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The Principle of Limiting Absorption for the Non-
JL CJ* JL

self adjoint Schrodinger Operator in RN

By

Yoshimi SAITO*

Let us consider the Srhrodinger operator

, \ 0 (I), =-- MA/.0)

In the whole TV-dimensional euclideau space KN . Here b j ( x ) , / — I, 2,...,

N, are real-valued functions on E.N and Q denotes the multiplication

operator by a complex-valued function (?(#) on IS7^. Let ux±i/Ji be solutions

of the equations

(0.2) (L-(l

If the limits

(0-3) liniux±l- =u±/*io

exist and u± solve the equation

(0.4) (L-J)u=/,

then it is said that the limiting absorption principle holds for L. The

meaning of the limit is to be determined suitably1^

Tkebe-Saito Q7], which will be refered to as I-S, deals with the case

that Q(x) is a real-valued function, i.e., the case that L is a formally

self-adjoint Schrodinger operator. In I-S (?(#) *s assumed to be decomposed

Communicated by S. Matsuura, February 1, 1973.
* Department of Mathematics, Osaka City University, Osaka.

1) For the literature of the limiting absorption principle see, e.g., Eidus [3].
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as Q(x) = VQ(X')-{-V(x') such that FQ(#) and V(x) are real-valued func-

tions and

(0.5)

)=0(|:

at infinity with d>0. Some asymptotic conditions at infinity are imposed

on bj(x), too2). Then it is shown in I-S that the limiting absorption

principle holds for any ^^0.

In the case that L is non-selfadjoint, however, it is possible that for

some ^=£0 there exists a non-trivial solution of the equation (0.4) with

f=Q, where the limiting absorption principle does not hold for such a

singular point /I, and it is important to study the set (7 of all singular

points of L.

The limiting absorption method for non-selfadjoint Schrodinger operators

is closely related to the spectral and scattering theory for them. Mochizuki

[11] considered the operator (0.1) with &,-(#) = 0 and a complex-valued

function ()(#) = O(| x \ ~2~3) in I23. He showed, among others, that the set

ff U {0} is a compact set of R, and that for any open interval e which

does not contain any singular point the "spectral measure93

(0.6) -
ZTTfc

is well-defined. Further, he developed the spectral and scattering theory

for L. Goldstein Q4] obtained the similar results for the operator (0.1) in

RN C/V = 1 9 2, . . . ) with 6y(*) = 0 and (?(#) = (1-f x\Yag(x), where

a>N/2 and g(x)s=L2(R
N) n ioo(K*)3). Pavlov [12] showed that (T U {0}

is a compact set with the Lebesgue measure 0 for the operator (0.1) in

RN C/V=1, 3) with 6y(^) = ° and x2Q(x)t=Li(R) (N=l) or l?(^),

/—Q(x) =O(\* ~3'5) (^=3). In [12] some asymptotic relations
/#y

with respect to the set (J are also given. Recently Ikebe [5] has shown

2) For more precise conditions imposed on Q(x) and b3(x}3 see Assumption 1.1 of
I-S.

3) To be more precise, for N=3 we may assume that Q(x) = O(\x\~z~r) and for
N=l we may assume that Q
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that the singular points form a discrete set for the reduced wave equation

with a complex refractive index n(x)

(0.7) du + K2n(x)2u = Q

in R3
9 where Ren(x)^l, Imn,(3;)^0, and n(oc) — 1 has a compact

support. A spectral theory for the equation (0.7) is also developed in [J5].

In the present paper we shall assume that N^2 and Q(oc) can be

decomposed as Q(x) — VQ(x) + V(x} such that F0(#) and V(oc) are real-

valued and complex-valued functions on RN, respectively, and they satisfy

(0.5)4). In addition V^x) and V(x) are assumed to be bounded on RN.

Let us set

(0.8) C h = {ic = Kl + iicz/ic2 ^ 0} - {0} 9

and for a real @ let us define a Hilbert space L2j(3 by

(0.9) LZiff = {f(
)R*

with its inner product

(0.10) (/, g)p-

and norm

2 denotes the set of all /ceC, for which there exists a non-trivial solution

u^L 1+e_ of the equation

f(\ 19^ ( J k-2\ ,, n\\).L£) {JLt — K, JU—U

with the "radiation condition"

(0.13) ( (1+ x\)-l+s\@u\2dx<oo

where

4) For the case N=23 see Saito [14].
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(0.14) \9
j = l

Then it will be shown that for any pair (A:, /) e (C+ — 2) x L 2 i+e the

equation (L — K2)u=f with the radiation condition (0.13) has a unique

solution u = u(tc,f)^L2 _i±s_, which is an L i+£ -valued continuous func-

tion on (C+ — 2*) X L i-ug _, and the estimate

(0.15)

_
2

holds with a positive constant C=C(A", .L, e) depending only on Ji9 L, and

£, where JST is a (possibly unbounded) closed subset of C+ such that

JTc{/^e€^/|A: ^a} with some a>0 and J^n^^^. As for the properties

of I we shall show that £ is a bounded set of €+ and that (1* n K) U {0}

is a compact null set.

Let us outline the contents of the present paper. We shall state the

main results of this paper in §1. §2 is devoted to giving some a priori

estimates for L, In §3 we shall show the limiting absorption principle for

L. The properties of the singular points of L will be studied in §4.

Finally let us give the list of the notation which will be used in the

following sections without further reference.

R: real numbers.

C: complex numbers.

C+ = {K = &! + iic2 <E C/fc2^ 0} - {0}.

j r j
6 \ X \

, D2u3...9 DNu).

