Publ. RIMS, Kyoto Univ.
9 (1974), 429-461

Bargmann’s Inequalities in Spaces of
Arbitrary Dimension
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Abstract

An inequalily is derived which gives an upper bound of the number of
bound states in the [-th partial wave ([=0, 1,---) of the two-body Schréddinger
equation with a spherically symmetric potential function in the n-dimensional
space (n=1,2 ---). This is a generalization of Bargmann’s inequality for the
case n=3. The generalization is straightforward for the case [=1 with n=2
and [=0 with n>=3. After a mathematically rigorous justification of his
heuristic argument, Schwinger’s method in his simple proof of Bargmann’s

inequality is employed here. Newton’s result for the case l:—%, n=3,

which is equivalent to the case [=0, n=2, is reobtained.

§1. Intreduction

In the nonrelativistic quantum mechanics, Bargmann [ 1] has obtained
in 1952 the so-called ‘‘Bargmann’s inequality”’ which gives an upper bound
for the number of bound states produced, in the two-body system, by a
spherically symmetric potential. His method of proof is to count the
number of zeros of the zero-energy solution, with a smoothness condition
at the origin, of the partial-wave Schridinger equation and to make use of
the well-known correspondence between the number of zeros and that of
hound states. Avoiding this highly complicated method, Schwinger [ 27| has
elegantly rederived, in a heuristic manner, Bargmann’s inequality and its
versions, by transforming the zero-energy “‘hound state” problem to an
integral equation and applying Mercer’s theorem to the positive integral

operator thus obtained. Soon after, an inequality for the case l=——lw
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important in the theory of complex angular momenta, was obtained by
Newton [37] by employing a perturbation method which becomes exact in
the limit [—>— .

Above arguments, however, are restricted to our real space, that is,
to the three-dimensional space. In the case of one- and two-dimensional
spaces, as is well known in exercises on quantum mechanics, an attractive
square-well potential with a fixed radius can produce at least one bound
state, however shallow the well may be. This suggests that, in the one-
and two-dimensional cases, an inequality for the number of bound states
will take a form drastically different from that in the three-dimensional
space.

The purpose of the present paper is to generalize Bargmann’s inequality
to the space of arbitrary dimension and to justify in a mathematically
rigorous way the heuristic arguments employed thus far.

General formalism is given in the next section for two- or higher-
dimensional case. A straightfoward extension of Bargmann’s inequality to
the two- or higher-dimensional space except for the zero-th wave in the
two-dimensional space is performed in Sec. 3. Heuristic derivations are
given for the one-dimensional case in Sec. 4 and for the case [=0 in the
two-dimensional case in Sec. 5. Section 6 is devoted to the justification of
arguments in the preceding two sections. In the final section are given

a summary and discussions.

§2. General Formalism

In polar coordinates, the n-dimensional (n=2) Laplacian 4, is expres-

sed as
1 0 0 1
dn="m1 By <rn_1 or >+ re 4,

where r is the radial variable and A2 is the Laplacian on the (n—1)-
dimensional unit sphere. The Laplacian 42 has a series of eigenvalues

—~1(l+n—-2) (I=0,1,...) each of which has a degree of degeneracy [4 ]

 Q@lAn—T(n41—2)
@1 D = Y a(Ea)
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Here A(2,0) must be interpreted as a limit lim A(n, 0)=1.
n—2
By the separation of variables for the n-dimensional Schrodinger
equation with a spherically symmetric potential V' =V (r):

L= 4, V() p,(x)=Ep, (%), T R" (E: energy)

into the radial part and angular part, the radial part in the [-th wave
takes the form

@) [t () KD ) o) =B ).

In terms of a function ¢} defined by

(2.3) Gu(r) =rDL(r),

Eq. (2.2) is expressed as

o [—(&)+EHe=DREE =D/ ye) o) =B 0.

As was shown by Kodaira [5 ], the eigenvalue problem (2.4) is, in the
Hilbert space L2%((0, «); dr), well defined for the case 2/4+n—42=0,
provided that the potential function is a real-valued piecewise-continuous

function satisfying the condition
@5) [ rredr<o.
0

For the case n=3, [=0, in order to make the eigenvalue problem well
defined, we must require a boundary condition ¢3(r)=0() as r—0 for
the eigenfunctions in addition to the same conditions on the potential as
above. As for the case n=2, [=0, we shall impose a stronger condition
on the potential;

(2.6) S:r(llogr! + D) V()| dr < oo

and require a boundary condition ¢3(r)=0(@'2) as r—0.
It must be noticed that the behaviour of the potential as r—oo is more

restrictive than that given in Ref. [57], to guarantee the finiteness of the
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number of point eigenvalues. It was also shown [5] that each point
eigenvalue E (the energy level of the bound state), if any, is non-positive.
Hereafter, we shall set F=—£k2 and for the point eigenvalues we shall
take the branch £=0.

First of all, we shall summarize the well-known properties of the solu-

tion of Eq. (2.4) in the following lemma (for the proof see, for instance,

Ref. [6]):

Lemma 2.1.

a) The case 2l+n—3=0

Under the condition (2.5), any non-trivial solution ¢!, of Eq. (2.4)
behaves, for any k, near the origin such that hm ri+(=32. gl (1) exists, and
if the limit vanishes, then 11m roi-(n=1i2, ¢’(r) exzsts and does not vanish.
For £>0, e #7-@L(r) tends to a finite limit as r— oo, and if the limit vanishes,
then e*7-¢L(r) tends to a non-zero finite limit. For k=0, r~=(n-1I2.gL(r)
tends to a finite limit as r— oo, and if the limit vanishes, then r'+(n=3)12.¢L(r)
tends to a non-zero finite limit.

b) The case n=2, [=0

Under the condition (2.6), any mon-trivial solution ¢ of Eq. (2.4)
behaves, for any k, near the origin such that lim r~/2|logr|-1-@%(r) exists,
and if the limit vanishes, then lim r~1/ 2~¢8(r)rquists and does not vanish.
For £>0, e #7.¢3(r) tends to aﬁ;im'te limil as r—oo, and if the limil
vanishes, then e* -¢3(r) temds to a mnom-zero finite limit. For k=0,
r~Y2|log r|~1.¢3(r) tends to a finite limit as r— oo, and if the limit vanishes,

then r~12.¢%(r) tends to a non-zero finite limit.

