1 on |x|<1,
@(x)=0 in |x]>2,
0=p(x)=1,

it follows that
e =02V (e, M=V (e, %) in B, (B"; X),

and that g,.€C5(£2; X).
Next, consider

Theorem 6. (Extension) By R we shall denote the restriction to
of generalized functions defined on R”.
() There exist a bounded linear operator E from B (2;X) into
Bg (R"; X) such that REf=f for any feBj (2;X). More precisely,
for any positive integers i and j theve exists a linear operator E:

v Bj (2 X)— U Bj (R*; X),
—j<a<i —j<a<i

whose restriction to B (2; X), —j<0<i, has the above properties.

(II) The same fact also holds for Sobolev spaces H3(2; X) if we assume
that X is a Hilbert space and 1< p< oo,

Proof. (I) We shall use the integral representation given in Theorem
1, in which we shall take m, k, [, h so that m—k=j, I+k=i, k=i,
l—hzi,h+mzj, h=j (e.g. m=Il=j+i, k=i, h=j). Let u®, ug us=
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tlelfl@ fo be as in Theorem 1, and define

u%(t, x) for x= 2,
i‘[',(a)(t, f\7>:
for v& 8.
also define 74, T, f/a, f;, analogously. If feB5 (£:4X), —j<o<i, then
ene, v, trnle Ly(4; Lh(R"; X))

and f~ﬁ, fNELP(R”; X). Hence the distribution f(x) on R” given by the
formula for f in Theorem 1 with u®, ug, t*f%’, f5 and f.. replaced by
0%, g, 0E, f~B and ﬂ,, respectively, belongs to Bj ,(R”; X) and its restric-
tion to &£ is equal to f. Moreover, it follows from Lemma 4.1, Lemma
3.3 and Lemma 4.2 that the mapping f—>f is continuous form B ,(£; X)
into B3 ,(R"; X). This completes the proof of part (I). Part (II) can be

proved similarly.

§7 Interpolation Theorems

In this section we assume that ¢, t are real numbers, 1=p,q,§,
7<= oo, and that X is a Banach space.
To discuss the relation between Besov space Bj , and Sobolev space

H3, we first consider the following:

Lemma 7.1. Let j be a positive integer such that j=1-+0, and let
1=6<97=<co. Assume that 1< p<co and that X is reflexive.
(@) If feW;=(2;X) and if for any K(x, z)EX’;

t'“SK(x, —D)f(x+t2)dz e L@ ; Li(L; X)),
(or €Li(I; L¥(2; X))
then for any K(, %, z, y) €4
r”SK(t, %, —z, x+i2)f(x+iz)dze L(Q; Li(I; X)).
(or €Li(I; LA(2; X))

(b) If geW,m(R"; X) and if for any K(x, z)€X;
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t“’SK(x-l—tz, 2 g(x+tz)dze Lr(Q; Li(I; X)),
(or  Li(1; LP(2; X)),
then for any K1, x, z, y)EX;
wSK(z, vtz 5, u)g(xtiz)dze L(R; L5 X)),
(or eLi(I: L2: X))).
Proof. By Lemma 3.4 we have
SK(t, %, —2, x+t2)f(x+iz)dz=Uy(t, %)+ Up(t, 2)+ Us(t, x),

where

Ut %)= Wzsk(—nk—*afgka(t, X, —z, x+t2)us(, x+12)dz,

U,(t, %)= (—1)‘B‘St"“ﬁ‘D§{K(t, %, —z, x+i)}ug(e, x+i2)dz,

1B1=h

™

1A

Us(t, %)= <_1)k—w§i€a<t, %, —z, %+ L)@ (2 +o2)dz.

lal=k

Here u®, ug, f. are functions defined in Theorem 1 with m=k=h, [=2k.

Since L(*~8.8) e . by the assumption we obtain
J
s’”sk"B'SL(“*ﬂ’m(x, —w)f(x+swydwe LH(Q; LE),

so, with the aid of Lemma 3.3, we have t™°u®(s, x)=L?(2; L}). This
and the following Lemma 7.3 gives

t=oU(t, x)e L?(2; LY).

In the same way we obtain t~°U,(¢, x) e L?(2; L}). And t~°U,(¢, x)
eL?(£; L%) is obvious. Thus the lemma is proved.

Corollary. If 1<&6<9=<oo, then

B .(2; X)c B, (2; X).
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Proof. By Theorem 2 and the lemma we obtain the assertion.

Lemma 7.2. Let X, Y be Banach spaces, 1< p, and let K(x, z, )
be an (X, Y)-valued strongly measurable function of x, z, yER" which
satisfies the inequality (£ (X, Y) is the space of bounded linear operators X—Y)

I z|"*D3DZK(%, z, Yz, 1)< Cap<oo, for |a|+][B]=1.

