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Time Periodic Solutions of Some Non-linear
Evolution Equations
By

Takao KakiTa*

§1. Introduction

Considered in this paper are non-linear evoiution equations of the form

2

together with periodicity conditions

2) u(x, t)=u(x, t+7), ux,t)=u(x,t+7)
and Dirichlet boundary conditions

3) D*u(x,t)=0 on 08 for |a|=m-—1.

Each 4 in (1) is a non-linear elliptic operator of order 2m in £2, a fixed
bounded domain in RY (which is similar to the one defined by F.E.
Browder ([1])), and

(4) B(u, u)=py(lu|®Du,— 4u,, or more generally

= 2 (=DDR(|Du|®)D"u,

lal<m—-1

(B;('52)280>0 for |(Y| =1)

where each B7,(s?) is a non-negative function on R!, of polynomial growth.
Each function f(x, ¢) on £ X R is periodic in ¢ (of period 7 >0) with values

in an appropriate Sobolev space. The purpose of this paper is to prove
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an existence theorem of weak solutions for the equation (1) with conditions
(2)-(8), subsequently to [37], where the theorem was proved for 4, semi-
linear elliptic operators, and B(u, u,)=(1+B5(|z|*))u,. In case 4 is a

quasi-linear elliptic operator of the second order and B(u, u,)=d4du,=
N 93y

£ 0x%0t
M. Tsutsumi ([7]), J.C. Clements ([27]), also boundary value problems
with periodic conditions for (1) by Clements ([27]). W.A. Strauss has

obtained (in unpublished work) weak solutions periodic in ¢ of the equation

, initial-boundary value problems for (1) have been solved by

0%u
0tz

—dut|u i u| o =, 1)
where f(x,t) is a function periodic in ¢, p=q=1 (cf. [6]).V

An example of our theorem gives the existence of periodic solutions

in ¢ for the equation

0%u Y 0 /| 0u |?720u ou ) u_
0t? _Zlax\ 0x; 1 axi>_" ot +ule? i =f(x, 1)

where f(x, t) is as above and p/2=¢=2.

§2. Definitions and Main Theorem
Let W™#(2) be the Sobolev space
{u(x) | D*u(x) € L?(2), || =m}?

with norm

lulln,y=C T | 1Du(x)|pday?

N
where Dj=%, Da=D%... DS for a=(ay,...ay)and |a| =3 a;. W)
i i=1
is a separable Banach space for 1< p<oo. W7-?(2) is the closure
of C3(8) (the space of all C=-functions in £ with compace support) in

Wmb(R2). C'(r) is defined as the set of all periodic functions in C'(R') of

1) This result was informed to the author by Professor Strauss.
2) Throughout the paper we assume all functions considered are real valued.
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period . By <u*, u> we denote the value of u*eX* at ueX for a
Banach space X and its dual X*. We denote by L?(r; X) the Banach

space of functions f which are in L? over any I =[¢, t+7] with values
in X and

f@O=ft+7) in X for all teR?!,

provided with the norm (1< p< o)

1Az = {f, Il de} "

As for L=(r; X), the usual modification is needed. The L?(£) norm is
denoted by |[|-]|,, especially by [[-|| for p=2.

Assumption A. Let A4 be a (non-linear) defferential operator in £,
given in divergence form

(5) Au(x)=raz (=D'e'D*4 (%, u,..., D™u)

l=m

where D*u={D%u}, _;, and the following conditions are imposed on A4,:
i) each A,(x, &) is a continuous function of (x,¢) (¢ is a real vector
corresponding to {D%u} | 1<m);

ii) there exists a continuous function gy(s) on R! such that
6) [|4u(x, u(x),..., D™u(x))| égo(llulim,p){mém | DPu(x)|?~1+1}

for all ueWp-?(2) (pz2), all a with <m and almost all x=£2;
iii) the non-linear Dirichlet form on W,")

o

a(u, v)= 3, S Ay (%, n(x),..., D"u(x))D(x)dx
2

laT=m

satisfies, for a continuous function g;(s)=0 on R!,

Q) la(u, )| < gi(lully, ollm,p — w, vEW;
iv) for ueW,

au, w)Z co(||ull, ) + Eollull®

1) We denote W3 (£) by W for simplicity.
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where cy(s) is a continuous function on R! with lim ¢,(s)=c and k, is
paey
a positive constant;
v) a(u, u—v)—alv, u—v)20, u,veW,;

vi) there exists a functional r(z) on W such that

® @), ()22 r (@)

for any ¢(t), a finite sum of functions c(f)w for c(t)eCl(r) and welW,
and that for ue W