As is easily seen from the above lemma, the wave function ¢/, of a

bound state with negative energy level (k£ >0) behaves as

0(’,I+(7rvl)/2), I”—'O,
(2.7) b,(r) =

O(e *), r— oo,
Therefore such a function @), belongs to #y=L2((0, ); |V(r)|dr), as
well as to L2((0, o); dr).
According to Bargmann’s idea [1], we first replace the potential ¥

by a “‘more attractive” potential — |V | or F_=min[V, 0].
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Lemma 2.2. The number of point eigenvalues never decveases by the
above replacement.

Proof: Consider a bound state problem

[~ () + =D =0 1 -y () -+e(= V) ) [0

dr
=—k%*¢!(r),

depending on a parameter e(0<e¢<1). As is easily verified, each eigenvalue
is non-degenerate for fixed ¢. Using a standard technic of perturbation
theory [ 7], we can show that, for each eigenvalue —%? and a correspond-
ing eigenfunction ¢;, the equality

2k = (VO +V )i 2/ 16,6)|2dr
c 0 0

holds. This implies k; is a non-decreasing function of e¢. Therefore the
number of bound states generated by the potential 7/, i.e. at ¢=0, never
decreases by the above replacement e¢=1. (The proof of this lemma and

all the subsequent arguments go parallel for the replacement of ¥ by V_.)

Next, following Schwinger’s method [ 27|, we shall replace the potential
—| V| by a potential —2|¥| and consider a bound state problem

(2.8) [_<i>z+ (”(”‘1)/225”@13—)-/-2-1—11 V(r)qmr)

dr
= k().

It can be shown that, for fixed positive 4, all the eigenvalues —ki;(2)?, if

any, are non-degenerate and each k;(1) satisfies
@9 2k WD 51650 12 v Ol ar/ (18405 D12,
0 0

where ¢,(-;%) is a corresponding eigenfunction. Consequently k;(1)
decreases monotonically as 4 decreases so long as £,(1) remains positive.
Since all bound states disappear at 4=0, there exists a point 4; on the
interval [0, 1), such that k;(4,)=0. Thus Schwinger has reduced the
eigenvalue problem for —£%2 with A=1 in Eg. (2.8) to the eigenvalue
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problem for 2€[0,1) with £=0 in Eq. (2.8). There exists, however, a
subtle point in taking the limit £—0 in Eq. (2.8), since as is seen in
Lemma 2.1, the asymptotic behaviour of the solution of Eq. (2.8) changes
drastically for £>0 and for £=0.

In the next section, we shall justify Schwinger’s argument and obtain

a generalization of Bargmann’s inequality for the case 2/4+n—2=1.

§3. Higher-Dimensional Case

—2l+n-2z1—

We shall try, in this section, to derive a generalized Bargmann’s
inequality for the case 2/+n—2=1, that is, for all / with n=3 and /=1
with n=2.

Hereafter we shall mainly confine ourselves to the Hilbert space
#y=L%(0, ©); |V ()|dr), and hence, for notational convenience, we
shall write du(r) instead of |V (r)|dr and denote by ( , ), || |l, |l ||z and
tr( ) the inner product, the norm, the Hilbert-Schmidt norm and the trace
on sy, respectively.

First we shall rewrite the eigenvalue equation (2.8) into an integral

equation:

Lemma 3.1. The bound state problem (2.8) is, for k>0, equivalent

to the integral equation
(6.1 $,= 4G, (k)¢,,
on Hy, where the kernel function of the integral operator GL(k) is given by

Il+%n—l(kr)"KlJr-én—l(kr/)s 0=sr<r’

(3.2)  GLE), r)=(rr")Ex
Iyl (kr')-Kp Ly o (kr),  r>7l

Proof: Using the properties of modified Bessel functions, I, and K,
we can easily recognize that the solution of Eq. (3.1) satisfies Eq. (2.8).
Therefore we have only to show that the solution satisfies the boundary

condition (2.7). Since the explicit form of Eq. (3.1) is
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30 =2{ L. B du),

the estimates on ¢ can be obtained through the use of Schwarz’s inequality
as

1/2

#1121 {];

GLBr ) 12an} {1816 12 du )

= [ 2HIGE) (s I+l

The second factor on the right hand side of this inequality is estimated as
6L Iz =r (K, o)y« (1, b)) d e
(3.3) (L ey (K (k) d e

gr(Iv(kr)-Kv(kr))zgwr’d,a(r’), (»E I+45n—-1 ;%)

0

where we have made use of the property that 7,(K,) is a positive-valued mono-
tonously increasing (decreasing) function. As is easily verified, the function
I,(x)K, (x), for vg%, is a bounded function for x=0. Consequently it
follows

[gL(r)| = | 2| C,||p%||r 2 (C,: positive constant).

From this estimate and Lemma 2.1, it is concluded that ¢/ satisfies the
boundary condition (2.7).

The converse statement, i.e., that the solution of Eq. (2.8) with the
boundary condition (2.7) satisfies the integral equation (3.1) is trivially
verified by the standard arguments.

As a byproduct, we can readily show through (3.3) that the operator
G' (k) is of Hilbert-Schmidt type and its Hilbert-Schmidt norm

. o (oo , , 1/2

s la={J 1 16k0 e, ) 12duh du)
is bounded by a constant independent of £(>0). We can, however, show
more about the properties of G4(k):
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Lemma 3.2. The integral operator G.(k) is of positive type and
belongs to the trace class, with its trace uniformly bounded with respect to

E(>0).

