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On Canonical Forms of Singularities of C~
Function Germs of Higher Codimension

By

Masahiro Suiora

§1. Iniroduction

Let f be a germ at 0 in R” of a C™-function with f(0)=0, and assume
that 0 is a singular point of f. Then we call it the codimension of f the
codimension of the ideal generated by all the first partial derivatives of f
in the ring of germs of functions C~: R”—R which vanish at 0.

It is trivial that if n =1, function germs of codimension r have only
the canonical forms =+ x2%7,

In [17] Cerf showed the canonical forms of germs of codimension 1 or
2. When n=2, we find in Thom [57] all possible canonical forms of
codimension not exceeding four. The main purpose of this paper is to
study codimensions of C~-function germs and to extend the results above
to the cases codimension <6 and <8 when n=2,

The author thanks Prof. M. Adachi for many helpful discussions.

§2. Main Results

Let &, denote the ring of germs at 0 in R” of €= functions, and n1,

denote the maximal ideal of &, which consists of elements vanishing at 0.
The following generalizes Morse theorem.

Theorem 1. Let f be an element in m2, and let the rank of the

hessian of f be i. Then f is equivalent (i.e. be transformed through a
change of coordinates) to an element of the form
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i
2
J;Z=:1_'—_xj + g(xi+19-- .9 xn)
where g is contained in m3_;.

Here the codimension of f is equal to the one of g in m, ;. Thus
it is enough to treat elements in m3. Codimensions of elements in m$
equal or exceed 2”—1(§4). Hence, if we treat elements in m2 with codi-
mension <6, then we may assume n=2. We write simply codim f instead
of the codimension of f.

When n=2, elements in mj with codim =8 are equivalent to ones of

the forms in the following table (§5).

Codim Canonical forms

3 x3+xy2,

4 x2y+ yh

5 xiyxy®,  xdx gyt

6 x2y+ y8, a3+ xy3,

7 22y ", x4 y5,

8 2Pyt yd;

x4 —2x2y24+txyS+ y%, ¢: a parameter, :>0;
xtHixty?4 gt <2, t+-—2;

x4+tx2y2_y4, t22><31/2;

x4+ (—2x 324 5ysint)x?y2+ (8 X373/ 4+55c0os 8)x y3 — ¥4,
so: a sufficiently small positive constant, ¢+, t,.

When n>3 and codim=2”—1, we need 2" —n2/2—n/2—~1 parameters
(§4).
Diff, denotes the group of local diffeomorphisms of C=-class around 0

in R”®, Naturally Diff, is a transformation group of &,.

Theorem 2. Let f be an element in mZ. Then we have codim f= the
codimension® of the orbit of Diff, passing [ in m2.

* We give a natural definition of the codimensions of the orbits in §4.
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§3. Proof of Theorem 1

If an element f is contained in m% and not in m%*!, then, using some
linear transformation we may asume that f is regular in x, of order £,

i.e. f(0,...,0, x,) has zero of order exactly £ at x,=0. Hence Theorem
1 follows from the next lemma.

Lemma 3. Let f be an element in m,. Suppose that f is regular in
%, of order k. Then f is equivalent to an element of the form

"—'xﬁ'*‘ gl(xlr-': xn—l)xﬁ_z-l_ gz(xb‘”a xn—l)xz—s_{_
'“+gk—1(x15'--: xn—l)

where g; are contained in m,_,, and the local diffeomorphism which is
used here takes the form

f=(z‘1(x),..., Tn(x>)=(xls"'5 Xn—1s Tn(x))'

Proof. Levinson [27] treats the analytic case. It is shown already

in [47] that there exist a polynomial in x, with coefficients in &,_,
2k

2. ri(%4,..., x,1)x} and an element t in Diff, such that

f°r=gor,-x;',
f:(fl(.’f),..., 7.",,(%))—':(961,..‘, Xn 1s Tu(x))'

Let F be an analytic function in x,, w,..., u,, variables defined by

F=3 (r,(0) +u)) k.

i=0

2k ; . - - ~
2. rixi is regular in x, of order k£, and so is F. Then the corresponding
im0

result of Levinson [27] shows that there exist a polynomial in x, with
coefficients in &,,,,; of the form

talt gi(ugss Ug)¥E i+ g1 (g s Ugy)
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and an element y,(x,, ©g,..., Ug) in My,,, regular in x, of order 1 such
that

;jo(r,.(o)Jr 1) yi=Exht giab i+ gy,
Let
(s Fner) = (o(2), . Uga(2))
=(ro(%) —10(0),..., 724 (%) —72:(0)).

