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Degenerate Parabolic Differential Equations

By

Katsuju IGARI*

§1. Introduction

We are concerned with the Cauchy problem for the equation

(1-1) 9tu- 2 d X j ( a j k ( x , 05vO-26/*> t}dxu-c(oc, t)u
j,k=i y=i

= dtu — An =/,

(A;, 0 in jR*xQO, oo) with the initial datum

(1.2) z*(*, 0) = u0(x)a

Throughout this paper we use the following abbreviation: dt^ dXj stands

for -~— 9 -^ — respectively. We assume that ajk(x9 t)9 bj(x9 t), c(x, t) are

real-valued smooth functions. Moreover (a>jk)i^j^n,i^k^n ^s supposed to be

symmetric and to satisfy the following condition : for any (#, t} in Rn X j^O, oo)

(1.3) Re 2 a y f c (A; 9 OfyfA^O for all

O.A. Oleinik has treated this problem (see T4], [5]). Her method

consists of the following procedure (elliptic regularization) : instead of

(1,1), the following equations (depending on a positive parameter e) in

(1.4) dtu—adu — Au=f

are considered. Let u6 be the solution of (1.4) with the given initial value

u0(x)<=L2(Rn') and f(x, t)<=L2(G). Then it is shown that {us(x9 t*)} is
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bounded in L2(G). Then a weak limit of them, as £— »09 gives the desired

weak solution u(x, t)^L2(G). The uniqueness of the solution is proved.

She also proved the smoothness of u, assuming the smoothness of UQ and

/•
Contrary to the above point of view9 we regard (1.1) as evolution

equation. More precisely, we want to show the existence of the unique

solution w(^)e^(L2)n^X^?2) of (1. !)-(!. 2) for any initial value

uQ(x)^L2 and any f(x, t)^^(L2).^

Our approach is based on the semi-group theory. Instead of elliptic

regularization, we use Friedrichs' mollifier. Its property (Lemma 1) gives

immediately the desired result (Theorem 1). It also gives the energy

inequality (Proposition 1), which seems to be important. But the inequality

of this form is not stated in [Jf]3 []5]. The smoothness of the solution

can be obtained in the following form (Theorem 2): when uQ(x)^@f2 and

f(x, *)e^°(^?0> the solution u(x, t) belongs to <f?(^£0 n ̂ K^&"2)- We

study also the case where bj(x, t) and c(x, t) are complex-valued functions

(Remark in the section 3).

It seems to us that our method is more natural than the one relying

on elliptic regularization and will be useful to other problems. **5

§20 Energy Inequality

Let ajh(x, *)e<^°0#2); b;(x, t)s=£?(01)', c(x, 0^?(^0)- We assume

the condition (1.3). Then we have the following proposition.

Proposition I (Energy inequality) „ Let f(x, £)e^?(i2) and

*) be a solution of (1.1). Then it holds for any

In this paper, we use the following notation: x = ( x l y . . , .«„). 3^ = 9^...9^, u =
(v l 5 . . . , VB). L2 = L*(Rn). u(x)^&%2 means that its derivatives dv

xu (in the sense
of distribution) up to order m belong to L2. &%2 provided with the scalar
product (u3 v}m= ^ (du

xii,d
v
xv) is a Hilbert space. <%'$ is the dual space of

\v\^=m
^^2 and sometimes we denote it by J^f. (p(x}^g$m means that its derivatives
d"x<p up to order m are continuous and bounded in Rn. <p(x}^& means that
<p(x) is infinitely differentiable and has compact support. f(t)G#f(&%it(or £$m)}
means that i->/($) ej^jfr(or &m) is continuously differentiable up to order k.
The summary of the results obtained below was announced in the following
paper: Cauchy problem for degenerate parabolic equations, Proc. J. Acad., 49
(1973), 229-232.
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T) that

rt
(2.1) ||^(^)|| <e7*||i£(0)|| -j- \ e7^~s^\l f

~~ Jo

where j is a constant which may depend on T but does not depend on u

and f.

To see this, the following lemma is essential.

Lemma 1. Let p£* be Friedrichs' mollifier, where we assume p(x)

even function. Let a(^)e^2 be real-valued function, and let u(x)^L2.