ZDjU-Xj (r=\
N

l i @ j U ' X j (r= |



THE PRINCIPLE OF LIMITING ABSORPTION 401

, -IV^-Hs- / ' / A ' -L / t / A 'ST JSjJ J^T JSt

L,> fj(C) (/?eJR) denotes the class of all functions f on G such that

(1+ \x\)&f is square integrable over G. Here G is a measurable

set of RN. The norm || \\piC and inner product ( , )/?,G o;f L2t/3(G)

are defined by

B n i /2
(l+|.r|)^|/(A;)|2^

G J
and

respectively. We set l2i/3(R
N) = L2}/3, \\ 11^^ = 11 IU and ( , ̂ >RN

= ( , )/9. When j9 = 0, we shall omit the subscript 0 as in L2(G)5

( , )G etc.
JTW is all 1/2 functions with L2 distribution derivatives up to the /ra-th

order, inclusive.

Cm is all 77i-times continuously differentiable functions on RN.

CQ denotes the set of all infinitely continuously differentiable functions

with compact support in RN.

Mloc is the class of all locally M functions.

B(X9 F) denotes the set of all bounded linear operators on X into F,

X and F being Banach spaces. We set E(X, X)=B(X).

C(X9 F) is all compact operators on X into F, where X5 Y are Banach

spaces. We set C(X, X} =

§1. Outline of Ee§ull§

We consider the second order, elliptic partial differential operator

(1.1) Lu
3 = 1

in RN
9 where N is a positive integer and the complex-valued function Q(x)

on RN can be decomposed as
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(1.2) Q(x')= V (x)+ V(x).

Throughout this paper we assume the following

Assumption I.I. Let N be a positive integer such that

(F0) VQ(X') is a real-valued, measurable function on RN such that the
dVradial derivative -=-.—^— exists and the estimates

ATS
v H-l-S

hold on the whole space RN with positive constants C and 8,

(F) V(x} is a complex-valued, measurable function on SLN which satisfies

for all x^RN with the same C and S as in (F0). We set

= ReF<» and 72(x~)=ImF(x)5\ i.e., F(*)=Fi(*) + ir2(

bj(x} zs a real-valued C1 function on RN satisfying

for x^M.N, j, k = l, 2,...,N, tvhere C and 8 are as above, and

From Assumption 1.1 we see that for all u^H2Joc Lu is well-defined

in the sense of distributions and we have Lu<=L2>loc. In the sequel we set

(1-3) 6)

Definition I020 Let £ be a positive number satisfying 0<£5^1 and

^<?/2. We call a value /ceC+ a singular point of L, if the equation

(1.4)
'-.Ei 3 2,-i

has a non-trivial solution u. We denote by 2 = 2(L) = 2(L, e) the set of

all singular points of L. The set £R is defined by

5) Re a and Im a mean the real and imaginary parts respectively.
6) D(T) is the domain of T.
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(1.5) 2R = 2nR.

Let us note that 2 does not contain the origin 0. As has been

shown in I-S (Lemma 1.9), if V(jx) is a real-valued function, then Sc_{tt

= ib/b>0}9 and in particular 2R = (j)1}. But we can easily construct a

complex-valued function Q(x) satisfying Assumption 1.1 for which we have

sn^4>.
In order to state the main results of this paper we consider a restric-

tion of the differential operator L in L2. It follows from the well-known

results of Ikebe-Kato [J6T\ that the restriction of the differential operator

-XDjDjto Q
y=i

(1.6) Q 3 u ] - >- 2 DjDjU^L2y=i

has a unique self-adjoint extension A in L2. Denote the domain of A by

DQ. Then u^.L2 belongs to D0 if and only if u^L2^\H2>loc and
N

— J]DjDjU^L2. Since the operator defined by (1.6) is symmetric and
y=i

non-negative, it has the Friedrichs extension which should be equal to A.
N

Hence we have 2 |]Dy^|]2< oo for any u^D0. Thus we have

(1.7) D0 = {

Define an operator H by

(1.8)

Q is a bounded linear operator on L2, and hence H is a densely defined,

closed linear operator. When z&C belongs to the resolvent set p(H) of

H, the bounded liniear operator

(1.9) £(*) = (#- z)-1

7) In I-S we assumed the unique continuation property for L. In this paper, however,
the boundedness of Q ( x ) is assumed and hence the unique continuation property
for L holds good (see, e.g., Aronszajn [1]).
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on L2 is defined. /?(*) transforms L2 onto DQ.

The following theorems are the main results of the present paper.

First we shall state a theorem on the properties of 2\

Theorem I03e Let Assumption 1. 1 be fulfilled.

(i) Then £ Is a bounded set of C^ i.e., there exists a positive number

/JLQ such that

(1.10) ^c{/ce€+/|/u|^A0}.

2R is a bounded set of R with the Lebesgue measure 0.

(ii) For any a>0 2 ft Ma is a compact set of < C , , Ma, being the

closure of Ma, i.e.,

(1.11) Ma={ic = i

Further, £ — 2R is an isolated, bounded set having no limit point in

(iii) Let £e€+5 Im/c>0. Then &<E:Z if and only if K2 belongs to

the point spectrum of H. We have K2(=p(H) for &<=C+~I with Im/c>00

Theorem 1.4 (limiting absorption principle). Let Assumption 1.1 be

fulfilled, and let f C ^ R — IR\J {Q}. Then for any f^L 1+£ and any se-

quence {Kn} which satisfies

(1.12) Kn - >K, fcn<E.C+ — I and Im £„>(),

there exists

(1.13) UmJZ(A;2)/=u(A:,/)
n~ »°o

in L i+£ . The limit u(tc,f) thus obtained is independent of the choice

of the sequence {ftn} and is a unique solution of the equation

(1.14) , u<=H2>!ocftL ^€.
* " ~

Theorem 1.4 can be obtained immediately from the following more
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general theorem.

Theorem 1.5. Let Assumption 1.1 be fulfilled. Assume that M is

an open set of C such that Mr\£ = (f> and MdMa with some a>0, M

being the closure of M.