Then for all feL*(R"; X) Tf(x)ng(x, x—y, Y)f(y)dy is conver-
gent in LP(R"; X) and

I TAllLocrnsx) S Coll fll Lo(rns x5
if these facts hold for some q with 1< p<q.

Proof. By the same argument as in part (ii) of the proof of [21]]
Theorem 3 we have for any feL'(R”; X)

measure {x | || 71 (%)|ly > 2} < C27Y| fll 21¢rm; x)-

From this and the Marcinkiewicz theorem (cf. [21] Theorem 2) the result
follows.

A
iy
A
8

Lemma 7.3. Let K(t, x,z, y)EX,, and 1< p=co,1
O If u(t, x)eLi(I; L*(2; X)), then

Ut, x)= SK(;, X, —z, x+t2)ult, x+iz)dze Li(T; LH(2; X)),

U, x)=SK(t, x+tz, z, x)u(t, x+tz)dze Li(I; LA(2; X)).

(I1) Assume one of the following conditions:

() p=¢, (@) 1< p=§, and (iii) 1<ESp<oo, X is reflexive. Then
U(t, x), U@, x)e L*(2; LY(I; X)) for any u(t, x)€L*(2; LL(I; X)).

Proof. It suffices to consider the case £ =R".

.

”SK(t, %, —z, x+tz2)u(t, x+tz)dz

LE(I5L2)
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gSI]K(t, x, —z, x+tz)u(t, x+tz)HL§k(,;Lp)dz,

scf e ol oo T"

= Canbn”u”Li(I;Lp(Q;X)-

(D). (i) Case p=&. By (I), since LL(I; L¥)=L*(2; L%).
(ii) Case 1< p=§. Since

SK(t, x, —z, x +iz)u(, x+tz)dz=gt‘”K(t, x, f;—y, y)u(t, ndy,

the lemma in this case follows from Lemma 7.2 and the inequality

_ z
lzl”*lD?D’zet "K(t, x,——t > y>”5f(1,5 18
% Lx

< sup |z|""!
azt>0

a -n z
D5 D2 K (b % ).

<a'elsup| zln+1t—n—1lK(0,a,,@)(t, x, -2, y>| <Co "< oo,
azt>0 t

for |a|+|B|=1. Here we have make use of the fact that K(®=A8) (s, x,
z/t, y)=0 for |z|>1b.

(iii) Case 1<§é=<p<o. Let p’ and § be the conjugate exponents of p
and &, respectivaly, and let X’ be the dual space of X. For any (¢, x)
e LY (Q; LY (I; X)) set

Vi, x)=SK(t, x+tz, z, x)v(t, x)dx.

Notice that for ¢>0, 0<0<mn,

a
&

H {S UG, ")Hid*t}”f

LP(R™)

<Cy°

bl x—ylouls, Yliedy

glx—yi_s_ba U’(R")’

= Coema||uf| zoqmn; 1) < o,
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since

— o=n =S — oc—n — na, ;. o,
glx—ylébalx yl o !x—ylébalx y‘ dy [ boa

Thus we have by Fubini’s theorem and Holder’s inequality

|§dxg:U<z:, 2)0(t, ) dyt |

- !Sad*tggt“”KO, %22, y)u(t, (e, x)dxdy

&

- deS:V(t, yu(s, y)d*t|

<[V, y)HLP’(R";Lfk’)“Hu(ta _')’)HLP(R";Lfk)s

<Cyplw@ %)llomn 8y 1wy Plzacrn; L8y

here we have make use of the result in part (ii). From this and the

duality (see [25]])

[LP(R; Li(I; X)) T =L (B; LY (I; X))

the desired inequality follows, and the proof of the lemma completes.

We are now in a position to state the result concerning the comparison

between the Besov spaces and Sobolev spaces:

Theorem 7. Let X be a Hilbert space. Then
@A) for 1< p=2

Bj (25 X)cHy(2; X)C B;,,(2; X)

with continuous injections;
(i) for 2= p< oo

5.2(2; X)cHy(2; X)c B3 ,(2; X)

with continuous injections.

Proof. Let j be a positive integer such that j=140.

1< p=2,feB; ,(2; X). Then for any K(x, z2)ex;

Assume that
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raSK(x, — ) f(x+t2)dz=1-U(t, x)eLA(I; LH(R2; X)),
=Lr(2; LL(I; X)),

in view of Theorem 2. Therefore, from Lemma 7.1 it follows that
t=oU(t, x)eL*(2; L3(I; X)). From this and Theorem 2 it follows that
feH3(2; X).

Next assume that fe€ H5(2; X). Then we have t~U(t, x) € L?(2; L%),
which, with the help of Jessen’s inequality, gives ¢t=°U(¢, x)e L3(1; L*(2;
X)). Thus, by Theorem 2 we obtain fe Bj ,(£;X). This gives the
assertion of part (i).