(9) Cl(”””m,p)ér(u)ékla(ua u)+k2

where c¢;(s) is a continuous function on R! with lim ¢,(s)=o and %k, £,
. Sovom

are some constants.

Assumption B. Let (,(s) be a twice differentiable function on R!

such that for |a|<m-—1

0= RL(s®)<C|s|e!, in particular, £,<F5,(s?) (|a|=1)

|Ba(sH)| =Cls|e®

where 2<¢ < p/2, C, g, are constants>0.
Now our theorem is stated as follows.

Theorem. Given f(t)eL*(v; W) (not zero), there exists a solution
vel=(c; W) of the equation (1):

uy+Au+B(u, u)=f,
such that u,e L:(t; L%(82)), u,,& L' (v; W*) and that
B(u, u,)= In{l;é,'n_l(--1)'”'D”‘B:,,(|D"u,|2)D"‘u,
where 1/p+1/p'=1, A and B satisfy Assumption A and Assumption B,
respectively.
§3. Proof of the Theorem

We shall prove the theorem by means of Faedo-Galerkin’s method
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combined with the fixed point theorem and the compactness method.
Since W is separable, there exists a countable basis {w,} in W which is
orthonormal in L2%(2). Let W, be the subspace of W spanned by
Wiyery W

Consider the ordinary differential system in IV,
(10) (i (0), w)) +alur(), w) +b(ur(0), wi(e); w))
=(f@,w)  (G=1,2,.,n)

with periodic conditions

(11) u(t)=u*(t+7), u?(t) =u?(t+7)
where

b(u(2), up(e); wy) = (B(u™(1), ui(t)), w;)
=(Bo(Ju" @) D ui@®), w) +((uf, wy).

The solutions will be of the form
i3
(a2) w()=5 cosOmw  cuECE)

if they exist. Now the substitution of the u”(¢) into (10), (11) gives the
second order differential system of C,(z)=/(c,.(),..., c,,(£))*, 1

(13) CO)+F(C,(0))+HC,(1), C)=H,()
and the periodic conditions
(14) C.)=C,(+0), C)=C,(t+7),
where
F(C, ()= (F1(C,(D)),... F(C.())%,
F;(C,(0) =a(u"(0), wy);

H(Cn(t)’ CZ@)) = (Hl(cn(t))" .- Hn(cn(t)))*y

1) * denotes the transpose operation of n-vector.
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Hi(C,(2), C,(2)) =b(u™(0), uf(2); wy);
Hy(&)=(f1(0),..., @)%, fi(0) = (f(©), w;)
(G=1,2,..., n)
Lemma 1. There exists a solution C,(t) of (13), (14).

Proof. Consider a system of A dependence (0<4<1),
(15) Ch(t)+0C, (1) +EC,(2)
=H{—F(C,(0)) + kC,\(8) —H(C,,(2), C(8)) +0C,(0)}
+H, (1)

o

together with (14). Here & and %k are any fixed constants such that
0<0<0y, 0<k<k, where 0, is a constant satisfying 0|{u||<||ull; , for
any uceH(8), k, a constant in Assumption A-(iv). Let G,(¢,s) be a
unique Green’s function of (15) for 4=0, H,=0 with conditions (14), and
define the operator 7,(1) from a Banach space X, into itself:

(16) T, (HEC,= Sz,[l 1= F(C())+kC,(s) —H(C,(s), Cr(s)) +0C ()}
+Hy(s)1G,(, s)ds
where
X,=C(r)x--xC(r)  (n-copies)

with norm
||C,,1|Xn=slup{|(8n(t)[ +|C.(¥)|} (|-|: the length of n-vector) for C,€ X,,.