(i) Then there exists a unique solution a~ u(/c9/) of the equation

(1.14) for any pair (£,/)e Afxi i+€ .

(ii) The solution u = u ( K , f ) , (yc, /)eMxL 1+£ , satisfies the esti-2, --

mates

(i.ie)

K = K1 + iK2, C=C(M,L,e) is a positive constant^, and r(^V) /s

non-negative constant such that F(l) = r(3) = 0 and 7*(7V)>0 /or 7V^4.
(iii) If we define an operator (L — fC2)~l by

(1.18) (L-K*yif=u(K9ft

/or K&M, then the operator (L — K2)"1 is a B(L 1+f , i l+8)-valued,2, -g- 2, — 2~-
continuous function on M,

(1.19) IKL

where C=C(M,L,e) is a positive constant and | |(L— -yc2)"1!! means the

operator norm of (L — K2)~L in B(L 1+£ , L n-e).
2,-— 2~ 2, -- ~

(iv) (L~K2)-l^C(L _ l n f , £ i+tjfor all
-

8) Here and in the sequel we mean by C—C(A, -£,•••) that C is a positive constant
depending only on A, By.
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(v) (L — /c2)"1 is a E(L 1+£ }-valued, analytic function on M.2, 2

Remark 1.60 (iv) of the above theorem can be generalized as

follows: Let { f n } be any bounded sequence of L 1+e , and let {tcn} be
2, -y-

any sequence contained in M. Then the sequence {(L — £%)~lfn} is

relatively compact in L

We shall show some properties of the spectrum o~(H) of H. Let T

be a linear closed operator in a Banach space X. Its point spectrum,

continuous spectrum and residual spectrum are denoted by o~p(T)9 PC(T)

and o~r(T), respectively. Further, we define the essential spectrum ffe(T)

as the set of all z e C satisfying the following condition :

(1.20)

There exists a sequence {un}c:D(T) such that {un} is

a normalized sequence in X, and we have (T—z)un—»Q

strongly in X and un-*Q weakly in X as n—>ooq

Theorem I078 L^ £T fe «s defined in (1.7).

(i) 7%*» ^(jy) = (Te(J)c[0, oo).

(ii) <r(ff) n (C-[o, oo)) c^(ff) flMrf ̂ (ff) n (o, 00) = ^.
values in C— Q03 oo)9 (/" ̂ ey ms^, ar^ o/ finite multiplicity and they form

an isolated, bounded set having no limit point in C— QO, oo).

(iii) <r(ff )n(o, oo) = (r f ( f f )n(o, oo)-^c(jy)n(o9 oo).
(iv) ffr(H) consists of at most only one point z = 0.

Remark 1.80 If it is assumed that bj(x) = Q, then, as has been

mentioned in Mochizuki pi], we obtain o~r(H) = <t>.

The rest of this paper will be concerned with the proofs of these

theorems. Theorem 1.5 and Remark 1.6 will be proved in §3. We shall

show Theorems 1.3 and 1.7 in §4.

§2e A Priori Estimates for L

This section is devoted to showing some a priori estimates for the

formally non-self ad joint Schrodinger operator L. These results will be useful

in the following sections to justify the limiting absorption principle for L,
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Let us introduce a function space DK = DK>£ by

(2.1) DK

where £eC+ with Im/c>0 and s is as in Definition 1.2. We shall first

investigate the properties of u^DK. To this end we prepare

Lemma 2.1, (i) Let a<=R and /ce€. Let u^H2>locn L2iCi and

(L — /c2)u<=L2>a. Then we have DjU^L2ia, j=I,2,...,N.

(ii) Let a, f}^R,a<^fi, and to<=C+ with Im/c>0. Let u<=H2>locnH2>a

such that DjU^L2>a (j= 1,2,..., 7V) and (L — K2)u^L2>/3. Then we have

7, where r = min(

Proof. The proof of (i) and (ii) with Re£^0 is quite similar to the

one of Lemma 2.4 of I-S, and hence we shall omit it. Let us prove (ii)

with Re/u = 0. We set K=ib, 6>0 3 and (L-/c2)u = (l + b2')u=f. Take

the real part of ((L + b2)u, <f>u)Br = (f, <t>u)Br, ^(r) = (l+r)2^8 Then we

obtain, using partial integration,

(2.2)
JBr JBr JBr

u)u dS+Re( J£-(Dru)u dx
Sr JBr UT

+ Re\ <j>fu doc.
J Br

Since VQ(x)+Vl(x} = O(\x ~s) at infinity, there exists R>0 such that for

any r>R

(2.3) (
JJBRr 6 jBRr * JBr

Hence, noting that

(2.4) lun <t>\(Dru)u
r-+°° JSr

we have ]|^1/2i^||< oo, i.e., u^L2t7, which completes the proof. Q.E.D,

Lemma 2.2. Let N^3 and let u
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Then u/\X\^L2(R»)loc.

Proof. In the case N=3 the proof is given in Courant-Hilbert [_2~],

p. 446-p. 447. When 7V^45 we can prove this lemma in quite a similar

way as in the case N=3. Q.E.D.

Using these lemmas we obtain

Proposition 2.3. (i) Let /eeC+ with Im/OO and let

Then u, DjU^L2 ^ (/ = !, 2,..., N).

(ii) Let /eeC+ with Im/e>0 and let u^DK. Then we have the

estimate

(2.5) ! _

with a positive constant C=C(ic5 L9 e). As a function of K, C is bounded

when K moves in any compact set contained in {K = /cl + iK2

(Hi) For any fc^Ma (a>0) and any u^DK we have

(2.6) ^iNU^ C{\\u\\
2 2 2

with a positive constant C=C(a, L,s)9 where we set AT2=

Proof, (i) follows directly from Lemma 2.1. Let us show (ii).

