
PubL RIMS, Kyoto Univ.
9 (1974), 325-396

On Besov Spaces Sobolev of Generalized
Functions Defined on a General

By

Tosinobu MURAMATU

§ 1. Introduction

In this paper we shall take a new approach to the theory of Besov

spaces (or Lipschitz spaces) and Sobolev spaces of generalized functions or

distributions defined on an open set with the cone property. These func-

tion spaces on the whole rc-space Rn has been extensively studied by many

authors, see e.g. [1], [2], [6], [7], [12], [22], [31], [32], [33]. However,

it seems that theory of the spaces on an open subset @ of Rn has not been

completed up to now. To study it we shall employ the integral operator

of the form

(1.1) \ t°-d*t\K(t, x, -z, x + tz)f(x + tz)dz, or

(1.2)

where K satisfies appropriate conditions stated below. A representation of

generalized functions by means of the integrals as above, stated in

Theorem 1 and proved by an elementary calculus, make it possible to

discuss the various problem, such as extension to the whole ra-space,

imbedding and determination of the interpolation space and the dual space,

without any help of approximation of generalized function by smooth func-

tions. Another key result in this report is Theorem 2, a characterization

of the function spaces by means of "regularization", which was suggested

by H. Komatsu to the author. Taibleson F32] gave an analogue to this

for Besov spaces on Rn, which is an n -dimensional version of the result by
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Hardy-LIttlewood [11], and E. M. Stein proved the fact that

1< p < oo 5 is equivalent to that of the Littlewood-Paley g-function which

is very similar to our results for Sobolev spaces, see for example [31].

But their theory depends on the Poisson integral, while ours on the con-

volution with smooth functions having compact support. Our theory for the

interpolation space of Sobolev spaces leans on the jL^-boundedness result

for a class of pseudo-differential operators, instead of the theory for maximal

function, ^--function and harmonic functions.

Let us explain our notations:

# = (#!,..., xn), y, z will denote points in Euclidean

7&-space Rn, and a = (al9..., <%„), ft, ? multi-indices of non-negative integers.

a = «!+•

We say a^ft if a^

fa\ a I
(a-ft)! ft I

for

and is equal to zero otherwise. By I we will denote the interval [0, a]

with 0<a<£ 0 . For £<E! d*t = t~ldt, for y<=Rn d*y=\y\~ndy, where

dy= dji"- dyn, the usual Lebesgue measure. R+ is the set of positive

real numbers. Moreover we will make use of the following abbreviations:

£<«"•"•*>(*, *, z, y) = D'DlD§K(t, x, z, y),

u(a\t, x) = D«u(t, x),£J>y= r\(Q-ky).
k = 0

X, Y will denote Banach spaces, and LP(M, djU; X) the space of X-

valued Lp functions on a measure space (M, djuf).

and L**(I; X) = LP(I, d*t; X),

; X) is the spaces of X-valued infinitely differentiate

functions, C^(Q'9 X) = @(,@; X) the space of all ^eC°°(J2; X) with compact
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support contained in $, and 3§~(Q\ X) is the space of /eC°°(J?; X), whose

derivatives of all order are bounded on S. On the other hand, &'(Q\ X)

is the space of JT-valued generalized functions or distributions on J2, and
g'(Q\ X) is the space of those with compact support contained in J2.

L*(Q) = L*(Qi C), C00(fi) = C00(fl; C), etc.

(X, Y)e,p is the mean interpolation space due to Lions-Peetre Q17],
and QJT, F]0 is the complex interpolation space due to Calderon Q8] and

Lions H15].

Now, we shall give the definition of the spaces and a few remarks

about our results.

Definition. As usual, for a non-negative integer m Wp(Q\ X\

l^p^oo, will denote the set of all Lp($; X) functions whose generalized

derivatives of order up to m belong to Lp(@; X). For a negative integer

— m, W~^m(Q\ X) iv ill denote the set of all X-valued generalized functions

f on Q with

(1.3) /(*)= £ />-/„(*),
I a \-^m

The norm of the space is

(1.4)

the infimum being taken over all { f a } satisfying (1.3).

The space B^fq(^; X), ff real, l^p, q^°^9 is defined as follows: For

the case ff = k + 6, where 0<0<19 k is a non-negative integer, B^^fi; X)

Is the set of functions f such that /e W\(Q\ X) and

(] .5) IGI/^C* + y) ~f(u\^\\L^;X) \y\

is finite for any multi-index a with \a\=k.

The norm is the sum of the norm of W\ and the above semi-norms

for all \a\=k. For the case ff = k + l, where, k is a non-negative integer,

the Besov space B^^; X) is defined analogously except that (1.5) is

replaced by

(1-50
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For the case G=—k-\-Q, where 0<0^1 and k is a positive integer,

Bpiq(@; X) is the space of generalized functions f such that

/(*)= 2 D-fa(x\
\a\-§>k

and the norm is

inf Z \\fa\\B*
l a l g f t P'

Finally, the space £Tj(.fl; X) is

, 0<0<1, 0«rf A w aw integer; H*p(Q\ X)=?Fj(J2; X) (/" (7 = 4

/s aw integer.

In the following of the paper we shall always assume that Q is an

open set with the cone property, that is, there exist a function

¥(x)^3T(Rn\ Rn) and a number ^ 0>0 such that for any *eJ2 and

0 ^ £ < £ 0 x + t¥(x) + tB is contained in S, where 5 is the unit ball in Rn

(in regard of this point, see Q2(T| §1). Replacing JT(^) by (^ + e)5F(^;)s

V^l £>0, and tQ by ^0(^ + e)~15 ^ necessary, we may assume that for any

3;eJ2, the closure of fi, and 0 < f < ^ 0 A; + ̂ (^) + ^5 is contained in Q.

In connection with this we shall denote by A(t, x) the closure of the set

of all points z such that there exist tlt t2,...9 tm^Q, z(1\..., z(m^B with

t = tl + --+tm, x^x+t^^+t^, x2 = xl + t2¥(xl) + t2z
(2\..., and

xm = x + tz = xm.1 + tm¥(xm-l) + tmz(m\ It is evident that, x + tA(t9x)c:Q

if x^Q, 0<t<tQ or if x&Q, 0<t<tQ, and that

(1.6) A(t,x)c.bB for 0<t<tQ9

where b = sup\¥°(x) \ +1. Also by definition we find that

x)9 tz —

with Q^tl<t implies z^A(t, x}.

It was proved that for any open set J2 with the cone property the space

Bp,qW> 0<(T<2, is identical with the set of functions/ei^(J2) such that
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is finite, (see [1 8]). The same fact is valid for the X-valued case.

Sometimes the space H^(R.n) is defined by Fourier transform, (see e.g.

[8], [15], [27]) and H*p(Q} the restriction of H*p(R
n} to S. However,

from Theorem 6 this space coincides with £Tj(fi) defined above for the

case 1< p < oo .

Next, let us introduce the space of generalized functions with "zero

boundary value":

"Definition. Let &(Q\ X) be a space of X-valucd generalized functions.

By ^s(R
n'9 X) we denote the set of f^^(Rn\ X) with support contained

in Q.

Then, from Theorem 5 Corollary (^(O; X) is dense in B^^^M." ; X)

for l ^ s j f l , r /^oo and dense in ff^ffi(R
n; X) for l< /?<oo . In addition, for

!</?, q<oo, B«ptq(Q) and Bj",0;^ are dual each other, flj(fl) and H'/tQ

are also dual each other (Theorem 11). Hence our negative norm is a

generalization of the one due to P. D. Lax [14].

Finally let us state the conditions imposed on the kernel K of the

operator (1.1).

Definition. We say K(t, x, z, j)ejT0 if it is a ^°°(

valued continuous function of Q^t^tQ and if its support regarded as a

function of z is contained in —A(t, x} for any fixed t, x, y. K^J^J3 where

j is a positive integer, if

K(t,X,z,y)= S ^°- -•»'(«, *, z, y)
I a ! =/

for some Ka^jfQ, \a\=j. K^JlTj, if

for some Ka^jfQ with \Ka(t, x9 z, y)dz = Q, \a\=j — l.

It is obvious that jfyCJfy.

§20 Calculus of Generalized Functions

Definition 2.1. By uf*(7x Q\ X), (or ̂ (/x Q\ Jf)), 1^9^ oos we
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denote the set of all Q>'(Q\ X)-valued (or ^^(Rn; X}-valued) functions

u(t, x} of £eJ such thai for every compact subset C in Q (or in Rn)

there exist a non-negative integer k and functions

(or ua(t3x}

satisfying

u(t,x) = 2 D%ua(t9 x) on C.