Proof: To prove the positivity, we have only to show that (f, GL(k)f)
is non-negative for sufficiently well-behaved f, for instance, for infinitely

differentiable function with compact support in (0, o). For such a function,

(f, GL(k)f) is equal to

T e = S I
N E AR e O
where g=G.(k)f. This integral is evidently non-negative.

By the usual argument of the positive integral operator and by the
fact that the kernel function of G4(k) is independent of the potential and
it is a continuous function with respect to two variables, it immediately
follows that

a?G(k)(r, 1) —2aGL(E)(r, ")+ GL(B)(r', ') 20
for any real a, which in turn implies
(3.4) G (k)(r, ) <G (k)(r, r)-GL(k)(F', 7).

Thus, by the integration of this inequality with respect to du(r)du(r’),

we obtain
164, = GLR, P dae).

Since the integral on the right hand side certainly exists and is bounded
by a constant independent of £(>0), we have again confirmed the property
of GL(k) stated immediately after the proof of Lemma 3.1.

Denoting the eigenvalues of Eq. (3.1) by 4;(k) (i=1, 2,...) (0<2,(k)<
25(k)<---), each of which is evidently non-degenerate, and corresponding
orthonormal eigenfunctions by ¢'(-, 2;(k)), we get, from the positivity of
G'(k), the inequality

N1

(3.5) Guk)(r, Nz X TR |65(r, 2:(K)) %,

=1
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for any positive integer /N and for r belonging to the support of the
measure 4. Therefore

| el Ndnrz 5 =t G,

0 i=1 /Ii(k>
In order to prove that the equality actually occurs in this inequality, it is
sufficient to notice that, by a slight modification of the argument of Mercer’s
theorem [87], the right hand side of (3.5) converges uniformly on any
compact subset of [0, o) to the left-hand side as N—oo. Consequently

we have
(3.6) tr GLRD) = 111k K 3y s o0 | V) .

We shall next consider the zero-energy ‘“‘bound state’ problem, that is,

(3.7) [~<i)2+ (L+(n —1)/2351 +(n—3)/2)

dr ~UV ] =0,

with the boundary condition

O(rH-(n—l)/Z), r—0,
5z(r)={

O(r—-l—(n—S)/Z), r— oo
In quite an analogous manner we can show the following

Lemma 3.3. The zero-energy “bound state’ problem is equivalent to
the integral equation

3.8) $n=2Gdy,

on the Hilbert space 5y, where the kernel function of the integral operator
G', is given by

1 (r/r/)l+(n~2)/2, O_S_r<r’
(3.9) G.(r, )= 3 tn—>2 (rr’)l’z X
n— (' /r)1+n=2iz, r>r.

The integral operator G, is of positive type and belongs to the trace class
with its trace given by
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1

(3.10) 56 =5y ey | VO dr.

Our main concern is how the Eq. (3.1) ‘“‘approaches’ Eq. (3.8) in the
limit £—0.

Lemma 3.4. The operator GL(k) approaches G, as k—0 in the
Hilbert-Schmidt norm, that is to say,

lim [|G,(k) — G}||,=0.
E-0
Proof: The proof is easily achieved by noting that the inequality
GL(k)(r, r')2<C'rr’ (C’: a constant independent of %) holds by virtue of

(3.4) and that the kernel function (3.2) approaches pointwise to the kernel
function (3.9) as £—0.

This lemma implies the following

Lemma 3.5. Let 2; (i=1,2,..) (0<2,<2;,< ") be the eigenvalues of
G.. Then

=0. (i=1,2,.)

Proof: By means of a theorem due to Weyl and Courant [ 9], we have

| <l6i® =6l G=1,2,..)

‘___

1
L) 4
The proof follows from this inequality and Lemma 3.4.

We are now in a position to prove

Theorem 3.1. For 2l+n—3>1, the number of eigenvalues 2; of G,
such that 0<A;=1 is equal to the number of bound states generated by the
potential |V'|. For 1=22l+n—32=0, the number of eigenvalues 2; of Gl
such that 0<A;<1 is equal to the number of bound states generated by the
potential |V |.

Proof: Equation (2.9) shows that each eigenvalue 4;(k) is a monoto-
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nously-increasing differentiable function of k£ for £>0. Moreover the fact
that tr(GL(k)) tends to zero as k—co, which is readily verified through
Eq. (3.6), implies that each 2;(k) tends to infinity as k—oco. On the other
hand, Lemma 3.5 states that 4;(k) tends to 4; as k—0. Consequently
there exists a one-to-one correspondence between each 4; such that 0<4; =1
and k; such that 1;(k;)=1. Clearly E;= —k? is the energy level of the
bound state created by the potential | V|. If 4; equals unity, that is
E;=0, the zero-energy ‘“‘bound state’ is a true bound state if and only if
l+(n—3)/2>% (cf. the boundary condition (3.7)).

Finally we arrive at the main theorem:

Theorem 3.2. For 2l+n—2=1, the number of bound states, N,
produced by the potential V, satisfying (2.5), in the l-th wave in the n-
dimensional space satisfies the inequality

1 =
1
(3.11) Ni< Zl-l-n—ZSorl 7| dr.

Proof: By means of Theorem 3.1, V) is equal to or smaller than the
number of eigenvalues of G lying on the interval (0, 1]. Let Ay <1<2y.q,
then

/i =m1n_2gor|1/(r)[dr.

N,

IA

N 1 o
N=)X <X
i=1 i i=1
The inequality (3.11) is the generalized Bargmann’s inequality. It

must be noticed that each bound state has the multiplicity A(n, [), if we
take into account the freedom of the angular part.

