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The Principle of Limiting Absorption for the Non-
selfadjoint Schrédinger Operator in RY (N+2)

By

Yoshimi Sarro*

g0, Tnireduction
Let us consider the Schrodinger operator

N

0.1) L=-2D0D,1Q ", -0 Fib,(x))
T 0x;

in the whole N-dimensional euclidean space KBV. Here b,(x), j=1, 2,...,

N, are real-valued functions on RY and @ deuotes the multiplication

operator by a complex-valued function Q(x) on RY. Let u,+;, be solutions

of the equations

(0.2) (L—(Axim))u=f (AeR, 1>0).

If the limits

(0.3) lim u)\‘—_tiﬂ: U
plo

exist and wu+ solve the equation
(0.4) (L=Du=f,

then it is said that the limiting absorption principle holds for L. The
meaning of the limit is to be determined suitably®.

Tkebe-Saito [ 7], which will be refered to as I-S, deals with the case
that Q(x) is a real-valued function, i.e., the case that L is a formally

self-adjoint Schrodinger operator. In I-S Q(x) is assumed to be decomposed
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1) For the literature of the limiting absorption principle see, e.g., Eidus [3].
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as Q(x)=Vy(x)+V(x) such that Vy(x) and V(x) are real-valued func-
tions and

Vo(#)=0( 2|7, 52 8-=0(1x]7),
(0.5) x

V(x)=0(]x[7%)

at infinity with 0 >0. Some asymptotic conditions at infinity are imposed
on b;(x), too?. Then it is shown in I-S that the limiting absorption
principle holds for any Z4+0.

In the case that L is non-selfadjoint, however, it is possible that for
some A4+#0 there exists a non-trivial solution of the equation (0.4) with
f=0, where the limiting absorption principle does not hold for such a
singular point 4, and it is important to study the set ¢ of all singular
points of L.

The limiting absorption method for non-selfadjoint Schrodinger operators
is closely related to the spectral and scattering theory for them. Mochizuki
[117] considered the operator (0.1) with b;(x)=0 and a complex-valued
function Q(x)=0(|x|"27%) in [, He showed, among others, that the set
0 U{0} is a compact set of R, and that for any open interval e which

does not contain any singular point the ‘‘spectral measure”
0.6) E(e)=1lim —1* S {(L—Q+ip) 1 —(L—(A—iu))1}dA
ul0 27t e

is well-defined. Further, he developed the spectral and scattering theory
for L. Goldstein [47] obtained the similar results for the operator (0.1) in
RN (N=1,2,...) with b;(x)=0 and Q(x)=(+|x|)"*g(x), where
a>N/2 and g(x)e L,(RY)N L.(RY)®. Pavlov [127] showed that ¢ U {0}
is a compact set with the Lebesgue measure 0 for the operator (0.1) in
RY (N=1,3) with b;(x)=0 and x2Q(x)eL,(R) (N=1) or Q(x),

3
2 ’ai Q(x)l=0(|x|"3‘3) (N=3). In [127] some asymptotic relations
=1 i

with respect to the set ¢ are also given. Recently Ikebe [5] has shown

2) For more precise conditions imposed on Q(x) and b,(x), see Assumption 1.1 of
I-S.

3) To be more precise, for N=3 we may assume that Q(x)=O0(]x!-2-7) and for
N=1 we may assume that Q(x)e Ly(R?).
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that the singular points form a discrete set for the reduced wave equation
with a complex refractive index n(x)

0.7) du+£in(x)?u=0

in R3, where Ren(x)=1, Imn(x)=0, and n(x)—1 has a compact
support. A spectral theory for the equation (0.7) is also developed in [5].

In the present paper we shall assume that N+#2 and Q(x) can be
decomposed as Q(x)=V,(x)+ V(x) such that Vy(x) and V(x) are real-
valued and complex-valued functions on RY, respectively, and they satisfy

(0.5)%. 1In addition V,(x) and V(x) are assumed to be bounded on RY,
Let us set

(0.8) C. ={k=k,+ik,/k,=0}— {0},
and for a real # let us define a Hilbert space L, gz by
0.9) Ly y={fG)/| L+ 122 f() |2 d< oo}

with its inner product

(0.10) (s 5=\ (1 12)f(x)g(@) da
and norm
(0.11) IAle=L(f a2

2 denotes the set of all k=, for which there exists a non-trivial solution

uEL2 1+¢ Of the equation
e

(0.12) (L—£Hu=0

with the ‘‘radiation condition”

(0.13) SI _(Hz)) e 2l 2da< e
zl=1

(0<e=min (1, 6/2)),

where

4) For the case N=2, see Saitdo [14].
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x.
I_u.

E3

Then it will be shown that for any pair (¢, f)€(C,—2)XL, 15 the

2

N N—-1 x;
(0.14) |9u|2=§1[9]-u|2, D,u=D;u+ [

I u—ik
EZE

equation (L—£%)u=jf with the radiation condition (0.13) has a unique

solution u = u(lc,f)EL2 _1+e , which is an Lz _1+¢ -valued continuous func-
T3 Ty

tion on (€,—2)XL, 1., and the estimate
=2

(©.15) lute, Dll-rge < 7l e

o
2

(G5, fYEE XLy 1se)
holds with a positive constant ¢=C(K, L, ¢) depending only on K, L, aud
e, where K is a (possibly unbounded) closed subset of €, such that
Kc{keC./|k|=za} with some a>0 and KNS =¢. As for the properties
of 2 we shall show that % is a bounded set of C, and that (2 NR)U{0}
is a compact null set.

Let us outline the contents of the present paper. We shall state the
main results of this paper in §1. §2 is devoted to giving some a priori
estimates for L. In §3 we shall show the limiting absorption principle for
L. The properties of the singular points of L will be studied in §4.

Finally let us give the list of the notation which will be used in the

following sections without further reference.

R: real numbers.
C: complex numbers.
C+={IC=161+ lK:zEC/ICzZO}— {0}.

M,={k=k,+ik,eC/|k| >a, £, >0} (a>0).
. 0
D, =0,+ib,() <af:79§>'
N—1. . . N
Py =977 =D+ g 1% iR &=/ % ).

Du=(D,u, Dyu,..., Dyu).
2u=(2,u, D,u,..., Dyu).
N
D,u= 3 Du-%, (r=|=]).
js1

N
Q,uzjy:]l@juoizj r=|=x|).
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B,={xeRV/|x|<r} (r>0).
B,,={x€RY/r<|x|<s} <r<s).
E.={xeRy/|x|=r} (r>0).
S,={xeR"/|x|=r} (r>0).