Example 2.1. If peLK/),/^^7^; ^)» (see C261 note that every
Banach space is a complete (DF)-space)3 then p(t)f(x)^^q(Ix Q\ X),

2o2o Let I^9 ^oo. Then

W;

2olo (I) Let K(t, x9 z, y) belong to Jf'm. Assume that

p(t)tm<=L^(I). Then

(a) for any <p^g(St) the integral

<p(t, x) = K(t, x, —z,

x, x~y , y(y)dy

is well defind and

( i ) (p(t, jt;)e<f(fl) for every fixed I,

(ii) <p(t, x)-+k(jx)<p{x) in g(&) as t—>0,

where

k(x)=\K(Q9 x, z, x)dz,

Ca
(lii) \ (p(t,* v)()(f) d%1, j's convergent in
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In particular, in the case where S = Rn the same facts are also valid when

ff(8) is replaced by @(Rn).

(b) For any 0e^($) the integral

, x + tz, z,

is well defined and

( i ) (p(t, A;)e^(fi) for every fixed t,

(ii) </>(t, x)-*k(x)</}(x) in 2(S) as

ra

(iii) \ 0(^, oc)p(t)d*t is convergent i
Jo

n

(II) Let X be a Banach space and let K(t, x, z, y) belong to 3f 0.

Then

(a) for f^9r(Q\ X) and t>0

U(t, x) =

( < 9 > denotes the duality between &(&) and &f(£}; X)) is well defined and

(i) U(t, x)tEC°°(£; X) for every fixed t>Q,

(ii) U(t, *)->£(*)/(*) in @'(Q\ X) as i->0,

(b) for any g<E@$(M.n; X), and t>Q

, x) = \K(t, x + tz, z, x)g(x + lz)dz

is iveil defined and
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(i) V(t, *)e £-(«»; *), supp(F(*5

(/» particular, if g^€'(Q\ X) then F(t, x) <=€%(&; Jf)) /or every fixed

(ii) F(£, A;) -> &(#)#(#) m ^'(U"; Jf) «s £ -» 0.

Remark, It is convenient to write the duality between distributions

and differentiate functions by the integral. Hence we make use of this

convention in the following if no confusion occurs.

Proof, (I) (a) The integral (p(t, x) is well defined, since for fixed

t and

x, ~; yc.x + tA(t, %).

Part (i) is evident. To prove part (ii) we observe that for any compact

subset C in Q the set

is compact, therefore, D%{K(t, x, — z, x + 1 z)cp(x -}- 1 z)} converges to

D%{K(Q, x, —z, x)<p(x)} uniformly on the above set as £— >0. This implies

that D%cp(t, x}-»D%{k(x)(p(x)} uniformly on C as £-»0. Hence <p(t, jc)->

k(x)<p(x) in £(£). In the case where @=ffin and (p<E.@(Rn), using the

fact

as is readily seen, we find that

n

In order to establish part (iii), we first consider the case m = 0. Let e be

a positive number9 and set

Since for any compact set C in & the set
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(2.1) A = {y\ye

is compact, it follows that

r s
^C sup sup \D*(p(y)\\

/3^a A JS

as £, d—»0. Therefore, ^(.v) is convergent in <?(.fi). Part (iii) for the

case / / i j^l follows immediately from that for the case m = Q with the aid

of the following identity (cf. Cor. 2);

*. A-)- Z ° - ° ' 0 ) ( / , .v, - ^ , . u
Ifl 1 - f f lJ

(I) (b). Since pe^(K»), it is evident that ^(^^eC00^). Let C be

the support of <p. Then the set ^4 defined by (2.1) is compact and contains

the support of </>(t, x) for every t. Hence the fact </>(l, x)-»k(x)<]}(x} in

as t-*Q follows from the fact

uniformly on AxbB since /x A X bB is compact. Part (iii) can be verified

in the same manner as (I) (a) part (iii).

(II) (a). Since for fixed £>0 9 x<=@ the function K(t, x, (x — y)/t, y) of

yeJ2 belongs to ^(fi), U(t, x) is well defined. Part (i) is immediately

verified by the definition of generalized functions. Let us consider part

(ii). From Fubini's theorem it follows that for any 0
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whence, applying (I) (b) (ii), we obtain

as £-»0.

(II) (b). Since for any fixed £ > 0 3 x, the function K(t, y, (y—x)/l, x)

of y belongs to @(RH\ V(t, x) is well defined. It is easily find that

suppF(«, x)a{x\x= y+tA(l9 y), jesupp (g)} cfi.

The remainder parts of (b) can be shown similarly.

Corollary 1. With the same assumptions and notations as in the

lemma, we have

for /(E^'GG; Jf), 0e^(^)5 and

for either g^£'(@; X), ^e^(^) or

Corollary 20 "FFeY/x the some assumptions and notations as in the

lemma, we have

D*U(t, x)=

D"XV(1, x^Z-tr1^0'^'^, x + tz, z,
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Proof. It is easy to find that

Similarly, we have

and that

D«V(t, x-) = t-«<D$\K(t, y,-£^-, x}\, g(y)>
I \ b / )

From the identity

f 1 for a = i

for

it follows that

Corollary 3. Assume
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K(t,X,z,y) = E K2.«-»(t,X,z,y),
I a I =m

where Ka^JjTQ, and set for every ft -^m

(2.3) K,(t, X, z, y)= Z (°j)(-iy°^K^-°'<»(l, x, z, y),
\a\=m\P /

(2.4) K,(t, x, z, y)= Z ("Y-1)'''-<''£<P.'>.«-*>(J, «, z, J)
\a\=m\P /

(Note that K/3 = K/3 = K/3 for | /9 |=i?i) .

Then for ft=®'(Q\ Z) and g£E@'a(RH; X)

V(t, x) = \K(t, x + tz, z, x

pfa x + tz, z,x
1/9 1 SOT

Proof. From Corollary 2 and from (2.2) it follows that

$\Kj3(t9 x, -z,

7 ft \a\=m
V tm-\y\ P } t* V — 1 V « - / 3 I \ JT(a—Y,7,0)(t ~ _r ~ _i_ f y\f( Y J_ f *^ ^/rII - 11 — J_ I f l ^^_ i j i i \.v $ ^v? <Z 3 ^v |^ L Z J I \J(j i^ V <6t J U/ &

=U(t, x).

The proof of the second identity goes the same way.

Lemma 2.2a L^ K(t, x, z9

(fl) Let u(t, x)f=^l(Ix£; X) and let

, x) = \K(t, x, -z, x + tz)u(t, x + tz}dz.
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(a

Then the integral \ U(t, x}d*t Is convergent in &>'(&, X).
Jo

(b) Let v(t, x ) ^ ^ f l
0 ( f x S ; X) and let

Co.
Then the integral \ V(t, x)d*t is convergent in @'jj(Rn;

Jo

Proof, (a) By Lemma 2.1 Corollary 1 we get

t, *), u(t, x)>x

for every 0e^($), where 0(j, x) is the function defined in Lemma 2.1

I. (b). Let A be the compact set given by (2.1) where C is the support

of 0. .Then the support of <p(t, x), £>0, is contained in A. Since ue^1,

there exists a representation

u(t, *)= £ D"ua(t, X), uaeli(/, L}OC(Q})
\al^k

on A, so we obtain

*f x\ u(t, x)>= E (-l) l a l<0 ( a )(t, x), ua(t, x)>.

But

y,

which gives

\</>(a\t, x)\g

where c is independent of t9 </>, a and ||0||A = sup sup \</>(a\x)\. Therefore,
lal^k x

we obtain
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l Z «/>(«\t, *), ua(t, *)> M*i

as e, £-»0. This completes the proof of part (a), (see Q26H or

(b). By Lemma 2.1 (II). (b) we find that the support of V(t, x),

is contained in Q, which gives V(t, x}^£(B.n). Therefore, it will suffice

to prove the convergence in &'(Rn; X). Suppose that cp(x}^@(Rn} and

let (p(t, x) be the function defined in Lemma 2.1(1) (a). Then by Lemma

2.1 Corollary 1 we have

Combining this with the fact that the support of (p(t, x), t>0, is contained
in a compact subset in Rn which is independent of t, we obtain

where va^L*(I; Lloc(R
n)). Hence we obtain our assertion by discussing

in the same manner as part (a).

Corollary 1. Let I^<7^°o3 and let (J be a real number. Assume

that K^jfj, where j is a non-negative number such that j + ff^O when

q = l and j + ff>Q when grS>l.

(a) For u(t, x)<E^f*(Ix@; X) let us set

Then \ 1*11(1, x)d*t is convergent in 3i'(Q\ X\ and
Jo

(6) For v(t, x}<=Jtl(IxS; X} let us set

V(t, x) = \K(t, x + tz, z, x)v(t, x + tz)dz.
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Then

Ca
\ t°V(t, x}d*t is convergent in @f(Rn; X),
Jo

whose support is contained in $, and

Proof. From the identity

-«'t9 x, -z,
\a\=j

\a\=j

the fact that V+aru(l3\t, ^)e tx^1(IxJ2) which is an immediate consequence

of Holder's inequality, and from the lemma the convergence of the integral

follows. Since

D«U(t, x)=

and since K(a~^^^^ -#Vi0i» 'lt follows that

is convergent in 9t'(Q\ X). Therefore, we obtain the formula of differen-

tiation under integral sign by letting £— >0 in the identity

The proof of part (b) goes the same way.

