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Time Periodic Solutions of Some Non-linear
Evolution Equations
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Takao KAKITA*

§ 1 . Introduction

Considered in this paper are non-linear evoiution equations of the form

(1) %g-+Au + B(u,-^=f(X,i) i n5x( -oo ,oo)

together with periodicity conditions

(2) u(x, t) = u(x, J + r), ut(x, t) = ut(x, £ + r)

and Dirichlet boundary conditions

(3) Dau(x,t) = Q on 95 for \a\^m-l.

Each A in (1) is a non-linear elliptic operator of order 2m in J2, a fixed

bounded domain in RN (which is similar to the one defined by F. E.

Browder ([I])), and

(4) B(u, MJ) = /?Q(| u\2)ut — dut9 or more generally

0 for | £ Y | = 1 )

where each &'a(s
2) is a non-negative function on I?1, of polynomial growth.

Each function f(x, t) on fl xl?1 is periodic in I (of period r >0) with values

in an appropriate Sobolev space. The purpose of this paper is to prove
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an existence theorem of weak solutions for the equation (1) with conditions

(2)-(3)? subsequently to Q3], where the theorem was proved for A, semi-

linear elliptic operators, and B(u, Uf) = (l + ̂ f
0(\ u \ 2))i^. In case A is a

quasi-linear elliptic operator of the second order and B(u, ut) = Aut =
N Q3U

2] ,. 2a , initial-boundary value problems for (1) have been solved by
i=l OX C/t

M, Tsutsumi dJT])5 J. C. Clements (PQ), also boundary value problems

with periodic conditions for (1) by Clements (Q2]). W. A. Strauss has

obtained (in unpublished work) weak solutions periodic in t of the equation

where f(x, t) is a function periodic in t, p^q^l (cf. [JTJ).x)

An example of our theorem gives the existence of periodic solutions

in t for the equation

d2u * d du P-Z du \ , du , ,„ -, du

where f(x, t) is as above and

§20 Definitions and Main Theorem

Let Wm>p(@} be the Sobolev space

with norm

where Dj = -9 D« = Dp---Dfrf for a = (al,...aN)and \a\=,a{, Wm

OXj i=i
is a separable Banach space for KJD<OO O W™'p(@) is the closure

of C^(^) (the space of all C°°-functions in S with compace support) in

Cl(r) is defined as the set of all periodic functions in C^Jf1) of

1) This result was informed to the author by Professor Strauss.
2) Throughout the paper we assume all functions considered are real valued.
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period r. By < &*, u > we denote the value of u*^X* at u^X for a

Banach space X and its dual X*. We denote by Lp(r; X) the Banach
space of functions / which are in Lp over any IT = \jt, £ + rQ with values
in X and

/(*)=/(* + r) in Jf for all

provided with the norm (l^

As for L°°(r; JQ, the usual modification is needed. The Lp(@) norm is

denoted by H-^ , especially by ||-|| for p = 2.

Assumption A0 Let A be a (non-linear) deferential operator in $,
given in divergence form

(5) Au(x)= 2 (-l) l a l/>M f l(a, M,...,/)^)
l a l ^ w

where Dku = {Dau}\a\=k9 and the following conditions are imposed on Aa:

i) each Aa(x, f) is a continuous function of (#, f) (f is a real vector

corresponding to {D«u}lal^m);

ii) there exists a continuous function gQ(s) on i?1 such that

(6) \Aa(X,u(X),...,D"u(X»

for all w-efFff^Cfl) (7?^ 2), all a with |a| ^m and almost all
iii) the non-linear Dirichlet form on W^

satisfies, for a continuous function #i(s)^0 on M1

(7) a(u, v)\ £gl(\\u\\mfp)\\v\\mtp, u,

iv) for u<E.W,

1) We denote W^* (Q) by W for simplicity.
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where c0(s) is a continuous function on H1 with Iimc0(s)=oo and k0 is

a positive constant;

v) a(u, u — v)—a(v, u — v)^§, u, v^ W\

vi) there exists a functional r(u) on W such that

(8) 0(0(0, 0 '(0)£--r (0(0)

for any 0(^)9 a finite sum of functions c(t)w for c(^)eC1(r) and

and that for M e BT

(9) CiClNL^K^&X^ ^) + ̂ 2

where cx(5) is a continuous function on R1 with limeys) = 00 and A:l5 k2
S-»oo

are some constants.

Assumption B, Let /?0(
5) De a twice differentiate function on Rl

such that for | a \ ̂  TTI — 1

O^C^CH'-Un particular, eo^/9^52) ( |a|=l)

where 2^q-^p/2, C5 e0 are constants >0.

Now our theorem is stated as follows-

Theorem, Given /(f)el,2(r; fF) (^oif zero), there exists a solution

r; W) of the equation (1):

such that ut^L2(t; L2(J2))3 utt^L*'(r\ JT*) fl»J

where l/p + l/p'—l, A and B satisfy Assumption A and Assumption B?

respectively.

§3e Proof of the Theorem

We shall prove the theorem by means of Faedo-Galerkin's method
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combined with the fixed point theorem and the compactness method.