§4. One-Dimensional Case

The bound state problem in the one-dimensional space is to solve the
eigenvalue equation

an  [-(L) @ pe =BG, —e)<a<e,

for which the eigenfunctions belong to L2((— oo, o0); dx). If we assume
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that the potential ¥ is a real-valued piecewise-continuous function satisfy-
ing the restriction

(4.2) [~ as1+v17elde<es,

the differential operator on the left hand side of Eq. (4.1) turns out to be
essentially self-adjoint and point eigenvalues of this operator, if any, are all
negative [5].

Suggested by the results in the previous section, we shall here make
the following assumption:

Assumption 4.1. The number of bound states of Eq. (4.1), which is
equal to the number of point eigenvalues because of mno degemeracy, is not
greater than the number of point eigenvalues 1 lying on the interval [0, 1)
of the eigenvalue equation

(4.3) [—(%)2—Z|V(x)[]¢)l(x)=0, o< x <o

Sfor which the eigenfunctions belong to the Hilbert space #y=L((— o0, o0);
[ V(x)[dx).

This assumption will be proved in Sec. 6.

In the one-dimensional case, we shall mainly confine ourselves to J#%,
so we shall write du,(x)instead of |V (x)|dx and the inner product, the
norm of vectors, the Hilbert-Schmidt norm, and the trace of operators in
#Y by(, )1 |l w1 Il |2, and try( ), respectively.

Since any eigenfunction ¢; of Eq. (4.3) satisfies the boundary condition

(4.4) $1(x)=0Q1), x— £oo,

we are immediately led to

Lemma 4.1. The ecigenvalue equation (4.3) is equivalent to the

integral equation
(4.5) ¢r1=ceq+1K ¢, (c¢: constant)

on ) with a supplementary condition
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(4.6) A(eq, $1)1=0,

where the kernel funclion of the integral operator K, and the vector e, are

given as

4.7 K (%, x")= —%|x—x’| and (ey)(x)=1.

Proof: The proof is obtained, for example, by rewriting the differential
equation (4.3) into its equivalent integral equations on the right-half and
the left-half parts to the (say) origin of the real line separately and by
making use of the continuity condition at the origin, that is, the solution
defined on the right- and left-half parts must be continuous up to the first

derivatives at the origin.

From Egs. (4.5) and (4.6), it readily follows that the vector e, is an
eigenvector bolonging to the eigenvalue 4=0. For A1+#0, eigenvectors
necessarily belong to #%, the orthogonal complement of e,. Let P be the
projection operator from #} to s+, then Eq. (4.5) takes the form

(4.8) $1=2PK,P¢,
on .

Lemma 4.2. The integral operator PK,P is of positive type and
belongs to the trace class with its trace given by

.%_SZS: | —x"| dpy(x")dpy(x)
[~ auo. |

(4.9) tr,(PK,P)=

Proof: To prove the positivity, it is sufficient to show
(4.10) Sm f(x)g'” (-—-——;—ix—x/Df(x/)dx/dx

is positive for not identically-vanishing, real-valued infinitely differentiable

function f with compact support in (— oo, co) satisfying the condition

glf(x)dx =0,
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For such a function, the expression (4.10) is transformed, by the integra-
tion by parts, into

Sl(giw F(5") dx')de,

which is evidently positive.

In order to prove that PK;P has a trace (and hence is of Hilbert-
Schmidt type because of Lemma 3.2), we note that the kernel function
of PK,P is given by

(4.11) (PK,P)(x, 5) = (K;)(w, 5"y — K1e0)(x) ()

(30, 80)1

o) (Kieg)(x") | (e, Kiep)s . ,
_e x(eo, e:)l x + e(eo, eloe)% Ley(%)-eo(x").

From this expression we obtain

[ PK.P) 3, mdp ()= =Kqead,

e (60, 60)1

the right hand side of which is certainly finite. Consequently, by the same
argument as in Lemma 3.2, the equality (4.9) follows.

By noticing that there exists one more point eigenvalue 4=0 in addition
to those of PK;P and by using the same arguments as in the proof of
Theorem 3.2, we arrive, under the Assumption 4.1, at the following result:

Theorem 4.1. The number of bound states, N,, produced by the
potential 'V, with the restriction (4.2), in lhe one-dimensional space satisfies
the inequality

5§ e VG da | V()] d u

[~ 17e1as

(4.12) N, <1+

Thus far we have not assumed the spherical symmetry of the potential.
If we require this, that is,

V(——x)zV(x)EV(r), r= IXI,
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eigenfunctions of Eq. (4.3) split into two classes; even functions of x and
odd functions of x. Denoting the projection operators from s} to the
subspace consisting of even functions and that of odd functions by P{ and
Pi(=1—PY), respectively, we find

Lemma 4.3.

1 oo (oo
=l dm @) diy
(4.13) tr, (PYPK,PPy)=-2-J0do
[ dm®
and
(4.14) tr,(P1PK,PP1)= S:r du, (7).

Proof: From the meaning of P, P and P}, it follows
P9P=PP{ and P}P=PP}=Pl,
from which and the equalities
(P PY)(x, )= —(1/D(| 2 — 2" [ + |5+ x'|),
(PIK, PD)(x, )= —(1/D)(|x = ="| — [ 2+ 2"]),
readily follow Egs. (4.13) and (4.14).

