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On Canonical Forms of Singularities of CCT

Function Germs of Higher Codlmension

By

Masahiro SHIOTA

§ 1. Introduction

Let / be a germ at 0 in Rn of a C°°-function with /(O) = 0, and assume

that 0 is a singular point of f. Then we call it the codimension of / the

codimension of the ideal generated by all the first partial derivatives of f

in the ring of germs of functions C°°: Rn-+R which vanish at 0.

It is trivial that if ra = l, function germs of codimension r have only

the canonical forms ±xz+r.

In Ql] Cerf showed the canonical forms of germs of codimension 1 or

2. When n = 2, we find in Thorn F5] all possible canonical forms of

codimension not exceeding four. The main purpose of this paper is to

study codimensions of C°°-function germs and to extend the results above

to the cases codimension ^6 and ^8 when n = 2,

The author thanks Prof. M. Adachi for many helpful discussions.

§2. Maim Re§ull§

Let &n denote the ring of germs at 0 in Rn of C°° functions, and niw

denote the maximal ideal of gn which consists of elements vanishing at 0.

The following generalizes Morse theorem.

Theorem 1. Let f be an element in tnjj, and let the rank of the

hessian of f be i. Then f is equivalent (i.e. be transformed through a

change of coordinates) to an element of the form
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where g is contained in mj|_f.

Here the codimension of / is equal to the one of g in tnw_,-. Thus

it is enough to treat elements in mj[. Codimensions of elements in m|

equal or exceed 2n — 1(§4). Hence, if we treat elements in mjj with codi-

mension g69 then we may assume n = 2. We write simply codim/* instead

of the codimension of /.

When 7i = 2, elements in m| with codim ̂ 8 are equivalent to ones of

the forms in the following table (§5).

Codim

3

4

5

6

7

8

Canonical forms

x3± x y2.

x2y±y*.

*2y±y\ x*±y*.

X2y±y6
9 x3 + xy3.

x2y±y7, xs + y5
0

x2 y± y8;

x*-2x2y2 + txy* + y*

x* + tx2y2 + y*9

x4 + tx2y2— j4,

^4 + (-2x31 / 2 + 5 0sin^

s0: a sufficiently small

, t: a parameter, ^>0 ;

t<2, t^-2;

t>2x3112;

)x2y2 + (8 X 3-3/4 + 50 cos t)x y3- j4
9

positive constant, ti^ilJ t2-

When u>3 and codim = 2W — 1, we need 2n~ //,2/2 — n/2 — ] parameters

(§4).

Diffw denotes the group of local diffeomorphisms of C"°--class around 0

in Rn. Naturally Diffw is a transformation group of &n.

Theorem 2e Let f be an element in tnjj. Then we have codim/= the

codimension^ of the orbit of Diffn passing f in mjj.

* We give a natural definition of the codiinensions of the orbits in §4.
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§3. Proof of Theorem I

If an element / is contained in in* and not in m*+1, then, using some

linear transformation we may asume that f is regular in xn of order k,

i.e. /(O,..., 0, x^) has zero of order exactly k at xa = 0. Hence Theorem

1 follows from the next lemma.

Lemma 3- Let f be an element in mn. Suppose that f is regular in

xn of order k. Then f is equivalent to an element of the form

- l (* l>"-> xn-l)

where gi are contained in mw_ l 5 and the local diffeomorphism which is

used here takes the form

Proof. Levinson £2] treats the analytic case. It is shown already

in [JQ that there exist a polynomial in xn with coefficients in & n-\

(A?!,..., xn--^xl
n and an element r in Diffw such that

Let jp be an analytic function in #;/, it0,...5 u2k variables defined by

» = 0

/A;}, is regular in xn of order A, and so is F. Then the corresponding
»-o
result of Levinson Q2J shows that there exist a polynomial in xn with

coefficients in $2k * i °f ^n
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and an element yn(xn, w 0 , . . . , u2k) in m2k+2 regular in xn of order 1 such

that

Let

= (r0(*) -r0(0),. . ., r2k(x) -r2Jk(0)).