We have

2% .
3 iz = kbt (geu)ah 4+ giou

where z,(xi,..., x,) is some element in m, and regular in x, of order 1.
Let

z-/:(xlr--, xn—lﬂ zn(x))-
Then we see
ferot'=txk+(grou)xk 24+ gy_1ou.

This proves Lemma 3.

§4. Codimension of Elements in mj

Let f be an element in mZ. Then codimf is equal to the supremum

of the codimensions in m,/m% (k=1, 2,...) of the image of the sublinear

0f a

space spanned by ax L
i

%8, 0<Za, 8, 1<i<n, and is also equal to the

sum of the codimension in mZ/mi*! of the intersection of m%/mi*! and
the sublinear space above modnii*! when k=1, 2,.... If a relation ‘“‘the
sublinear space above mod mi*!>mk/mki*™1”" is satisfied, then we have the
corresponding relation of the above where £ is replaced by k+m(m=0).
From this, when we see whether codim f is larger than £ or not, we
only have to look over the partial differential coefficients of order<k+2.
Let S, be the subset of mZ which consists of elements with codim = k.
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Then we have
S 13 + mfl+2 = S ke

We can easily prove that the set S,/m?, p=k-+2 is an algebraic set in
m2/m2.
We remark that

codim x§+ -+ x3=2"—1.
Let us compute the codimensions of elements in m3.

Lemma 4. Let f be an element in mi. Then we have
codim f=2"~1.

Proof. Let fi,..., f, be homogeneous polynomials of degree 2. Then
we have an inequality

(1) the codimension of the ideal in m, which is generated by f;
Zzn_la

the reason is the following. Let for each i=1, g;;, gis,... be homogeneous
polynomials of degree i such that the natural image of the set {g;;}; into
the quotient space m;‘,/m;'¢+1+_z"i f;mic? (if i>1, m,/m2 if i=1) is a basis.
Then the intersection of mf,/lmﬁ“ and the sublinear space of mi,/mktl
which is spanned by the elements f;x¢---x£ is generated by the elements
Giifafs where a=---<f i=k—2, k—4,..., and i+2xthe number of
the set {a,..., 8}y =k. If f;=x} and if g;; are elements of the form
Xy Xg, 1Z=2a<---<fF=n, then the elements g;;f,--fg are linearly
independent in m%/mk*!. Hence the codimension of the sublinear space in
m,, spanned by f;x¢---x% is equal to or larger than codim x3+4---+ x3. This
proves the inequality (1).

S,+2/m% is an algebraic set in mZ/mf, p=27+1. Hence it is enough
to prove that if f is an element in m3 whose partial differential coefficients
at 0 of order 3 are near to the ones of x}+ -+ x3, then we have codim
f=27—1. Let g;; be defined as above when f;=x? ~ Then the set

0 . . .
{g,-j—a—g...a—%}, fora<---<8, i=k, k-2,..., i+2x¥#{a,..., B} =k, is
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a basis of mk/mi*!, From this we only have to prove that for each £,

the above g,-ja—axf--..a—if— with 7#k is a system of generators of the
a B

Lo 0
intersection of mZ/m%*! which is spanned by 65 x¢--xfmod mitl,  Let
i

g be an element in m} which is equal to some element mod m%*! of the
n 0

form 2, qa,-% where ¢, €&,. If the elements ¢; are containd in m?2 and
i=1 i

at least one element ¢, is not in mZ7!, and if p<k—2. Let @; be linear

combinations of g;—=2— of ﬁ with i4+2X#{a,..., 8} = p such that

0x, Oxg
Pi=@; mod m5*L.
z, Of . n f .
Then Zqo,-ax is zero mod m2*3, and so is Z . From this we see
i=1 i =1
that

And we have

Repeating this operation, we can take the elements ¢; in mf~2. The

elements @; which are defined as above satisfy

of mod mktL,

This completes the proof.

Let k& be a positive integer. We introduce an equivalence relation in
Diff, as follows. Elements in Diff, are equivalent if they have the same
partial differential coefficients of order <%. And Diff: denotes the quotient
space of Diff, by the above equivalence relation. The space Diff? is a Lie
group. Diff, being a transformation group of &,, Diff* acts on &,/mk*l,
Hence any orbit of Diff? in &,/mk*! is a submanifold in &,/m%*1.