Since the eigenvector e, belongs to P{s#}, we have

Theorem 4.2. For the spherically symmetric potential in the one-
dimensioal space, the number N§ of bound states wilh even eigenfunctions
satisfies

—;—S:S: lr—r' ||V ()| dr' | V()| dr

[ ivear

(4.15) NO<1+

while the number N1 of bound states with odd eigenfunctions satisfies

(4.16) Ni< g:rl 7| dr.
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[N.B.] In the previous section we have obtained the solutions of Eq.
(3.7) satisfying the boundary condition @.(r)=0(*+(»~1I2) at the origin.
If we put formally n=1 in Eq. (3.7), we get a centrifugal potential
[(I-1)/r%. Since this term must be absent in the one-dimensional case,
! equals 0 or 1. Because for [=0 (I=1), above boundary condition becomes
) =0)(gi(r)=0()), ¢3(¢}) can be extended, continuously up to the
first derivatives, as an even (odd) function to the interval (—oo, 0). This
justifies the notations N{ and N} as special cases of N, with n=1, [=0
and n=1, [=1. Incidentally, the multiplicity _h(n, ) defined in Eqg.
(2.1) has a corresponding property: limA(n, 0)=1, limi(n, 1)=1, and
lim h(n, [)=0 for =2, " "

n—1

§5. The Case I=0 in Two-Dimensional Space

The only case left untouched is the case =0 with n=2. As was

done in the previous section, we shall again make

Assumption 5.1. The number of bound states generated by the
potential | V|, satisfying the condition (2.6), in the zero-th wave in the two-
dimensional space is equal to the number of point eigenvalues 2, lying on
the interval [0, 1), of the eigenvalue equation

5.1 [~(&Y -5 -1ro) =0,

on the Hilbert space # (= L2((0, o0): |V (r)|dr)), that is, with the boundary

condition
9r)=0GY%), as r—0 and r— oo.

In terms of the original function ¢3()=r"12¢4(r) (cf. Eq. (2.3)), Eq.
(5.1) is expressed as

1 d d
(5.2) |- 5 (rar)- 217 @1 s =o,
with the boundary condition

3(r)=0(Q1), as r—0 and r— oo,
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By the change of variable

Eq. (5.2) becomes

(5.3) l:»—(T?t—)z—MW(t)]]u(t):O, o< i< oo

where we have put
¢9(ry=u(t), and ril (r)=M(1).
The condition (2.6) on | is expressed in terms of Il as

(5.4) g;uq FD| ()| di< oo,

while the boundary condition hecomes
(5.5) u(t)=0(1), as t— *oo.

By making use of the correspondences between (5.3) and (4.3), (5.4) and
(4.2), and (5.5) and (4.4), we immediately find

Theorem 5.1. The number of bound states, NY, produced by the
potential V, under the wvestriction (2.6), in the zero-th wave in the two-
dimensional space, satisfies

eal S:r llog (r/r)| | V)| dr' 1V () | dr

(5.6) NY<1+ .
g r V()| dr
0

Proof: ¥rom the inequality (4.12), we obtain

1 (= (= , , ,
S ernwan i aniwe 4

S’;l W) de

Ni<1+

This inequality, expressed in term of the variable », takes the form of

(5.6).
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Newton [37] has obtained the same inequality as (5.6) for the case

= -1 with n=3. Since in both cases 2/+n —2 vanishes, the relation

2
between them is obvious.

Finally we note that, as is easily verified from Eq. (4.11), the kernel

function of the integral operator corresponding to Eq. (5.1) is given, on

the orthogonal complement of the eigenfunction with the eigenvalue A1=0,

by

5| sogtr/5)| dats)

g:s du(s)

(rr’>1'2{ — 5 log(r/r)] +

(5.7)
-;—BZsllog(r//SDI du(s) —;—SZSS:tllog(s/t” d,a(t)d,a(s)\'

+

§6. Proof of Assumptions 4.1 and 5.1

First we shall be concerned with the one-dimensional case.

following lemma is obvious:

Lemma 6.1. For k>0, the bound stale problem

[_(%f —4l V(x”]fbl(x): — k2, (x), —oo<x<oo,

RS (B

The

with the condition (4.2) om the potential function, is equivalent to the

integral equation

(6.1) ¢1=21K (k).

on the Hilbert space #%, where the kernel function of the integral operator
is given by

(6.2) K, (k)(x, x')zilk—e‘k'”""'.

The operator K (k) is of positive type and has a trace given by
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1 oo
(6.3) tr, (K (B) =g |1V da.

The difficulty in the one-dimensional case lies in the bad behaviour of
K,(k) in the limit £—0. To avoid this singularity we shall consider,
instead of Eq. (6.1), the following integral equation:

(6.4) fi=tk(k)f1,

with the kernel function

(6.5) ki (k) (%, x")=eF=+1(=2kK, (k) (%, 7)),
and its formal £—0 limit:

(6.4), fi=tkif1,

with the kernel function

(6.5), k(x, x)=1.

We shall now prove
Lemma 6.2. The minimum eigenvalue © (k) of Eq. (6.4) satisfies

oo el o d Ny ’ d )
(6.6) Tl_o_kg_xg_wlx x'| du(x") ﬂ(x)é 1 1

= <—,
S_wd'al(x) to(k) T 7o

where v, is the (unique) cigenvalue of Eq. (6.4),:

(6.7 =" am.

Proof: The equality (6.7) is obvious. Since v,(k) satisfies

iy <trtk)={"_dm@="1L,

we have only to show the left half of the inequality (6.6). Through the

maximum principle, it follows
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L b )G 2 dm) )
'L'o(k) fex’I],- ( af)]_ = S“" d#l(x)

_S dﬂl(x)_gmg A—e*==2"YY dpy(x") dpy(%)

- g_wdﬂ1<x)
grl_o_kglg }xg_l;zl d,ul(x)dﬂl(x).
) #,(%)

In the first inequality we have chosen the eigenfunction of Eq. (6.4),
(f1(x)=1) as a trial function, and at the final inequality we have used

the obvious relation 1—e ##~*"I<k|x—x’].

Lemma 6.3. Let P(k) be the projection operator from H#Y to the
orthogonal complement of the eigenvector of Eq. (6.4) with the eigenvalue
to(k). Then P(k)K,(k)P(k) is a positive operator and has a tirace
uniformly bounded with respect to k(>0).