Then it holds for any v(\v\ ^2) that

2) Re(u£, [jo£*, a(#)H9jzO-»0 as £

where u6 stands for p£*u, [j)£*,

and C is a constant independent of u and e.

Proof of Lemma 1. Consider only the case of |v| =2, because, in the

case of |v| ^1, 1) and 2) are clear by Friedrichs' lemma. We denote 9j

by 9x.dXfc, By Taylor expansion

(2.2) [p6*9 a

-
i / i l =2 P- •

At first we take the 1-st term of (2.2).

(2.3) -

where we used the relations that ((xiPs)*u, v)= — (u, (#,-p£)*tO and that

(p£*u, V) = (M, p£*z;). All these terms in the right-hand side of (2.3) can

be majorized by
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In the same way as Friedrichs' lemma, we can show for any

u\\, Wa(i\x},(Xipe}*^dv
xu\\->$ as e->0.

Next we consider the 2-nd term of (2.2). Denote it by R£u,

(2.4) R£u= Z=dyjdyk{a^, y) (*- yYoe(oc- y}u(y)dy

If we note that 2 Z \l (^Pf)
(i;)O) I ̂ -^< const, (independent of e), the

\v\^2 \p\=2J

same reasoning as in the proof of Friedrichs' lemma gives

\\R6u || g const, \\u\\,

R6u-*Q as s->0. Q.E.D.

If we use this lemma, we can prove Proposition 1 in the same way

as hyperbolic equations (cf. £3], §2 in Chapter 6).

Proof of Proposition 1. Apply p£* to (1.1) and consider -7— ||w

(2.5) -

= 2Re(»e(0.

By the condition (1.3)

2 Re («,(«),

2Re(»,(0, ftA,»*(*)) =-(»«(*). ^jy> »«(*)) ̂  const. ||«a(t)||
z.

Therefore we have

(2.6) - - | |
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Using Lemma 1, we have easily (2.1) from this inequality. Q.E.D.

§3. Existence Theorem

At first we consider the case where the coefficients are functions of

only x. Let a,jk(x)^£$2; bj(x}^&1; c(^)e^°. We assume the condition

(1.3). Then we have the following proposition which shows Hille-Yosida's

theorem is applicable.

Proposition 2. Take the domain of definition &(A) of A as follows:

(3.1)

Then, for large A, (& — A) defines a one-to-one surjective mapping of

onto L2. Moreover there exists a constant & such that

(3.2) | | (A_^)-i | |^ ( I I f Z 2 )^__ for any

Proof. For any u^@(A) it holds that

(3.3) ||(A-^)

Indeed

By the passage to the limit, using Lemma 1, we have (3.3).

The inequality (3.3) shows that, for large A, (A — A) defines a one-to-one

closed mapping of 3t(A) into L2. Therefore we have only to show that

the image (k— A)@(A) is dense in L2. We show this by contradiction.

If not dense, there exists #(=£0) in L2 such that

((A — A)u,v) = Q for every u

Of course this holds for every ue^. Hence

(3.4) (A — A*)v = 0 in the sense of distribution,
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where A* is the formal adjoint of A,

Since v^L2, (3.4) shows that A*v belongs to L2. If we note that
^4* satisfies the same condition as A, we can use the inequality (3.3) and
have

(3.5) 0 = ||0*- ̂ *>|]2^0*2-const A)H|2.

For large 1, this inequality requires that v = 0. This is contradictory to

our assumption v^O. Q. E.D.

The above proposition shows that all the conditions of Hille-Yosida's

theorem are satisfied. Therefore we have

Corollary o For any initial value u0(x)^&(A) and any f ( t ) such that

f(f) and Af(t) belong to ^?(L2)? there exists a unique solution u(x, £)e
of the Cauchy problem (1. !)-(!. 2).

Now we consider the general case, i.e., the case where the coefficients

are functions of x and also of t. Let ajk(x, t)^$Q
t(3$2)\ bj(x, t)^$Q

t(g$l)i

c(x, t~)^^^(^Q). We assume the condition (1.3). Then3 using Proposition

1 and the above Corollary , we have the following theorem.

Theorem !„ For any initial value u0(x)^L2 and any f(x,

there exists a unique solution u(x, ̂ )e<f^(Z2) n ^K-^i2) °f ^ne Cauchy

problem (1. !)-(!. 2).