The second assertion can be proved in the same way. If 2<p< oo,
then by Lemma 7.1 and Jessen’s inequality we have the fact that

toU(t, x)eLi(l, L*(2; X))
for any K(x, z)e"; implies
UG, x)eLl?(R; Li(I; X))
for any K(x, z)e#'; and this implies
7o U(t, x)eL?(2; LY)=L3(1; L*(2; X))

for any K€x';. From these facts and Theorem 2 we obtain the first
assertion of part (ii).

This completes the proof of the theorem.

Lemma 7.4. Let 0, v be real numbers with 0xt, and let 0<0<1.
Set n=01—-0)0+0t. Then

(Lgo(L; X), Lz (L5 X))o g LI X)c (L (L5 X), Ly ™(1; X))o, 4
with continuous injections, where
Lie(I; X)=L*(1, t~°?-1d¢; X).

Proof. Let fe(Lye, Ly, ,. Then

JS&)= S:u(t, S)dyt
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with

t?u(t, sye LLY(R*; Ly°), ™ Vyu(s, s)e LL(R™; Ly ),
where A=0—71. Consider the case 4>0. Setting

£ = ut, D dst, o) = u(t, 9,

we have, by [20] Lemma 2.5,

letfs@lagann s |[ e etsnt shigandse |y

=100, gz

since

Smt‘”s”d t=i S‘t"‘gs’“”d s=—1—
s *T0° 0 *726°

Similarly, we obtain

_ 1
Ils "fz(s)”Lfk(I;X)él(l_a)ﬂt“a Du(e, S)”L‘l(r,L* ™y,

and, therefore, we have fe L%#(I; X). The proof for the case 4<0 goes

the same way.
Conversely let feL{#(I; X) and assume that 1>0. Set

f(s) for s>1,
v(t, s) {
0 otherwise,
w(t, s)=f(s) —v(z, ).
Then, by [207] lemma 2.5 we obtain

l|e*]]s™o(t, S)HLl(I X)HL (R*)

<[ @l ds

10 ”f“Lq s B(I;X)s

Ly R")
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and

L 1
||e26=1|s~mw(z, S)HL}k(I;X)”Li(R*)éz—(lfa”yllflngﬁ”(l‘X)'

Hence fe(L¥°, L%7)y,, and the proof of the lemma completes.
Lemma 7.5.
B3 (2; X)cHy(2; X)cB;,.(2; X)
with continuous injections.

Proof. First consider the case where ¢ is a non-negative integer k.
It follows from Lemma 3.1 Corollary 1 that

flx)= S:d*tSM(x, — 2)f(x+t2) dz 4 fu(),

f,,(x)=$a),,,(x, —2)f(x+az)dz.
Assume that fe Bf (£2; X). Then, by Theorem 2 we have

D;‘SM(x, —2)f(x+12)dz

=3(§)r 7 [Mies o, —a)f(x+2)dz e LI 1)

for any || <k. Therefore fe W¥%. Second assume that f W% Then, for
any Kex,,, we have

t"‘SK(x, —z)f(x+tfz)dz=I 2 SKa(x, —2)f(x+tz)dze Ly(I; L)

al=k

so we obtain f& B% ., by Theorem 2.
Next consider the case where ¢ is a negative integer —k. Assume
that fe B;4. Then

F= B =T

Since Bj ;cL?, we obtain f& W * In the same way we have W *cC B}k..
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Finally consider the case where 0 is a fractional number. From the
first identity of Theorem 8 below and Lions-Peetre [17 ] Theorem IV 1.4
it follows that

Bg =(B% 1, By 1o (W, WE D)y 1 C[LWE, WEH ],
=Hsc (W%, Wi, .C(BE ., Bi1)g = Bj, ..

Now, we shall discuss the interpolation space of the Besov spaces and

Soholev spaces.

Theorem 8. (Interpolation spaces). Let 0<0<1 and sel

ﬂ=(1—5)5+0f,—}_—:1—6 6 1 1-6, 6

p T T E
(i) (B;,:(2; X), B;, (25 X))o, = B}, (2; X),
(H3(2; X), Hy(2; X))y, = B4, (2; X),
with equivalent norms. Here we assume that 0 <.
(i) LB3,:(2), B,,,(2) 1= B1,:(2),
LH;(2), Hy(2)1,=Hy(2),
with continuous injections. In the second assertion we assume that 1<r< oco.