We have

*=o

where zw(# l 5 . . . , #w) is some element in mn and regular in xn of order 1.

Let

Then we see

This proves Lemma 3.

§4, Codimension of Elements in m%

Let y be an element in mjj. Then codimy is equal to the supremum

of the codimensions in mB/m* (A = l, 2,...) of the image of the sublinear
df

space spanned by-^ J X i - - - x % , Q^a, /9, I ^ J^TI , and is also equal to the

sum of the codimension in inj/m*+1 of the intersection of m^/m^+1 and

the sublinear space above modm*+1 when 4 = 1,2,.... If a relation "the

sublinear space above modm^+1Dm^/m*+1" is satisfied, then we have the

corresponding relation of the above where k is replaced by k + m(m^ff) .

From this, when we see whether codim/ is larger than k or not, we

only have to look over the partial differential coefficients of order ̂ k + 2.

Let Sk be the subset of m^ which consists of elements with
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Then we have

We can easily prove that the set Sk/m%, p^k + 2 is an algebraic set in

mj/mj.

We remark that

Let us compute the codimensions of elements in ntjj.

Lemma 40 Let f be an element in m*. Then we have

codim /^ 2* -1.

Proof. Letfl,...9fn be homogeneous polynomials of degree 2. Then

we have an inequality

(1) the codimension of the ideal in mn which is generated by f{

the reason is the following. Let for each z'^1, gil9 g z - 2 , - - - be homogeneous

polynomials of degree i such that the natural image of the set {#,•/}/ into
n

the quotient space nii
n/m

i
n

+1 + ̂ fjTni
n~

2 (if i>l, mn/ml if t = l) is a basis.
y=i

Then the intersection of m*/tn*+1 and the sublinear space of tnw/m*+1

which is spanned by the elements / ,-#?•••#£ is generated by the elements

gijfa ' 'f/s where a^---^@ i = k—2, k — 4, . . . , and i + 2 x the number of

the set {a,..., @} — k. If f f = X f , and if ^y are elements of the form

xa'-'X^ 1 ̂ oc< • ••< @ ^ n, then the elements gijfa" fp are linearly

independent in m*/mj+1. Hence the codimension of the sublinear space in

mw spanned by /,- #f • • • #£ is equal to or larger than codim x\-\ ----- f- x\. This

proves the inequality (1).

Sp+2/m% is an algebraic set in m^/m^ p = 2n + l. Hence it is enough

to prove that if f is an element in mj* whose partial differential coefficients

at 0 of order 3 are near to the ones of x\-{ ----- h x%, then we have codim

f=2n — 1. Let gu be defined as above when f^ — x}. Then the set

${a,..., 0} = k9 is
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a basis of m*/m*+1. From this we only have to prove that for each &,

the above gij* • • • ^ with i^k is a system of generators of the

intersection of m*/m*+1 which is spanned by -^— x% • -x% modm*+1. Let

g be an element in mj which is equal to some element mod m*+1 of the
n Qf

form j^(pi ~ where <^-e<fw. If the elements (pi are containd in m^ and
t=i Ox i

at least one element cps is not in mj"*"1, and if p<k—2. Let ^- be linear

combinations of gV/;> " " a " w^ & + 2x#{o:,..., @}=p such thata0 oc

(pi mod

Then £] cpi ̂  is zero mod m^"4"3, and so is 2 *Pi~w~~' From this we see
z- = l C/^z- i = \ OX}

that

n

And we have

Repeating this operation, we can take the elements <p{ in m*"2
0 The

elements ^,- which are defined as above satisfy

This completes the proof.

Let k be a positive integer. We introduce an equivalence relation in

DiffB as follows. Elements in Diffw are equivalent if they have the same

partial differential coefficients of order <^k. And Diff* denotes the quotient

space of Diff,, by the above equivalence relation. The space Diff* is a Lie

group. Diffw being a transformation group of ^, Diff* acts on ^«/tnJ+1.