Taking the real and imaginary part of ((L — tc2)u, $&) = (/, (j>u), 0(r) =

r)2a: (a^^-\ we obtain

(2.7) ?5| JDu|2^=-Re --(Dru)u dx
JRN

+ Re\ ?5fw dx

JRN

and

(2.8) 2/clfC2( $\u\2 dx = I
JRN RN dx

\ 4>V2\u
 2 dx — Im\

JRN JRN
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tively, where we have used partial integration. Since — ~

r)-1^ and \Dru \ ̂  \Du \ , it follows from (2.7) that

(2.9) ll^^!l^l

r~dr

where C is the constant given in Assumption 1.1, which implies that

(2.10) l l f lu l l^d l lu a + ||/|L (C^CVfo.L.a)).

If 2/ef^/ei, then we obtain from (2.8)

(2.11) |B | |2<g 1 {lams,,
a-l\\U\\a-l

where we should note that \F(x)\^C(l+\x\)-l~26. If 2/e?</cl, then we
obtain from (2.7)

(2.12) ^ l - f c f+ro+rOlu l 2 dx~

The left-hand side of (2.12) estmated as follows: Since F0(^)+ Vl(x}
O ( \ x \ ~ s ) at infinity, we can find R = R(fC2)>0 such that | FO(#)+ FiO&

for x^ER. Thus we have, noting that K\ — K\ ̂ /c|/2,

(2.13)

It follows from (2.12) and (2.13) that

(2.U) - - I k l l ^ l
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where we have made use of the estimate

(2.15)
)BR

Thus we obtain from (2.11) and (2.14)

(2.16) IWL

From (2.16) with a=(l + e)/2 and (2.10) with a=(-l+e)/2 we have

(2.17) Ikllii

Similarly, setting a = (-l+e)/2 in (2.16) and a = (-3 + e)/2 in (2.10),

we obtain

(2.18) I

By noting that 0<sgl and C3 and C4 are bounded when ic moves in

any compact set in {/ee€//e2>0}, (ii) follows (2.17) and (2.18). Finally
AT_ 1

we shall show (iii). From the relations Drii = @ru -- - - u + iicu and
£T

(2.8) it follows that

(2.19) * 2 | N | l = l m

2 dx-Im <f>udx.--
* dr '

Here we have made use of the fact that @ru^L l+e which is obtained

from (i) and Lemma 2.2. (2.6) with K(=Ma n {K/\KI \ ̂ a/V"3~}=/1 follows

easily from (2.19). Let us now assume that fC^Man{fC/\Kl\<a/^} = J2>

Since IK,\<K\ and fC2 > (a\j 2 )/V 3 for /ce/2, (2.6) with /ce/2 follows from

(2.14) with a = (l-e)/2 and (2.10) with a=-(l + e)/2. Thus we have
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proved Proposition 2.3 completely. Q.E.D.

In the following two Propositions 2.4 and 2.6 a priori estimates for

functions belonging to DK will be given.

Proposition 2,4 9). Let a>0. Then there exists a positive constant

C=C(a,L,e) such that for ic<=Ma and

(2.20) I I

where f=(L — K2)u and r(-/V) is a non-negative constant which satisfies

Q for N^4.

This proposition will be proved after showing the next lemma.

Lemma 2850 Let 0(r) fo a real-valued continuous function on (0, oo)

such that 0(r) is piecewise continuously different table. Then we have for

any

(2.21,

-Re\ <f>Fu°@ru dx + Rz( <f>f@ru dx
JBtT jBfT

r N
— Im\ 2 ^BjJ^jU^x^udx

JBtT J,k = l

9) Cf. Lemma 1.7 of I-S.
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where f=(L — /C2)u, Q<t<T<oo9 K = Kl + ifC2 and

(2,22) cN = -±-(N

Proof, Integrate (f>(L — K2)u*u = (l)f'U over BtT and take the real part.

Then we can proceed as in the proof of Lemma 2.2 of I-S to obtain (2.21),,

Q.E.D.

Proof of Proposition 2.4. Set in (2.21)

(2.23) 0(r) =

r

1

and 0<£< l< r<oo . Since it is easy to see that

1

(2.24)

2 9r e

2

2i+£-U + r;

-SL—gf-^0, |0u|

1 d_f 4
^c*° 6 "

1 1
2 CN r2

we obtain

(2.25) the left-hand side of (2.21)

We shall now estimate the right-hand side of (2.21).
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(2.26) the right-hand side of (2.21)

_!+£. 2 2 __J_

)~l~e\ u\ \<&u\ dx

f\ \&u\dx

n |2V^-

with positive constants Cj=Cj(L, e), j = 1,2, 3, 4, where we have made

use of Assumption 1.1 and the fact that c^^O. Noting that

(2.27) lim/5(r) = 0, lim/6(0 = 0,

which follow from the fact that &jU9 u^L2 and u/r^L2joc (Lemma 2.2

and Proposition 2.3, (i)), we obtain from (2.25) and (2.26) by using Schwarz'

inequality

(2.28) ^ 11^7 /112 , CN2i+£ 1 1 -^ u 1 lzLl±£ ^ 2
zx
7"

f u 1 4 f
2 2

_____ ^_

with C=C(L, s), which, logelher wi th ( i i i ) of Proposition 2.?», yields (2.20),

Q.E.I).

The above proposition will be used to show the next

Prop0§itio>e 2,6 j 0). Let a >0 and lei K e Ma, u e D^. Then we have

10) Cf. Lemma 1.8 of T-S.
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(2.29) Ik l l 2
1 + e - ,

» p

^O wz7& C=C(a,L,e), where f=(L — fC2)u.