Proof: The positivity of P(k)K,(k)P(k) is obvious. From the equality

(6.8) ky(k)=—~ (k) (11— P(k))+ P(k)k (k) P(E),
and (6.6), it follows
try (PR () PUR) =t (s () = s =+ — (5
(6.9)
) G dnn )
dﬂl(x)

and hence

try (PRYK 1 () Pk)) =t (PO, () PRY)
(6.10 ) e G dn)

[ dm@
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Lemma 6.4. Let P be the projection operalor from H#Y to the orthogonal
complement of the eigenvector of Eq. (6.4), with the eigenvalue t,, Then

UP(k) = Plly=0(k"2), as k->0.
Proof: From Eqg. (6.8) and the equality
L p
A‘l" TO (1 I)’
we obtain
P(k)—P=cok,—1o(k)k (k) +7o(£)P(k)k (k) P(k)

=To(kr—k1(k)) + (to— (k) k (k) +o(K) P(k) k1 (k) P(k).

Consequently

JiP(k) = Plly<toey

ky—k (B)l[a+ [to—1o(k) | «1]lk1 ()]

+7o(k) 1 || P(R) K (k) P(E)| |,

As is easily seen from (6.6) and (6.9), the second and third terms in the
right hand side of this inequality are of order O(k) as k—0. As for the
first term

e =k 0IE=" " a—ereszam e dm )
<" (T la—a | Qm et ) de),
the last of which is evidently of order o(k).

Now we can prove

Theorem 6.1. The operator P(k)K,(k)P(k) approaches as k—0 fto
the operator PK,P defined in Sec. 4 in the Hilbert-Schmidt norm.

Proof: We first note that the projection operator P defined in Lemma
6.4 is identical with the projection operator introduced in Eq. (4.8). Because
of the equality
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P(E)K,(k)P(k)—PK,P=P(K,(k)—K,)P+(P(k)— P)K,(k)P(k)
+ P(R)K,(k)(P(k) — P)— (P(k) — P)K,(k)(P(k)— P),
we obtain
IP(R)K (B) P(k) — PK Pl|; <, || P(K (k) — K1) P
+204|[P(R) = P[5+ 1|| P(B)K, P(E) 1 + 1| | P(R) — Pl[3-1 | K1 (B,

where use has been made of the equality P(k)K,(k)=K,(k)P(k)=
P(E)K,(k)P(k). From Lemma 6.3 and 6.4 it immediately follows that
the second and third terms on the right hand side tend to zero as k£—0.
To prove ,||P(K,(k)—K,)P||,—0, we shall first derive an inequality for
the kernel function of PK,(k)P. The positivity of PK;(k)P implies

(cf. (3.4))
(PKy(E)P)(%, x")? < (PK,(k)P(x, x)-(PK,(k)P)(x', %),

where (PK,(k)P)(x, x) is shown to be equal to

° 1 p—klz—yl o (e 1 __ ,—kly—zl
ror|” B dn (o —ep | (T I du () dm ().

—oco

As is easily verified this is dominated by

w0l yldm(y),

which is certainly integrable. In addition, the kernel function of

P(K,(k)—K P is

CERLINE)
(PK(B)—K)P)x, x)=h(x, x'; k)——= gw PR
_dm(y

Slh(y, ol k)dﬂlw)J:,Slh(% 23 By duy(y)du,(2)
[~ dmn (| _aun) ’

where
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h(x, x; k):%(e‘k’”"’"—l—l—klx—x’l),

approaches zero pointwise as k—0. Therefore it follows that
[P (B)—Ky) Pl — 0,
which implies
JIP(B)K  (k)P(k)— PK,P||,—0, as k—0.

By Theorem 6.1 and Lemma 3.5, it is shown that each eigenvalue
2,(B)@E=1, 2,..)(0<A,(k) <2,(k)<---) of P(k)K,(k)P(k) approaches the
eigenvalue 4;(0<2;<4,<---) of PK.P as k—0. Moreover the smallest
eigenvalue 1,(k)=2kc (k) of K,(k) tends to zero, which is equal to the
smallest eigenvalue of Egs. (4.5) and (4.6). Since it can also be shown
that each 2;(k)(i=0, 1, 2,...) is a continuous, monotonously increasing
function of £ and tends to infinity as k£—co, we can justify Assumption
4.1 by the same method as in the proof of Theorem 3.1.

The Assumption 5.1 can be proved analogously, although calculations
are slightly complicated. We shall briefly sketch the way of justification.

Lemma 6.1'. For k>0, the bound state problem (2.8) for [=0,
n=2, with the condition (2.6) on the potential, is equivalent to the integral
equation

(6.1) $3=2G3(k)p}

on the Hilbert space ¢y, where the kernel function of the integral operator
GY(k) is given by

I (kr)Ky(kr"), 0Zr<r’

(6.2) GY(EY(r, r)=(@r)12 x {
I, (kr)Ky(kr), r>1'.

The operator GY(k) is positive and belongs to the trace class with its trace
given by

tr(GY(k)) = S:rI o (Er) K (kr)| V(1) | dr.
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Proof: All but the positivity of G3(k) are obvious. Although the
differential operator —(d/dr)?—1/4r®+k? contains the negative term
—1/4r2, this operator can be transformed into —(d/dt)?+k%% by a
unitary transformation, as was done in the previous section. Therefore by

the same argument as in Lemma 3.2, the positivity of G3(%) follows.