Since W is separable, there exists a countable basis {wn} in W which is

orthonormal in L2(J2). Let Wn be the subspace of W spanned by

wl9..., wn.

Consider the ordinary differential system in Wn

(10) (*?/(*), ^O+aU'CO,

with periodic conditions

(11) î

where

2) u?(0 , Wy) + ((uf ,

The solutions will be of the form

(12)

if they exist. Now the substitution of the un(t) into (10), (11) gives the

second order differential system of Cn(t) = (cnl(t)9...9 cnn(t))*,1^

(is)

and the periodic conditions

(14) C,,(0 =

where

if(c,(o, c;(t))=( î(c,(0),... .̂(c,

1) * denotes the transpose operation of «-vector.
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, /XO =

(;•=!, 2,..., re)

Lemma I. There exists a solution Cn(t) of (13), (14).

Proo/. Consider a system of ^ dependence (0^/1^1),

(is)

together with (14). Here 5 and & are any fixed constants such that

0<(^<^0 3 Q<k<kQ where SQ is a constant satisfying ^ o l i ^ l l = l l w l i i , 2 ^or

any u^H1^), kQ a constant in Assumption A-(iv). Let Gn(t9 s) be a

unique Green's function of (15) for ^ = 0, H0 = 0 with conditions (14), and

define the operator Tn(l) from a Banach space Xn into itself:

(16)

where

Xn = C1 (r) X • • • x C1 (r) ( re-copies)

with norm

\\Cn\\Xn = sup{\Cn(t)\ + |Ci(t)|} ( | - | : the length of re-vector) for C,
/r

To prove the lemma it suffices to show that the operator Tw(l) has a

fixed point in Xn. So we apply Leray-Schauder's theorem to the family of

operators Tw(/l) (0^/1 ^1) on the space Xn. We observe that

(17)

and

(is)
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when €(^-^Cn in Xn, as y-*oo. In fact, (17) is a direct consequence of

Assumption A on Aa by measure theoretical arguments. To show (18)

we put

dropping the suffix n for brevity in notation. Assumption B implies

for all i and almost all x^S. Since !!C(l°|U ||CCl°'||« are bounded on v,

we obtain by Holder's inequality

kM(*, 0 1 2)-^'o (!«(*, Ol2)) , wy)|

for some constant K. Similarly we have

\((ut(x, i)-uF(X, tW(\u(x, O

Hence (u(
t»

}(f)0'0(\u<v\t) \ 2)5 w;y)-^(^,(0^o(l u(t) \ 2), u;y) uniformly on * as

y— »oo, which implies (18). Thus the continuity of Tn(X) on Xn follows

immediately from (16), (17) and (18).

Next, let S={Cejrj||CJ|^l}. Then the properties of Gn(t, s) imply

that for each A, Tn(A)S is bounded in JTW and is a set of equi-continuous

functions, and that

for a suitable constant JL Therefore each TW(A) is a compact operator

from JTW into Xw and the family {jTw(^)|0^2^1} is homotopic. We note

that the topological degree of Tn(fy is +1 since the system (15) for A = 0

has a unique solution in Xn. In order to see that the topological degree
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of Tn(V) is +1 (positive) it only remains to show that for each I

(19) C(0=r,(A)C(t) => \\C\\Xn^L

where L is a constant independent of /I. The proof of (19) is a variant

of that of the following lemma, and is omitted. Q.E.D.

Lemma 2* The solutions un of (10), (11) have the following estimates:

(20) 2 f ||/>«*u?(
l a l^U/ r

(21) I I « ? ( * ) I I , I I

, K2 are constants independent of n and t.

Proof. Since both sides of (10) are linear on Wj9 we have, replacing

by u?,

Integrating both sides over Jr with respect to t and using Assumptions

A-(vi), B we obtain

/r

from which the estimates (20) follows immediately.

Replacing Wj by un in (10) gives

(22) (uftCO,

We remark that

J/r

because of the periodicity of un(t). Then, integrating (22) over /T with

respect to £ and using Assumption A-(iv) we have
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(23) k0\ \\u«(
Jft

i /2 / r \ i /2

This yields that

(24) \\un(t)\\2dt, a(un(t), un(t})dt

have a bound independent of n, because \ c0(\\u
n(t) m ) p ) d t is bounded

J /r

from below on n.

Finally substituting u^ for wj in (10) and integrating both sides from

s to t (s<t), we obtain by Assumption A-(vi),

(25) --H

where K is a constant dependent of / and K^ in (20). Further, integrating

both sides of (25) with respect to s from t — r to t and noting that the

right hand side is bounded by virtue of (24), we know that

(independent of n and t).

Since Iimc1(s)=oo9 this proves the lemma. Q.E. D.
s-»«>

Now we may infer that

{un} is bounded in -L°°(r; W),

{u?} is bounded in £2(r; Hl(@))r\ L°°(t; L2(®)).

Then we may extract a subsequence {uv} such that

uv-*u (an element of X°°(r; W}} weakly star in -L°°(r; W)9

uv
t-»ut strongly in X2(r;

in addition,
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uv-»u strongly in

where we have used that the injection mappings

are compact.