Proof. We can find positive numbers 6 and c such that Mflc/1U/29

where

(2.30)

Assume that /ce/lt We have from the definition of Siru

(2.31)

^Kl\u(x)\2 -2iclIm{(Dru)u}9

and hence we have the inequality

(2.32) K\ \u\2 dx^ \^ru\2dS+2K1lm Dru°u dS.
JSr JSr Jsr

Combining (2.32) with

(2.33) -Im( Dru*udS+( F2 1 u \ 2dx-2tclK2( u\2 dx
J Sj- J Bj- J Br

= Im\ f°u dx9
JBr

which is obtained by integrating (L — fc2)u<>u=f°u over Br and taking the

imaginary part, we have

(2.34) K* \u\2dS^ \&ru\2dS+2\Kl\ V2\\u\2dx
JSr JSr

*1| \f\\u\dx
Br
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@U\2dS+2C\IC,\\\U\\2i+£
Sr 2

C being given as in Assumption 1.1. Multiply both sides of (2.34) by

r)"1"6 and integrate from p to oo. Then we arrive at

(2.35) \\u\ *

with a positive constant C0 = C0(a9 L, e). From (2.35) and Proposition 2.4

we get (2.29) with fc replaced by A^. Since f C ^ J i , it follows that

(2.36) |A; | ^ 1^1 +A

Thus we arrive at (2.29) with K^Jlf Next we shall assume that

From the relation

(2.37) ®ru\2= \Dru+ N
2r ** "'"i1

+ 2°Re<( Dr u+-

we obtain

(2.38) ic% u 2dS^ \^ru\2 dS-2fC2°Re (Dru)u dS.
JSr JSr JSr

In order to estimate the second term of the right-hand side of (2.38) we

integrate (L — K2)u°ii=f°u over Br and take the real part5 whence follows
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(2.39) -Ref (DTu)udS=-( \Du\2dx-
JSr JBr Br

Kl)( u\2dx+Re( fudx
JBr JBr

\f\\u\dx
Br

with R = R(c)3 where we used the technique quite similar to the one used

in obtaining (2.13). Then we can proceed as in the case Aje/j. to obtain

from (2.38) and (2.39) the estimate (2.29) with K replaced by ic2. Since

|A: ^2|/c2 | for £<E/2? (2.29) holds good. Therefore we have (2.29) for all

fc<=Ma. Q.E.D.

To establish the following theorem is our main purpose in this section.

Theorem 2078 Let Assumption 1.1 be satisfied and let Z be the set

of the singular points of L defined in Definition 1.2. Assume that M is an

open set of C such that Mc.Ma tvith some o>0 and Mn£ = <j>5 where M

is the closure of M in C. Let /c^M and let u^DK. Then there exists a

positive constant C= C(M, L, s) such that we have the estimates

(2.40)

(2.41) || u\

where f=(L — K2)u and 7'(/V) is as in Proposition 2.4. /;/ particular, setting

p = 0 in (2,41), we have

(2.42) IklLl

Proof. Since (2.40) and (2.41) follow from (2.42), Propositions 2.4

and 2.6, it suffices to show (2.42). Let us now suppose that (2.42) is
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false. Then we can find sequences {/cw}cM and {un}dDKn, n = l,2,...9

such that

(2.43)

The sequence {/cn} satisfies one of the following conditions (1) and (2):

(1) {Kn} is a bounded sequence. In this case we may assume with

no loss of generality that Kn—>K, ra— >oo, with some K&M.

(2) {icn} is an unbounded sequence. Then it may be assumed that

Let us consider the condition (1). We recall the usual interior estimate

(2.44) \\Du\\Bs^C(\\u\\

(0<5<r, u

with C=C(r — s9 L, K)>Q, K being a bounded set of C. Since the bound-

edness of the sequences {||ttJ|Br} and {l|jfj|sr} follows from (2.43) and the

condition (1), we can apply (2.44) to show the boundedness of {||^&J|,BS}

for each s>0, whence we obtain the boundedness of {Pyi^lbJ for any

5>0 and any y = l, 2,..., TV. Therefore {un} is relatively compact in

L2>loc, and hence we may assume that

(2.45) tin — * LL in j2t ioc

with u^L2tioc. Then the interior estimate (2.44) can be applied again to

see that

(2.46) uu—+ LL in Hltloc.

From (2.43) we obtain

(2-47) ll/JLu€. ̂ %' —• > 0 (n — 0),

which, together with (2.45), implies that u is a weak solution of the equa-

tion (L — /c2)u = 0. Hence, as has been shown in Ikebe-Kato [JT], u^H2}loc

and u is seen to be a strong solution of (L — tc2)u = Q. We can now apply

Proposition 2.6 to obtain
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(2.48) lkJ|!1+£ E=0(p-*) (p2>0)
-2-.*P

uniformly for ra, and hence un-+u in I/ _1 + £ and | |uj | 1+£ =1. On the
2'~ 2 2

other hand, since the sequence {||^Mn||_1+e }is bounded (Proposition 2.4)
-~2~'El

and un-*u in #1 / o c , we have ||^& |_1+f < oo. Thus u is a solution
-g— f£i

of the equation (L — K2)u = Q9 ||^u||_1+£ < oo, whence follows u = Q since
~2~'J?1

/ceM does not belong to the set of the singular points. This contradicts

l l ^ l i - i + f = 1- Finally let us consider the case that {/cn} satisfies the condi-
~T~

tion (2). In this case by the use of Proposition 2.6 with p = 0 and (2.43)

we have

(2.49)

as 72,—»oo5 which is a contradiction. Q.E.D.

§3o The Limiting Absorption Principle

The results obtained in the preceding section can be applied to justify

the principle of limiting absorption for the non-self adjoint Schrodinger

operator L. We shall now prove Theorem 1.5. Let M be an open set of

C. In Theorem 1.5 M is assumed to satisfy the following condition

(I) Md.Ma with some a>0 and Mf|^ = 0.