Proof. At first we show this in the case where the coefficients are

functions of only x. Denote pe*u0 and p£*/(£) by u£
Q(x) and f€(x, t)

respectively. u%(x) belongs to &(A) and f € ( t ) , Af€(t) belong to #$(L2).

Hence, by Corollary, we see the existence of the unique solution u£(x, t)

e^(L2) of the Cauchy problem (1. !)-(!. 2) with the initial value UQ(X)

and with the right-hand term f € ( t ) .

Here we use the energy inequality (2.1) for u€(t) — u£*(t). Then

where M is a constant independent of e, e'. Therefore {w£(#, t)} is a

Cauchy sequence in ^(I,2), Q<^t^T, We denote its limit by u(x, t),

- On the otner
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By the passage to the limit, as £ — »0, we have

u(t)-u0=\ {Au(s)+f(s)}ds,
Jo

where the integral is taken in the sense of £#'12. Therefore we see that

'i2 is continuously differentiate and that the equation

(3.6) dtu-Au=f

is satisfied in the sense of &&.

Next, we prove the theorem in the case where the coefficients are

functions of x and also of t. Denote JR*xQO, r] by G. Let 0 = t 0 ^ t 1 ^ - - -

<^tk = T be a subdivision of [J3, T] of equal length. We define u ^ ( t ) 9

u2(i),..., uk(t) in [>0, £j, [>15 £ 2 H 9 - - - 9 Dfc-i> ^] by the following condition:

(3.7)

We denote by u(k\t) the function which in tj-1^t^tj- is equal to i^y(^).

It is easy to see that {&(^(£)} is uniformly bounded in the space

(f^y^G), consisting of all functions u(x, t)<=L2(G) such that (1 —J,)-1

Sj9{tt(a;, f)^L\G) for any y and / ( |v |+2;^2) 5 where we define

(1- AxY
lv(x, t) by ^f(l+ |f l2)"1^* OH and we take the derivatives

d v
x d j

t u ( x , t) in the sense of distribution in G. g^\^(G) provided with the

scalar product

(3.8) (u, V}^(G^(U, v)L,(G) + ((l-^)-i9/M, (l-^O^W)

is a Hilbert space. Hence {u^k\t)} has a weak limit, say u(x, t). u(x, t)

satisfies the equation

(3.9) dtu — Au=f in the sense of distribution in G.

Now we show that u(x, t) is the solution in the sense of Theorem 1.
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At first we show that t->u(x, t)&&'£ is continuous. Because dt(l~Ax}~lu

eX2(G), by Nikodym's theorem, for almost every x, (l — Ax}~lu is an

absolutely continuous function of t9 where if necessary we modify u(x, t)

on a subset (cG) of measure 0. Therefore

for a.e. x. By Schwarz' inequality

for a.e. a;. Integrating for x over JJ", we have

We can also show that lim u(x, e)=u0(x) in L2(Rn). But we don't
e->o

give the proof. The reader will easily verify by consulting the reasoning

in [3] (§6 in Chapter 6).

At last we show u(x, *)e^J(L2) D^K^?0- APp!y Friedrichs9 mollifier

to (3.9). Then we have

(3.10)

We know that u£(x, ^)e^?(^|2)3 because u(x, £)e<^?(^?2)- Besides

< ue(t) -u6
Q,

= \ \ {^^f(5)+/£(5) + [p£*, ^a(5)}^dfrf^, for any
JRnjQ

where we used the fact that the equation (3.10) is satisfied in the L2(G)

sense. Hence

(3.11) ue(t) - iig =
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as a L2»valued function of I. Thus we see that u£(t)<=$}(L2). Therefore

we can use the same argument as the one in Proposition 1 and have

^c||̂

+ 2 | Re (u,(t) - ue'(t), rp6-Pe')*, 4

Hence

(3.12) max \\u€(t)- u

|Re(tt£(s) —u£ '(s), C(P£~P£')*? 4T\U
o

On the other hand in the same way as Lemma 1 we can show for

almost every 5(0 ̂  s ̂  T)

\Re(u6(s) — ue'(s), C(Pfi~~Pfix)*» ^H^(5))l ^const.||z^(s)||2

CT
Hence, noting that \ \\u(s) |2ds< + oo5 by Lebesgue's theorem we see that

Jo
the right-hand terms of (3.12) tend to 0 as e-»0. Thus {ue(t}} is a

Cauchy sequence in <^°(£2)(0 ̂  t <: T), as e-»0. Therefore it follows that

£ — > u ( x 9 z)e.L2 is continuous. By the same reasoning as (3.11) we know

that t—>u(x, £)e^£2 is continuously differentiable. Q.E.D.