No=0 ras={ pas={ ruas

LSST SSL_! / ‘ Sr / ‘ Stj ‘

L, ,(C) (B€eR) denotes the class of all functions / on € such that
(1+|x|)?f is square integrable over G. Here G is a measurable
set of RY. The norm || ||z ¢ and inner product (, )g ¢ of Ly 4(G)
are defined by

1 llo.o=] § a+ 1Dl fGi2as |
and
(s @n.e=| (L |2 (x)g() do,
respectively. We set Ly g(RN)=L, 5, || ||z, zv=|| |lg and (, )g g~
=(,)s. When 8=0, we shall omit the subscript 0 as in L,(G),
(, )¢ etc.
H,, is all L, functions with L, distribution derivatives up to the m-th
order, inclusive.
C™ is all m-times continuously differentiable functions on RY,
(5 denotes the set of all infinitely continuously differentiable functions
with compact support in RV,
M,,. is the class of all locally M functions.
B(X, Y) denotes the set of all bounded linear operators on X into Y,
X and Y being Banach spaces. We set B(X, X)=B(X).
C(X, Y) is all compact operators on X into Y, where X, Y are Banach
spaces. We set C(X, X)=C(X).

§1. Outline of Results
We consider the second order, elliptic partial differential operator
N
1.1 Lu=—-]Z=]1DI-Dju +Q(x)u

in RY, where N is a positive integer and the complex-valued function Q(x)
on RY can be decomposed as
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(1.2) Q(x)=Vy(x)+ V(x).
Throughout this paper we assume the following

Assumption 1.1. Let N be a positive integer such that N=+2.

) Vo(x) is a veal-valued, measurable function on RY such that the
radial derivative 66}19/;0‘ exists and the estimates

ov,

V@l <Ca+lxh=,

S CA+]x )

hold on the whole space RN with positive constants C and 0.
) V(x)is a complex-valued, measurable function on RN which satisfies

[V(x)| =CA+|=[)71°

Sfor all xRN with the same C and 0 as in (V,). We set V(%)
=ReV(x) and V,(x)=ImV(x)?, i.e., V(x)=Vi(x)+iV,(x).
(B) b;(x) is a real-valued C' function on RN satisfying

| Bip(#)| SC(L+[x|)~17°
for xRN, j, k=1, 2,..., N, where C and 0 are as above, and

Bjk(x) =aibk(x) _akbj(x)-

From Assumption 1.1 we see that for all u€ H, ;,, Lu is well-defined

in the sense of distributions and we have Lu &L, ,.. In the sequel we set
(1.3) D(L)=Hjy,,.°.

Definition 1.2. Let e be a positive number satisfying 0<e<1 and
0<e<d/2. We call a value k=C, a singular point of L, if the equation

(L—£*)u=0,
(1.4)

ngu—lgre’El < oo, UELZI_;_-t-Z_e_nHz,lac

has a non-trivial solution u. We denote by 2=2(L)=2'(L, ¢) the set of
all singular points of L. The set % is defined by

5) Re a and Im a mean the real and imaginary parts respectively.
6) D(T) is the domain of T.
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(1.5) Se=2NR.

Let us note that X does not contain the origin 0. As has been
shown in I-S (Lemma 1.9), if ¥ (x) is a real-valued function, then X c{r
=ib/b>0}, and in particular Y,=¢7. But we can easily construct a
complex-valued function Q(x) satisfying Assumption 1.1 for which we have
Zr#P.

In order to state the main results of this paper we consider a restric-
tion of the differential operator L in L,. It follows from the well-known
results of Ikebe-Kato [ 6] that the restriction of the differential operator
- ﬁIDjDJ. to C3

=

N
(1.6) Cs> ul—}—]z,leDju eL,

has a unique self-adjoint extension A4 in L,. Denote the domain of 4 by

D,. Then u<L, belongs to D, if and only if weLl,nNH,,, and

N
— 2. D;D;uce L, Since the operator defined by (1.6) is symmetric and
=1

non-negative, it has the Friedrichs extension which should be equal to A.
N
Hence we have 2, |[D;ul[2< o for any ueD,. Thus we have
i=1
N
(1=7) DOZ{uELz/uEHZ,,”, —ZD]DJU:ELz,
i=1
D]u ELz, j:1, 2,‘.., N}.
Define an operator H by

Hu=Au+Qu
D(H)=D,.

(1.8)

Q is a bounded linear operator on L,, and hence H is a densely defined,
closed linear operator. When ze&C belongs to the resolvent set o(H) of
H, the bounded liniear operator

(1.9) R(z)=(H—z)"

7) In I-S we assumed the unique continuation property for L. In this paper, however,
the boundedness of Q(x) is assumed and hence the unique continuation property
for L holds good (see, e.g., Aronszajn [1]).
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on L, is defined. R(z) transforms L, onto D,.
The following theorems are the main results of the present paper.

First we shall state a theorem on the properties of 2.

Theorem 1.3. Let Assumption 1.1 be fulfilled.
(1) Then 2 is a bounded set of C., i.e., there exists a positive number
Mo Such thal

(1.10) Jc{eel, /|| < uyt.

Zr is a bounded set of R with the Lebesgue measure 0.
(ii) For any a>0 XN M, is a compact set of C,, M,, being the

closure of M,, i.e.,
(1.11) Ma:{mle‘}“iﬁz/[ﬁ:l ga, /5220}.

Further, 2 —2p is an isolated, bounded sei having no limit point in
{keC,/Imk>0}.

(iii) Let keC,, Imk>0. Then £ if and only if k% belongs to
the point spectrum of H. We have k*cpo(H) for k€C,.—25 with Im k>0,

Theorem 1.4 (limiting absorption principle). Let Assumption 1.1 be
Sfulfilled, and let keR—25U{0}. Then for any fEL2 1+e and any se-

2

quence {£,} which satisfies

(1.12) k,—k, £,€C,—2 and Imk,>0,
there exists

113) lim R(s3)f = u(r, /)

in L2 1+e- The limit u(k, f) thus obtained is independent of the choice
g

of the sequence {k,} and is a unique solution of the equation

(L—-r®)u=f,

|
ngfl—l;s E1< oo, uEHZ,loc n Lz,_lge .