Let f be an element in mZ Then we call the upper bound of the
set {the codimensions of the orbits of Diff? passing f in mZ/mk*!} the
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codimension of the orbit of Diff, passing f in mZ.

Proof of Theorem 2. We can regard elements in Diff® as taking the
following form

g
Mx-

Apav n)
1

( Uy %%, .,
lal=1 la

0

where « are n-integers and where a=(«y,..., «,), x*=x¢--x%, |a|=
o;+---+a, Let I be the identity of the group Diff! Let f be an element
in m2/mk*l. Let ¢ be the map from Difff to mZ/mi*! defined by

k 3
Oy Qo ) =fo( 20 @1a%%.00, 20 QpeX®).

lal=1 lal=1

Then the dimension of the orbit of Diff} passing f is the rank of the map
¢ at I. We easily see that

0 0
¢ I =a—£x“.

0a,~a

Hence the rank of the map ¢ at [ is the dimension of the sublinear space

spanned by g—fjx“, || 21. By Nakayama’s lemma the codim in m2 of
i

Lo 0 . .
the space which is spanned by %x“, || =1 is the one in nt, of the
i

space spanned by g-j: x%, || =0. Q.E.D.

1

Covollary 5. Let f, g be elements in m2 with codim ft+ g(1—¢t)=a
Jfinite constant, and let for each 0=t\=1, f— g be contained in the ideal
generated by all the first partial derivatives of the element fty+ g(1—t,).
Then [ and g are equivalent.

The proof is easy from the fact in [ 3] that a germ is finitely deter-
mined if and only if the codimension is finite.

The dimension of the space m?%/md is n?/2+4 n/2. From this we
have the next corollary.

Corollary 6. Let f be an element in mi. Then the orbit of Diff,
passing [ in m3 is of codimension 22"—n?/2—n/2—1.
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§5. The Case in Two Variables

In virtue of Lemma 3, any element in m3j and not in mj is equivalent

to one of the form
F=x343ay’x+2by3+f(y)x+ g(y)

where fem}, gemi.

There are three cases.

@ b2 +ad+#0;
) b*+a®=0, b+0;
3) a=b=0.

The case (1). We can see easily that codim F=3 and that the ideal
generated by all the first partial derivatives of F contains mj. Applying
Corollary 5, we see that F is equivalent to an element of the forms

x¥—xy? i a< —bY3;
x¥x %, i a>—0%3,

The case (2). Assume that codim F' is finite. Through some linear

transformation, F takes the form
x?y+xf(y)+ g(n)+h(x, y)x*
where fem}, gemt, hemj. Let ¢ be an element in Diff, defined by
t=(x, y—h(x, y)).
Then
For=x2y+ x(for)+ gor
takes the form

x?y+xf(y)+ g(y)+ x*h(x, y)
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where fem3j, gemt, hemji. Repeating this operation, we may assume
that the element above A is cotaind in m% where k is taken large enough.
Then we show that F is equivalent to an element of the form

x?y+xf(y)+ (.
Moreover, transforming by some element in Diff, of the form
c=(x—f()/2, ¢(y),

we see that F is equivalent to an element of the form

The case (3). Put
F=x3+f(y)x+ g(y)

where femi, gemi, and let n, m be the upper bounds of integers which
satisfy respectively m7=>f, mp> g. Then we can prove in the same way
as in the above that F is equivalent to

3£ ym,  if m=n+1;

23+ ymx, if 2n<m+1.

§6. Appendix. Universal Unfolding

In this section we give proofs to some statements in Thom [5] and
[6].

Let V' be an element in m2 with codim V'=Fk, and let g,..., g, be
ones in m, such that the natural image of the set {g;} is a basis of the
quotient ring of mi, by the ideal generated by the first partial derivatives
of V. Then the expression

V(x)—i—i}j_“,l u; g:(%)

is called the umniversal unfolding of V. Let G(x, u) be the element in
& ,+p+1 defined by
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G(x, u)=u,+ the universal unfolding.

The following shows the universality.
Theorem 7. Let F(x,,..., x,, vy,...,0,) be an element in &,.,
such that
F(x,0)=7.

Then there exist a k+1-tuple u=_(uy,..., u,) of elements in m,, and an
elemet v in Diff,,,, of the form

(r1(%, )5y Tu(x, 0), V1ye.e5 V) @
such that we have
G(x, u(v))er=F.

