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Bargmann's Inequalities In Spaces of
Arbitrary Dimension

By

Noriaki SETO*

An inequa l i t y is derived which gives an upper bound of the number of
bound states in the Z-th partial wave (Z=0, !,-••) of the two-body Schrodinger
equation with a spherically symmetric potential function in the n -dimensional
space (re —1,2 • • • ) . This is a generalization of Bargmann's inequality for the
case n = 3. The generalization is straightforward for the case Z^l with n= 2
and Zj^O with ra^3. After a mathematically rigorous justification of his
heuristic argument, Schwinger's method in his simple proof of Bargmann's

inequality is employed here. Newton's result for the case / = —___, n— 3,
A

which is equivalent to the case /=0, n=29 is reobtained.

§ I- Introduction

ID the nonrelativistic quantum mechanics, Bargmann Ql] has obtained

in 1952 the so-called "Bargmann's inequality" which gives an upper bound

for the number of bound states produced, in the two-body system, by a

spherically symmetric potential. His method of proof is to count the

number of zeros of the zero-energy solution, with a smoothness condition

at the origin, of the partial-wave Schrodinger equation and to make use of

the well-known correspondence between the number of zeros and that of

bound states. Avoiding this highly complicated method, Schwinger [~2~] has

elegantly rederiverl, in a heuristic manner, Bargmann's inequal i ty and its

versions, by transforming the zero-energy "hound state11 problem to an

integral equation and applying Mercer's theorem to the positive integral

operator thus obtained. Soon after, an inequality for the case I = — ——
LJ
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important in the theory of complex angular momenta, was obtained by

Newton Q3] by employing a perturbation method which becomes exact in

the limit Z— » — -y-.
LJ

Above arguments, however, are restricted to our real space, that is,

to the three-dimensional space. In the case of one- and two-dimensional

spaces, as is well known in exercises on quantum mechanics, an attractive

square-well potential with a fixed radius can produce at least one bound

state, however shallow the well may be. This suggests that, in the one-

and two-dimensional cases, an inequality for the number of bound states

will take a form drastically different from that in the three-dimensional

space.

The purpose of the present paper is to generalize Bargmann's inequality

to the space of arbitrary dimension and to justify in a mathematically

rigorous way the heuristic arguments employed thus far.

General formalism is given in the next section for two- or higher-

dimensional case. A straightfoward extension of Bargmann's inequality to

the two- or higher-dimensional space except for the zero-th wave in the

two-dimensional space is performed in Sec. 3. Heuristic derivations are

given for the one-dimensional case in Sec. 4 and for the case 1=0 in the

two-dimensional case in Sec. 5. Section 6 is devoted to the justification of

arguments in the preceding two sections. In the final section are given

a summary and discussions.

In polar coordinates, the TZ-dimensional (n^2) Laplacian £n is expres-

sed as

where r is the radial variable and A% is the Laplacian on the (re —1)-

dimensional unit sphere. The Laplacian A% has a series of eigenvalues

— 1 ( 1 + n — 2) (1=0,1,...) each of which has a degree of degeneracy [JT]

(21} h(n A_(2.1) h(n, 1)
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Here h (2, 0) must be interpreted as a limit lim h(n, 0) — 1.
n-*2

By the separation of variables for the n, -dimensional Schrodinger

equation with a spherically symmetric potential V=V(r)\

[-J,HrF(r)]0X*0=£0^), x^R* (E: energy)

into the radial part and angular part, the radial part in the Z-th wave

takes the form

(2-2)

In terms of a function <J>l
n defined by

(2.3) 0i(r)=r<»

Eq. (2.2) is expressed as

As was shown by Kodaira []5], the eigenvalue problem (2.4) is, in the

Hilbert space L2((0, oo); dr), well defined for the case 2l-\-n — 4^0,

provided that the potential function is a real-valued piecewise-continuous

function satisfying the condition

(2.5) f°r |F(r) |dr<oo.
Jo

For the case n=3, 1=0, in order to make the eigenvalue problem well

defined, we must require a boundary condition 0§(r)=0(r) as r—»0 for

the eigenfunctions in addition to the same conditions on the potential as

above. As for the case n=2, 1 = 0, we shall impose a stronger condition

on the potential;

(2.6) rV(|logr|+l) V(r)\dr<oo
Jo

and require a boundary condition ^(r) =0(r112) as r—»0.

It must be noticed that the behaviour of the potential as r-»oo is more

restrictive than that given in Ref. Q5]5 to guarantee the finiteness of the
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number of point eigenvalues. It was also shown Q5] that each point

eigenvalue E (the energy level of the bound state), if any, is non-positive.