Proof. Let j>0, v be a non-negative integer, and let K(x, z)Ex;.
Then

U, x)=§1<(x, —2)f(a+iz)dz

is a bounded linear operator from BY . into Ly °(I; L?(£; X)), also from
By . into Ly (I; L#*(2; X)). Therefore, by the interpolation of operators
we obtain it is a bounded linear operator from (B ., B} ), , into (L3 °(/;
Lo(2; X)), Ly~(I; L*(2; X)), ,- This, with the help of Lemma 7.4, gives
t7rU(t, x) € LL(1; L*(Q)) for every f& (B «, B} <), Thus, using Theorem
2, we have (Bj, ., B} »); ,< B4 ,. In the same way by Lemma 7.4, Theorem
1, Theorem 2, Lemma 4.2 and the interpolation of operators we have
(B3, 1, Bj,1)9,,2 B4 ,. Combining these facts with Lemma 7.1 Corollary
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we obtain the first assertion.
The second identity follows from the first and Lemma 7.5.
(ii). By the facts that

[LY (15 LX), Ly~ (L L)L = L (15 LT(2)),
[LA(2; L), Lo(R; Ly ]o=L17(2; L),

(cf. Calderén [8]) and by Theorem 2 we obtain the assertions, with the

aid of the interpolation of operators.

Remark. we may discuss the interpolation space in another situations,
but shall not develop here. See [187], [20].
By Theorem 8, Theorem 6 and the fact that H3(R”) coincides with

the space of generalized functions such that
(7.1) FH{QA+ 6D Ff(E)}y e LR,

where F denotes Fourier transform, (see Calderéns [ 87, Schechter [27],
Lions [15]), we obtain.

Corollary. The space H3(82), 1< p< oo, coincides with the space of
generalized functions f such that there exists a generalized function f
satisfying (7.1) with f =fin 8. The norm of H5(R2) is equivalent with

inf|| F-1((L+ 1 D FFED | Locamy

where the infimum is laken over all such f.

§8 Imbedding Theerems.
We shall start with

Lemma 8.1, Let 1<m=n, 1< plg<eo,l=n/p—m/q. Set

F) =12 =yl () dy
for feLr(R"). Then

| Loup FE S ") I pacrmy S Cl £l Lo crny-
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Proof. Since

4 119’ ’ /
@)l < |y {f1s =17 dyr 7 £y ascmnny

where p’ is the conjugate exponent of p. Write o=|x'— 1’|, pt=|x" — y"|,
20=(A—n)p’. Then
S | x— yl P’(-?H')v)dy” = (n — m)a”_mpmr-*-n—mgu(l + tz)a-tn—m d*t
0
é Ca_‘ " ,,,02”+n_m,

where @, is the volume of the unit ball in R”. Hence we have

suP[F(x’, x//)l §0S|x'~y'lx"”‘g(y')dy’,
where

g(yl)::”f(y', y”)”Lp(Rn—m), Z’::—%_J;_

From this and Hardy-Littlewood-Sobolev’s inequality the desired inequality
follows.

Lemma 8.2. Let 1=sm<n, 1<p=<g=oo, /1=_;__qi,a>o. Set

Fwy=| _ la=yl"of(pdy

x—yl=d

for feL!(R"). Then

|, sup [F(x's ") ||| zarmy = Cl| fllLocar)-
x"eRnr-m
Proof. In the same way as in the proof of Lemma 8.1 we have

sup]F(x’, x//)l gcg |x’—y'l"’"*’“'+5g(y')dy'-
" =d

2" =51
Let r be a real number such that 1/p—1/¢=1—1/r. Then

lx/_yfl(—m+x’+e)rdy/=g lx/__y/|(—m+x'+e)rdxl

Slx'—y'ls_d 12" -y’ 1=d

=ma,,d¢" /er,
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so we have the assertion with the aid of [20] Lemma 2.5.

Lemma 8.3. Let 1<m<n,l1<p=sq=<oco, 1SE<y=Z o0, and KeX.
Assume that weLr(R2; L1(I)).
(1) If 1< p<g< o, then

[

sup
z"egRn-—m

t’"SK(x, —z)u(t, x+tz)dz

Li]

L2 ("))
=Cllu(s, x)HLr(:z;L;'k)s
where 2'(x")={x"|(x’, x") € }.

(i) If >0, then

sup
'ERTM

L**Eg[i(.\', —z)ult, v+iz)dz HLsJ

La(@’ ("))
= Cllu(t, x)]le(:z;L;p-

Proof. (1) Write [/(y)=|lu(t, x)I|L:zk. Defining u (¢, x)=0, for x &2
we may consider only the case 2=R”. Let r=7/£, and let r’ be the
conjuagte exponent of r. Then, from Jessen’s inequality and Holder’s
inequality, it follows that

t*SK(x, —z2)u(t, x+tz)dz

Liécg

S

IA

Cglrylgablx—ylx_nf(y)dy,

which, combined with Lemma 8.1, gives the conclusion.
Similarly for part (ii).