Corollary 2, Let K^ Jfy, p(*)*y €=!£(/). Then

(a) for f^®'(Q\ X) and </><=&(&) we have

, z,
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(b) for ge<?'(£;X) and #>e*f(J2) or for gt£@r
n(R

ni X) and

we have

<<p(x)9 \p(i)d*tK(t, x + tz, z,

Proof. With the aid of a limitting argument, these identities follow

from Corollary 1 and Lemma 2.1 Corollary 1.

§38 Integral Representations

Lemma 3.1. Let K^x, z, j)ejT0 and set

Km(x, z,y)= H -LDtii'K^x, z, j)
I a Km t* i

\a\-m
£„(*, *,y)= 2 -^-Dfiz'K^x, z, y)}.

Then, for /e0'(fl; JE")

and

Proof. From the identity
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and the identity

nKm(x, z, y)+E *j *" (*, *? y) = mKm(x, z, y),
j = l UZj

the first identity follows. In the same way we get the second identity.

Corollary I. (Integral representation) Let us choose (jt)(z}^C^(Rn)

such that supp co is contained in the unit ball B, and that its integral is

equal to 1. Put

m ' \a\<m

(3.2) M(x,z)=
\a\=m

Then, for f^9'(Q\ X) and

m(a, x)9o j

where

Um(t, x) =

Proof. It follows from the lemma that

Letting e-^0, we obtain the first identity by Lemma 2.1 (II) (a), since

\o)m(x9 z)dz = l. The second identity is proved analogously.

Corollary 2. Let k and m be fixed integers such that Q^k^
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and let a), Um9 and Vm be the same functions as in Corollary 1. Set

(3.3) M0(x, z)= 2 2 ( — l ) l a ~

for \()\^k, where

c\ A.} /ii ('/*• ^A—^a/ ,^ ^ ^*^'v^>iV^O.Try U/^^^v, Zy — Z u/\^ — Z; — i \X J J.

Then, for/&&'($; X) and g^0$(Rn;X)

/y r \_ y n/3\a
tkr/ t \ ] \ / f („ __

J\x)— Ai •*-'* \ ^ ^*^ \- '« /gv^j —
O

(*) = (-!)* Z 
Ĵo

. Since M(^5 JZT)= S M^a}(x9 z), the identities follow from
\a\=k

Corollary 1 and Lemma 2.1 Corollary 3.

Lemma 3.2, Let m be a non-negative integer and let (J be a real

number. Assume that K(t, x, z, y)^jTm and o" + m>0.

(a)

t*\K(t, x, -z,

If g^@'a(Rn;X), then

(t9 x + tz, z,

Proof, (a). Let C be a compact set in ifi, and let A be a set defined

by (2.1). Since A is compact, by the theorem on local structure of

distributions (Q26]) we obtain that f is equal to a expression

E D*fa(x), /aeC°00;X),
\a\=k

in a neighbourhood of A. Hence for x^C

, x, —z,
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Since J^ (0 ' 'y>a:"" /y )e^| /3j+W5 it is sufficient to consider the case where f is

continuous in a neighbourhood of A, and in this case the assertion follows

from

pt, x, -z,

(Lemma 2.1 Corollary 3)

and

The proof of part (b) goes the same way.

Lemma 303, Let

(0 // U(t, x)^^(IxQ\ X) (or ̂ 0(IxS; X)), then

u(t, a;) = r\ tes-eU(s9 x^d^s^^^IxQ; X)
Jt

(or s=^l(IxB',X)).

In particular, the operator U—*u is a bounded linear operator from

into iJ(/;Z,*(fl;JT)), or from i*(fl;i^(J; JT)) t

w/VA norm ^a*/6.

(if) If U(t, x)^J£t(lK® ; X) (or uTg(/x fl ; X))

'9 X)

particular^ the operator U-^u is a bounded linear operator from

; X}} into ££(/; L*(Q ; X)}, or from L*(@; £|(1; X))
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(/; X}} with norm <^a*/6.

Proof, These facts follows from Q20] Lemma 2.5, because

* ~~ 0 ' Jo * 0 ' = =

Now we are in a position to state and to prove a new integral repre-

sentation of generalized functions which is frequently used in the following

discussions:

Theorem 1. (Integral Representation). Let h9 k9 19 m be non-negative

integers such that Q^h^l9 Q^k^m9 l^Q9m$=Q. Let o)(z) be a function

such that a)(2)^(7^, suppleB9 \ti)(z)dz = I. Set

(x, z}= 2 -D«aa(x9 z)
laKrn Oil

(*. *)= S ^r^">a(^, *)= L
\a\=m W- • \a\=k

(a) For /<=&'(£; X), \a\£k, \0\£h9 let us write

ua(t9 x) =
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Then

(3.5)

where

(3.6)

=\
Jo

+ \com(x9 -z)

In particular,

F1(x} = \ d*t\M(x, — z)dz\

F2(x) = \ d*t\M(x, —z)dz\
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(6) For gtE@'$(Rn; X), \a\£k, \0\=h, let us write

(a
va(t, .r)=\

x) = ( t

= \a)l(

Then

(3.7)

where

(3.8)

Ca

iOO= H \
l a l ^ ^ J O

\/3\=hJO
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In particular,

C a C C a r
I(X) = \ d*t\M(x + tz, z}dz\ d*s\L(x + tz + sw,

Jo J )t J

^W — \ d*t\M(x + tz, z)dz\ d^s\L{x -\-tz-\-sw,
Jo J Jo J

w,

Jo

First we shall show the following.

Lemma 3L48 Let

\a\=k

(a) For f^Qi'(Q\ X) let ua, u^,f^} be the functions given in Theorem
1, and let K0, \0\^m, be the functions defined by (2.4). Then

\K(t9 x^ —z,

\/3\**h

(6) For g^&'3(R
n; X) let va, v^ g^} be the functions given in Theorem

1, and let Ka, \a\^m be functions defined by (2.3).
Then

\K(t, x + tz, z, x)g(x-\-tz)dz

, z9

I/31=/
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Proof. From Lemma 3.1 Corollary 1 it follows that

f(x) = \ d*s\L(x9 -z)f(x + sz)dz +/oo(»=\ U(s, x

Substituting this, we obtain

where

) = \K(t, x, —z, x + tz)dz\ U(s9

t, ^;) = \^(^9 x, —z, x + tz*)dz\ U(s9

t, x) = \K(t, x, —z,

By Lemma 2.1 Corollary 2 we have

^ x, -
\a\=k J3

Combining this with

which is a consequence of Lemma 2.1 Corollary 23 we obtain

At the same time by Lemma 2.1 Corollary 3 we obtain

1/3 \&h Jo

= \
Jo
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so that, integrating by parts,

, x, -z,

= 2 \K(t, x, -z, x
\/3\^h)

f f*= \K(t, x9 — z, x + tz}dz\ U(s,
J Jo

= U2(t, X).

Also by Lemma 2.1 Corollary 2 we obtain

and this completes the proof of part (a). Similarly, we can verify part

(b).

o/ Theorem 1. By Lemma 3.1 Corollary 1 we obtain

Applying Lemma 3.4 to the first term, we find that this term is equal to

Fl + F2 + F3 in the theorem. In order to complete the proof of (a) there

only remains to observe that the second term is equal to F^(x) in the

theorem. This fact is proved by substituting the identity

/(*)= E £><*/£<»+/.(*)
l/3|^/j

(Lemma 3.1 Corollary 2) and by integrating by parts. Thus, the proof of

part (a) is completed. The proof of part (b) is almost identical with that

of part (a).

By our proof of the theorem we have

Corollary, (a) For f^®'(Q\ X) set
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Um(t,x) =

Then

where Fj>£(x), j = ^, 29 3, are given by (3.6) with modification that the

integration relative to I is taken over s^l^a.

(b) For gt=®'Q(Rn\ T) set

Then

where G/,£(#), / = !, 29 39 are given by (3, 8) with the same modification as

that of F j j 8 .

§4 A Characterisation of Differentiability of

Lemma 40I0 Suppose K(t, x, z, j)ejTz- and i is a non-negative

integer. For f<=@f(@; X) we write

(4.1) U(t, x) = K(t, x, —z

and for g(=@$(Rn;X) we write

(4.2) V(t,x)

(I) Assume that ff<i.