(1.14)

Theorem 1.4 can be obtained immediately from the following more
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general theorem.

Theorem 1.5. Let Assumption 1.1 be fulfilled. Assume that M is
an open set of C such that MNZX=¢ and Mc M, with some a>0, M
being the closure of M.

(i) Then there exists a unique solution w=u(k, f) of the equation
(1.14) for any pair (k, f)€ Mx Lz’ Lses

(i) The solution u=u(k, f), (t, f)e Mx L, 1s¢, satisfies the esti-
g

mates

(1.15) [uH é%”flll*—E,

(1.16) 19 ulizse +7N|-L| | <ClAllse

and

1.17) lull_ 168, S g i(1~Lp) e/znan (o=1),

where k=K, +ik,, C=C(M, L,¢) is a positive constant®, and 7(N) is a
non-negative constant such that y(1)=7(3)=0 and y(N)>0 for N=4.
(iil) If we define an operator (L—£%)~' by

(1.18) L) f=ul,f)  (fEL, 1.0)

for k€ M, then the operator (L—£2)"! is a B(L, 14e, L, 1.)-valued,
) T2

continuous function on M, and we have

(1.19) (L= =5 T S M),

I
where C=C(M, L, ) is a positive constant and ||(L—x£2)~Y| means the

operator norm of (L—k?)™' in B(Lz e L2 lre )
T2 T2

() (L—R)eC(L, 1o, L, _1:e) for all £,
> 2 4 2

8) Here and in the sequel we mean by C=C(4, B,...) that C is a positive constant
depending only on 4, B,....
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) (L—kH1isa B(L2 1+¢ )-valued, analytic function on M.
2

Remark 1.6. (iv) of the above theorem can be generalized as

follows: Let {f,} be any bounded sequence of L2 1+e, and let {x,} be
r2

any sequence contained in A#4. Then the sequence {(L—£2)71f,} is

relatively compact in L2 lve -
T

We shall show some properties of the spectrum ¢(H) of H. Let T
be a linear closed operator in a Banach space X. Its point spectrum,
continuous spectrum and residual spectrum are denoted by ¢,(T), o.(T)
and 0,(T), respectively. Further, we define the essential spectrum ¢,(T)
as the set of all ze&C satisfying the following condition:

There exists a sequence {u,}c D(T) such that {u,} is
(1.20) a normalized sequence in X, and we have (7' —z)u,—0

strongly in X and u,—0 weakly in X as n—oo,

Theorem 1.7. Let H be as defined in (1.7).

(i) Then 0,(H)=0,(4)c[0, ).

(ii) o(H)N(C—[0, ) co,(H) and c,(H)N (0, 0)=¢. The eigen-
values in C—[0, o), if they exist, are of finite multiplicity and they form
an isolated, bounded set having no limit point in C—[0, co).

(i) c(H)N(O, )=0,(H)N(0, )=0,(H)N (0, o).

(iv) o,(H) consists of at most only one point z=0.

Remark 1.8. If it is assumed that b;(x)=0, then, as has been
mentioned in Mochizuki [117], we obtain ¢,(H)=¢.

The rest of this paper will be concerned with the proofs of these
theorems. Theorem 1.5 and Remark 1.6 will be proved in §3. We shall
show Theorems 1.3 and 1.7 in §4.

§2. A Priori Estimates for L

This section is devoted to showing some a priori estimates for the
formally non-selfadjoint Schrodinger operator L. These results will be useful

in the following sections to justify the limiting absorption principle for L.
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Let us introduce a function space D, =D, . by

@.1) D, ={u€Hy/uel, 50 L-mucl, i.0},

2

where k=C, with Img>0 and ¢ is as in Definition 1.2. We shall first
investigate the properties of u=D,. To this end we prepare

Lemma 2.1. (i) Let acR and k=C. Let ueH,,, NL,, and
(L—k®)uel, , Then we have D;uclL, ,, j=1,2,...,N.

(ii) Let a,feR,a<p, and keC, with Imk>0. LetueH,,,,NH,,
such that DiucL, , (j=1,2,.,N) and (L—k*)ucL, s Then we have
uel,,, where r=min(a+1/2, B).

Proof. The proof of (i) and (ii) with Rex=0 is quite similar to the
one of Lemma 2.4 of I-S, and hence we shall omit it. Let us prove (ii)
with Rex=0. We set £=ib, b>0, and (L—£k)u=(L+b*)u=f. Take

the real part of ((L+b%)u, du)s =(f, du)p,, ¢(@)=1+r)?". Then we
obtain, using partial integration,

2.2) S ¢|Du|2dx+bzg ¢|u|2dx+S d(Vo+ V)| u|?dx
By By B,

:Regsrgé(D,ﬂ)u dS+Re SB 9% (D,u)a da

-

+ReSB 6fa dx.

Since Vo(x)+V1(x)=0(] x| ~?) at infinity, there exists R >0 such that for
any >R

(2.3) S S Vot V| 1u|2dxgiz_g ¢|u|2dx§b—zg élu|2dx.
Bgr 2 )Bg, 2 JB,
Hence, noting that
(2.4) lim | $|(D,u)a] dS=0,
7> JS,

we have ||¢}%u]|< oo, i.e., ueL,,, which completes the proof. Q.E.D.

Lemma 2.2. Let N=3 and let ue H,(RY),,,.
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Then u/|x| € Ly(RY),,,.

Proof. In the case N=3 the proof is given in Courant-Hilbert [27],
p. 446-p. 447. When N=4, we can prove this lemma in quite a similar
way as in the case IN=3, Q.E.D.

Using these lemmas we obtain

Proposition 2.3. (i) Let k=C, with Ink>0 and let ueD,.
Then u, DJ-u,ELZ e (j=1,2,..., N).
v

() Let k=C, with Imk>0 and let usD, Then we have the

estimate
(25) lull g < Cllull_sye +IL=r)ull1ze }

with a positive constant C=C(k, L,¢). As a function of k, C is bounded
when & moves in any compact set contained in {k=rK,+ik,/6,>0}.
(iii) For any k€M, (a>0) and any veD, we have

(2.6) 'lelullg—z_aé C{llull_lge 2 ull_re+ (L —£)ull 1 }

2 2

with a positive constant C= C(a, L, €), where we set £,=Imk.