)

Theorem 9. (Imbedding) Let 1< p<q=<oo,1=§, < oo, /1:%_l

q
e>0, and let 0 be a real number. Then the following imbedding operators

exist under the additional assumptions:
B-B (i) Bs2+e(2)—B; ,(2),
B-B (ii) B3 (2)— B3, (2), E=n),

B-H (i) B3 2+e(2)—~Hy(2),
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B-H (ii) eM @) - H3(2), (p<g,§<g< ),
H-B (i) Hy+¢(2)— B, (2,

H-B (ii) Hy (@2)— By (£2), (1<p<g, ps7)
HH (1) Hy»(2)—Hy(®),

H-H (ii) H5(2)—Ho(92). (1< p<g< o).

Proof. B-B. By [207] Theorem 2, and Theorem 3 Corollary 1.

B-H. For the case where ¢ is an integer the assertion follows from
[20] Theorem 2 and Theorem 3 Corollary 1. The proof of the case
where 0 is fractional follows from the above result and the interpolation.

H-B. In the same way as for B-H.

H-H (i). This follows from B-H (i) and H-B (i).

H-H (ii). Let 7z be a non-negative integer with 14+0<i. Assume
that K(x, z)=| Zi,' K2 (x, z)ex’;. Then, from Lemma 3.4 it follows

that
SK(x, — ) f(x+12)dz=Ut, x)=Us(t, %)+ Uy(t, 2)+ Us(t, %),

where

Uit m)= gKa(x, —)ud(l, x+12)dz,

z

al

Uyt )= 3 o (KOO, =gty 3+12)ds,

IBI=h

Uy(t, %)= Ial:it"gKa(x, — D)@ (s 1) da.

Since by H-B (i) we have [.eWW5;CIF;, we obtain
17U (e, x)e Le(2; Li(D)).
Also we have, by Theorem 2 and Lemma 3.3,
T en, g oy e LA(82 5 LE)

so thal by Lemma 8.3 we obtain
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(U (¢, )+ Uy(t, x))eL1(2; L2).

383

Thus, combining this with the fact fe IV, c W=, which follows from

q 9

B-H (i), we obtain fe Hq.

Next we shall study the trace operator to any hyperplane. To do this

we need the following:

Lemma $.4. Let 1€m<n, 1< pz=q, p=y, and lel u(l, x)eLi(2;

L3(D). Definc
UG, x)=Sbe(.v+tz)| w(l, v+12)|dz,

where % is the characteristic function of £. Then

o le=mU (e, 5", %)l 1y racer vy = CllullLocas 1)

where 2'(x")={x"|(x’, ") 2}.

Proof. Write f(x)=]|lu(t, x)]]L; Define f(x)=0 for x&&.

UG, )] gclgl )] dz,

z

ZCS dz”g ™ foa"+tz")dy,
! 12" 1=b Jlx"—y" I=tb ]f(y o ) 4

From [20] Lemma 2.5 and

g o t/_y"—:g o dx=a,bmm
JIT v I=1b 11" =y"=tp

it follows that

U, %y ") e = ("zg

a0 Fes")ds",
Jz"I=b

= g™ ”& (a4 u")du",

Jn"1=tb

where

£ )l rmn:

Then
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This gives
n—m
lle 2 U, 2Ly zaca

:

S t“’|u”["{g(x”—{—u”)lu”[ﬁz_m}L
" 1510 [’ =™ llgcns

=Clu(t, x)”Lﬂ(n;L;(I))a
where 0=(n—m)(1-1/p), since

du” n—m

Sfu"lébtt-dl u’le [w" [~ @ @b,

£ B be
Sﬁ%:lt alull[ad*t:_o‘_,

|u”|°t-o<b° for |u”|<bt.
This establishes the lemma.

Lemma 8.5. Let1<m<n,2cR", 1< p=<gq, p<7, and A=n/p—m/q.
Assume that >0, K(x, z2) €,

t=u(t, x)e L2 ; L(D)),
and define
F(x):S:d*tSK(x, _Dult, x+t2)dz.
Then
xé‘;&ﬂ”"“ x’l)lIBZ,ﬂ(g’(x”))écllt_w—kuHLP(Q;LI(I))'

Proof. Let 0=k+0, where 0<0<1, k is a non-negative integer.
First consider the case k£ =0.
For any x€ 82, ,=(2-2y)N(Z—y)NL we get

|F(x+2y)—2F(x+ y)+ F(y)|

=|§2em e { £ B+ ZE =N ute, wyaul,
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IA

& (e ., |}’| 2 I 2 d
Clj;l)got d*tSC(t 4y | < > +hyD) }|u(t, w)ldw,

N Clj§SZ{h<l_}ziL>z+’t<l y|)2} Ut, x+jy)dyt,
where h(t)=min{¢, 1}, C(z, x)={y=x+1z|z€ A, ¥)} 2N {x+tbB},

UG, x)=g \u(t, x+12)| dz.

bBNt~1(2-x)

Therefore, for y'R™ we obtain

e(yN)=I1F(z'+2y", ") =2F(x"+ y', 2")+ F(x', x")||zace’ 1y "0

<30, ( (Y 400 5 DU o, 2l .