(a) // l^p, q^oo and if /eSj f f f(fi; X\ then

r*U(t9x)e

(b) // l^p, q^oo and if g^B"ptqtS(R
n\ X) then
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(II) Assume that <7 + l^&, and that X is a Hilbert space.

(a) // KJD<OO and if ft=H"p(@; X\ then

t-*U(t, x)^L»(Q\ Ll(I

(b) // Kp< oo and if ge=His(R»'9 X),

then l~*V(i, x)^U(Q\ L\(l\ X)).

Proof. (T) (a). Case (K.fT-J-. I'Yoin the i d e n t i t y

/ \ ( / , .v, - c, \ \-tz)- £(/, ^ -c, \ ) + / / \ 1 ( / 1 \, v)

(*' " n> /\
where A , ( / , v, 2) -\ }] ^y '--(/, r, - «, \ f/.s^)'/.s,

J o y - j (/ _7y

we have

= U0(l, x

Since JTejTl9 it follows that

(4.3) UQ(t9 A;)

where 6e)t(^;, j^) is the same function as in Lemma 3.1 Corollary 1, and

this gives us, with the aid of Jessen's inequality (or generalized Minkowski's

inequality),

bBJbB

)2bB

where

Therefore9 we have
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(see the proof of £18] Lemma 2.3). Since

it follows that

which, combining with the estimate for U0, proves the assertion,,

Case <T = 1. From Taylor's expansion it follows that

U(t, x) = K(t, x, -z, x

t\Kl(t, x, -+ t

where

n flR~
K&, X, Z, y ) = z j - ± - ( t 9 X, Z,

l-s)azaK^0'a\t9 x, -z, x + tsz}ds.
\a\=2 OL\ Jo

It is easy to see that

Also, since

K,(t, x , z, y ^ Z j - ( t , x, z, y),

and since f&B£
p>q(S; X), 0<s<l, ([18] Theorem 1.1), it follows that
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Hence, to prove the assertion it suffices to estimate U0. From the identity

*=i

Z t A0, *, - z, *)/»(* + tz) dz, (fk = Dhf)

x, -z, *

—fk(% + tw)} dz dw,

x, -z, x)

t, x, z, w

where

K(t, X, z, w) = 2-

(the last identity is obtained by integrating by parts), and from \\K(t,

z9 w)dz = Q9 it follows that UQ(t, x) is equal to

Thus we have

\\U0(t, X)\\Lna.,x^C\ dx\
J S b B JbB

F*(tz)dz.
2bB

Using this and Q8] Lemma 2.3 (ii), we obtain the estimate
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\\t-lU0(t, x)\\L

Case where ff = k-i~6, 0<$^1, and k is a positive integer. Since J t<z ,

there exists a representation

K(l, .r, z, y) = 2 ^.«.°'0, *, z, y),
la I -/?

therefore, by Lemma 2.1 Corollary 2 we obtain

This, with the aid of the result for the case (Xtf^l , which was already

proved, gives the assertion.

Case where (T^O. By definition there exists a representation

/(*)= £ D*fa, /a
lal^m

where ff=—m + 6, 0<5^1, TTI is a positive integer . Since

the assertion for this case follows from that for the case

(II) (a). First consider the case where 6 is a non-negative integer k.

Since

K(t,X,z,y)= Z
l a l '

we obtain

Hence3 by £21] Theorem 3 Corollary we obtain our assertion.

Next, consider the case where ff is a negative integer — m. By

definition we have

/(*)= H D«fa,
\a\-^m

Hence, it follows that
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, x, -z, x

which, with the help of []21] Theorem 3 Corollary, gives us the estimate.

Finally, consider the case where 6 is fractional. Take m such that

/7t<c7<77i + l. Since m + 2^i9 the results just proved imply that the

operator /—> U is a bounded linear operator from //™($; X) into /^(J?;

/4>'"(/; A')), and also from H'» + L ( Q ; X ) into */(£; /4'"H '( /; A))9 where

Therefore, from the interpolation of operators (Q8], G^H) ^ follows that

this operator is bounded from H^Q) into Lp($ ; i|-(r(/; X)), which is our

assertion (note that [_L\Q] L%m\ L*(G'9 L%m*-l)le = L*(Q', L%*».

(I) (b), (II) (b). Since the support of V(t^ x) is contained in Q, we may

consider only the case where &=Rn, and for that case part (b) is identical

with part (a).

Thus the proof of the lemma is complete.

Lemma 482a Let K(t, x, zy j)ejfy? where j is a non-negative

integer.

(I) Assume that - f f < j , l^p, q^ oo, and that u^L%(I\

Then

a (
tffd*t\K(t9 x, —z,

0 J
(a)

(b)

L,^ltJL,^(kid,A.}Jm

(II) Assume that j>l —<r, I<jo<oo 5 that X is a Hilbert space, and that

, z, x)u(t, x + tz)dz

Then

\\Ca

(a) \
IIJo Hp(0;X)
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(b) , x + tz, z9 x)u(t,

Proof. (I) (a). Case <7>0. The proof is similar to that of [18]

Lemma 4.2 (A) (ii). Case <T^O. Write ff=-m + 0, where 0<0^1, m

is a positive integer. Since j^m,

K(t,X,z,y)= Z K«.«.«\t, x, z, y),
\a\ = m

so that, using Lemma 2.1 Corollary 3,

fa f
(4.4) \ t^d^nK^, x, — z, x + tz)u(t, x + tz)dz

Jo J

From this and from the result for (T>0 the desired result followsa

(II) (a). Case where o~ = k, a non-negative integer:

For any \a\ ^k, we have

D*Vthd#t\K(t9 x, —z, x + tz)u(t, x + tz)dz

Hence, by pi] Theorem 3 Corollary we obtain the estimate,,

Case where ff = — m ; a negative integer. Since 1 + m ̂  j s it follows

that

K(t,X,z,y)= Z K(<?'*'"(t9x9*,y),
\a\=m

with Ka<EJfj-m. From (4.4) and from [21] Theorem 3 Corollary our

assertion follows. For the case where 6 is fractional the estimate is

proved in virtue of the interpolation of operators.

(I) (b)5 (II) (b). The proof of part (b) is very easy, in view of the

result of part (a). (See Proof of Lemma 4.1).

Now, we shall give a characterization of differentiability, which is one

of the basic theorems of our investigation:
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Theorem 2* (Characterization}.

(I) Let 1 ̂  /?, q^°°, o~ be a real number, and let i be a non-negative

integer with i>ff.

(a) f&B%tq(&; X) if and only if f^ Wf(Q\ X) and for any K(x, Z)<EL$',-

;-*));

(b) g&B*p9qtS(R
n\X) if and only if g^W~p^(RniX} and for any

K~( ^- /v^ /-— -î *J\.^^5 Z) £=: t/i fa

; ̂ )).

(II) Let 1< /? < oo 5 d be a real number and let i be a non-n

with l + o"^i. Assume that X is a Hilbert space. Then

(a) /e= H*p(@; X) if and only if /EE W^(2; X) and for any K(x9 z) e tf ^

(b) g<=H<rpfS(R.n;X) if and only if g^W^(Rn\ X) and for any

Proof. Necessity: by Lemma 4.1.

Sufficiency: by Lemma 4.2, Lemma 3.2, and by Theorem 1. (choose m, k,

Z9 h so that m — k^j9 l^ i, k — (T>0, /£ + #>(), where j is the smallest
non-negative integer such that — 0~<j in (I), or l—ff^j in (II).). Since

/eJTj-Cfl; X\ it follows that f^x^JP^Q; X). This completes the
proof.

Remark. Let A;, A, Z, ZTI be as in the proof of Theorem 2, and let

Ua, U ^ f f r f . . be the functions defined in Theorem 1. Then/eB^^; X)

if and only if

t-*U*(t9x)9t-*Uft(t9x)GL'*(IiL*(a;X)) for \a\=k9 \@\^h,

X for / 9 ^ A ,
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and yoo(%)e W\(J&\ X). And Bp>q(S; X)-norm is equivalent with the norm

i .

The analogous facts hold for //j, BpfQts or //J>itf.

Corollary I. Under the same assumptions as in the theorem^

(I) (a) f^B"p>q(@; X) if and only if f^W~p°°(@i X) and for any

K(xy z)ejT0 and for any \a\^i

(b) g&B$tqtS(R*; X) if and only if g^Wp~s(R
ni X) and for any

K(x, z)eJT0 and for any a ^i

(II) (a) /eff;(fl; Jf) ^7 awrf 0^/3; if f^W^(Q\ X) and for any

K(x, ^)ejT0 and any a i>z

(b) g ^ f f i p > z ( H n ; X ) if and only if fs=Wp~s(R*\ X) and for any

K(x, z)ee^0 and for any \a\^i

\ Ll(I- X).