Proof. (i) follows directly from Lemma 2.1. Let us show (ii).
Taking the real and imaginary part of ((L—£%)u, ¢u)=(f, du), ¢(r)=

(1 +r)2= (ag%), we obtain
_ ¢ _
2.7 SRNgbIDulzdx— ReSRNW(D,u)u dx
+RegRN¢fn dx
—g SV ot V=2 +63) | u|2d
RN
and
, d _
(2.8) 2/61ICZSRN¢| ul? dx:ImSRNTf(D,u)u dx

+S ¢Vzlulzdx—ImS bf5 dz,
RYN RY
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respectively, where we have used partial integration. Since

a(l+r)'¢ and |D,u|=<|Du|, it follows from (2.7) that

dg _
dr —

2.9) IDu]lz< ||l Dullg-1llulle-s+ | fllallzlia
+@C+e)|lull?,

where C is the constant given in Assumption 1.1, which implies that

(2.10) IDulla=Cillulla -+l /e (Cr=Ci(ky, L, ).

If 2k2=k%, then we obtain from (2.8)

1
2.11 i< —
( ) ]Iulla~V2x%

+ Cllullallulla-1-ze +1 fllallzlla},

el Dulla-iulla-

where we should note that |V (x)|<C(Q+ |x|)"1-28. If 2k2<k%, then we
obtain from (2.7)

2.12) [ et VotV u] d

< lalllDufle-1llulle-y + 1l Alallila-
The left-hand side of (2.12) estmated as follows: Since Vy(x)+V;i(x)=
O(] x|~%) at infinity, we can find R= R(k,) >0 such that |V (x)+V,(x)]
<k%/4 for x=E,. Thus we have, noting that £}—r2=£}/2,
(2.13) [ @—ri+ 77 ul® dx
2
2 s(F vl ds
RN 2
k% 2
2l { B17o+1l ul d.
Br

It follows from (2.12) and (2.13) that

(219 —'fé—llullié lall|Dulla-llulla-1 1 fllall2lla

+2C(1+ R)?||ullZ -1



410 YosummMi SAITO

where we have made use of the estimate

(2.15) SBR¢|V0+V1||u|2dx§26'(1+R)ZSBR¢(1+|x|)'2|u12dx

<2CA+R)?|ull%-1
Thus we obtain from (2.11) and (2.14)

(2.16) lulle= CoAll Dulla-r+ llulla-s+ 11 flla}
(Cz= Cy(k, L, €)).

From (2.16) with a¢=(1+¢)/2 and (2.10) with a=(—1+¢)/2 we have

2.17) Il e = Cotllull e + 11 A1l 1se ¥

2 2
(Cy=Cs(k, L, ©)).

Similarly, setting a=(—1+¢)/2 in (2.16) and a=(—3+¢)/2 in (2.10),
we obtain

(2.18) Ilull-12+e§C4{IIUIl- cot || flliee}

2 2

(Cy=Cy(x, L, ¢)).

By noting that 0<e<1 and C; and C, are bounded when £ moves in

any compact set in {k=C/k, >0}, (ii) follows (2.17) and (2.18). Finally
N—-1

u+iku and
2r

we shall show (iii)). From the relations D,u=92,u—

(2.8) it follows that

1
£y

(2.19) ellullte = {im| 20(2,wads+| oValul® dx

dé 2 7a S -
+IclgRN———dr |z|?2 dx—Im RNquu dx.

Here we have made use of the fact that .@,uEL2 14¢ which is obtained
T2

from (i) and Lemma 2.2. (2.6) with ke M,N{k/|k,| =a/J3}=J, follows
easily from (2.19). Let us now assume that k€ M, N {x/|£.| <a/v3}=Js.
Since 2£2< k% and £,>(ay 2)/y 3 for k€J,, (2.6) with k€], follows from
(2.14) with a=(1—¢)/2 and (2.10) with o= —(1+¢)/2. Thus we have
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proved Proposition 2.3 completely. Q.E.D.

In the following two Propositions 2.4 and 2.6 a priori estimates for

functions belonging to D, will be given.

Proposition 2.49. Let a>0. Then there exists a positive constant
C=C(a, L, &) such that for k€M, and ueD,

@20) 1 Dullyet || S CAlull_sge +lfllise .

where f=(L—k*)u and y(N) is a non-negative constant which satisfies
r(D)=7B8)=0 and r(N)>0 for N=4.

This proposition will be proved after showing the next lemma.

Lemma 2.5. Let ¢(r) be a real-valued continuous function on (0, o)
such that ¢(r) is piecewise continuously differentiable. Then we have for
any uEHZ,loc

ey | (mbe 28 i0u s
SHCE S
SIS CER R IES I
R ) en e

——Reg Vu-2,u dx+ReS of2,u dx
Bur Bir

N
—ImS > $B(D,u)%y Gdx
Bir j, k=

1

41, L o

(VO }lu]zdS

9) Cf. Lemma 1.7 of I-S.
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where f=(L—kYu, 0<t<T< oo, k=£,+ik; and

(2.22) cN=—£11—(N—- 1)(N—3).

Proof. Integrate ¢(L—r%*)u-ua=¢f-a over B,r and take the real part.
Then we can proceed as in the proof of Lemma 2.2 of I-S to obtain (2.21).
Q.E.D.

Proof of Proposition 2.4. Set in (2.21)
r 0=r=1)

(2.23) $(r=1{ 1
e+ (>,

and 0<¢<1< T< oo, Since it is easy to see that

1

(L (0=r=1)
1
2
21+e (1+r) 1+e r>1),

(2.24) T— ar =0, |2u|—|2,u| =0,

~zor g (r) ]

L = —WCNO +r)-1-¢ F>1),

we obtain
(2.25) the left-hand side of (2.21)

u 12

7

c
21+e H-@u”—HE B, +—2AL

B

&
—ol+tE CN”””-J*’J. Bir'

We shall now estimate the right-hand side of (2.21).
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(2.26) the right-hand side of (2.21)

= Cl”“’”il;_s"" Cz/ﬂzllul\z_%

+ng Q4+r)¢u||2u|dx
RY

+ C4SRN(] eI f] | 2u) dx

AR eI AIIREE
2 Jsr

1 " " Ak .
+ ZVSSL(ZS([@ILI“-F!VO[[ul“—l-CN‘—,’[_——I )db

=L+ L+ L+ 1,4+ 1(T)+1:(2)

with positive constants C;=C;(L,¢), j=1, 2,3, 4, where we have made
use of Assumption 1.1 and the fact that ¢y=0. Noting that

(2.27) lim I,(T)=0,  lim [,(t)=0,
-0

Toe

which follow from the fact that 2,u, u€L, and u/reL,;,, (Lemma 2.2
and Proposition 2.3, (i)), we obtain from (2.25) and (2.26) by using Schwarz’
inequality

u |2

g c
(2.28) @W”‘@ung_lzﬁ_'l"év“ -

B;

S C{|ull? 1o +rollully ellull_gie
z 2 3

+”@”’”;-_1;_—_1-(”"'”_%f + ”f”L;_e )}

with C=C(L, &), which, together with (iii) of Proposition 2.3, yields (2.20).
Q.E.D.