But

e

/- 2
S ) t9|y ‘ gd*t éw,
2 m
Sh( taij"/l_gd*_y,: (2?62)0 )

h(!.’}’ 2%] y’ I_Bd*t<7

0

6 6
(60 571260 7 0y = 2Reml < 2mEntl tor 10,

From this and [20] Lemma 2.5 it follows that
[|F(x’, x”)“B" <Cz||t U, %', x )HL”(I L3(@’ (x"))»

where C, is a constant independent of f and x”, and the desired estimate
follows from this and Lemma 8.4.

Case £>0. Let |a|<k. Then

D;‘F(x)=D;‘S:d*tSK(x, —)ult, x+t2)dz,

= ;(g)g:t_llﬂ d*tSK(a—ﬁ.ﬁ)(x, — Z)u(t, x +tz)dz,
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so that the assertions for the present case follows from this and the result
for the case k=0.

This completes the proof of the lemma.

The result for the existence of the trace operator (the restriction

mapping) to any hyperplane is as follows;
Theorem 10. (the trace operators). Let
QcR, 1<m<n, x"€R*7 2'=0"(x")={x"|(x', x")E 2},

020, 1< p<g=<o,1<& 7=<,e>0, and zz%—i,

q

Then there exist the following trace operators under the additional conditions.
B-B (i)  Bg*(2) — Bg,(2),
(i)  By®) — By, (2) (6>0,&=y),
H-B (i)  H;™"(2) — By, (2,
(i)  HyM®@) — B (2) (6>0,1<p=7),
B-H (i)  B32"(2) — Hy(2),
(i) B8 — Hy(L) (§<g<o, p<q),
H-H (i)  Hy™e(82) — Hy(2"),
(ii) Hy™(2) — Hy(2") (I< p<g<oo).

Proof. Part B-B follows from [207] Theorem 2. Part B-H for the
case where ¢ is a non-negative integer also follows from that theorem.
Part B-H for the case where ¢ is fractional follows from this and the

interpolation of operators. Part H-B (i) is obtained by
Hy™+¢(2)— B3 ¢(2)— B3, (2).

Part H-B (ii). For feH5"(£) let us use the integral representation
given in Theorem 1. By Lemma 4.1 and Lemma 3.3 we see

1o, 1w, oM e La(Q; Li(D)),
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therefore, in view of Lemma 8.5, we get
Fi(x', ")+ Fy(x’, x")+Fy(x’, x")€ B, ,(£7).

Since F,(x)eW5, Fy(x’, x")€ B ,(£") is obvious.
Part H-H (i) is obtained by considering

Hy ™1 (@)— Bgid+e(2)— Ho(2).

Part H-H(ii). Case 0=0. Let f€H}(2). Then, in the integral represen-
tation given in Theorem 1,

s, Mg, tTMRF P e LA(2 5 LE).

Hence by Lemma 8.3 we have

ng l SM‘*(’”’ —z)u*(t, x+tz)dz l dyt

<C a .
Lag 1”” ”Lz’(sz,Lgk)

éCszHH;(g),
which gives
|| F (', x")”mm’) = Ca”f”HZ(g)-

The same fact holds for F, and F3, and we have shown the assersion for
the case 0 =0. For the case where ¢ is a positive integer the result
follows from the same argument applied to the derivaties of f. Again an

application of the interpolation of operators gives the result for the frac-
tional case.

§9 Duality
To discuss duality we shall need a lemma as follows:
Lemma 9.1. Let 0 be a real number, i, j be positive integrers,
Hy(x, z)ex’, K(x, 2)€Xy, Li(x, 2)eX;, M, (x, 2)EX,,
and 1< p< oo,

(I) Assume that 1+0=j, 1—0=<i, and t~°u,€L?(2;Li(1)), t°v,E
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LY (2; L3(D)), ¢, € L¥(R), ¢, €LY (), where p' is the conjugate exponent
of p. We define

9.1 f(x)= ;S:d*tgffh(x, — Duy(t, x+tz)dz
+>;_:SKk(x, — Do(x+az)dz,
(9.2) g(x) = ZI,'S:d*tSL,(x tiz, 2)0,(t, x+12)dz
+ D\ My(a+az, )0, +az)ds,
(then fe H5(2) and ge H7 5(R™), and set
U, x)=§L,(x, — )f(x+12)da,
V., x)=SHh(x+tz, Dg(x+iz)dz,
Fm(x)=SM,,,(x, — 2)f(x+az)dz,
Gk(x)=SKk(x+az, 2)g(x+az)dz.
Then t=U,, 1oV, L2, Ly(I)), and

9.3) ;S:d*tg U,(z, x)v,(t, x)dx+ ;SFm(x)wm(x) dx
=2 dut{unte, 700, 2z + (0,62,

—tim{ £.(2) g.(x)d,

where f, and g, are defined by integrating over €<t=a in the formulas
(9.1) and (9.2), respectively.