Proof, (I) (a), (II) (a). From Lemma 2.1 Corollary 2 it follows that

On the other hand if /eSj j f l(fl; Z) (or efljCfl;^)), then

(or eJ^-'^ + ̂ X but *:(a-^^e^lj8|, | /9 |>(J- |a + | / 9 | when
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Therefore, by the theorem we obtain

l ' « ' - i * i 'Uate(f, *)e.Zi(7;L'(tf;X)) (or e£*(

which gives

(*, -*)/(* 4 lz)dz^Li(l- L»(Q; A)) (or

Conversely, assume that this holds for any J£ejf0 and

Let K(x, z) be

*(*,*) = Z^°'fl)(*,*).
|a|=i

Then, we obtain by Lemma 2.1 Corollary 3 that

(or

(I) (b), (II) (b). Using the identities given in Lemma 2.1 Corollary 2 and

in its Corollary 3, we can verify part (b).

Corollary 2, Let in be a non-negative integer.

(I) Assume that l^p,q^°°. Then f^B^q(S2;X) if and only if

/e BVCQ; X) and Daf^B*-™(@; X) for any a =?n;

(II) Assume that X is a Hilbert space and that Kp<oo. Then,

/ eEff jGQj j r ) if and only */ /e JF;~(.0; J5T) and Daf€=H$-m(Q;X) for

any \a\ =7n;

Proof. (I) It suffices to prove "if" part. Let i be a non-negative

integer such that i>(T3 zn, and let

*(*,*)=
l a |

Then, using the identity

|a! = »» J

and the theorem, we obtain the assertion .
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Corollary 3. If G <t then B'ptq(Q\ X^BT
p>q(@; X).

§50 Fractional Derivatives

Let /e^'02; X\ g<E@'$(Rn; X), and let I be a complex number.
Then by Lemma 2.2 Corollary 1 and by Example 2.1 the integrals

(5.1) Fi(x) = t*-d*tK(t9 x, -z,

and

(5.2) CX(A;

exist when .!£"(£, #, z, y)ejf\-5 i

In this section we shall prove a theorem which shows us that Fx and

Gx are, in a sense, generalization of the fractional derivative and the

fractional integral.

Theorem 3« Let i, j be non-negative integers and let K(t, x, z, y)

(I) Assume that j X f , ff + Re^>j — i and l^p, q^oo. Then,

(a) the operator f-*F^ is a bounded linear operator from Bpt g(J2 ; X) into

B£**\a;X);

(b) the operator g-*Gx is a bounded linear operator from B $ f q f S ( R n ; X)

into B*p(R* X).

(II) Assume that j>o~, (T-j-Rel >y — i + 1, X is a Hilbert space, and that

KJD<OO. Then, (a) the operator f—*F\ is a bounded linear operator from

H*p(®\ X) into I^+ReX(J2; X); (b) the operator g-^Gx is a bounded linear

operator from H^^(Rn;X) into H^^(Rn; X).

Proof. We shall prove only part (I) (a). The other parts are proved

similarly.

(i) Case j^i. From Lemma 3.4 it follows that
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\K(t, x, — z,

x, -z,

where K(t9 x, z, y) = 2K(£>a>^(t, x9 z, y), and ua, u^f™ are the functions
defined in Theorem 1 with & + (T>0, l — h>0"9 k>ff, i — k>—ff—ReA.

With the aid of Theorem 2 and Lemma 4.2 this shows our assertion.

(ii) Case j>i. Let \a\=j — i. Then, from Lemma 2.1 Corollary 2 it
follows that

Since B"piQc:B$-J+*+lfn(\0\£j-i'), and since ^ (a-^^0)eK /+1^ l5 with the
aid of the result in (i), this gives DaF^(x)^B%~l+ReX. Similarly, we have

FxeJ55§7
+l'+Rc\ and by Theorem 2 Corollary 2 we obtain

This completes the proof.

I« Let m be a positive integer.

(I) Assume that l^p, q^°°. Then,

(a) for any f^B^q(^;X) there exist faGBf+f(B\ X), \a\^m, such

that f= Z D"fl
lal^m

(b) for any g&B$tqtS(R
H; X) there exist ga^Bfi

+
q^(M.n; Z), \a\<m,

such thatg= 2 D«fa.
lal^m

(II) Assume that X is a Hilbert space and that l<p<<x>. Then, (a)

for any /eflj(fl; X) there exist fa^Hf+<r(^:) X), \a\^m, such that

f= Z D«fa; (b) for any geH'pta(R»; X) there exist ^eflJJ^CR"; JQ,
lal^m

\a\^m, such that g= 2 ®a gaa-

Proof, These are direct consequences of the theorem and Lemma 3.1

Corollary 2.

-oo<o-<oo
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If p£q then Wp00 (0; JF)c JF--(fl; Z).

Proof, By Corollary 1 and by L20] Theorem 1 (this theorem is also

valid for X- valued functions, cf. §7).

Example, Let (KRe/Kl, m^Q, x^R1, and cp^C^(Rl) with support

contained in — 2<z<— 1. Then

I
tx

Jo

where

Coo(y{9 77i)=\ Jxd^\ eimtz(p(-z)dz.
Ji Jis

A simple calculation shows that

f *xd^\ e~imtzcp(z}dz ( =mk( ^(t)^'1 dt for 7?z>03
Jo J-°° Jo

1 ro
I =-m,M (p(t)t^-ldt for ?7i<0?N J-°°

where

Since $($) is an entire function such that |^(OI ^Ce~lmt for IrtU^O, we

obtain

Therefore5 for f(x) = ̂ cmeimx we have

(V d*tq>( - z}f(x + tz) dz =
o

where
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since

m

for any k>0. Note that

is the fractional derivative in the sense of Hardy-Lit tie wood [Jl].

Next, we shall discuss the product of the operators defined by (5,1) or

(5.2),

Theorem 40 Let i and j be non-negative integer •$, K(l, x, z,

L(i, x, z, j)ejTy, and let 1 and jj, be numbers with i + Re/l>03 < /-hRe/^>0.

Then there exist Mh(t, x, z, j)ejr^y_A 5 A = 0,..., i, and M(t, x, z,

such that

(s, x, —w, x + sw)dw
o

\L(x,

i Ca
2 \ tx+^kd*

k=QJO

z9

, -z,

z,

holds for any f^&f(@; X); and there exist Nk(t, x, z,

i, and N(t, x, z, j)e JT0 such that for g^@$(Kn; X)

(a , 7 (TT,\ s^d±s\K(s3 x + sw, w, x)dw
Jo J o

i Ca C
— Y1 \ f^ + P+kfJ t\N (t r-±-t~ r
— Zj \ ^ ^*^\^ V A\ f 9 ^ + C^3 ^5

^=oJo J
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To prove the theorem we shall need the following lemma.

59Io Let K(t, x, z, y), L(t, x, z, y)ejT03 and let

Re/*>0. Then

' *• -

, yjdw

belongs to 3t"0.

Proof. Let

M(t, s, x, z, y) = K~, x, -(! + ,)«,, x + tw)

Then

, 5, x, z,

where aw is the volume of the unit ball B in Rn, so the integral

t, s, x, z, y) x^-2»i d*s = M(t, x, z, y)

is uniformly convergent and a bounded function of t, x, z, y. Similarly,

for any a, f}9 f , the integral

, s, x, z,

is uniformly convergent and a bounded function of £9 x, z, y. Therefore9

M(t, x, z, y) is a ^°°(l23w)--valued continuous function of Q^t<tQ.

Next consider the support of M(t, x, z, y). Let us assume that for

some 5 M(t9 s, x, z,
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Then for some w

so that, putting v = (l + s)w and tl = -^— — ,we have
1 ~T~ 5

and, therefore, — *e^(/,, .v). Thus

Proof of Theorem 4. Let /e^'(J2; A7), and assume that

^0^-05. By Lemma 2.2 we have
\0\=j

where

U(s, 19 x} = (K(s9 x, — w, x

\L(t, x + su

Since by Lemma 2.1 Corollary 2 we find that

= z * y s z j * - | e l ^ ^u f c
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we obtain that Z7(s, t, #) is equal to

with

Hence, by the fact that

o Jo

and by interchanging the variables

t t is

we have

(by Lemma 2.1 Corollary 2)

= S (
k=OJO

where



ON BESOV SPACES AND SOBOLEV SPACES 367

(5.3) Me(t, x, z, y)

I ~r 5

(5.1) /!/;,(/, \ , . - :
/ /?

The fact that Tlf^, t J f " ? - , 7-.;, is given by Lemma TO. The term FQ(x) can

be computed similarly. The second part of the theorem can be argued

in the same way and the proof of the theorem completes.

§6 Approximation and Extensions

In this section we shall consider two problems. The first is the
approximation problem: Can any element in a given space (Besov or

Sobolev) be approximated by an infinitely differentiate function? The
second is the extension problem: How can elements in a given space of
distributions defined on Q be extended to RJ? with preservation of their

differentiability properties? In the following of this section we shall assume

that X is a Banach space, ff a real number.