Hereafter, we shall set E=—k2 and for the point eigenvalues we shall

take the branch k^O,

First of all, we shall summarize the well-known properties of the solu-

tion of Eq. (2.4) in the following lemma (for the proof see, for instance.,

Ref. [6]):

Lemma 2el0

a) The case 2Z + 7*-3^0

Under the condition (2.5), any non-trivial solution <f>\t of Eq. (2.4)

behaves, for any k, near the origin such that lim r /+ (w~3) /2-^( r) exists, and
r-*Q

if the limit vanishes, then lim r~'~ ( w~1 ) / 2»0£(r) exists and does not vanish.
r-^O

For &>0, e~*r°0^(r) tends to a finite limit as r— >oo ? and if the limit vanishes,

then ekr*(f)l
n(r) tends to a non-zero finite limit. For k=Q, r~'~ (n~1) /2-^^(r)

tends to a finite limit as r— >oo5 and if the limit vanishes, then r / + ( w~3 ) / 2-0j,(r)

tends to a non-zero finite limit.

b) The case n=2, 1=0

Under the condition (2.6), any non-trivial solution <j>\ of Eq. (2.4)

behaves, for any k, near the origin such that lim r~1 / 2 | logr|~ l o0^(r) exists,
r~+Q

and if the limit vanishes, then lim r~1/2-02( r) exists and does not vanish.
r-^O

For k>Q, e~* r-0U(r) tends to a finite limii as r— »oo3 and if the limit

vanishes, then e*r«02(r) tends to a non-zero finite limit. For k=Q,

r~112 log r l^-^JKr) tends to a finite limit as r— »oo, and if the limit vanishes,

then r~1/2»^|(r) tends to a non-zero finite limit.

As is easily seen from the above lemma, the wave function $(, of a

bound state with negative energy level (k > 0) behaves as

Therefore such a function <frl
n belongs to JfV = £2((09 oo); |F(r)| dr), as

well as to Z,2((09 oo); dr).

According to Bargmann's idea Ql], we first replace the potential V

by a "more attractive" potential —\V\ or F_=minQF, 0].
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Lemma 2.2, The number of point eigenvalues never decreases by the

above replacement.

Proof: Consider a bound state problem

^ | K(0

depending on a parameter e(O^e^l). As is easily verified, each eigenvalue

is non-degenerate for fixed e. Using a standard technic of perturbation

theory [7], we can show that, for each eigenvalue — kj and a correspond-

ing eigenf unction <j>h the equality

\ V(r) | + r(r)) | 0,(r) | *d

holds. This implies &/ is a non-decreasing function of e. Therefore the

number of bound states generated by the potential V, i.e. at £ = 0, never

decreases by the above replacement e = l. (The proof of this lemma and

all the subsequent arguments go parallel for the replacement of V by F_.)

Next, following Schwinger's method [J2J, we shall replace the potential

— | V | by a potential — 1 \ V\ and consider a bound state problem

(2.8) _

It can be shown that, for fixed positive A, all the eigenvalues — A';(^)2, if

any, are non-degenerate and each /c/(/i) satisfies

(2.9) 2 * 1 . W &

where ^JXsO is a corresponding eigenfunction. Consequently kt (A)

decreases monotonically as A decreases so long as ^('O remains positive.

Since all bound states disappear at ^ = 0, there exists a point A{ on the

interval p), 1), such that Jfc,-(A/) = 0. Thus Schwinger has reduced the

eigenvalue problem for ~k2 with A = l in Eq. (2.8) to the eigenvalue
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problem for xleQ)3 1) with k = 0 in Eq. (2.8). There exists, however, a

subtle point in taking the limit k—»0 in Eq. (2.8), since as is seen in

Lemma 2.1, the asymptotic behaviour of the solution of Eq. (2.8) changes

drastically for k>0 and for k = Q,

In the next section, we shall justify Schwinger's argument and obtain

a generalization of Bargmann's inequality for the case 2l + n — 2^1.

3o Higher-Dimensional Case

We shall try, in this section, to derive a generalized Bargmann's

inequality for the case 2l-\-n — 2^1, that is, for all I with n^3 and l^l

with n = 2.

Hereafter we shall mainly confine ourselves to the Hilbert space

3$?V = L2((Q, oo); |F(r)|c?r), and hence, for notational convenience, we

shall write d[j.(f) instead of \ V ( f } \ d r and denote by ( , ), ]| ||, || ||2 and

tr( ) the inner product, the norm, the Hilbert-Schmidt norm and the trace

on jfV, respectively.

First we shall rewrite the eigenvalue equation (2.8) into an integral

equation :

Lemma 3«,Io The bound state problem (2.8) is, for &>0, equivalent

to the integral equation

(3.1) #,

on 3FVi where the kernel function of the integral operator Gl
n(k) is given by

(3.2)
r>r'.

Proof: Using the properties of modified Bessel functions, /„ and Kv,

we can easily recognize that the solution of Eq. (3.1) satisfies Eq. (2.8).