In this section we shall assume that, in addition to (I), M satisfies

the following

(II) tc2^p(H) for any fc^M.

It will be shown in §4 that (I) implies (II). And then Theorem 1.5

will be proved completely (see Remark 4.8 in §4). The proof of Theorem

1.5 for M satisfying (I) and (II) will be divided into several steps.

Proof of (i) and (ii) of Theorem 1.5 (existence, uniqueness and estimates).

Let (K9f)^MxL l+£, and set
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(3.1) u = u ( K , f ) = R(K2)f, R(K^ = (H-KZY\

Since «e£>0 and /eL 1+f , u is a unique solution of
^~

(3.2) (L-K^u=f, ||#u||_1+e <co,
— 2 ,£-1 , 2

and u^DK. Theorem 2.7 can be applied to show that the estimates (2.40),

(2.41) and (2.42) are valid for u = u ( K , f ) . Now let (ic,f)eMxL 1+62,— 2~,

and let {/cw} be a sequence in M converging to /c. We put un=u(fcn,f).

From (2.42) we see that {un} is a bounded sequence in L l+£ , and hence2,- 2

{^w} is a bounded sequence in L2(Bt) for any £>0, too. By using the

interior estimate (2.44) we can find a subsequence {uf
n} of {un} such that

(3.3) u'H - >u in Hljoc

with u^Hljloc. u can be easily seen to be a weak solution of the equation

(L — fC2)u=f, whence follows that u^H2joc and u is a strong solution

as in the proof of Theorem 2.7. The estimates (2.40) ~ (2.42) enable us

to show that u'n coverges to u in L l+£ and | |^M||_ I+£ <oo. Thus u
2, g " 9 ' "^

is a solution of the equation (3.2) and the estimates (1.15), (1.16) and

(1.17) for u can be easily shown, since each u'n satisfies the estimates

(2. 40) ~ (2.42). The uniqueness of u follows from the fact that K&S.

Q.E.D.

Now that (i) and (ii) of Theorem 1.5 have been established, the

operator (L — K2)'1 can be defined by (1.18)

(3.4) (L-K*yy=u(K,f)

Proof of Theorem 1.5, (iii), (iv) and Remark 1.6. It follows from

(1.15) that (L — K2)~l is a bounded linear operator from L 1+£ into L 1+£2,— 3- 2, g—

and (1.19) holds good. Now let us turn to the proof of Remark 1.6. If the

sequence {u(/cn,fn)} contains a subsequence {u(tc'n, /'„)} such that | /^ |— >oo 9

then by (1.15) and the boundedness of {fn} in L 1 + f we have2,— 2—

(3.5) ik(4,/;)iLi^T4Tii/;!ii-o,
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L i±s_- If {fcn} is a bounded sequence, then we may assume with no
2, ~-

i.e., there exists a subsequence of {«(£„,/„)} which converges to 0 in

L i±s_- If {fcn} is a
2, s

loss of generality that

(3.6)
fn >J weakly in L2 \^.e (n > oo)

with A;e M and /el, i^£. Using the interior estimate (2.44) and the
2, 2

estimates given in (ii) of Theorem 1.5, we can proceed as in the proof of

(i) of Theorem 1.5 to show that we can find a subsequence of {u(fcn,fn)}

converging to w(/c,/), the solution of (3.2), in L 1+g. This completes
2, 2

the proof of Remark 1.6. (iv) of Theorem 1.5 follows from Remark 1.6.

Finally let us prove the continuity in K, of (L — &2)~l m B(L i+s» L i+e\

Suppose that (L — K?)~l is not continuous at /ceM. Then we obtain

sequences {icn} cM and {fn}dL 2+e satisfying
2, 2

(3.7)

with K(=K and r>0. We put un = (L-K2)~% and »JI = (i-A;5)-1/Jl. {/„}

is assumed to converge weakly to some f&L l+6 with no loss of gene-
2, — ^~

rality. By almost the same argument as used in the proof of Remark 1.6

it can be shown that there is a sequence {tif} of positive integers such

that

(3.8) un -- > u(fc9 /), vn -- > U(K, f)

in Lt n£ as nf - >oo . We therefore have

2
(3.9) ||U(i,

which contradicts (3.7). Q.E.D.

Proof of Theorem 1.5, (v) (analyticity of (L — K2)'1). Let
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Then it follows from (ii) of Proposition 2.3 and (1.15) that

(3.10) I H I i i ^ ,±£_,
2 2 *' 2

with C=C(K) which is locally bounded on M. Hence for /ceAf the

operator (L~~ /c2)"1 can be regarded as a bounded linear operator on L

and its operator norm is locally bounded on M. Since (L — K2)~lf = R(fC2)f

for (/c,/)eMxI/ 1+£ , the analyticity of (L — tc2)~l on M is clear from2, — 2—

the resolvent equation

(3.11) i?(/c2) - R(ju2) = (ju2~/c2)R(K2)R(jU2^

and the proof is complete. Q.E. D.

§4. The Properties of I

We shall now prove Theorems 1.3 and 1.7 which are concerned with

the set of the singular points of L and the spectrum of H. At the same

time the gap in the proof of Theorem 1.5 given in §3 will be filled.

First we shall show some properties of the essential spectrum o~e(T)

of a closed operator T in a Hilbert space. Since the proof is not difficult,

we shall omit it.

Lemma 4,1, (i)
(ii) ffe(T)-Dffc(T) and 6 e(T)^(J~(T}, where ff^(T) denotes the point

spectrum of T with infinite multiplicity.

(iii) ffe(T) contains all accumulation points of ffc(T} and o~p(T).

T* denotes the adjoint operator of T and we set (T'*)*= T** if they

are well-defined. The next lemma which shows the invariance of ffe(T)

by T-compact perturbation is well-known.