Theorem 5. (Approximation) Let m be a positive integer such that

. Assume that a)(z)^.C^(E.n\ supp(o))c5,

For ftE@'(S; X} and ge&'s(K»; X) set
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where

«>»(*,*)= £ -^{^(-s-roo)}.
I a Km Ct!

(I) Iff^B'tit(.Q;X), then

Um(t, *)-/(*) in 5^(5; Z) as t-»0.

// g^B^giS(R"; X), then suppFm(t, *)cS and

Vm(t, x}-+g(x} in Bl.q(R"; X) as t-»0.

(II) Assume moreover that X is a Hilbert space and \<p<oo.

If f<=.Hl(Q;X), then

Um(t, *)-/(*) in Hl(Q;X) as t-»0.

as

Proof. From Theorem 1 Corollary it follows that

(Here we make use of the same notations as in Theorem 1) And from

Lemma 4.1 and Lemma 3.3 it follows that, taking k = ?n,

t-'u«(t, *), t~'uft(t, x), t-*tMfL"}(x)*=Ll(Ii L*(0;

Therefore, Flt€, F2)S and F3>€ converge in I?£j(?(J2). Combining this with

the fact that

tfmfo oc)-^f(x) in ^7(fl; jf) as e-»0,

which follows from Lemma 2.1, we obtain the first part of the theorem.

The remainder parts are verified in the same way,

Corollary,, (I) JFjGS; X) is dense in B^q(S; X), W;iS(R*\X) is

dense in B$tqtS(R
n; X), also CQ(^; X) is dense in B^q^(Rn; X)

(II) Assume that X is a Hilbert space and l<p<oo. Then, W^(S; X)
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is dense in H*P(Q ;_!'). M^pts(Q; X) is dense in H^^R"; X), also

CQ(@; X) is dense in H$ta(R»; X). From the imbedding theorem (cf. §8),

we have

Proof. It suffices to prove the denseness of Cj($; X). Since Vm(t, x)

is a W^tQ(Rn; JT)-f unction with support contained in $9 taking ^

such that

on x

in x

it follows that

in

and that ^w£eCo(^; X).

Next, consider

Theorem 60 (Extension) By R we shall denote the restriction to Q

of generalized functions defined on Rn.

(I) There exist a bounded linear operator E from B$tq(&'9X) into

Bltq(R
n; X) such that REf=f for any f € = B ' p i q ( Q ; X). More precisely,

for any positive integers i and j there exists a linear operator E:

y Blq(Q;X)^ \J B'tit(R»;X),
-j<<r<i -j<cr<i

whose restriction to Bp>q(@;X)9 —j<o'<i, has the above properties.

(II) The same fact also holds for Sobolev spaces H%(Q ; X) if we assume

that X is a Hilbert space and l<p<oo.

Proof. (I) We shall use the integral representation given in Theorem

1, in which we shall take m, k, Z, h so that m — k^j.,

^j, h^j (e.g. m = l = j + i9 k = i, h = j}. Let
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llalf^}, fp be as in Theorem 1, and define

f u«(t, x) for x
TS«\t, x) = \

[ 0 for x

also define U ti, u", f/3, /L analogously. If f^Bpiq(£: X), — j<o~<i9 then

and f/39fott^Lp(Rn; X). Hence the distribution /(#) on JR» given by the

formula for / in Theorem 1 with i^", 11$, ^/ia}
5//3 and /^ replaced by

ua, Up, u^fp and yL, respectively, belongs to Bp>q(M.n; X) and its restric-

tion to Q is equal to f. Moreover, it follows from Lemma 4.1, Lemma

3.3 and Lemma 4.2 that the mapping /— »/ is continuous form Bp}Q(^; X)

into Ba
p>q(M.n; X). This completes the proof of part (I). Part (II) can be

proved similarly.

§7 Interpolation Theorems

In this section we assume that (T, r are real numbers, I^JD, q, £9

T/fgoo, and that X is a Banach space.

To discuss the relation between Besov space Bp>q and Sobolev space

Hp, we first consider the following:

Lemma 7010 Let j be a positive integer such that y'^1 + 0", and let

l^f^^^°°. Assume that l<p<oo and that X is reflexive.

(a) If /e W~P~(Q ; X) and if for any K(x, z) e JTy

(or

/or any K(t, x, z, j)e JTy

^-°-f^, x, -z, x + tz)f(x + tz)dz^li>(@; L^(I; X)).

(or eZ

(b) TjT g-e Wp~s(R
n\ X) and if for any K(x,
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zeL>(Q; L&I; X)),

(or

then for any K(l, x, z,

t, x+tz, z,

(or

Proof. By Lemma 3.4 we have

\K(t, x, -z, x

where

Here z^", u^f^ are functions defined in Theorem 1 with m = k = h, l = 2k.

Since L^'P'^^Jfj, by the assumption we obtain

so, with the aid of Lemma 3.39 we have t~crua(t, x)<=Lp(@ ; L^). This

and the following Lemma 7.3 gives

In the same way we obtain t~*U2(t9 oc}^Lp(Q; LJ)0 And t~aU^(t, x)

; 14) is obvious. Thus the lemma is proved.

•• If l^f^^^oo, then
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Proof. By Theorem 2 and the lemma we obtain the assertion.

Lemma 7.2. Let X, Y be Banach spaces, l<p9 and let K(x, z, y)

be an g*(X, Y)-valued strongly measurable function of x, z, y^Rn which

satisfies the inequality (J£(X, Y) is the space of bounded linear operators X—» Y)

)^Cafi«x>9 for |a| + | / 9 |= l .

Then for all f^L*>(Rn; X) Tf(x) = \K(x, x-y, y)f(y)dy is conver-

gent in L*(R*\ X) and

if these facts hold for some q with l<p<q.

Proof. By the same argument as in part (ii) of the proof of £21]

Theorem 3 we have for any f<=Ll(Rn; X)

measure {x \ \\ Tf(x)\\Y>t} ^ C^\\f\\L1(RnlX).

From this and the Marcinkiewicz theorem (cf. £21] Theorem 2) the result

follows.

Lemma 7.3. Let K(t, x, z, j)e^0s and l^p^oo, l^f^oo.

(I) // u(ty ^)el|(l; L*(a; JT))9 then

U(t, x) = \K(t, x, -z,

U(t, x)=(K(t, x + tz, z, x)u(t, x

(II) Assume one of the following conditions:

(i) /? = ?, (H) Kp^?, and (Hi) KS^p<°°9 X is reflexive. Then

U(t, x), ff(t, x)^l*(@; L&I; X)) for any u(t, x)^LP(@; L&I; X)).

Proof. It suffices to consider the case @=Hn,

a).
i r

K(t, x, —z,
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, -z,

dz\ (ad*t
bB LJo

\(\\u(t9 x
U

(II). (i) Case p = £. By (I), since L&I; L*) = L*(O; LJ).

(ii) Case Kp^g. Since

S rC\t v 7 v I t 9* i it (t v I- t F i ri y — \ t ^ 1\\ f V — 'V I ii ( t 1/1 n 1/*J L \ . \ l / y A / y & 9 Ji/ T^ L & ) LU \^l> j ./v (^ t< xS y Ct/ A — l t JL3L I £/ ^ ^v ? 5 y I U> \v $ y ) \JU y ^
J \ £ -V

the lemma in this case follows from Lemma 7.2 and the inequality

\z\n+lD«D1t-nK(t, *3—, j")
\ v /

^ sup \z\n"1
•~r-t

'.-.-T

for |a| + |/3 | =1. Here we have make use of the fact that K^'a>^\t9 x,

z/t, y) = Q for \z\ >tb.

(iii) Case K?^p<°o. Let pf and f be the conjugate exponents of p

and ?, respectivaly, and let JT' be the dual space of X. For any v(t, x)

e/X(fl;/4'(I;Z')) set

F(^, ^) = \^(f, ̂  + ^^9 ^r, A;)I;(«, x)dx.

Notice that for e>0?
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snce

lx-yl^ba

Thus we have by Fubini's theorem and Holder's inequality

doc \ U(t, %}v(t, x) d

, y \u\tj yjV\t^ ocjdioccLy

here we have make use of the result in part (ii). From this and the

duality (see [25])

the desired inequality follows., and the proof of the lemma completes.

We are now in a position to state the result concerning the comparison

between the Besov spaces and Sobolev spaces:

Theorem 70 Let X be a Hilbert space. Then

(i) for Kp^2

B*pip(a; *)cflj(fl; X)c^,2(J?; X)

with continuous injections;

(ii) for 2^j

(fl; X)

with continuous injections.