To prove the lemma it suffices to show that the operator 7T,(1) has a
fixed point in X,. So we apply Leray-Schauder’s theorem to the family of
operators 7,(2) (0<A<1) on the space X,. We observe that

@17 |F(CY)—F(C)|l.—0
and

(18) |H(C,, €)= H(C,, C)|| -0
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when C’—C, in X,, as y—>oo. In fact, (17) is a direct consequence of
Assumption A on A, by measure theoretical arguments. To show (18)
we put

u)(x, t) =§lc};)(z)wk(x)
u(z, )= 3 eyl (),
dropping the suffix n for brevity in notation. Assumption B implies
1861 u™(x, )|~ Bo(Julx, )[2)]

<Clu®(x, )—ulx, D] (W (x, )| +]ulx, )])2

for all ¢ and almost all x€ 2. Since ||C™)||.., ||C*||. are bounded on v,
we obtain by Holder’s inequality

| (i (2, )(Bo(1u(x, )5~ By (Julx, ©)]2), w)|
= Clluf @1 [[u@) — w2l ON32 + w1 Dllwjll2
=K -Cll,
for some constant K. Similarly we have
| ((ui(w, ©)—uf (%, 0)B'(|ulx, £)]2), w)| <K||C¥~C|lg,

Hence (u{”()B6(] u(2)]2), w)—(u,(£)B6(| w(2)|?), w;) uniformly on ¢ as
y— oo, which implies (18). Thus the continuity of T,(1) on X, follows
immediately from (16), (17) and (18).

Next, let S={CeX,|||C,]|<1}. Then the properties of G,(t, s) imply
that for each 4, T,(4)S is bounded in X, and is a set of equi-continuous
functions, and that

I(Tu(22) = T\(21)) Slix, =K | Az — 44

for a suitable constant K. Therefore each T,(1) is a compact operator
from X, into X, and the family {7,(1)]0<1<1} is homotopic. We note
that the topological degree of 7,(0) is +1 since the system (15) for =0
has a unique solution in X,. In order to see that the topological degree
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of T,(1) is +1 (positive) it only remains to show that for each 4
(19) C()=T,()CE) > |IClx, =L

where L is a constant independent of 4. The proof of (19) is a variant

of that of the following lemma, and is omitted. Q.E.D.

Lemma 2. The solutions u” of (10), (11) have the following estimates:

(20) 2 J, Ipmuroirae<k,
21) 1Ol 7@y <K

where K,, K, are constants independent of n and t.

Proof. Since both sides of (10) are linear on w;, we have, replacing

w; by uf,
(uh (@), wi(®) +a(u(®), uf(2)) +b(u(), ui(®))
=(f(®), uf(®)).

Integrating both sides over I_ with respect to ¢ and using Assumptions

A-(vi), B we obtain

%, 1<ur@ieaes(, 1roipd) (], luroipae) ™,

lal=1J/,

from which the estimates (20) follows immediately.
Replacing w; by u” in (10) gives

(22) (uf (@), u(@))+a(u(2), u"(t))
+b(u"(8), up(2); u(@)=(f(), u"(@)).
We remark that

Sz,b(””@’ wi(e); u(2)de=0

because of the periodicity of u”(¢). Then, integrating (22) over [, with
respect to ¢ and using Assumption A-(iv) we have
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@) kol @I+ el @l de

<(, tw@ira(§, irolra) (§ lur@pac) ™.

This yields that
20) [ lw@lpde, | au@), w@)de

have a bound independent of n, becauseg co(||u”(2)||m, ) dt is bounded
I
from below on n.