Therefore we have only to show that the solution satisfies the boundary

condition (2.7). Since the explicit form of Eq. (3.1) is
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the estimates on <f>l
n can be obtained through the use of Schwarz's inequality

as

1/2
|

o

The second factor on the right hand side of this inequality is estimated as

(3.3)

where we have made use of the property that IV(KV) is a positive-valued mono-

tonously increasing (decreasing) function. As is easily verified, the function

Iv(x)Kv(x), for v^— ^-, is a bounded function for ^^0. Consequently it
LI

follows

|#i(r)|^ ^|CJ|0i||r1/2 (C t f: positive constant).

From this estimate and Lemma 2.1, it is concluded that $l
n satisfies the

boundary condition (2.7).

The converse statement, i.e., that the solution of Eq. (2.8) with the

boundary condition (2.7) satisfies the integral equation (3.1) is trivially

verified by the standard arguments.

As a byproduct, we can readily show through (3.3) that the operator

Gl
n(k) is of Hilbert-Schmidt type and its Hilbert-Schmidt norm

o o

is bounded by a constant independent of &(>0). We can, however, show

more about the properties of Gl
n(k) :
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Lemma 3.2. The integral operator Gl
n(k) is of positive type and

belongs to the trace class, with its trace uniformly bounded with respect to

Proof: To prove the positivity, we have only to show that (/, Gl
H(k)f)

is non-negative for sufficiently well-behaved /, for instance, for infinitely

differentiable function with compact support in (0, oo). For such a function,

(/, Gi(ft)/) is equal to

where g=Gl
n(k)f. This integral is evidently non-negative.

By the usual argument of the positive integral operator and by the

fact that the kernel function of Gl
n(k) is independent of the potential and

it is a continuous function with respect to two variables, it immediately

follows that

r, r)-2aGi(A)(r, r'

for any real a, which in turn implies

(3.4) Gi(A)(r, r')2rgei(A)(r, r).Ci(A)(r', r').

Thus, by the integration of this inequality with respect to dju(r)d/ji(r'),

we obtain

Since the integral on the right hand side certainly exists and is bounded

by a constant independent of &(>0), we have again confirmed the property

of Gl
n(k) stated immediately after the proof of Lemma 3.1.

Denoting the eigenvalues of Eq. (3.1) by A f-(A) (i=l, 2,...) (CK^C&X

/l 2 (^)<-- - ) 5 each of which is evidently non-degenerate, and corresponding
orthonormal eigenfunctions by ${,(•, ^,-(4)), we get, from the positivity of

Gl
n(k), the inequality

(3.5)



BARGMANN'S INEQUALITIES IN SPACES OF ARBITRARY DIMENSION 437

for any positive integer JM and for r belonging to the support of the

measure 11. Therefore

-^im^tr(G"(k^'
In order to prove that the equality actually occurs in this inequality, it is

sufficient to notice that, by a slight modification of the argument of Mercer's

theorem £8], the right hand side of (3.5) converges uniformly on any

compact subset of QO, oo) to the left-hand side as 7V-»oo. Consequently

we have

(3.6) tr (Gi(A)) = r//+l,_1(Ar).J£:; ,1,-^Ar) | F(r) | dr.
Jo 2 2

We shall next consider the zero-energy "bound state" problem, that is,

<3-7) [-(~ij-
with the boundary condition

r 0(r'+<»-i>"), r^0,

^ {J(r ), r —* oo

In quite an analogous manner we can show the following

Lemma 383. The zero-energy "bound state" problem is equivalent to

the integral equation

(3.8) <j>l
n = lGl

n<}>l
n

on the Hilbert space 3?v, where the kernel function of the integral operator

Gl
n is given by

(3.9)

integral operator Gl
n is of positive type and belongs to the trace class

with its trace given by
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(3.10)

Our main concern is how the Eq. (3.1) "approaches" Eq. (3.8) in the

limit A-*0.

Lemma 3048 The operator Gl
n(k) approaches Gl

n as &— »0 in the

Hilbert-Schmidt norm, that is to say,

Proof: The proof is easily achieved by noting that the inequality

Gl
n(k)(r, T f ) z ^ C ' r T r (Cf : a constant independent of k) holds by virtue of

(3.4) and that the kernel function (3.2) approaches point wise to the kernel

function (3.9) as A-»0.

This lemma implies the following

Lemma 3.5* Let A,- (i = l, 2,...) ( 0 < ^ 1 < A 2 < - - - ) be the eigenvalues of

G* Then

lim

Proof: By means of a theorem due to Weyl and Courant Q9]3 we have

The proof follows from this inequality and Lemma 3.4.

We are now in a position to prove

Theorem 3eI8 For 2l + n — 3>I, the number of eigenvalues A,- of Gl
n

such that 0<^-^1 is equal to the number of bound states generated by the

potential F|. For l^2l+n — 3^0, the number of eigenvalues A,- of Gl
n

such that 0<A,-<1 is equal to the number of bound states generated by the

potential | V | .