As will be shown in Appendix A, the trace of G3(k) behaves in the
limit £—0 as
6.3 lim (tr(c (k) +log kg d,a(r)>= ~S”(r+1og /2)rdu(e).
0
(r; Euler’s constant)

Since tr(GY(k)) diverges when £ tends to zero, we must extract from
GY(k) the diverging part. For this purpose we shall consider the integral

equation
(6.4)' §=18i(k)f?

with the kernel function

(6.5)' gy(k)(r, r')= ')

and its formal £—0 limit:
(6.4)% fi=tg3f3
with the kernel function
(6.5)0 g3, r)=(r)M2
As a lemma corresponding to Lemma 6.2, we obtain

Lemma 6.2'. The minimum eigenvalue 7,(k) of Eq. (6.4)" satisfies,
for sufficiently small k,
1
7,

log = S (r+1log(r/2))r dpe(r) + o(l L I>

1
(6.6) To(k)
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2)
0
where 7, is the (unique) eigenvalue of Eq. (6.4):
/ 1 =
6.7) —r:S rdu(r).
To 0

Proof: The first inequality in (6.6)" is obvious (cf. Eq. (6.3)"), so is
the second inequality. The last inequality will be proved in Appendix B.

Lemma 6.3'. Let P(k) be the projection operator from #y to the
orthogonal complement of the eigenvector of Eq. (6.4)" with the eigenvalue
Zo(k). Then P(k)GY(k)P(k) is of positive type and has a trace uniformly
bounded even in the limit k—O0.

Proof: By the same reasoning as in Lemma 6.3, we obtain from (6.6)’

tr (P(k)GY(k) P(k)) = —log k-tr (P(k) g3(k) P(k))

= _1ogk<tr (g2(k)—~ ﬁ )

%—SZTSZT' | loug° /)| duG)dur)
Sordﬂ(r)

+e(k), (e(k)—0, £—0).

As will be proved in Appendix C, the following also holds:

Lemma 6.4'. Let P be the projection operator from ¥y to the
orthogonal complement of the eigenvector of Eq. (6.4); with the eigenvalue
To. Then

5 5 1
1P~ Ple=o( (i) 28 k0.

Finally we have

Theorem 6.1'. The integral operator P(k)GY(k)P(k) approaches as
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k—0 to the integral operator whose kernel function is given by (5.7) in
the Hilbert-Schwmidt norm.

Proof: Through the same argument as in the proof of Theorem 6.1,
it is sufficient to show that PGY(k)P approaches the above limit in the
Hilbert-Schmidt norm. From the estimate of the kernel function of PGY(k)P
given in Appendix D, it follows that we can make use of Lebesgue’s
dominated convergence theorem in the evaluation of the Hilbert-Schmidt
norm Of the difference between two operators. Moreover, by using the
estimates obtained in Appendix B, we can confirm that the kernel function
(PGY(k)P)(r, r') tends, for each (non-zero finite) r and r’, to

S:s-log [max (r, s) ]du(s)
S:s du(s)

(rr')llz{ —log [max (r, r")]+

. g:s-log Cmax (', s)]du(s) S:sS:t-log [max (s, £)]du(z) d,a(s)}
["saus ([Fsaue) ’

which is shown, by a simple manipulation, to be equal to the expression

(5.7).

Thus Assumption 5.1 can be justified by the same reasoning as in the

justification of Assumption 4.1.

§7. Summary and Discussion

We have generalized Bargmann’s inequality to the space of arbitrary
dimension in a mathematically rigorous way. The number of bound states,
created in the I-th partial wave in the n-dimensional space, by a spherically
symmetric potential satisfies the inequality (3.11) for the case 2/+n—22=1
under the restriction (2.5) on the potential function. The inequality can

be written in a compact form:
Ni<tr, (PLK,) Q2l+n—-221).

Here P! is the projection operator defined on #%=L%(R"; V(|%]|)d%)

n
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such that PLA2P)=—I(l+n—2)P), and K, is the integral operator on
%, whose kernel function (K,)(%Z, ®') is given by (/" (n/2)/2(n—2)7"'?)
|z —%"|2"(n=3) or (1/27)-log(1/|x%—='|) (n=2), that is an elementary
solution of —4,, and tr,( ) means the trace on s#%. All remain true for
the case [=1, n=1; in Sec. 4 we have already introduced P} and K,
and the corresponding inequality (4.16) is rewritten as N}<tr,(PiK,). For
2l+n—2<0, i.e.,, [=0, n=2 and [=0, n=1, under the condition (2.6)
and (4.2), respectively, the inequalities (5.6) and (4.15) can be expressed as

NL<1+4tr,(PPLK,), (2l+n—2<0)

where P is the projection operator from % to the orthogonal complement
of the vector ey(ey(x)=1 in both cases).

As was noticed in Sec. 2, inequalities in which |V'| is replaced by
| V_| hold true also.

The saturation of the inequalities, established for n=3 in Refs. [1]]
and [ 2], can be proved analogously, that is, we can find a potential such
that the generalized Bargmann’s inequality takes the form Ni<m-+¢e (m is
an arbitrary positive integer and & is an arbitrary positive number) and the
potential produces just m bound states in the /-th wave in the n-dimensional
space. Moreover we can prove that, for the case 2/+n—2<0, if the
potential function is non-positive (and, of course, not identically vanishing)

there emerges at least one bound state: N} =>1.

n=
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Appendix A: Proof of (6.3)

From the well-known behaviours of I, and K, near the origin and the
point at infinity:
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Iy(x)=1+0(x2),
Ko(x)=—(r+log (x/2)) +0(x*log x),

x~0

and
1o(x) = (gyrr (1+0(x7),
Ko@) =(L) e +0),

we can obtain the estimates

I(kr)=e* +Ry(kr),  kr=0

with (A1
| R (kr)| éal—l—_l*c_%c—r—-ek’ (a;: constant)
and
K,y(kr) = — (log k+7 +log (r/2))e~* + Ry(kr),
. kr>0
with (A2
| Ry (kT)| Zay I -I{C-rkr (|log kr| +1)e*r

(ay: constant).

Therefore tr(G3(k)) can be written as

tx(C§(k) = ~logk | rdu() = (r-+log (/D) du()

_ S:(r +log (kr/2))e—* Ry(kr)rdu(r) + g:[o(kr)Rz(kr)rdﬂ(r).