(A1) Assume that 0<j, —0<i, 1<q< oo, and that t~u,c L{(I; L*(2)),
tov,e LY (I; LY (2)), ¢, €L?(2), ¢, L (), where q' is the conjugate
exponent of q. Then, defining f, g, U, V,, Fy, Gy, [ and g, as in Part (1),
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(9.3) holds.

Proof. (1). Let u, (¢, x)=u,(t, x), for e<i<a, and u, (¢, x)=0
otherwise, and let v, (¢, x)=v,(¢, »), for et =a, and v; (¢, x)=0 other-
wise, where ¢>0. U, ., F, . and ¥, ., G, . are the functions defined by
fe and g, respectively. It is known that the dual space of L?(2; Li(1))
is the space L& (2; Li(I)) (cf.[47],[25]), and by the definition of Lebesgue
integral we have

0wy e — t70u, in L(2;L%) as e—0,
t°v, e —t°v, in LY(Q;L}) as &—0,
and there fore by Lemma 4.2
Je— [ in Hy(&),
ge— g in Hy7(R7),
so by Lemma 4.1
t7oU, . — ¢t7°U; in L2(Q; L%),
F,. —-F, in Lo(2),
eVye =V, in LV(2;L3),
G —G, in LY(R).

Since every term in (9.3) is a continuous bilinear form, it suffices to prove
(9.3) for f, and g,.

Now, from Fubini’s theorem it follows
2 a6 2o, o0, ) da+ DF d@0n()dn
- ZIIS:d*tSSL,(x, — (12,08, x)dzd

+ ([ Mar, ~ Dfaranpu) dsds,
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a

=Sf6(y)dy{zllg d*tSL,(y-i-tz, z2)v; (¢, y+tz)dz

0

+ ;SMm(y+az, 2)Pn(y+az) dz},

={renz,

which gives (9.3). The proof of part (II) is analogous.
Combining the lemma with the integral representation (Theorem 1)

and Theorem 2, we obtain the following

Corollary. Let ¢ be a real number and 1< p, g< oo.
(@ Define w,(x,z) as in Lemma 3.1 Corollary 1, where m=i+j—1,
14+0<j,1-0<i, and j, i are positive integers. For feH3(2), g€ H,77(R")

we define

(9.4) U, x)=gwm(x, — 2)f(u+iz)dz,
(9.5) V.G, x)=Swm(x+tz, 2) g(x+12)dz,
Then

(9.6) iingU,,,(a, )V o(e, %) dx

converges, and, denoting its value by <f, g>,

| <f, &> éC”fHH;(xz)HgHH;,”(R")-

() For feBs (2),8€ B, o(R") the same facts also hold. But in
this case we should take m=i+j, where j>0,i>—0, and j,i are non-

negative integers.

Theorem 11. (Duality). Let ¢ be a real number, and 1< p, g < oo.
Then

(1) [H5(R) ] =H,7, (R"), [Hyz (R") ) = Hy(2),

D (B3, (D] =Bypo(RY), [ By, o(R) ] =B; [(2),
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where prime denotes the dual space, p' and q' are conjugate exponent of p
and q, respectively.

In more detail, the dualily is given by the bilinear form

<f g> =1imSUm(a, X)WV o6, %)dx.
&—0
Here U, and V,, are defined by (9.4) and (9.5), respectively.

Proof. (I). Let j and i be positive integers such that 140<j,
1—0<i. We shall make use of the integral representation (3.5), in which
we take [=m=i+j—1, k=j—1, h=i—1. By the above corollary we have
known that <f, g> is a continuous bilinear form on H3(2) X H,7 g(R").

To prove that <f, g>=0 for every g€ H,” ;(R") implies f=0, let
us take V(¢, x)eL? (2; Li(I)). For |G| <h define

(1, x)=gat”s"ﬂ'“"17(s, ) dys.
t
Then ¢ L?'(2; L%), so that
g(x)zgad*tSLﬁ(x+tz, 2981, x+12)dze Hy 5.
0
Hence, by Lemma 9.1 and Fubini’s theorem we have
<f &> =g2d*tSUﬁ(t, X)98(2, x)dx,
=Sad*tgad*sgt"s—’ﬂ"” (s, 2)Up(t, x)d,
0 t
=S:d*t3t“’+"”'ﬁ'uﬂ(t, X) (¢, x)dx.
Thus, <f, g>=0 for every g€ H,’; implies that the right hand side is
equal to zero for every Ve Lt (2; L3)=[L*(2; L%)7], which gives u (e,

x)=0 for every |B|<h, so that F,(x)=0. Analogously we can obtain
F,(x)=0. Also, substituting

glx)= Sa)m(x +az, 2)G(x+az)dz,
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where G is an arbitrary function in L#'(8), we get f<(x)=0, and, hence,
Fy(x)=F,(x)=0. Thus we have f(x)=0.