Proof'. Equation (2.9) shows that each eigenvalue ^/(A) is a monoto-
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nously-incr easing differentiable function of k for &>0. Moreover the fact

that tr(Gj,(A)) tends to zero as k— >oo5 which is readily verified through

Eq. (3.6), implies that each A,-(A) tends to infinity as &— »oo. On the other

hand, Lemma 3.5 states that A,-(A;) tends to A,- as &-»0. Consequently

there exists a one-to-one correspondence between each ^ such that 0<^,-^1

and kf such that A,-(A; ,-) = !. Clearly E^—k^ is the energy level of the

bound state created by the potential \V\. If /I,- equals unity, that is

E~Q9 the zero-energy "bound state" is a true bound state if and only if

Z + (re-3)/2>-i- (cf. the boundary condition (3.7)).
A

Finally we arrive at the main theorem:

Theorem 3620 For 2Z + H, — 2^1, the number of bound states, Nl
n,

produced by the potential V, satisfying (2.5), in the l-th wave in the n-

dimensional space satisfies the inequality

(3.11) Nl»

Proof: By means of Theorem 3.1, Nl
n is equal to or smaller than the

number of eigenvalues of Gl
n lying on the interval (0, 1]. Let /l jV^l</lAr+1,

then

The inequality (3.11) is the generalized Bargmann's inequality. It

must be noticed that each bound state has the multiplicity h(n, /), if we

take into account the freedom of the angular part.

§40 One-Dimensional Case

The bound state problem in the one-dimensional space is to solve the

eigenvalue equation

(4.1)

for which the eigenfunctions belong to L2((— oo5 oo); dx). If we assume
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that the potential V is a real-valued piece wise-continuous function satisfy-

ing the restriction

the differential operator on the left hand side of Eq. (4.1) turns out to be

essentially self-adjoint and point eigenvalues of this operator, if any, are all

negative [JT].

Suggested by the results in the previous section, we shall here make

the following assumption:

Assumption 4.1. The number of bound states of Eq. (4.1), which is

equal to the number of point eigenvalues because of no degeneracy, is not

greater than the number of point eigenvalues /I lying on the interval £0,1)

of the eigenvalue equation

(4.3)

for which the eigenf unctions belong to the Hilbert space 3?y = L((— oo, oo);

\V(X}\dx}.

This assumption will be proved in Sec. 6.

In the one-dimensional case, we shall mainly confine ourselves to J^y ,

so we shall write ^/^(^instead of \V(x)\dx and the inner product, the

norm of vectors, the Hilbert-Schmidt norm, and the trace of operators in

3?v by( , )i,! || |ii,i |! 1 1 2, and trt( ), respectively.
Since any eigenf unction (/)1 of Eq. (4.3) satisfies the boundary condition

(4.4) 01(«) = 0(1), x -±oo,

we are immediately led to

Lemma 4.1. The eigenvalue equation (4.3) is equivalent to the

integral equation

(4.5) (/>l = C'eQ-\-AKl*(/>1 (c: constant}

on $F\ with a supplementary condition
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(4.6)

where the kernel function of the integral operator Kl and the vector e0 are

given as

(4.7) (*!)(*, *')=—|- *-*'! and (*„)(*) = 1.

Proof: The proof is obtained, for example, by rewriting the differential

equation (4.3) into its equivalent integral equations on the right-half and

the left-half parts to the (say) origin of the real line separately and by

making use of the continuity condition at the origin, that is, the solution

defined on the right- and left-half parts must be continuous up to the first

derivatives at the origin.

From Eqs. (4.5) and (4.6), it readily follows that the vector e0 is an

eigenvector belonging to the eigenvalue ^ = 0. For ^^0 9 eigenvectors

necessarily belong to JFy, the orthogonal complement of e0. Let P be the

projection operator from tfP\ to 3IF^, then Eq. (4.5) takes the form

(4.8)

on

Lemma 4*2. The integral operator PK-^P is of positive type and

belongs to the trace class with its trace given by

(4.9) t r l l = - ^
\ d f t i ( x ) .
J~oo

Proof: To prove the positivity, it is sufficient to show

(4.10) ^/(X)^-^ x-x'\^f(x')dX'dX

is positive for not identically-vanishing, real-valued infinitely differentiate

function f with compact support in (—00, oo) satisfying the condition
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For such a function, the expression (4.10) is transformed, by the integra-

tion by parts, into

which is evidently positive.

In order to prove that PK^P has a trace (and hence is of Hilbert-

Schmidt type because of Lemma 3.2), we note that the kernel function

of PK^P is given by

(4.11)

From this expression we obtain

=-(e° -r
j-o

the right hand side of which is certainly finite. Consequently, by the same

argument as in Lemma 3.2, the equality (4.9) follows.

By noticing that there exists one more point eigenvalue A = 0 in addition

to those of PKiP and by using the same arguments as in the proof of

Theorem 3.2, we arrive, under the Assumption 4.1, at the following result:

Theorem 4010 The number of bound states , N^ produced by the

potential V^ with the restriction (4.2), in the one-dimensional space satisfies

the inequality

4-r r \x-X'\
(4.12) J-~j-~ —

Thus far we have not assumed the spherical symmetry of the potential.