The above proposition will be used to show the next

Proposition 2.6 ', Let >0 and let k€ M,, ueD,. Then we have

10) Cf. Lemma 1.8 of T-S.
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229)  [Jull?1se

2

E,

< O +0) (eIl s oo g + el agellfllge )

for any 0=0 with C=C(a, L, €), where f=(L—k*)u.
Proof. We can find positive numbers b and ¢ such that M,cJ;UJ,,

where

Ti= AR =i, € M/ 5 R§ 2%,
(2.30)

Jo={k=k,+ik, € M,/E}—£}=c?}.
Assume that k=J;,. We have from the definition of 2,u

N—-1
2r

(2.31) |2,u(x)|?=|D,u(x)+ u(x)+r,u(x) ’

+£3 u(x)|?2—26, Im {(D,u)z}
zrf|u(x)|? —26, Im {(D,u)a},
and hence we have the inequality

(2.32) x%ﬁ lu]zdxgg I,@,ulzdS—{»Z/clImS D,u-a dSs.
Sy Sr S

r

Combining (2.32) with

(2.33) ~Img D,uondS+S Vz|u|2dx—2/sl/cng|ulzdx
Sr B -

-

= L¥7 d s
ImSBTfu, x

which is obtained by integrating (L—&®)u-a=f-7 over B, and taking the

imaginary part, we have

(2.34) IC%S 1u|2d5gg |9,u[2d5+2]i51[$3|V2||u|2dx
Sr Sr r

+2i/61|SBrIf[|u|dx
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={_12ulras+acimul s

208 fllase |

C being given as in Assumption 1.1. Multiply both sides of (2.34) by

(14r)~17¢ and integrate from o to oo. Then we arrive at

(2.35) Ilu]|? e 5 S Hfz?u‘! 1 p,

e (O 2Clul e

EIIC

20| fllsse llull_1e}

S+ gl Dullze+ o 1oy
(51 P

1
Tl age +rp el sl e )

l£;

with a positive constant Cy=Cy(a, L, ). From (2.35) and Proposition 2.4
we get (2.29) with £ replaced by £,. Since £&J;, it follows that

(2.36) el <oy |+, <A+ 2)| k]

Thus we arrive at (2.29) with k=J,. Next we shall assume that x</,.
From the relation

(2.37) |2,u|?=|D,u+ N2 L ka2 42 u)?

we obtain

(2.38) E%S |u]2d5§g |2, u|? dS—Z/CZoReS (D,u) dS.
Sr Sy Sy

In order to estimate the second term of the right-hand side of (2.38) we
integrate (L—x%)u-a=f-u over B, and take the real part, whence follows
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(2.39) -—Regs (D,u)a dS= —SB [Du[zdx——SB (Vo4 V)| u|?dx

—(fc%——/f%)SBrl ul? dx +RegB fa dx

4

ggﬁ (2C(1+lxl)‘a—cz)lulzdx+g3 1Fllu|de

=2Cllullz 4l e llwll_ree

§ZC(1+R)1HHUEEL_§L+ HfHL?_Hu“_l_;L

with R=R(c), where we used the technique quite similar to the one used
in obtaining (2.13). Then we can proceed as in the case £<J; to obtain
from (2.38) and (2.39) the estimate (2.29) with £ replaced by k,. Since
|&] £2|k,| for £EJ,, (2.29) holds good. Therefore we have (2.29) for all
keM,. Q.E.D.

To establish the following theorem is our main purpose in this section.

Theorem 2.7. Let Assumption 1.1 be satisfied and let 3 be the set
of the singular points of L defined in Definition 1.2. Assume that M is an
open set of C such that Mc M, with some a>0 and MnNZ=¢, where M
is the closure of M in €. Let k€M and let usD,. Then there exists a
positive constant C=C(M, L, ) such that we have the estimates

(2.40) 19 ull-yset ()| SClfllsse.
(2.4D) lulzse 5, S L+0 T flage (020,

where f=(L—£&%*)u and y(N) is as in Proposition 2.4. In particular, setting
0=0 in (2,41), we have

(2.42) lel_sge Sperllfllsze.

2

Proof. Since (2.40) and (2.41) follow from (2.42), Propositions 2.4
and 2.6, it suffices to show (2.42). Let us now suppose that (2.42) is



Tue PrINCIPLE OF LIMITING ABSORPTION 417

Ty

false. Then we can find sequences {£,}cM and {u,}cD,, n=1,2,
such that

@43 Juallage =1,

n

lllises s =@,

The sequence {x,} satisfies one of the following conditions (1) and (2):
(1) {x,} is a bounded sequence. In this case we may assume with
no loss of generality that £,—&, n— oo, with some k& M.

(2) {k,} is an unbounded sequence. Then it may be assumed that

|£,| — o0, n—o00,
Let us consider the condition (1). We recall the usual interior estimate
(2.48) D ulls, < C(lulls, + 1 flla,)
O<s<r, ueH, ,., f=(L—-rP)u, teK)

with C=C(r—s, L, K)>0, K being a bounded set of €. Since the bound-
edness of the sequences {||u,l|p } and {l|f,|l5,} follows from (2.43) and the
condition (1), we can apply (2.44) to show the boundedness of {||Du,|z,}
for each s>0, whence we obtain the boundedness of {|j0;u,||s,} for any
s>0 and any j=1,2,..., N. Therefore {u,} is relatively compact in
L, ;,., and hence we may assume that

(2.45) Iy, == i in Ly,

with ueL,,;,,. Then the interior estimate (2.44) can be applied again to
see that

(2.46) u, — u in Hy ;,..