Finally substituting u? for w; in (10) and integrating both sides from
s to t (s<t), we obtain by Assumption A-(vi),

(25) @I+ @l )
=K+ |[uE )|+ kra(ur(s), w7(s)) +h

where K is a constant dependent of f and K in (20). Further, integrating
both sides of (25) with respect to s from ¢—rt to ¢ and noting that the
right hand side is bounded by virtue of (24), we know that

luz@]), c1(lu(@)|ln,,) =K (independent of n and ).

Since lim c¢;(s)= oo, this proves the lemma. Q.E.D.
§—ro0

Now we may infer that
{u”} is bounded in L=(z; W),
{u?} is bounded in L2(r; H*(2))N L=(r; L2(2)).
Then we may extract a subsequence {u*} such that
v’ —u (an element of L™(r; W)) weakly star in L=(v; W),

ul— u, strongly in L2(t; L*(2));

in addition,
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u®—u strongly in L*(2x 1)
where we have used that the injection mappings

it Wes(Q) — WELe(Q)
ji HY(Q) — L2(Q)

are compact.
Making use of these results, we shall prove:

Lemma 3. For any velL(c; W)

S[ b(u”, u?; v)dt——»S{ b(u, us; v)dt.

Proof. By definition, we have
(26) b(u*, ul; v)—b(u, u,; v)
= (uy—us, Bo(lu]®v)+(uy, (Bo(|u* |2 —Bo(lu]»))v)
Assumption B implies
185(lu@) D)o@ | =Clu@)|*v(@)].

Therefore we obtain
[ 1@ o |2dx < [u @B 0@,
which means
Bo(lu(@|Hv(@) € L¥(v; L*(2)).
As uy—u, strongly in L%(r; L2(£2)), we know that
[, wr—u Bo(lul)de—0.
For the second term of the right hand side of (26), since

1Bo(lu [ —Bo(lulD | =lw —u|(Jur]72+]u]?),

we obtain
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| Cey, (Bo(lu | —Ro([u|)v)]
= Clluz@O)ll-][u () — u@®llz, (1 @182 + 1w D115 D10 (@)]]245
taking boundedness of ||u*(2)||%;%, |lu;(¢)|| into consideration,

=K][u () — u@llzollv(Dl]2

where K is a constant independent of n and f. Therefore we have
1§, . BClur19—BaClulw)e]

1/2 1/2
v _ 2 12
gK(Shnu (D)= u(®)l3,d¢) (ghnv@)hzth)
§K1Hu" - uilnwxz,)'Hv”LHT;u«um),

K, being another constant independent of n. Since u®—u strongly in
Lr(2 % 1)), the last member in the above inequalities tends to zero. Thus
we proved the lemma. Q.E.D.

Finally, to establish the remaining part of our theorem, we need the
following assertion.

Lemma 4. There exists a subsequence {u} of {v} such that
[, 4@, v@)de={ a(u@. o)t (u— )
for any veL?(c; W).
Proof. Consider a linear form on L%(v; W):
s glra(u(t), o)) dt.

Since ue L*(r; W), Assumption A-(iii) implies that

], au@. v de| < gulu@lln o), de

éKH””L%—;W) .

Hence the linear form is continuous on L2(r; W), so that there is an
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element &/ue L?(r; W*) such that
[, s, vt =(aru, .

Here { , ) denotes the pairing between L%(t; W) and L2(r; W*). The
operator & sending L2%(t; W) into L%(r; W*) satisfies

ot ullgsim =sup|{ au(), () dt| <K
where v in the second member runs through the set {||v||;z(,,wy <1}. Thus
there exist a subsequence {#}c{r} and an element £ L%(r; W*) such
that for ve L2(z; W)
[, aCwr@, v(@)ds — ¢, 0
where & is an element of L2(r; W*). We assert Lu=¢§. Take any ¢,

a finite sum of c¢,(t)w,(x) where c¢,=C'(zr), w,eW. Then for large n
hold the equalities:

—{, @, )i+ atur@), o@)ds

A CLORT O O LN EORIOD
Letting y#— oo, we have

en = @@ et o+ B, 1 o)

={, (@, ().
Let
V(e W)= eL?@; W) o, L2; L))
with norm

”7’||V<T;W) = ||U||L2<T;W> + ”vt”LZ(r;LZ(m)-
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Since the set of the ¢ defined above is dense in V(r; W), (27) is valid
for any o V(c; W), in particular, for ¢=u. Hence,

—SI lfu ()12 de+ (¢, u>>+§1 b(u(t), u,(2); u(®))dt

=S[,( £, u(e))de.
However, we observe that
[, (wsiClul®, wae=tim | (w11, uds
=0,
from which follows
(28) =, i+ g wy={, (.