To prove that the last two terms tend to zero as k—0, it is sufficient to

show

. N _
lim £ log | Somda(r)—o. (A.3)

By dividing the integral into two parts:
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k112 TZ
So 1+Ekr Trg @ )+Sk 1/2 1+k7‘ T A 40

we find
E-1/2 2 k-112 kr]_/z 1 Sk—llz
So Togr du0= S 1+kr k172 ), T4
1 oo
< rdu@),
and

) 1 (= kr 1
Sk 112 1+kr T dun= S e 1+krrdﬂ(r)=_<— S _mrdﬂ(r)

IA

1 (= |log r| 2 (=
Tgk 1z Tm‘_g(lc—lfzndﬂ(’>—7k|1og klgk_mrllogrl du(r).

From these estimates (A.3) immediately follows.

Appendix B: Proof of Lemma 6.2’

The maximum principle states that

1 (. g3B)F)
BB BBy

s g 'K (kr)g P Ik duG) d(r)
=_logk Sord/“(r)

where we have chosen the eigenfunction of Eq. (6.4)y (f3(r)=r'/?) as a
trial function. By the use of (A.1) and (A.2), the numerator of the last

expression is written as

(ko[ 1y dGy dntry = —tog 1 et vrer auery due)

= {rtriog o72)e o v by dney dne
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—log kS:r S v Ry (kr") d G )d,u(r)+g rRz(kr)S 7 Iy(kr') duGr) du(r).
The first term on the right hand side is estimated as
| —tog k[ et et du(rydu) +1og b rer (v duGdu@)|

=(—log k)clg re ’”S 1k-gtk et du(r')du(r)

kr’ ’
kr! _ 1< kr
<because e 1=<c, 1+kr’e )
seyltogkl{ rdu)| H 0 dute),
which approaches zero as k—0 because of (A.3). (Note that the third

term is incidentally shown to vanish as £—0.) In the same way, we

obtain

‘—Iogkg re” S r'du() du(r)+log kg S r dﬂ(”)dﬂ(r)l

=(—tog e r 20 (" du() du) (because 1—e 4 e, )

<c, |log k|g°° d,u(r)g Fdu()—0.  (k—0)

1+ kr
The second term evidently approaches to
—{ rr+108G/2) 1 du du),
0
as k—0 and the last term tends to zero. Combining these results we obtain
the last inequality in (6.6)’.
Appendix C: Proof of Lemma 6.4’

By the same argument as in the proof of Lemma 6.4, it is sufficient

to prove

llg§— gd(k)ilf=o(llogk[™),  (k—0)
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the left hand side of which is given, from (6.5)" and (6.5);, as
2 T ’ 2 ’
("lcET)zgoTSor (Ko(kr)Io(kr') +log k)2 du(r') du(r).

The behaviours of I, and K, given in Appendix A imply

| Ko(x) Iy(x")+1log x| <b;, for 0=<x'<x=<1 (by: constant)

and
| Ko(2)Io(%")| by, for x=1 and x=x'20 (b,: constant).
Consequently
1 1(r, , )
Wgorgor (Ko(kr)Io(kr")+log k)2 du(r’) du(r)
1 1 ., ,
= (log k)zSOT(IIOng +bl)zgor du(r)dur)
1 1 r, ,
< Gag iy (0BT 00 (log /| +8) dutr) o)
=0((log k) 2,  (k—0)
and

o B o Kok o (hr") g B duGr) der)

_ Gyt llog KDY (= ("0
- z(lﬁ_gllkrgor dﬂ(r )d/l(r)

by+ |log k|)? (= - , )
=(#|10Ig°§ﬁl.3lgmrllog r| d,a(r)gor du(r’)=o(|log k|1).

As for the integral

1 1k (r , , )
ng ’So’ (Ko(kr)Io(kr) +log k) du(r') du(r)

1 Uk (7, )
T 18 {Sl rSOr | K (k) I, (kr") +log k|

G108 100,
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we have the inequalities

| Ko(kr)Iy(kr')+1og k| < |log r| +b;

and

| Ko(kr)Io(kr')+log k| _|log r|+b, _ |log k| +b,
|log k| =" llogk| = |logk|

both of which hold in the range of integration. Since the integrand tends
to zero as k—0, the expression in the curly brackets tends to zero.
Appendix D: Estimate on (EGY(k)P)(r, 1)
The positivity of PGY(k)P implies
(PCYE)P)(r, )2 < (PCY(E)P)(r, 7)-(PCYR) DY, 1),

where

(PGY(k)P)(r, r)= r{Io(kr)Ko(kr) — ZfoKo(kr)S:sIo(ks) du(s)

—Zfolo(kr)gjsKo(ks) d,a(s)+2?§g:sK0(ks){SZtlo(kt) d/z(t)} d,u(s)}.

By virtue of the properties of I, and K, given in Appendix A, we obtain
the following estimate:

(PGY(k)P)(r, ) S Fy(r; k) + Fy(r),

where F, is equal to
(—log k)r{l — Zf'ogwse“k"‘s tdu(s)
0

+ f%g S{S:te‘k's‘”dﬂ(t)}d,{z(s)}

0

~(—log k)r{Zz"'oS:s(l — =51 d u(s)

—~ ?gS:s{S:ta —gkls=t1 du(t)} dﬂ(s)},
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F, is a positive function independent of %k such that

S:Fz(r) du(r)< oo.
From the inequalities

klr—s| kr ks
_ p—klr—sl
1—e k7 =c, l-I-k!T—'SI §Cz[1+kr+1+k‘st\’

we obtain

S:F, (r; k) du(r) = Fo(—log k )S:r{S:s(l —emhirshy (1/1(5)} d ()

= kre
o 1+kr

<2¢,7,(—log k)S du(r),

which tends to zero as t—0 by (A.3). Consequently the integral

(0o oo b

0

tends to zero if we let £—0 and N— o independently.
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