From (2.43) we obtain
(2.47) Ifdlye =Bl —0 o),

which, together with (2.45), implies that u is a weak solution of the equa-
tion (L—£*u=0. Hence, as has been shown in Ikebe-Kato [67], u € H, ,,,
and u is seen to be a strong solution of (L—k2?)u=0. We can now apply
Proposition 2.6 to obtain
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(2.48) luall21ze £, =007 (020)

uniformly for n, and hence u,—u in Lz,—bgi and IIuH_HTs=1. On the
other hand, since the sequence {”@un”%_&} is bounded (Proposition 2.4)
and u,—u in H, ., we have ||‘9uH:lzﬁ.El<°°' Thus u is a solution
of the equation (L—#2)u=0, IIQLL]]#,E1 < oo, whence follows =0 since

k< M does not belong to the set of the singular points. This contradicts

lluli_14+e =1. Finally let us consider the case that {«,} satisfies the condi-
2

tion (2). In this case by the use of Proposition 2.6 with p=0 and (2.43)

we have

1 1 2 . 1 }
EARNTACEEL ST LT

@49)  1=fuP e ¢

1 1 1
<(-—34—4—— >
=C<1/c,,|+n2+ n> 0

as n—oo, which is a contradiction. Q.E.D.

§3. The Limiting Absorption Principle

The results obtained in the preceding section can be applied to justify
the principle of limiting absorption for the non-selfadjoint Schrddinger
operator L. We shall now prove Theorem 1.5. Let M be an open set of
€. In Theorem 1.5 M is assumed to satisfy the following condition

(I) Mc M, with some a>0 and MnNZ=4¢.

In this section we shall assume that, in addition to (I), M satisfies
the following

(I) k2=p(H) for any k=M.

It will be shown in §4 that (I) implies (II). And then Theorem 1.5
will be proved completely (see Remark 4.8 in §4). The proof of Theorem
1.5 for M satisfying (I) and (II) will be divided into several steps.

Proof of (i) and (ii) of Theorem 1.5 (existence, uniqueness and estimates).
Let (£, f)eMx L2 146> and set
)
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(3.1) u=u(k, f)=REDf,  R(K>)=(H—r?).

Since ueD, and fELz 1+¢, U 1S a unique solution of
T2
(32) (L—/cz)u=f, ||‘9L1‘||;12-¢-_8,E1 < , U'EHZ,Ioanzl___l%‘a

and z€D,. Theorem 2.7 can be applied to show that the estimates (2.40),
(2.41) and (2.42) are valid for u=u(k, f). Now let (k, /)€ MXL, 1.
A5,

and let {x,} be a sequence in M converging to £. We put u,=u(k,, f).

From (2.42) we see that {u,} is a bounded sequence in L2 _1+¢ > and hence
T

{u,} is a bounded sequence in L,(B;) for any >0, too. By using the
interior estimate (2.44) we can find a subsequence {u,} of {u,} such that

(3.3) u,—u in H, ;,,

with ueH, ;,,. u can be easily seen to be a weak solution of the equation
(L—k®)u=f, whence follows that ueH,,,, and u is a strong solution
as in the proof of Theorem 2.7. The estimates (2.40) ~(2.42) enable us

to show that u;, coverges to u in L .. and D ull_q1se 5, <o, Thus u
g —z B

is a solution of the equation (3.2) and the estimates (1.15), (1.16) and

(1.17) for u can be easily shown, since each uj satisfies the estimates

(2.40) ~(2.42). The uniqueness of u follows from the fact that rte 3.
Q.E.D.

Now that (i) and (ii) of Theorem 1.5 have been established, the
operator (L—£?)~1 can be defined by (1.18)

(3.9 (L=e)Yf=ulk, f)  (fEL, 1:0).

2

Proof of Theorem 1.5, (iii), (iv) and Remark 1.6. It follows from

(1.15) that (L—£?)!is a bounded linear operator from L, e into L 1.,
T2 [

and (1.19) holds good. Now let us turn to the proof of Remark 1.6. If the
sequence {u(%,, f,)} contains a subsequence {u(k;, f,)} such that |£}|—oo,

then by (1.15) and the boundedness of {f,} in L2 1+e We have
72

(35) (el £l age 5 ergll fillase =0,




420 Yosumr Sarrd

i.e., there exists a subsequence of {u(«,,f,)} which converges to 0 in

L2 _1+e - If {x,} is a bounded sequence, then we may assume with no
’ 2

loss of generality that

[ E,—E

(3.6)
(f,l——->f weakly in L, 1re (n—— )

with k€ M and f ELZ 1-¢. Using the interior estimate (2.44) and the
T2

estimates given in (ii) of Theorem 1.5, we can proceed as in the proof of

(i) of Theorem 1.5 to show that we can find a subsequence of {u(k,, f,)}

converging to u(k, f), the solution of (3.2), in Lz _1+¢- This completes
’ 2

the proof of Remark 1.6. (iv) of Theorem 1.5 follows from Remark 1.6.
Finally let us prove the continuity in £ of (L—£2)"! in B(L2 1tes L2 146 )
g BT

Suppose that (L—£%)~! is not continuous at te M. Then we obtain
sequences {x,}C M and { fﬂ}cL2 .. satisfying
S

{’cn—-) £ follige =1,

(3.7)
[[(L—=£®)1f,— (L—ﬁi)‘lfnll_uTazr

with k€K and y>0. We put u,=(L—£?)"'f, and v,=(L—£2)"1f,. fn}
is assumed to converge weakly to some f EL2 1+¢ With no loss of gene-
> 2

rality. By almost the same argument as used in the proof of Remark 1.6
it can be shown that there is a sequence {n’} of positive integers such
that

(3'8) Uy > u(/C, f)a Uy —> lL(IC, f)

>0, We therefore have

in L 4, as n'
z,~15

s o),

(3'9) Hun'—vn'”_l_-*z—e —0 (n/
which contradicts (3.7). Q.E.D.

Proof of Theorem 1.5, (v) (analyticity of (L—&k?)"Y). Let kM.
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Then it follows from (ii) of Proposition 2.3 and (1.15) that

(3.10) lullice SClfllie (FEL, 1 u=(L—k%)f)

2

with €= C(x) which is locally bounded on M. Hence for r= M the

operator (L—£?)! can be regarded as a bounded linear operator on L2 146
I

and its operator norm is locally bounded on M. Since (L—£%)"1f=R(£%)f
for (lc,f)EMxLz 148, the analyticity of (L—k2)~! on M is clear from

the resolvent equation
(3.11) R(£?) — R(u?) = (u*—£*) R(£*) R(u?),

and the proof is complete. Q.E.D.