Remarko For simplicity we have assumed that all the coefficients are

real-valued functions. Here we consider the case where bj(x9 t) and c(x, t)

are complex-valued functions. Put iy = 6j1) + J6J2), where 6J1) and 6J2) are

real-valued. We assume the following condition: for any (x9 t)^Rnx\J), oo)

n n
(3 13^ fy1 b^(x t}£"}^"^C( y a- (x t}£•£ } for all <?GJ2W

y=i ^ ~ y,*=i

where C is a universal constant.

Then Proposition 1, 2, Theorem 1 and Theorem 2 (in the following

section) are all valid. To see these we have only to note that

\(u, 2 b(»dx.u)\ g e > 2 (ay*9*^, 9*rf +C£\\u\\\
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where £ is an arbitrary small positive constant and C€ is a constant depen-

dent on s.

The above condition (3.13) is, in some sense, close to being necessary.

In another paper, the author will publish some results related with the

necessary condition.

§40 Smoothness of the Solution

In this section we study the smoothness of the solution, assuming the

smoothness of MO(#) and f ( x , f ) . Let ajk(x, t)f=£$(&m+2); bj(x, *)e

<fO(^w+1); c(x, Oe^?(^OT)9 where m = Q9 1,.... We assume the condition

(1.3). Then we have

Theorem 20 For any initial value uQ(x^)&@f2 and any /(#, £)e

^°(^L2)» there exists a unique solution u(x, j)e^(^J2) n #}(&%r2) °f

the Cauchy problem (1. !)-(!. 2).

If we use the following propositions, we can prove the above theorem

in the same way as Theorem 1.

Proposition 3. Let /(Oe^?(^JO and z*
« solution of (1.1). TAew ft Ao/Js /or «nj «(0 ^ ^ T)

(4.1)

where jf is a constant which may depend on T but does not depend on

u,f.

Proposition 40 Assume all the coefficients be functions of only x,

Take the domain of definition &m(A) of A as follows:

(4.2) @m(A) = {u(oc}' n(*)e#f,, Au(x)^9f*}.

Then, for large ^, (A — A) defines a one-to-one surjective mapping of

onto &™2. Moreover there exists a constant 0 such that

(4.3) IK*-^)-1!! ^ for any
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To see these, the following lemma is essential. It is the improved

one of Lemma 1. We denote the dual space of ^2 by @~Lf. Let am(g)

= 1+ H (27T?)2y. We define a~lu, a~lu by ^O^f)'1^)!],
l^\v\^m

^Lam(£)~2u(g)~^ respectively. @i™ provided with the scalar product

(u, v)-m = (a~2u, a~2v} is a Hilbert space.

Lemma 2, Let pe* be the same one as in Lemma 1. Let a(x)^@tm^2

be a real-valued function, and let u(x}&&™2. Then it holds for any

v(M ^2) that

2) Re(ue, LPe*9o(^)]9j")OT-»0 as e->0.

Moreover, if u^.@lf, it holds for any v(M ^2) that

3) |Re(u£5 [p£*9 a(*)KiO-J ^C1k)]_w

4) Re(Me , [pe*, a(A;)H9jzfc)_m-^0 «5 £->0,

where C9 Cr are constants independent of u and e.

Only to the latter half, we give a rough sketch of the proof.

(4.4) Re(>6, [p£*, a(x

Because a~^lu^^f29 we see that 3) and 4) hold for the 1-st term by the

first half of this lemma. Represent [/*(#), o^jdj in the following form:

(4.5) [>(*), am^dv
x

This representation is not unique, of course. Then

2-ndterm= 2

Therefore, by Friedrichs' lemma, we see that 3) and 4) are also true for

the 2-nd term.
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