Lemma 4.2. Let T be a densely defined, closed linear operator in a

Hilbert space with the densely defined T* and T**= T. Assume, further,

that B is a T-compact linear operator with B**~B. Then we have

(4.1)
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For the definition of T-compactness see, e.g., Kato £9], p. 194.

Since H=A + Q9 where A is a self -adjoint operator and Q is a bounded

linear operator, we have

(4-2)

and H** = H. Another self-adjoint operator H0 in L2 is defined by

(4.3) H0 = A+F0,

which is the restriction in L2 of a differential operator

(4.4) L0=-XDjDj+V0 = L-r.
y=i

Using the interior estimate (2.44) and the fact that (?(#), VQ(x) = Q(\ x \ ~s)

at infinity, we can see that Q and FQ are ^4-compact operators. Thus we

have from Lemm 4.2

Proposition 4.3. (Je(H) = (Je(HQ} = Ge(A)c:[$, oo).

Obviously L0 satisfies Assumption 1.1 with F=0. Therfore the result

given in §2 and §3 are still valid for LQ. The set of the singular point of

LQ is denoted by JT0. The following proposition is due to Ikebe-Uchiyama

(see also Remark on the proof of Lemma 2.5. of I-S).

Proposition 404e (i) ffp(A) n (0, oo) = ^(£T0) n (0, oo) = <jp(H) n (0,

(ii) i
Set

(4.5)

and

(4.6) 2" = 2TiC'+9 ^'0 = ̂ 0nC'+.

We shall show some properties of %' and 2'$.

Proposition 4058 (i) /eeJ?' \JCG.£'^\ if and only if
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and K 2 ^ f f p ( H Q ^ .

(ii) 2' [^oll forms a discrete set (having no limit point in C+).

(iii) £Q = £Q is a bounded set of {fc=ib/b>0}. And we have

for any

Proof. Let K^S' and let u be a non-trivial solution of the equation

(1.4). Then by (i) of Proposition 2.3 weD0 , and hence u is an eigenf unc-

tion of H associated with the eigenvalue fc2. Conversely, if u^DQ is an

eigenf unction of H associated with the eigenvalue /e2, /ceC+, then u is a

non-trivial solution of (1.4). Thus we have proved (i). (ii) follows from

(i), Lemma 4.1 and Proposition 4.3. By (ii) of Proposition 4.4 we have

2Q = 2'Q. Since H0 is a self-adjoint operator which is bounded below, (T(£T0)

is contained in the real line and is bounded below. This implies, together

with (i), that £Q = £Q is a bounded set of {K=ib/b>Q}. Let /ceC'+-l"0.

Then ImA:2^0, K2^ffp(H^ by (i) and K2£ffc(H0) by Lemma 4.1 and

Proposition 4.3, and hence £2ep(.ff0). Thus we have proved (iii), and the

proof is complete. Q.E.D.

Let M0 be an open set of C such that M0n<S0 = $ andM0cMa with

a>0. It follows from (iii) of Proposition 4.5 that MQ satisfies the conditions

(I) and (II) with L replaced by LQ which are given in §3. Therefore

Theorem 1.5 holds good with L and M replaced by L0 and MQ. For

fC^C+ — ̂ 0 we can thus define an operator T(/c) by

(4.7) r(*)=-(£0-A;2)-1F.

Since — FeB(Z/ 1+£ , L l+£ ), T(K) is a B(L 1+s )-valued continuous
' 2 ' 2 * 2

fuctction on C+ — 2Q with the estimate for its operator norm

(4.8)

(Themorem 1.5, (iii)). Moreover we have T(fc)^C(L l+€ ) for tc<=C+ — 2$
2j _

(Theorem 1.5, (iv)), and hence the spectrum 6(T(jc)} is discrete in €—{0}

and each non-zero eigenvalue of T(K) is of finite multiplicity. From these

results a characterization of the set H can be obtained as follows.

ion 4,6. Let /c^.C+ — IQ. Then K^I if and only if
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, i.e., there exists a non-trivial solution u^L 1+£ of the eqation
2, — ~

Proof. Assume that /ce^1, f c £ H Q . Then there exists a non-trivial

solution a of the equation (1.4). Since (1.4) can be rewritten in the form

(4.9)

we obtain u= — (LQ — K2)~lFu = T(K}U. Conversely let us assume the

existence of a non-trivial u^L l+£ satisfying u=T(tc)u9 i.e., u= —
2> 2~

(L0 — /c2)~lFu. Thus u satisfies (4.9), which implies that u solves (1.4).

Q.E.D.

The next proposition will fill the gap in the proof of Theorem 1.5

given in §3.

Proposition 4/L /eeC+ — 2' if and only if /ce€+ and K

Proof. The "if" part directly follows from the "only if" part of (i)

of Proposition 4.5. Now we shall show the "only if" part. Let /ceC+ — 2' .

Since I' and 2"0 are discrete in €+ ((ii) of Proposition 4.5), we can find

a sequence {/cw}cC+ such that Kn^/c, Kn&2r\j2r
Q and icn-+/c as n-»oo.

Let us show that (H-K2)D0i}L2 l H_g . In fact let /e£ 1+g . Since

(L0 — K2)~l is well-defined and /— T(/cB) is invertible by Proportion 4.6, we

can define un^L l+€ {\H2Joc by

which implies that (I+(L0-K^V)un = (L0-K^f, i.e., (L-K*)un=f.

We have un&DKn. Theorem 2.7 can be applied to show that there exists

a subsequence {u'n} of {ww} such that {uf
n} converges in L 1+£ to the

2' 2

solution i^ of the equation (L — K2)u=f. Noting that u&DK9 we obtain

u(=DQ by Proposition 2.3, (i), and hence f=(H-K2)u^(H-K2)D0. Thus

we have shown the relation (H—K2)DQ'DL l+s , whence follows, together
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with the denseness of L 1+£ in L2» that /c2£o~r(H). On the other hand

(Proposition 4.3) and /c2£ffp(H) ((i) of Proposition 4.5). There-

fore we can coclude that /c2ep(7T). Q.E. D.