§4. The Properties of X

We shall now prove Theorems 1.3 and 1.7 which are concerned with
the set of the singular points of L and the spectrum of H. At the same
time the gap in the proof of Theorem 1.5 given in §3 will be filled.

First we shall show some properties of the essential spectrum ¢,(T")
of a closed operator T in a Hilbert space. Since the proof is not difficult,
we shall omit it.

Lemma 4.1. () o(T)no (T)=4¢.

(ii) 0,(T)20,(T) and 6,(T)>05(T), where 65(T) denotes the point
spectrum of T with infinite multiplicity.

(iii) 0,(T) contains ull accumulation points of 0,(T) and 0¢,(T).

T* denotes the adjoint operator of 7' and we set (T*)*= T'** if they
are well-defined. The next lemma which shows the invariance of ¢,(T)

by T-compact perturbation is well-known.

Lenama 4.2. Let T be a densely defined, closed linear operator in a
Hilbert space with the densely defined T* and T**=T. Assume, further,
that B is a T-compact linear operator with B**=B. Then we have

(4.1) ¢.(T)=0,(T+B).
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For the definition of T-compactness see, e.g., Kato [97, p. 194.

Since H=A+Q, where A is a self-adjoint operator and Q is a bounded
linear operator, we have

{ H*= A+ Q*, Q*u=0(x)u
(4.2)

D(H*)=D,
and H**=H. Another self-adjoint operator H, in L, is defined by
(43) H0=A+ VO,

which is the restriction in L, of a differential operator
N
j=1

Using the interior estimate (2.44) and the fact that Q(x), Vo(x)=0(|x]|7?)
at infinity, we can see that Q and ¥V, are A-compact operators. Thus we
have from Lemm 4.2

Proposition 4.3. o¢,(H)=0,(H,)=0,(4)c[0, o).

Obviously L, satisfies Assumption 1.1 with /'=0. Therfore the result
given in §2 and §3 are still valid for L,. The set of the singular point of
L, is denoted by 2,. The following proposition is due to Ikebe-Uchiyama
[87] (see also Remark on the proof of Lemma 2.5. of I-S).

Proposition 4.4. (i) 0,(4) N0, w0)=0,(Hy)N(0, )=0,(H)N(,
00)=0,(H*)N (0, ) =4.

(i) FonR=4¢.

Set
(4.5) C,={c=C,/Imk >0}
and
(4.6) 2'=3nC, 0=2,nC%.

We shall show some properties of 2/ and 2.

Proposition 4.5. (1) rtel’ [k€2y] if and only if reC, and
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k*eo,(H) [keC, and r*c0,(H,y)].
(i) X' [ 4] forms a discrete set (having no limit point in C.).
(iii) X,=2{ is a bounded set of {k=1ib/b>0}. And we have
k2€o(H,) for any kel — 2.

Proof. Let k2’ and let u be a non-trivial solution of the equation
(1.4). Then by (i) of Proposition 2.3 u& D,, and hence u is an eigenfunc-
tion of H associated with the eigenvalue £%2. Conversely, if €D, is an
eigenfunction of H associated with the eigenvalue k%, k€C,, then u is a
non-trivial solution of (1.4). Thus we have proved (i). (ii) follows from
(i), Lemma 4.1 and Proposition 4.3. By (ii) of Proposition 4.4 we have
2,=2}. Since H, is a self-adjoint operator which is bounded below, ¢(H,)
is contained in the real line and is bounded below. This implies, together
with (i), that 2y=2 is a bounded set of {£k=1:6/6>0}. Let k=C)|—2|.
Then Imk?+0, £2¢&0,(H,) by (i) and k*¢0,(H,) by Lemma 4.1 and
Proposition 4.3, and hence k2 p(H,). Thus we have proved (iii), and the
proof is complete. Q.E.D.

Let M, be an open set of C such that MyNY,=¢ and M,c M, with
a>0. It follows from (iii) of Proposition 4.5 that M| satisfies the conditions
(I) and (II) with L replaced by L, which are given in §3. Therefore
Theorem 1.5 holds good with L and M replaced by L, and M,. For
keC,—2, we can thus define an operator T(k) by

(4.7) T(£) = — (Ly— 7)1V

Since — VEKB(L2 146 L2 14e)s T(k) is a B(L2 _14¢ )-valued continuous
’ 2 2 ’ 2

fuctction on €, —2, with the estimate for its operator norm

(4.8) ”T(,C)HéTiT (ke My, C=C(M,, L, ))

(Themorem 1.5, (iii)). Moreover we have T'(k) EC(LZ _14e) for keC, -2
’ 2

(Theorem 1.5, (iv)), and hence the spectrum ¢(7'(k)) is discrete in C— {0}
and each non-zero eigenvalue of 7'(x) is of finite multiplicity. From these
results a characterization of the set 2 can be obtained as follows.

Proposition 4.6. Let k€C.—2%,. Then k<X if and only if
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1e0(T(k)), i.e., there exists a non-trivial solution u ELZ _14¢ Of the eqation
S

TK)u=u.

Proof. Assume that k€23, k¢ 2,. Then there exists a non-trivial

solution « of the equation (1.4). Since (1.4) can be rewritten in the form

(Ly—r®)u=—-Vu

4,
(4.9) L”Qu”—ue £ <%0 uEHZ,loanz _l4e-
P ' 2

we obtain u=—(Ly—#2)""Wu=T(k)u. Conversely let us assume the

existence of a non-trivial u,EL2 1+¢ satisfying w=T(&)u, ie, u=-—
’-T

(Ly—#£?)"1Vu. Thus u satisfies (4.9), which implies that u solves (1.4).
Q.E.D.

The next proposition will fill the gap in the proof of Theorem 1.5
given in §3.

Proposition 4.7. teC.—2" if and only if k€C, and k*co(H).

Proof. The “if” part directly follows from the ‘“‘only if”’ part of (i)
of Proposition 4.5. Now we shall show the “‘only if”’ part. Let kel —2".
Since 2’ and X are discrete in €} ((ii) of Proposition 4.5), we can find
a sequence {x,}CC) such that £,#£, £,&2'U2, and £,—& as n—oo.