Proof. Let j be a positive integer such that /^1 + (T. Assume that

fl; Z). Then for any J^(^,
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in view of Theorem 2. Therefore, from Lemma 7.1 it follows that

r*U(t, x)^L^Q'9L%(I'9Xy). From this and Theorem 2 it follows that

Next assume that/eJ5T;(fi; X). Then we have t-fU(t9 x)&Lp(Q\ 14),

which, with the help of Jessen's inequality, gives t~pU(t, x) e I/|(/; Lp(@ ;

Z)). Thus, by Theorem 2 we obtain f f = B $ i 2 ( S ' 9 X ) . This gives the

assertion of part (i).

The second assertion can be proved in the same way. If 2^j

then by Lemma 7.1 and Jessen's inequality we have the fact that

for any K(x9 *)eJTy implies

for any K(x9 2r)eJT;- and this implies

for any J^ejfy. From these facts and Theorem 2 we obtain the first

assertion of part (ii).

This completes the proof of the theorem.

Lemma 7940 Let 0, r be real numbers with ff^r, and let 0<0<1.

. Then

continuous injections, where

Proof. Let/e(Lj', LjT)» l 4 . Then
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with

where A = <T — r. Consider the case A>0 . Setting

S°o
u(t,s)d*t,f2(s)

s

we have, by []20] Lemma 2.5,

snce

Similarly, we obtain

and, therefore, we have /eL|'^(I; JT). The proof for the case A<0 goes

the same way.
Conversely let /e 14̂ (1; jf) and assume that A>0 . Set

I
/(s) for

0 otherwise,

w(t9s)=f(s)-v(t,s).

Then, by Q20] lemma 2.5 we obtain
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and

Hence /e(LJ.f<r, L^T}diq, and the proof of the lemma completes.

Lemma 7*5,

B'ptl(0; Z)cfljf(fi; X)cB'p^(a; X)

with continuous injections.

Proof. First consider the case where <T is a non-negative integer k.

It follows from Lemma 3.1 Corollary 1 that

O, - z)f(% + tz) dz +/o.(*)f

Assume that /eJ5J f l(ifl; Z). Then, by Theorem 2 we have

for any |a| ^A. Therefore f^Wk
p. Second assume that f^Wk

p. Then, for
any ^e«^^+1 we have

\a\=k

so we obtain f^Bk
p>00 by Theorem 2.

Next consider the case where 6 is a negative integer —k. Assume

efi^V Then

Since BQ
ptlc:Lp, we obtain f^W~p

k. In the same way we have
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Finally consider the case where 6 is a fractional number. From the

first identity of Theorem 8 below and Lions-Peetre [17] Theorem IV 1.4

it follows that

Now, we shall discuss the interpolation space of the Besov spaces and

Sobolev spaces.

Theorem 8= (Interpolation spaces). Let 0<0<1 and set
l 1 - 0 0 1 1-0 d,

(i ) (J85, f (0 ; X), £;„(£ ; X)\ q = B$, t(Q ; X),

(H't(Q ; X), Hi(Q ; X)),, , = B$. 9(0 ; X),

«;«^A equivalent norms. Here we assume that

(ii) [a

^A continuous injections. In the second assertion we assume that Kr<oo0

. Let j > f f , r be a non-negative integer, and let K(x,

Then

U(t, *) =

is a bounded linear operator from Bpi00 into L*'*^!', Lp(S; -X")), also from

5jf00 into iJ'T(J; i^(fi; JT)). Therefore, by the interpolation of operators

we obtain it is a bounded linear operator from (5j>009 B
r
pi^)di(1 into (£,£•'(/;

)3 LJ-T(/; X^(^; Jf))^^. This, with the help of Lemma 7.49 gives

ii(/; £*(£)) for every /e (5jjM9 Sj,«)fljfl. Thus, using Theorem

29 we have (Bpf00, Bp}00}0>qc:B^iq. In the same way by Lemma 7.43 Theorem

1, Theorem 23 Lemma 4.2 and the interpolation of operators we have

(J5jpl9 B^^g^DB^q. Combining these facts with Lemma 7.1 Corollary
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we obtain the first assertion.

The second identity follows from the first and Lemma 7.5.

(ii). By the facts that

(cf. Calderon [8]) and by Theorem 2 we obtain the assertions, with the

aid of the interpolation of operators.

Remark, we may discuss the interpolation space in another situations9

but shall not develop here. See [18], [20].

By Theorem 8, Theorem 6 and the fact that Hp(K") coincides with

the space of generalized functions such that

(7.1) F-i {(1 + | f | YFf($)} e L*(R*\

where F denotes Fourier transform, (see Calderons [8], Schechter [27],

Lions [15])? we obtain.

Corollary. The space flj(fi), l<p<oo, coincides with the space of

generalized functions f such thai there exists a generalized function f

satisfying (7.1) with f=f in Q. The norm of Hp(@} is equivalent with

iv here the infimum is taken over all such f.

We shall start with

Lemma 8.3 « Let 1 ̂  m^ n, 1 < p < g < c>o , 1 = nf p — m/q . Set

for f^L"(Rn). Then

i i sup
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Proof. Since

where pf is the conjugate exponent of p. Write p = \ x' — y' \ , pt = \ xf/ — yn \ ,

2ff = (A-n)f. Then

| * - j| P'<-*+rt dy'f = (n- m)an-mp2'+n

r\2o-+n-m

where an is the volume of the unit ball in Rn. Hence we have

where

. . / / M l 1 t 171 171

From this and Hardy-Little wood-Sobolev's inequality the desired inequality

follows.

Lemma 802e Let l^m^n, I^p^q^oo, ^ = JL_^L9 8>o. Set
p q

for f<=L*>(Rn}. Then

Proof. In the same way as in the proof of Lemma 8.1 we have

sup|F(X, x")\^c( \xf-y'\-m^'+£g(yr}dyf.
x" J\x'-y'\-£d

Let r be a real number such that l/p — 1/q = 1 — 1/r. Then

= mamd£r/er,
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so we have the assertion with the aid of Q20] Lemma 2.5.

Lemma 8,3. Let l^m^n, l^p^q^oo, l<£f ^97^00, and

Assume that ueL*>(G;

(i) If I<p<q<oo, then

X\J£~O, —z)u(t,
£*•

where

(ii) If

sup J

. (i) Write /(j) = || M(^, ^H^. Defining i^(t, x) = Q, for A;

we may consider only the case Q = Rn. Let r = 7j/^ and let r' be the

conjuagte exponent of r. Then, from Jessen's inequality and Holder's

inequality, it follows that

which, combined with Lemma 8.1, gives the conclusion.

Similarly for part (ii).

Theorem 9. (Imbedding) Let l^p^q^oo, l^f, y^ao, *= — -•—,
p q

e>09 and let (J be a real number. Then the following imbedding operators

exist under the additional assumptions:

B-B (i)

B-B (ii)

B-H (i)
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B-H (ii) B

H-B (i) ff;

H-B (ii) flS

H-H (i) ff;

H-H (ii) H*p

Proof, B-B. By [20] Theorem 2, and Theorem 3 Corollary ].

B-H. For the case where ff is an integer the assertion follows from

[20] Theorem 2 and Theorem 3 Corollary 1. The proof of the case

where ff is fractional follows from the above result and the interpolation.

H-B. In the same way as for B-H.

H-H (i). This follows from B-H (i) and H-B (i).

H-H (ii). Let i be a non-negative integer with l + ff<i. Assume

that K(x, z)= 2 K(*>a\x, z)^^{. Then, from Lemma 3.4 it follows
\a\=i

that

where

\a\=i

I a I = i
i'\Ka(x, ~-

Since by H-B (i) we have /M EE W^ c FF^5 we obtain

Also we have, by Theorem 2 and Lemma 3.33

so that by Lemma 8.3 we obtain



ON BESOV SPACES AND SOBOLEV SPACES 383

Thus, combining this with the fact /e Wp°°c. Wq°°^ which follows from

B-H (i)9 we obtain /ejffj.

Next we shall study the trace operator to any hyperplane. To do this

we need the following:

L4. Lei l^m<uj 1 < - ^ / > ^ r / , /;^r/, and lei //,(/, .v)

where % es ^/Z6? characteristic function of Q. Then

SUp ||^
-

. Write /(^) = | |M(«, ^ ) I L - Define /(a;) = 0 for .T^^O Then

m dz"
lz'ISi

From Q20J Lemma 2.5 and

it follows that

H / / 0 , .v', .v")||ini,'(.^

where



384 TOSINOBU MURAMATU

This gives

n—m
t~u(t, *)||i?;(/;

n-m

where ff = (n — m)(\ — 1/p), since

l^ ' / l^- '^f t ' for

This establishes the lemma.

Lemma 8.5B Let l^m<n, @c:H.n, l<p<*q, p^y, and A = n/p — m/q.

Assume that (T>0, ^(A;,

define

F(x) = \S

Then

sup ||FO'5 ^'
~

. Let 6 = kJ
rO, where 0<^^1, k is a non-negative integer.