If we require this, that is,

"= X\
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eigenfunctions of Eq. (4.3) split into two classes; even functions of x and

odd functions of x. Denoting the projection operators from 3?\ to the

subspace consisting of even functions and that of odd functions by PJ and

PJ( = l-Pj>), respectively, we find

Lemma 483a

(4.13) o o ,^

Jo

and

(4.14) tr1(

Proof: From the meaning of P, PJ and PJ, it follows

PJP=PPJ and P\P=PP\ = P\,

from which and the equalities

(P\K,P\)(X, *') = -

readily follow Eqs. (4.13) and (4.14).

Since the eigenvector eQ belongs to P\3?\, we have

Theorem 4628 For the spherically symmetric potential in the one-

dimensioal space, the number JVf of bound states with even eigenfunctions

satisfies

dr'\V(r)\dr
(4.15) J o j o

\dr

while the number N\ of bound states with odd eigenfunctions satisfies

(4.16) N]<(°°r\F(r)\dr.
Jo
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pSF. B.] In the previous section we have obtained the solutions of Eq.

(3.7) satisfying the boundary condition ^(r) = 0(r/+(w-1)/2) at the origin.

If we put formally n = I in Eq. (3.7), we get a centrifugal potential

1(1 — l)/r2. Since this term must be absent in the one-dimensional case,

I equals 0 or 1. Because for 1 = 0 (Z = l), above boundary condition becomes

0i(r) — 0(l)(^iW = 0(r)), 0?(^i) can be extended, continuously up to the
first derivatives, as an even (odd) function to the interval (—00, 0). This

justifies the notations TVf and N\ as special cases of Nl
n with 71 = 1, 1 = 0

and n = l, 1 = 1. Incidentally, the multiplicity h(n, Z) defined in Eq.

(2.1) has a corresponding property: limh(n, 0) = 1, limh^n, 1) = 1, and
«-l 7*-»l

\imh(n, l) = 0 for
«-»!

§§„ The Case 1 = 0 in Two-Dimensional Space

The only case left untouched is the case 1 = 0 with n = 2. As was

done in the previous section, we shall again make

Assumption 58Ie The number of bound states generated by the

potential \V\, satisfying the condition (2.6), in the zero-th wave in the two-

dimensional space is equal to the number of point eigenvalues ^, lying on

the interval p), 1), of the eigenvalue equation

(5-1)

on the Hilbert space J^V( = L2((Q, oo): V(r) \ rfr)), that is, with the boundary

condition

0§(r) = 0(r1/2), as r -> 0 and r-»oo.

In terms of the original function 0§(r) = r-1/2^g(r) (cf. Eq. (2.3)), Eq,

(5.1) is expressed as

(5.2)

with the boundary condition

as r ~ > 0 and
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By the change of variable

r = ef, ( — oo<£<oo)

Eq. (5.2) becomes

(5.3)

where we have put

The condition (2.(5) on 1 is expressed in terms of Jl as

(5-4)

while the boundary condition becomes

(5.5) H(0 = 0(l), as

By making use of the correspondences between (5.3) and (4.3), (5.4) and

(4.2), and (5.5) and (4.4), we immediately find

Theorem 5el» The number of bound states, N%, produced by the

potential F, under the restriction (2.6), in the zero-th wave in the two-

dimensional space, satisfies

4-(~r (V | log (r/r') | | F(r') | dr'\V(r} | dr
(5.6) 7Vo<1+ Jo Jo - - _

r\V(r}\dr
Jo

Proof: From the inequality (4.12), we obtain

\t-t'\\W(t')\dt'\W(t}\dt

This inequality, expressed in term of the variable r, takes the form of

(5.6).
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Newton QH has obtained the same inequality as (5.6) for the case

^ — — «- with n = 3. Since in both cases 21+ n — 2 vanishes, the relation

between them is obvious.

Finally we note that, as is easily verified from Eq. (4.11), the kernel

function of the integral operator corresponding to Eq. (5.1) is given, on

the orthogonal complement of the eigenf unction with the eigenvalue A = 0,
by

(rr/)/ i / 2 —
foo

\
Jo

(5.7)

/f°°
(\
\Jo

§60 Proof of Assumptions 4«1 and 5.1

First we shall be concerned with the one-dimensional case. The

following lemma is obvious:

Lemma 68I8 For & >0, the bound state problem

with the condition (4.2) on the potential function, is equivalent to the

integral equation

(6.1) 0i = ̂ i(*)0i

on the Hilbert space 3? \ , where the kernel function of the integral operator

is given by

(6.2)

The operator K^k) is of positive type and has a trace given by
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(6.3) to! (

The difficulty in the one-dimensional case lies in the bad behaviour of

Ki(K) in the limit i— >0. To avoid this singularity we shall consider,

instead of Eq. (6.1), the following integral equation:

(6.4) /j = n

with the kernel function

and its formal ft—»0 limit:

(6.4)0 /i = rfti/i,

with the kernel function

(V.D)Q /Ci\x, x ) = La

We shall now prove

Lemma 6,2. The minimum eigenvalue r0(ft) of Eq. (6.4) satisfies

(oo /-oo

\ \ 'V 'v*' rt II ( 'Y' i nil i 'V i
1 \ i ^/ ^v Ct/ x* i v ^v y u/ fJ* i \ A> J -i -f

y j - o o j - o o J - v x x x x j ^ J L
f D e ^ j A:-7 ^ , <—T-TN-< ,
N ^ •*- ' :=-r i Z-^ T '

,7,, / ^^N ^OV^/ rO

where r0 /s £/z# {unique) eigenvalue of Eq. (6.4)0:

r0

Proof: The equality (6.7) is obvious. Since r0(&) satisfies

d/£1(a;) = J^>o r0

we have only to show the left half of the inequality (6.6). Through the

maximum principle, it follows
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r0(
\ \ *i
^^

f-
= <*A1(*)-

J-~

r°

In the first inequality we have chosen the eigenfunction of Eq. (6.4)0

(/i(-*0 = l) as a trial function, and at the final inequality we have used

the obvious relation l — e~klx~*'l^k\x — x' ,

Lemma 6838 Let P(k) be the projection operator from 3Fy to the

orthogonal complement of the eigenvector of Eq. (6.4) with the eigenvalue

r0(A). Then P(k)Kl(k)P(k) is a positive operator and has a trace

uniformly bounded with respect to

Proof: The positivity of P(k}Kl(k)P(k} is obvious. From the equality

(6.8) k,(k} = -^-(1
~0\K)

and (6.6), it follows

r0(*) r0 r0(/c)
(6.9)

and hence

(6.10) If- f- j^.^i
^ j-ooj-oo
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Lemma 6.4. Let P be the projection operator from Jf ^ to the orthogonal

complement of the eigenvector of Eq. (6.4)0 with the eigenvalue r0, Then

P\\, = o(k1^), as A - , 0 .

Proof: From Kq. (6.8) and the equality

we obtain

P(k) - P= to*! - ro

= r0(A1-A

Consequently

As is easily seen from (6.6) and (6.9), the second and third terms in the

right hand side of this inequality are of order O(k) as k— >0. As for the

first term

=r r (i-
J-ooJ-oo

the last of which is evidently of order o(k).

Now we can prove

Theorem 6,1, The operator P(k}Kl(k)P(k) approaches as k-*Q to

the operator PK±P defined in Sec. 4 in the Hilbert-Schmidt norm.

Proof: We first note that the projection operator P defined in Lemma

6.4 is identical with the projection operator introduced in Eq. (4.8). Because

of the equality
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P(k)Kl(k)P(k) - P£\P= PC^(A) - Kl)P+ (P(&) - P)Kl(k)P(k)

+ P(k)K1(k)(P(k) - P) - (P(k) - P)KJft(P(K) - P),

we obtain

- PK.PH,

where use has been made of the equality P(k)Kl(k) = K1(k)P(k) =

P(k)Kl(k)P(k), From Lemma 6.3 and 6.4 it immediately follows that

the second and third terms on the right hand side tend to zero as k— »0.

To prove 1||P(K1(A;) — K1)P||2— »0? we shall first derive an inequality for

the kernel function of PK^k^P. The positivity of PK^k^P implies

(cf- (3-4))

where (PKl(k)P)(x9 x) is shown to be equal to

_ a-k\x-y\ C°° C°° 1 0-k\y-z\S °° 1 _ a-k
_]-^-k

As is easily verified this is dominated by

-\ \x-y\d
J-°°r0-

which is certainly integrable. In addition, the kernel function of

-KJP is

\ h(x, y;
' -}-^-

h(y, x'-.tydju^y) ( \ h(y, z;
_ , Jj-ooJ-oo,

where
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h(x, x'\ k) = -±£(e-"*-*'\-\ + k x-x'\),

approaches zero point wise as k— >0. Therefore it follows that

which implies

as

By Theorem 6.1 and Lemma 3.5, it is shown that each eigenvalue

;i,.(AO(i = l, 2 , . . . ) ( 0 < ^ i ( A ) < ^ 2 ( A ) < - - - ) of P(k)Kl(k)P(k) approaches the

eigenvalue ^,-(0<A1< A2< • • • ) of PK^P as A— >0. Moreover the smallest

eigenvalue ^0(^) = 2Ar0(A) of K-^k) tends to zero, which is equal to the

smallest eigenvalue of Eqs. (4.5) and (4.6). Since it can also be shown

that each A,-(&)(i = 0, 1, 2,...) is a continuous, monotonously increasing

function of k and tends to infinity as &— »oo, we can justify Assumption

4.1 by the same method as in the proof of Theorem 3.1.

The Assumption 5,1 can be proved analogously, although calculations

are slightly complicated. We shall briefly sketch the way of justification.