Hence any orbit of Diff* in ^w/tnf?
+1 is a submanifold in <^w/m*+1.

Let / be- an element in m^. Then we call the upper bound of the

set {the codimensions of the orbits of Diff* passing f in tn^/mj+1} the
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codimension of the orbit of Diffw passing / in mj*.

Proof of Theorem 2. We can regard elements in Diff^ as taking the

following form

where a are ?i-integers and where a — (al5..., an), xa=x%1--x%n
9 \a =

a1-\ ----- \-an. Let I be the identity of the group Diff* Let / be an element

in mjj/m*+1. Let <p be the map from Diff* to m%/m*+l defined by

k
<K...,GW--)=/°( 2 alax

\a\=l

Then the dimension of the orbit of Diff* passing / is the rank of the map

<p at I. We easily see that

Hence the rank of the map cp at / is the dimension of the sublinear space

spanned by -—xa, \a ^1. By Nakayama's lemma the codim in m^ of

the space which is spanned by ^ xa, \a\^l is the one in mw of the
VXi

Qf
space spanned by -^—xa, |a]^0. Q.E.D.

Corollary 5. Let f9 g be elements in m2
n with codim f t + g(I — t) = a

finite constant, and let for each 0^£ 0^=1, f—g be contained in the ideal

generated by all the first partial derivatives of the element ftQ + g(] — £0).

Then f and g are equivalent.

The proof is easy from the fact in pj that a germ is finitely deter-

mined if and only if the codimension is finite.

The dimension of the space ml/ml is ti2/2-}-n/2. From this we

have the next corollary.

Corollary 6. Let f be an element in m^. Then the orbit of Diffw

passing f in ml is of codimension ~^2n — n2/2 — n/2 — 1.
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§5, The Ca§e In Two Variables

In virtue of Lemma 3, any element in mi and not in mf is equivalent

to one of the form

where /em?,

There are three cases.

(1)

(2)

(3) a = b = Q.

The case (1). We can see easily that codim F=3 and that the ideal

generated by all the first partial derivatives of F contains rnf. Applying

Corollary 5, we see that F is equivalent to an element of the forms

x3 — xy2, if a<—b213;

\ if a>-b213.

The case (2). Assume that codim F is finite. Through some linear

transformation, jF takes the form

where /em?, gemf, h^ml- Let r be an element in Diff2 defined by

Then

takes the form
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where /em?, gemf, h^m\. Repeating this operation, we may assume

that the element above h is cotaind in m| where k is taken large enough.

Then we show that F is equivalent to an element of the form

x2y+xf(y) + g(y).

Moreover, transforming by some element in Diff2 of the form

we see that F is equivalent to an element of the form

x 2 y + y n .

The case (3). Put

where /emf, g-emf, and let n, m be the upper bounds of integers which

satisfy respectively mf3/, mf^g. Then we can prove in the same way

as in the above that F is equivalent to

xs±ym, if m^

X*±ynX, if 272^771 + 1.

§60 Appendix,, Universal Unfolding

In this section we give proofs to some statements in Thorn [J5] and

C6D-
Let V be an element in mjj with codim V=k, and let g"1?..., gk be

ones in mn such that the natural image of the set {g{} is a basis of the

quotient ring of mn by the ideal generated by the first partial derivatives

of V. Then the expression

is called the universal unfolding of V. Let G(x, u} be the element in

<?n+k+l defined by
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G(x, U) = UQ+ the universal unfolding.

The following shows the universality.

Theorem 7* Let F(xl9...9 xn, # l 5 . . .5 i ;O T) be an element in $ n±m

such that

F(x,G)=V.