Making use of these results, we shall prove:

Lemma 3. For any t;eZ2(r; IF)

\ b(uv, Ut;v)dt-*\ b(u, ut;
J/r Jit

Proof. By definition, we have

(26) b(u\ u!;v)-b(u, ut;v)

Assumption B implies

Therefore we obtain

which means

As u"t-+u, strongly in £2(r; L2(S)), we know that

For the second term of the right hand side of (26), since

we obtain
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taking boundedness of | |u"(Oll2F 2 . I I U * ( O I I into consideration,

where K is a constant independent of n and t. Therefore we have

i / 2 / r \ i / 2
II«"(0-«(OIM«

jK^! being another constant independent of n. Since uv—*u strongly in

LP(Q X /T)5 the last member in the above inequalities tends to zero. Thus

we proved the lemma. Q.E. D.

Finally, to establish the remaining part of our theorem, we need the

following assertion,

Lemma 4, There exists a subsequence {&} of {v} such that

J/r

for any v el/2(r; W).

Proof. Consider a linear form on L2(t; W}:

a(u(t), v ( f ) ) d t .

Since U^L°°(T; W), Assumption A-(iii) implies that

/r /r

Hence the linear form is continuous on £2(r; W), so that there is an
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element jtfu^L2(t; W*} such that

Here {{ , )} denotes the pairing between £2(r; W) and L2(r; W*), The

operator s& sending L2(r; W) into £2(r; W*) satisfies

\ a(uv(t),v
Jit

where v in the second member runs through the set {||^||z2(T;^) =!}• Thus

there exist a subsequence {/^}c{v} and an element f ei2(r; IF*) such

that for t;ei:2(r; IT)

where f is an element of -L2(r; JF*). We assert 3/u = g. Take any #>,

a finite sum of ck(t)wk(x) where ck^ C^r), wk& W. Then for large n

hold the equalities:

i ?

J/r

Letting /^— »oo, we have

(27)
r

=\j it
Let

with norm
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Since the set of the q> defined above is dense in V(r; W\ (27) is valid

for any 0>eF(r; IF"), in particular, for <p=u. Hence,

| |n,(OII2d* + «£, B» + ( b(u(f)9ut(t)\u(ty)dt
it Jit

= \ (f(t),u(t})dt.
J IT

However, we observe that

lim («?/9 J( | a* |
«/ /r

= 0,

from which follows

(28) - \\Ui\\*dt + ((£, u)} = (f,u)dt.
Jit

Since

If J If J I r

taking the limit inferior of both sides, and recalling that u^-*ut strongly

in Z,2(r; £2(J2)) we obtain that

(29) - ||^?||
2^ + lim({^^9 u"))^ (/, u)dt.

Jit

Comparing (29) with (28) yields

from which we can conclude in the same way as in QT] that $ =

Q.E.D.

Now we observe in the proof of Lemma 3 that B(u, i^)ei2(r;

so that for any smooth function <p(x, t) periodic in t3 we have in the distri-

butional sense that
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\ (utt, <p)dt + \ (Au, <p)dt + \ (B(u9 ut\ (p)dt
J If J I r J If

utt=-Au-B(u, i

which completes the proof of our theorem, for B(u9 I^) = /?Q(| u\2)ut~ ^ut°

When B(u, ut}= 2 (-iyalDa@'a(\D
au\2)Daut, we need some modi-

l a l^w- l
fications. Consider the system (15) for s0d instead of d and for

Then we can obtain the estimates

(30) 2
\a\£m

as in the proof of Lemma 2. Also we know by (20)

(31) 2 ( \\D"u«\\>dt^K2.

Therefore we may choose a further subsequence {ff} of {#} such that

when (T—»oo5

(32) D*ul -> D^ZA^ weakly in L\® X JT)

and

(33) Dau« -* D^w strongly in i*(,S X IT)9

both for \a\ ^m-I. Since, for v^Lp(r; W),

b^u", Ufi v) — b(ui ut; v)

\a\-gm-l

to prove Lemma 3 for v^Lp(-c; W) it is enough to show that for each a
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(34)

as 6— >oo.

The first assertion is obvious because of (32) and @'a(\D
au\2)Dav^L2(@ x/T).

For the second one, we can show as in the proof of Lemma 3 that

(D« u°t((i'a( | D« u | 2) - 0'a( \D*u\ 2), D«v) dt

\^

from which (34) follows by virtue of (31), (33). Since Lemma 4 holds for

; W} we have completed the proof of the theorem.

Example I. Define Aa, a(u9 v) by

Aa(x, u,..., Dmu)=

and

respectively. It can be easily seen that Aa and a(u, t;), then, satisfy

Assumption A . Hence an evolution equation

has a solution u(x,i) in L°°(r; W%> *>(&)) provided 2^q^p/2 and

Example 20 Let A be the operator defined in Example 1. Then an

evolution equation
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has a solution u(x9 £) in I/°(r; fF(f'^(J2)) provided 2^q^p/2 and f(%9 f)
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