Likewise, we can show that <f, g> =0 for every f H3 implies g=0.

From the observations we have done it follows that H3(2) c[ H,7 o(R*) ],
and H,7 g(R*)c[ H5(2)]. Thus the theorem is established if the converse
inclusion is shown.

To do this, let Fe[H;(2)]. Since for any ueL?(2; L%)

S:d*tha(x, —Deeult, x+t2)dz e He,
the functional
F(SZd*tSMa(x, —z)tu(t, x+tz)dz>
is continuous on L?(£; L%),and, hence, this is equal to
[fdufuc, m7. 2 ds,

for some V,(t, x)e L¥ (2; L%). Similarly, there exist V4(z, x)e L (2; L%),
G LY () such that

F<SZd*tSM(°’B)(x, — D)teu(t, m+tz) dz>=g:d*tgu(t, X PR, x)dx,
for every u(t, x)eL?(£; L%), and
F(Sa“ﬁ’wm(o'ﬁ')(x, —z)(ﬂ(x-l—az)dz):ggﬂ(x)éﬁ(x)dx
for every ¢ L?(2). Put

sToRmR I (s, %) dys,

Balts 1=

t
0
a ~
58(¢, x)=g s 1B1Eh (s, %) dys,

13

ga(x) = gatk_a. Va(h x) d*ts
0

and set
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=2 S g s(x+tz, 2)0P(t, x+tz)dz
=k

+ 2 S d*tSD“{L(x-t—tz Vo (t, m+tz)ds

+

5(§)|e 0o (x4 0z, 2) galx +az)dz

lal=k

+l]| hg:d*tSLﬁ(x-i-l,z, z)théﬁ(x+tz)dz
A=

+\u>,,,(.x taz, 2)G%(x+az)dz
Then, by Lemma 9.1 we obtain, for any fe H3(2),
<f.g>= 3 thd*tSUﬁ(t, 2)8(t, x)dx

+ d*th“(t, 2)3,(t, %) dx

1=kJO

Y

)
+ % (e gmds

+S{ Fa(#)GA(x)+ fu(2)G(x)} dx

181=h

S d*sSs”"*‘”"uﬂ(s, %) VE(s, x)dx

l/Sléh 0

+ kgad*sgs"u“(s, 2) Vi (s, x)dx
0

lal=

+ ad*sgsk"’ () Piy(s, %) d

lal=kJO

+\{ X fa(2)GA(x)+fu(2)C(x)} dx

181=h

1l
y

<| l-kS:d*ng“('x’ —2z)us(s, x+sz)dz

+ 2 Sad*sgs"“’g'M(o»ﬁ)(x, —2)ug(s, x+sz)dz

18I=hJ0
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+ ; Sad*ngd(x, —2)sk @ (x+sz)dz
lal=kJ0

+ lZhga-'ﬂ'a>;,gm9>(x, — 2)fo(x+az)dz
Bl=

+ Swm(x, ~2)fu(x+az) dz)
=F(f),

in view of Theorem 1, and the inclusion (H%)'C H,’ ; is established.
By the same argument, we find that for G&(H,7;)" there exist
Ug, UreL?(R; L%), F°, Fec L*(2) such that
G(Sad*tgLﬁ(x—i—tz, 2)t7ov(t, x+tz)dz>=§ad,ktgv(t, %) Ug(t, x)dx,
0 0

G(gad*tSDg{L(x+tz, Dyeou(e, x+tz)dz)=8“d*zgu(t, ©)0%(t, %) dx,
0 0

G(gs"'“'D;"{wm(x+az, z)}(b(x—{-az)dz>=g¢)(x)l7’“(x)dx

for any ve L?' (2; L%), ¢ L? (), and, putting

S

=k

gad*tSMd(x, —z){gatks”‘kﬁ“(s, x+iz) d*s} dz

0 t

-I-I 2 gad*tgt”"mM(mﬂ)(x, —z){gtt"’s’”“"ﬁﬁ(s, x+12) d*s} dz
AT=rlo 0

+ Sad*tSMa(x,— D)t Fa(x+15)dz
0

lal=k

+ ga"ﬁ‘wj,?"e’(x, — z){gat“”[jﬁ(t, x+az) d*t} dz
181=h 0

+Swm(x, ~2)F(x+az)dz,

by Lemma 9.1 and Theorem 1 we obtain

<f, §>=6(g)

for any ge H,s ;(R™).
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This completes the proof of part (I).
The proof of part (II) is the same, except that we should remark

[L4(L; L2(@)) ] = LE(T; LY (2)).
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