Let us show that (H—k*)Do>L, ;... In fact let feL ,... Since
"2 2

(L,—£2)7! is well-defined and I— T'(x,) is invertible by Propotition 4.6, we
can define u,,EL2 1+ NHy 1y by
’ 2

(4.10) uy == T(€,))" (Lo—£) 7S,

which implies that (J+(Lo—£2)"V)u,=(Lo—£Z)7f, ie.,, L—£Du,=f.

We have u,eD,.,. Theorem 2.7 can be applied to show that there exists

a subsequence {u,} of {u,} such that {u,} converges in L2 1+¢ to the
g

solution u of the equation (L—#%)u=f. Noting that ueD,, we obtain
ueD, by Proposition 2.3, (i), and hence f=(H—r?)ue(H—£%D, Thus

we have shown the relation (H —-l::Z)DOZJL2 146, Whence follows, together
)
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with the denseness of L2 1+¢ in L,, that k2¢0,(H). On the other hand
T2

k*¢& o (H) (Proposition 4.3) and £2¢ 0 ,(H) ((i) of Proposition 4.5). There-

fore we can coclude that k2ep(H). Q.E.D.

Remark 4.8. From the above proposition we see that the condition
(II) in §3 is implied by the condition (I). Thus we have proved Theorem
1.5 and Remark 1.6 completely.

By the use of Proposition 4.6 that the rest of Theorem 1.3 will he shown.

Proposition 4.9. X is a bounded set of C..

Proof. Suppose that there exists a sequence {k,}C2 satisfying

|£,|— o0 as n—oo. For each 7 we obtain LL,,EL2 1+¢ such that
[

(411) U,= T(En)uns “unll_ﬁ_s_:]"
2

Because of the boundedness of X, we may assume that £,&2 for all n.
Then from (4.8) and (4.11) it follows that

(4.12) 1=l _ree SN TG 1oe =S,
2 2 Ilcnl

where C=C(L, ¢) is independent of n. As n tends to oo, the right-hand

side of (4.12) converges to 0, which is a cntradiction. Q.E.D.

Proposition 4.10. Let a>0. Then XN M, is a closed set of C., M,
being the closure of M,.

Proof. let k,&X N M, such that
(4.13) K, — K, (n——o0)
with k,& M,. u, denotes the solution of the equation (L—#kZ)u,=0 with
U’nEHZ loan 1+¢ H‘@u’nH—1+6 < oo, and Hunll 1+e& =1. From (ll) of
' L —z B 7z

Proposition 4.5 it follows that £, is real and |k,|=a. Thus, setting
My={k=k,+ik,/|k,| >a/2, £;,>0}, we may assume that £,, k£, M,.
Since |k;| >a/2 for ke M,, MynZ,=¢ by (iii) of Proposition 4.5. Thus
Proposition 4.6 can be applied to show that



426 YosuimMi SArtd

(4.14) tp= T wn el _1se =1.

According to Remark 1.6 with L and f, replaced by L, and —Vu,, respec-
tively, the sequence {T(k,)u,} is relatively compact. Hence it follows
from (4.14) that there exists a subsequence {u,} of {u,} which satisfies

(4.15) u,— u, in L2 l+e
g

with uoeLz 1+¢. Taking account of the continuity of T(x) in
T

B(L2 _1+¢), We obtain from (4.14) and (4.15)
e
(4.16) uo=T'(£o)u,, Huoli_;_;i=1s
which implies £, 2. Q.E.D.

Proposition 4.11. Xy is a set with the Lebesgue measure 0 in R.

Proof. 1t suffieces to show that e,= M,N Xg is a null set for any
a>0. We can prove this in almost the same way as the one used in
proving Lemm 6.2 of Kuroda [10]. For an arbitrary k,<e,, noting that
T(k,) is compact and 1€0(7T(x,)), we can find a circle y in € with center
1 and its radius less than 1 such that yco(Z(x,)). Then there exists a
positive number # such that y co(T(k)) for any k€{keC./|k—ky| < u}.
In fact, let us suppose that k,—k,, £,=C, and yNo(T(k,))+¢ for any
n=1,2,.... Then, proceeding as in the proof of Proposition 4.10, we can
easily show that y N o (7T(k,))+# ¢, which is a contradiction. Since e, is
compact by Propositions 4.9 and 4.10, e, is covered by a finite number of
intervals of the type I=(k—u, £+ #). Therefore it is sufficient to prove
that I, Ne, is a null set. We set

(4.17) P(/:)=%SV(T(K)—E)‘1CZ$.

Then, as is well-known, P(t) is a finite dimensional (oblique) projection
and f(r)=det(1—T(k)P(x))=0 for ke{rsC,/|c—rKy| <p} if and only if
leo(T(k)). It follows from the analyticity of 7T(x) on C) that f(k) is
analytic on {¢k=C’}/|k—k,| < #} and is continuous on {k=C./|k—k,| < t}.
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Hence f(£) cannot vanish on a subset of I,, whose Lebesgue measure is
positive. Thus we have shown that I, Ne, is a null set. Q.E.D.

Proof of Theorem 1.3. (i) follows from Propositions 4.9 and 4.11. (ii)
follows from Proposition 4.10 and (ii) of Proposion 4.5. We obtain (iii)
from (i) of Proposition 4.5 and Proposition 4.7. Q.E.D.

Proof of Theorem 1.7. (i) is clear from Proposition 4.3. Since C—[0,
o) ={r%/kC,}, it follows from Proposition 4.7 and (i) of Proposition 4.5
that C—[0, c)=0(H) U0 ,(H), which implies that ¢,(H)>d(H)Nn (C-[O,
o)). The relation 0,(H)N (0, 0)=¢ is obtained in (i) of Proposition 4.4.
The rest of (ii) can be obtained from Proposition 4.3 and Lemma 4.1, (ii)
and (iii). Let us show (iv). Since we have proved ¢,(H)N (0, o0)=
0,(H*)N (0, o)=¢ in (i) of Proposition 4.4, ¢,(H)N (0, c0) can be easily
seen to be an empty set. On the other hand we have ¢,(H)N (C—[0, ))
=¢ by the first assertion of (ii). Hence (iv) follows. Finally (iii) follows
directly from the relation ¢,(H)N (0, )=0,(H)N (0, c0)=¢.
Q.E.D.

Note Added (July 1, 1973): After this paper was written we have
informed by Prof. S.T. Kuroda that the relation ¢,(A4)=[0, ) holds
under our assumption. For the proof see Kuroda [137].
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