Then there exist a k + 1-tuple u = (uQ9..., uk) of elements in mm and an

elemet r in Diffw+w of the form

(rxO, v)9..., rn(x9 v)9 vl9..., O (1)

such that we have

Proof. As V is finitely determined, we may assume that V is a

polynomial. Let £ and q be the ideals in &„ and &n+m generated by the
dV dV dF dF

derivatives ̂ -?..., -^- and -^-,...5 -^- respectively. Let /„ i = l,..., 5

be elements in p satisfying that the natural image of the set {/,-} is a

basis of the quotient ring of $ by the ideal £2m^. Then {g{, fj} is a basis

of the quotient ring of mn+m by the ideal q2ml+m + mm#n+m. Malgrange's

preparation theorem shows that there exist elements A ,-(#), i = 0,...,

in mm such that the element

is contained in the ideal q2m^+m . In |Jf] it is shown that if H is an

element in $n+m such that the element F-H is contained in q2m^+OT, then

jp and ^T are equivalent through a local diffeomorphism of the form (1).

From these fact, we only have to prove in the case

Let K9 L be the elements in (fwf .^,. s t .1 defined by

K(x, t)=
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Let mn+k+s+i denote the ideal in £n+k+s+l generated by k + s + l elements

tif By the hypothesis, there exist n elements a{ in mn+k+s+i such that

we have

Let TT be the element in Dirfw +^H s + 1 defined by

Then

Hence there exist k + s + l elements &,•(£) in m|+s+J such that L°n and

•^+^o + 2 big;-!- 2 bk+1fj are equivalent through a local diffeomorphism
<=i *=i

of the corresponding form of (1) where v is replaced by £ = (£0,..., ̂ +s).

Put

Then we have

i+ ± bk+iff.
T=l

Therefore L^n^x 1 and /L are equivalent through a (l)-type local diffeomor-

phism. This shows that K is equivalent through a (l)-type local diffeomor-

phism to an element L in <^ ; / f j H s 4 ] of the form

where c,-(0 are contained in mk+s+1.

Put particularly

tt = hj, j = (), . . . , A;+ 5.
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Then Theorem 7 follows.

L In the theorem above, we consider the case m =

and vi^l=ui for Q<Zi<Zk. Let F be sufficiently near to G as an element

in the finitely dimensional vector space <f/m5 for some s. Then u(v) is a

local diffeomorphism. This means the unfolding.

Remark 90 Even if we treat the topological equivalence, we can

not drop UQ from G(x, u) in Theorem 7 and Remark 8. For example, let

V(x) = x*, gi(x) — x and g2(x) = x2. The figures 1 and 2 correspond

x*-\-su2x
s + u2x

2 and x*+u2x
2+u1x respectively. These show that

x* + eu2x
3-\-u2x

2 with e, u2<Q can not be topologically equivalent to an

element of the form (x+o)i + (x+o)2b + (x + a)c for any real numbers

a9 b, c. Hence G(x, u) = x*+ u2x
2 + ulx-{- UQ needs UQ.

From Remark 8 we can deduce immediately

Corollary 10. (£6], p» S20) Let V be an element in in2 with codim

V=k, and let G(x9u) be the universal unfolding of V, Suppose that an

element F in $n+k is sufficiently near to G and satisfies an equation

F(x, 0)=F. Let G = (G(x, u), u) and F=(F(x, u\ u). Then there exist

elements r and % in Diftn+k and DiffA+1 respectively of the forms

= (rl(x, u),..., rn(x9 u),

such that the square

(x9 u) -£-+ ( y, u)

'1 . i*
(x, u) -^ ( y, u)

commutes.

V\7 V
Figure 2.

\J
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Note Added after Submissions The author found that some of his

results were obtained also by V. Arnol'd (Normal forms for functions near

degenerate critical points, the Weyl groups of Ak9 Dk, Ek and Lagrangian

singularities, Functional Analysis and its Applications, 6, No. 4, 254-272,

(1973)), and that J. Mather's lectures on "Right equivalence" given at

Warwick University (1973) have also some connection with our work.
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