Remark 4.8. From the above proposition we see that the condition

(II) in §3 is implied by the condition (I). Thus we have proved Theorem

1.5 and Remark 1.6 completely.

By the use of Proposition 4.6 that the rest of Theorem 1.3 will be shown.

Proposition 4,9. 2 is a bounded set of C+.

Proof. Suppose that there exists a sequence {/£„} c J? satisfying

\icn -*oo as 7&— >oo. For each n we obtain un^L l+6 such that
2, -- 2—

(4.11) ^=1X0*,, IKLl+^1.

Because of the boundedness of 2*0 we may assume that icn&2Q for all n.

Then from (4.8) and (4.11) it follows that

(4.12) l = \\Un\\_

where C=C(L,s) is independent of n. As n tends to oo9 the right-hand

side of (4.12) converges to 0, which is a cntradiction. Q.E.D.

Proposition 4.10. Let a>0. Then £n Ma is a closed set of €+9 Ma

being the closure of Ma.

Proof. Let fcn^£r\ Ma such that

(4.13) Ktf - ^^0 (n - >oo)

with /^Oe Ma. un denotes the solution of the equation (L — /e%)un = Q with

v>n^H2tlocr\L l+£9 \\@un\\,l+£ <co9 and ||uj| l+6 =1. From (ii) of
** 2~" 2 '•fcl 2T~

Proposition 4.5 it follows that fcQ is real and \ f C 0 \ ^ a . Thus, setting

MQ = {K = /CI + i&2/\&\\ >&/2, /C2>0}9 we may assume that icn, /c0eM0.

Since l/c^ >a/2 for ^eM0? M"0n^0
 = ^ by (iii) of Proposition 4,5. Thus

Proposition 4.6 can be applied to show that
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(4.14) un=T(Kn)un, IKH

According to Remark 1.6 with L and fn replaced by LQ and — Vun, respec-

tively, the sequence {T(/cn)un} is relatively compact. Hence it follows

from (4.14) that there exists a subsequence {ur
n} of {un} which satisfies

(4.15) u'n >UQ in L l+£
4, 9

with UQ^L 1+g . Taking account of the continuity of T(K) in

1+5)3 we obtain from (4.14) and (4.15)
2, -- ~

(4.16) UQ=T(KQ)UQ, \\UQ\\ 1 + g =1,

2

which implies £0e2\ Q 0 E 0 D 0

Proposition 4. II. £ R is a set with the Lebesgue measure 0 in JR.

Proof. It suffieces to show that ea = Ma f| £ R is a null set for any

a>0. We can prove this in almost the same way as the one used in

proving Lemm 6.2 of Kuroda QCf]. For an arbitrary £0eea, noting that

T(KQ) is compact and le(7(T(/c0)), we can find a circle 7* in C with center

1 and its radius less than 1 such that fCp(T(/c0)). Then there exists a

positive number jj. such that 7Cp(T(/e)) for any K e {/£ e €+/ 1 A; — KQ <ju},

In fact, let us suppose that £„->£<>, /cweC+ and f n(T(r(/cJ)^^ for any

7& = 19 2 9 . . . . Then, proceeding as in the proof of Proposition 4.10, we can

easily show that f n (T(r(/c0))^0, which is a contradiction. Since efl is

compact by Propositions 4.9 and 4.10, ea is covered by a finite number of

intervals of the type I=(/c — /*, £ + /*). Therefore it is sufficient to prove

that IKQ n ea is a null set. We set

(4.17) P(*)

Then, as is well-known, P(/u) is a finite dimensional (oblique) projection

= det(l-r(/e)P(/c)) = 0 for Kt={iceC+/\K-icQ\<#} if and only if

It follows from the analyticity of T(/c) on C+ that /(/c) is

analytic on {fC^C+/\K — fcQ\ <ju} and is continuous on {/ce€+/|/c — £0 1 </JL},
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Hence /(X) cannot vanish on a subset of IKQ whose Lebesgue measure is

positive. Thus we have shown that IKQnea is a null set. Q.E.D.

Proof of Theorem 1.3. (i) follows from Propositions 4.9 and 4.11. (ii)

follows from Proposition 4.10 and (ii) of Proposion 4.5. We obtain (iii)

from (i) of Proposition 4.5 and Proposition 4.7. Q.E.D.

Proof of Theorem 1.7. (i) is clear from Proposition 4.3. Since C—QO,

oo)=:{A:2//ceC+}, it follows from Proposition 4.7 and (i) of Proposition 4.5

that €-[0, oo) = p(H)\Jffp(H), which implies that ffp(H)^)ff(H) n (C-[0,

oo)). The relation ffp(H)r\(Q9 oo) = 0 is obtained in (i) of Proposition 4.4.

The rest of (ii) can be obtained from Proposition 4.3 and Lemma 4.19 (ii)

and (iii). Let us show (iv). Since we have proved o~p(H) f| (03 oo) =

ffp(H*) fl (0, oo) = 0 in (i) of Proposition 4.4, o~r(H) n (0, oo) can be easily

seen to be an empty set. On the other hand we have ffr(IT)n (C—QO, oo))

= 0 by the first assertion of (ii). Hence (iv) follows. Finally (iii) follows

directly from the relation ffp(H)r\(Q, oo) = ffr(£T) n (0, oo) = 0.
Q.E.D.

Note Added (July 1, 1973): After this paper was written we have

informed by Prof. S.T. Kuroda that the relation u"e(A) = [_Q9 oo) holds

under our assumption. For the proof see Kuroda
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