First consider the case k = Q.

For any x^Q2ty = (Q-2 y) n (fi- j) H fl we get
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C(t,x+jy)

7-0 Jo

where h(t) = mm{t, 1}, C(t, x) = {y= x + tz\zeA(t, *0}c£n {x + tbB},

\ dz.
Q-x')

Therefore, for y'^Rm we obtain

But

for

From this and Q20] Lemma 2.5 it follows that

where C2 is a constant independent of / and x'f , and the desired estimate
follows from this and Lemma 8.4.

Case k > 0. Let | a \ ̂  k. Then
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so that the assertions for the present case follows from this and the result

for the case k = 0.

This completes the proof of the lemma.

The result for the existence of the trace operator (the restriction

mapping) to any hyperplane is as follows;

Theorem 10. (the trace operators). Let

n-m, @' = Q'(x") = {x'\ (x'9 *")eJ2}5

, and Z= — -^a

Then there exist the following trace operators under the additional conditions.

B-B (i)

(ii)

H-B (i)

(ii)

B-H (i)

(ii)

H-H (i) f

(ii) Jl;^(fi) -^(^0 (K j P<?<oo).

. Part B-B follows from [20] Theorem 28 Part B-H for the

case where 6 is a non-negative integer also follows from that theorem.

Part B-H for the case where (J is fractional follows from this and the

interpolation of operators. Part H-B (i) is obtained by

Part H-B (ii). For /*e.ffj+x(J2) let us use the integral representation

given in Theorem 1. By Lemma 4.1 and Lemma 3.3 we see
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therefore, in view of Lemma 8.5, we get

Since F4(x}^ W~, F 4 ( x f , oc"}<^Blt7](@
f} is obvious.

Part H-H (i) is obtained by considering

Part H-H(ii). Case <T = 0. Let /eflj(fi). Then, in the integral represen-

tation given in Theorem 1,

' ;££)•

Hence by Lemma 8.3 we have

Ca I f
\\Ma(x,-z)u"(t,

Jol J

which gives

The same fact holds for F2 and F3, and we have shown the assersion for

the case tf = 0. For the case where ff is a positive integer the result

follows from the same argument applied to the derivaties of f. Again an

application of the interpolation of operators gives the result for the frac-

tional case.

To discuss duality we shall need a lemma as follows:

Lemma 9elo Let 6 be a real number, i, j be positive integrers,

Hh(x, *)€=.#•,., Kk(x9 2r)eJT05 Lt(x, z)e=JfJ9 Mm(x, ^)ejT0,

and 1< p < oo.

(I) Assume that l + ff<Zj, l — ff^i, and t~auh^Lp(Q; L|(I)),
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L*>'(Q; £|COX <pk<=Lp(@\ 0meJ>'(,fl), wfoye /?' w the conjugate exponent

of p. We define

(9.1) /(*) =
h o

Then t~*Uh

(9.3)
I Jo

(9.2) ff(*) = i Jo

(then/sfl;(fl) and geHtf „(&)), and set

^, -z)f(x+az-)dz,

, z)g(oc-\-az)dz.

where f£ and g£ are defined by integrating over e^t^a in the formulas

(9.1) and (9.2), respectively.

(II) Assume that Q~<j\ -0~<i, l<g<oo , and that j- f fMAe/4(JT; £*(,2)),

r^el^^I; L*'(Q)\ (pk^L^(Q), 0melX(fi), wAere gr' w /Ae conjugate

exponent of q. Then, defining /, #, C//5 FA, Fw, G^5/e flwef ̂ 6 as zw Par/ (I),
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(9.3) holds.

Proof. (1). Let uh>£(t, x)=uh(t, #), for s^i^a, and uh}£(t, ^;) = 0

otherwise, and let vl>£(t, x) = vl(t, x), for e^t^a.and vl>£(t, x) = Q other-

wise, where e>0. t / / f £ , Fffl>£
 anci ^h,e? &k,e are the functions defined by

f£ and gt, respectively. It is known that the dual space of Z/^(J2;Z/|(/))

is the space Lp'(@; Z4(/)) (c^« H^l» C25H)5 '
an& by the definition of Lebesgue

integral we have

in LP($;L^) as e-»0,

as

and there fore by Lemma 4.2

n

in

so by Lemma 4.1

t~'U,,e -+ r-U, in

n

n

Since every term in (9.3) is a continuous bilinear form, it suffices to prove

(9.3) for fe and ge.

Now, from Fubini's theorem it follows

I JO

S a
d*t\\Li(x, —z)fE(x-\-tz)vltE(t, x)dzdx
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, *Ke(«, y+tz)dz

, z)<l)m(y+az)dz\,
)

which gives (9.3). The proof of part (II) is analogous.
Combining the lemma with the integral representation (Theorem 1)

and Theorem 2, we obtain the following

Let 6 be a real number and 1< p, q<oo.

(I) Define o)m(x3 z) as in Lemma 3.1 Corollary 1, where m = i + j — I9

1 + 0" ^y", 1 — 0" ^= £9 #^ y, i are positive integers. For
we define

(9.4) UM(t, *)-Jo>w(*3 -2r)/(^ + ^)d2r,

(9.5) Vm(t, x) = ̂ ti>m(x + tz, z}g(x + tz}dz,

Then

(9.6) Hi

converges, and, denoting its value by <f, g>,

i </, ^> i ̂
(II) For f^B^>q(^yg^Bp7q,iS(R

n) the same facts also hold. But in

this case we should take m = i-\-j, where j>o~9 i>—o~, and j, i are non-

negative integers,

Theorem II. (Duality), Let 6 be a real number, and Kp, q<ooa

Then

(II) tB«pi q(0yj = B~p7t q,t a(R*\ [_B~p7t €/> ̂ H-) J = B'pt
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where prime denotes the dual space, pr and qr are conjugate exponent of p

and g, respectively.

In more detail, the duality is given by the bilinear form

Here Um and Vm are defined by (9.4) and (9.5), respectively.

Proof. (I). Let j and i be positive integers such that

1 — ff^i. We shall make use of the integral representation (3.5), in which

we take l = m = i + j — 1, k = j — 1 , h = i — l. By the above corollary we have

known that </, g> is a continuous bilinear form on H%(&)xHp,<r
fS(R

n').

To prove that </, #>=0 for every g^Hp^^(Rn) implies /=0, let

us take V(t, x)f=L*'(O; i|(/)). For | /9 | ̂ A define

Then ^^eL^(fl;IJ), so that

(a C
g(x~) = \ dxtX

Hence, by Lemma 9.1 and Fubini's theorem we have

Thus9 </, g>=® for every g^H^s implies that the right hand side is

equal to zero for every FelX($; L%) = [^Lp(G ; L$)~J9 which gives Up(t,

x) = Q for every \0\^h, so that F2(x) = Q. Analogously we can obtain

^i(^) = 0. Also, substituting
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where G is an arbitrary function in IX($), we get/OO(.T) = O, and, hence,
F3(x) = F4(x) = Q. Thus we have f(x) = Q.

Likewise, we can show that <f, g> = 0 for every f^Hp implies g=Q.
From the observations we have done it follows that H^ff) cQ/7^/s(lJ'lX]',

and Hpf $(Rn) c QfiTj( J2)]'. Thus the theorem is established if the converse
inclusion is shown.

To do this, let F<=[H$WJ. Since for any u<=L*(Q;

Ca r
\ d*t\Ma(x, -z)t*u(t,
JQ J

the functional

is continuous on Lp($ ; L|),and, hence, this is equal to

for some Pa(t, *)elX(£; i|). Similarly, there exist Vf(t, x)<=Lt>'(@;
such that

(Q-e\x9 -z)t'u(t,
/ Jo

for every u(t, x)^Lp(@;L%), and

for every (p^Lt>(@}. Put

va(t> x) = \sJo

and set
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y z}v^(t9 x + tz^dz

0

\a\=k 13

4-

Then, by Lemma 9.1 we obtain, for any

/a(«, *)»„(«,
o

+ S

Z \
l a l = j f e j o

I ft l^h
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\a\=kJQ

E a-W
IjSISiJ

\><om(x, -

in view of Theorem 1, and the inclusion (H^'aH^s is established.
By the same argument, we find that for G^(Hpfsy there exist

Uft, U«eL*(a;L%),F'Q9f
l«E:L*(a) such that

G\ d*t\D%{L(x + tz9 z)}t-fv(t, x + tz)dz)=\d*t\v(t9 x}Ua(t, x)dx,
o J / Jo J

for any vdL*'(Q\ L|), $&LP'(£), and, putting

\a\=kJQ

by Lemma 9.1 and Theorem 1 we obtain

<f,g>=G(g)

for any
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This completes the proof of part (I).

The proof of part (II) is the same, except that we should remark
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