Lemma 6.1'. For & >0, the bound state problem (2.8) for Z = 0,

7i = 2, with the condition (2.6) on the potential, is equivalent to the integral

equation

(6.1)' 08 = AG!J(*)0!!

on the Hilbert space 3PV, where the kernel function of the integral operator

G\(k") is given by

(6.2)'

The operator G^(k) is positive and belongs to the trace class with its trace

given by

tr(G8(A)) = (°°rI0(kr)KQ(kr) \ F(r) ] dr.
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Proof: All but the positivity of G%(k) are obvious. Although the

differential operator — (d/dr)2 — l/4r2 + &2 contains the negative term

— l/4r2, this operator can be transformed into —(d/dt)2 + k2e2t by a

unitary transformation, as was done in the previous section. Therefore by

the same argument as in Lemma 3.2, the positivity of G\(k) follows.

As will be shown in Appendix A, the trace of CjjC^) behaves in the

limit &->0 as

(6.3)' limf
*-»+o\ Jo / Jo

(j; Euler's constant)

Since tr((?2(^)) diverges when k tends to zero, we must extract from

&l(k} the diverging part. For this purpose we shall consider the integral

equation

with the kernel function

(6.5)' gl(k}(r, r') = _^-G8(A)(r, r')

and its formal &-»0 limit:

(6.4)i f°2 = rg°2f02

with the kernel function

(6.5)'0 gl(r,r') = (rr'r2.

As a lemma corresponding to Lemma 6.2, we obtain

Lemma 6.2X
8 The minimum eigenvalue f 0(A) o/ Eq. (6.4)' satisfies,

for sufficiently small k,

(6.6)'
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where ry is the (unique) eigenvalue of Eq. (6. 4)0:

(6.7)' *
~

Proof: The first inequality in (6.6)' is obvious (cf. Eq. (6.3)'), so is

the second inequality. The last inequality will be proved in Appendix B.

Lemma 6.37. Let P(K) be the projection operator from JtPy to the

orthogonal complement of the eigenvector of Eq, (6.4)' with the eigenvalue

r0(&). Then P(k)G%(k)P(k) is of positive type and has a trace uniformly

hounded even in the limit k-^Q.

Proof: By the same reasoning as in Lemma 6.3, we obtain from (6.6)'

tr (P(AOGB(i)P(AO) - -log fc.tr

- T
\
Jo

As will be proved in Appendix C, the following also holds:

Lemma 6.4'. Let P be the projection operator from 3?v to the

orthogonal complement of the eigenvector of Eq. (6.4)'0 with the eigenvalue

f0. Then

as

Finally we have

Theorem 6.1'. The integral operator P(k)G%(k) P(k) approaches as
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k— >0 to the integral operator whose kernel function is given by (5.7) in

the Hilbert-Schmidt norm.

Proof: Through the same argument as in the proof of Theorem 6.1,

it is sufficient to show that PG|(&)P approaches the above limit in the

Hilbert-Schmidt norm. From the estimate of the kernel function of PG\(k)P

given in Appendix D, it follows that we can make use of Lebesgue's

dominated convergence theorem in the evaluation of the Hilbert-Schmidt

norm of the difference between two operators. Moreover, by using the

estimates obtained in Appendix B, we can confirm that the kernel function

r, r') tends, for each (non-zero finite) r and r', to

f \ 5 -log [max (r, s)~\dfJL(s)
(rr')1/2 -log[max(r, r')] + ̂  - p -

I \ sdfi(s)
Jo

$
00 r=o /-co

s-log [max (r', s)"^dfJi(s) \ s\ £-log[jnax (5, t)~]dfi(t)dfi(s)
__o JQ Jo

which is shown, by a simple manipulation, to be equal to the expression

(5.7).

Thus Assumption 5.1 can be justified by the same reasoning as in the

justification of Assumption 4.1.

§7. Summary and Discussion

We have generalized Bargmann's inequality to the space of arbitrary

dimension in a mathematically rigorous way. The number of bound states,

created in the Z-th partial wave in the rc-dimensional space, by a spherically

symmetric potential satisfies the inequality (3.11) for the case 21 + n — 2^1

under the restriction (2.5) on the potential function. The inequality can

be written in a compact form:

Here P£ is the projection operator denned on ^^ = L2(R"; V(\~x\)<tx)
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such that Pl
nA

2
nP

l
n = — 1(1+ n — 2}Pl

n, and Kn is the integral operator on

Jf£, whose kernel function (KJCx,^') is given by (r(n/2)/2(n-2}nnl2)

\~x-~xf\2~n(n^^) or (l/27r)-log(l/|#-jc'|) (ra = 2), that is an elementary

solution of — Jw, and trn( ) means the trace on 3?$. All remain true for

the case 1 = 1, n = l; in Sec. 4 we have already introduced P\ and K^

and the corresponding inequality (4.16) is rewritten as N\<trl(P\K1). For

2l + n — 2^Q, i.e., 1 = 0, n = 2 and 1 = 0, n = I, under the condition (2.6)

and (4.2), respectively, the inequalities (5.6) and (4.15) can be expressed as

where P is the projection operator from tfty to the orthogonal complement

of the vector e0(e0(l;) = l in both cases).