Since
=, lusipde+( atur, wyar={ (f, unas,

taking the limit inferior of both sides, and recalling that u}— u, strongly
in L%(r; L?2(2)) we obtain that

(29) —SI Nl ||? dt +lim(.of u, un»§SI (f, uw)ds.

Comparing (29) with (28) yields

(¢, uhyz=lim{Lu*, urh

from which we can conclude in the same way as in [5] that é=<7u.
Q.E.D.

Now we observe in the proof of Lemma 3 that B(u, u,)eL?(c; W¥),
so that for any smooth function ¢(x, ¢) periodic in ¢, we have in the distri-
butional sense that
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[, e e+ (u, yde+( (Bu w), o)

=S1,< £, o)d,
uy=—Au—B(u, u)+feL(c; W*)

which completes the proof of our theorem, for B(u, u;)=8,(|u|®)u,—du,.
When B(u, u,)— Z] ( 1!« DR’ (| D*u|?)D*u,, we need some modi-

fications. Con51der the system (15) for e,0 instead of ¢ and for

b, upsw)= B (81D ur| D ur, Dewy.

Then we can obtain the estimates

(30) 5|, Ipeuplrar <k,
lai<m-—1

as in the proof of Lemma 2. Also we know by (20)

31) S D2 di <K, .

lal=m

Therefore we may choose a further subsequence {0} of {#} such that
when 0— o0,

(32) D2ug — D%u, weakly in L2(82 x 1)
and
(33) Days — Dy strongly in L2(2 %X 1),

both for |a| <m—1. Since, for ve L(v; W),
b(ue, uy; v)—b(u, u,;; v)

= 2 (D*wi—Du,, Bo(| D*u|*) D)

lal=m-1

+ 5 Deus(Bi(|1Deur|?) - £(| D=u|%), D),

to prove Lemma 3 for v L?(r; W) it is enough to show that for each «
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[ (D=ur—Deu,, BL(1D*u|)D )0
I,

31
[, @eus(Bu(1Du 19— 8(1D=u|%), D=v)de—0

as 0—oo,
The first assertion is obvious because of (32) and B, (|D%u|?)D*ve L3(2 X I,).
For the second one, we can show as in the proof of Lemma 3 that

I{, (Deursu(IDeul?—pu(1 D=u|?), Dv)de
I.
= ClID*ufl|z2oxn|iD*u—D*ull 120 %1,
XU Dvu||T2kgur s+ 1Dullfzéoxr o HID* 0] 20 0wr

from which (34) follows by virtue of (31), (33). Since Lemma 4 holds for
veL?(r; W) we have completed the proof of the theorem.

Example 1. Define 4,, a(u, v) by
A (%, u,..., Dmu)=|Deu|?-2Dy

and

a(u, v)::g > | Deu|?2D*uD*vdx,
2 lalsm
respectively. Tt can be easily seen that A4, and a(u, v), then, satisfy
Assumption A. Hence an evolution equation
0%y ou ou

B+ 5 (= DD(IDu [+ D) — 4+ |u| = £, ©)

has a solution u(x,t) in L=(r; W7-?(2)) provided 2<qg<p/2 and
f(=x, ) L¥(r; L*(2)).

Example 2. Let 4 be the operator defined in Example 1. Then an

evolution equation

2

0 0 0
Gt Aut B (<) DeulDeGh — 4 G = f(w, 1
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has a solution u(x, ¢) in L=(c; W5#(82)) provided 2<¢ < p/2 and f(x, t)
e L3(r; L3(2)).
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