Proof. As V is finitely determined, we may assume that V is a

polynomial. Let p and q be the ideals in &, and &,,, generated by the

derivatives gifl,..., aaan and gfl,..., gfn respectively. Let f;, i=1,...,s

be elements in p satisfying that the natural image of the set {f;} is a
basis of the quotient ring of p by the ideal p?mZ. Then {g;, f,;} is a basis
of the quotient ring of m,,, by the ideal ¢?m2,,+m,&,. . Malgrange’s
preparation theorem shows that there exist elements 4;(v), i=0,..., k+s
in m, such that the element

k s
F— V“ho—;l higi" iglhi+kfi

is contained in the ideal q*m2,,. In [4] it is shown that if H is an
element in &,,, such that the element F-H is contained in q%*m2,,,, then
F and H are equivalent through a local diffeomorphism of the form (1).
From these fact, we only have to prove in the case

k s .
F= V"l“ho‘l“;lh,g,'l‘ iglhk-”fi'
Let K, L be the elements in &,,;,,,; defined by

k s
K(x, t): V+t0+ thigi+;tk+ifi9
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E
L(x, 8)=V+1t,+ 2 t: 8:
i=1

Let T,,4.s+1 denote the ideal in &,,,,,.; generated by k+s+1 elements
t;. By the hypothesis, there exist # elements a@; in m,,,;,4+; such that
we have

Tuifi=Sag-

i=1 : ax{.
Let 7 be the element in Diff,,,,,.,; defined by

(FyFag,...; %y, Loy s Lyss)-
Then

L(x, t)on_KEm,21+k+s+1-

Hence there exist £+s+1 elements 6;(¢) in m%,,,, such that Lom and
k

K+bo+2 b;g;+ Zs: by+1f; are equivalent through a local diffeomorphism
=1 =1

of the corresponding form of (1) where v is replaced by i=(tg,..., Lprs)-
Put

X=(x1,..., xn, t0+b0""’ tk+s+bk+s)'
Then we have

xEDiffn+k+s+l’
k S
Kox=K+bg+ Zlbigi‘*' Zlbk+ifi'

Therefore Lomox ' and K are equivalent through a (1)-type local diffeomor-
phism. This shows that K is equivalent through a (1)-type local diffeomor-
phism to an element L in &,,;,,,; of the form

I3
T:V+C°+Zlc"g"

where c;(¢t) are contained in tm,, .
Put particularly

i,=h;, i=0,..., k+s5.
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Then Theorem 7 follows.

Remark 8. In the theorem above, we consider the case m=£k+1
and v;.,=u; for 0=<i<k. Let F be sufficiently near to G as an element
in the finitely dimensional vector space &/m* for some s. Then u(v) is a
local diffeomorphism. This means the unfolding.

Remark 9. Even if we treat the topological equivalence, we can
not drop u, from G(x, u) in Theorem 7 and Remark 8. For example, let
Vix)==x* gi(x)=x and g,(x)=x% The figures 1 and 2 correspond
xt+euysxd+uy,x? and x*+4uyx®+4u,x respectively.  These show that
xt+eu,x3+uyx? with €, u,<0 can not be topologically equivalent to an
element of the form (x+e)*+(x+a)2b+(x+a)c for any real numbers
a, b, c. Hence G(x, u)=x'"+u,x?+u,x+u, needs u,.

From Remark 8 we can deduce immediately

Corollary 10. ([6], p. 52.) Let V be an element in mZ with codim
V==Ek, and let G(x,u) be the universal unfolding of V. Suppose that an
element F in &,., is sufficiently near to G and satisfies an equation
F(x,0)=V. Let G=(G(x, u), u) and F=(F(x, u), u). Then there exist
elements © and % in Diff,,, and Diff, ; respectively of the forms

Z-:(Tl(xﬁ u)r-'a 7'—n(x’ u)a rn+1(u)9---’ rn+k(u))
x=x1(y, u), x%(w),..., Zpe1(w))
such that the square

(2, u) &5 (3, )

(%, u) I (y, u)

AW,
\VAVARRV/

Figure 1. ¢, u,<0 Figure 2. u,<0

commutes.
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Note Added after Submission: The author found that some of his
results were obtained also by V. Arnol’d (Normal forms for functions near
degenerate critical points, the Weyl groups of 4,, D,, E, and Lagrangian
singularities, Functional Analysis and its Applications, 6, No. 4, 254-272,
(1973)), and that J. Mather’s lectures on ‘Right equivalence” given at
Warwick University (1973) have also some connection with our work.
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