As was noticed in Sec. 2, inequalities in which \V\ is replaced by

| V- | hold true also.

The saturation of the inequalities, established for n = 3 in Refs. Q]

and Q2], can be proved analogously, that is, we can find a potential such

that the generalized Bargmann's inequality takes the form Nl
n<m + e (m is

an arbitrary positive integer and £ is an arbitrary positive number) and the

potential produces just m bound states in the Z-th wave in the zi-dimensional

space. Moreover we can prove that, for the case 21 + n — 2^0, if the

potential function is non-positive (and, of course, not identically vanishing)

there emerges at least one bound state : Nl
n ̂  1 .

The author expresses his hearty thanks to Prof. H. Araki for his

kind interest and his critical comments on the lack of mathematical rigour

in the original manuscript. He also thanks to Dr. T. Yoshida for his

careful reading of the manuscript.

Appendix A % Proof of (6.3)'

From the well-known behaviours of I0 and K0 near the origin and the

point at infinity:
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and

/ -IT \ l / 2

00 = h£r) e-*(l + 0(*-')),

we can obtain the estimates

With (A.1)

|JRx(Ar) | ^Q! 1 ., »ekr fa: constant)i -f- n^r /

and

With (A.2)

•(|logftr|+l)e-* r

fa: constant).

Therefore tr(G|(A)) can be written as

tr(Ci(ft))=-

- (r + log (*
Jo

To prove that the last two terms tend to zero as &— »0, it is sufficient to

show

lim A | log A | r —H^-dfJL (r) = 0. (A.3)
*-»+o Jo l + /cr

By dividing the integral into two parts :
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I*"'' Vrr-^W + T TZJo l + kr J&- i '2 l +

we find

and

From these estimates (A.3) immediately follows.

Appendix Bs Proof of Lemma 6,2'

The maximum principle states that

>.
(V J0(ftr'
Jo

where we have chosen the eigenfunction of Eq. (6.4);
0 (/2(0 = 7"1/2) as a

trial function. By the use of (A.I) and (A. 2), the numerator of the last

expression is written as

= -log
o
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- log k
Jo Jo Jo

The first term on the right hand side is estimated as

- log k re-kr rfekr' dju(r') d/i(r) + log k re-kr

o Jo

("because ekr/-l<c1 ^f, ,ekr/ \
\ ~ 1 1 + Ar' /

which approaches zero as ^— >0 because of (A. 3). (Note that the third

term is incidentally shown to vanish as A— >0.) In the same way, we

obtain

o Jo

because l-e-

^C2 I log A | - . ^ ( r ) ^ ( r O - ^ 0 . (A -> 0)
Jo l + /cr Jo

The second term evidently approaches to

- Tr(r + log(r/2))( V dXr') <*Xr),
Jo Jo

as k— »0 and the last term tends to zero. Combining these results we obtain

the last inequality in (6.G)'.

Appendix Cs Proof of Lemma 604/

By the same argument as in the proof of Lemma 6.49 it is sufficient

to prove
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the left hand side of which is given, from (6.5)' and (6.5)0!) as

^

The behaviours of J0 and ^0 given in Appendix A imply

\K0(x) I0(x') + log x\^bl9 for Q^x'^x^I (b1: constant)

and

\K0(x)Io(x')\^b29 for x^l and x^x'^Q (62: constant).

Consequently

O
o JO

( I log r | + &!> ( I log
o Jo

and

fc|)2 f" rCVd«f r")
J i / » Jo r d^ r^

') = o(|log

As for the integral

1 (llk (r

(log&)2Ji r)or/(Ko(
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we have the inequalities

|^o(&r)/0(&r') + log A | ̂  |log r| +b,

and

|K0(&r)J0(ferQ + log k\ ^ | log r| + 6, ̂  Hog k\ + b,
\logk\ = |log£| - |log*| 9

both of which hold in the range of integration. Since the integrand tends

to zero as &-»0, the expression in the curly brackets tends to zero.

Appendix D: Estimate ©n (PG§(A)P)(r9 r;)

The positivity of PGQ
2(k)P implies

(Jte8(*)P)(rf r0
2^(PGiWP)(r, r)9(PGi(^)P)(r', r'),

where

By virtue of the properties of /„ and K0 given in Appendix A, we obtain

the following estimate:

where .Fj is equal to

- f 8
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and F2 is a positive function independent of k such that

From the inequalities

l_ e -*l r -s l k r — s\ . f kr , ks ~\
!—_< r \ I

: C- 2 1 + fc r-s| ~ 2[_l + A;r ̂  l + &s J'

we obtain

, ' 2

o Jjv/ \Jo

)ol + &r

which tends to zero as &-»0 by (A.3). Consequently the integral

tends to zero if we let k —>0 and TV—> oo independently.
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