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Stefan-Type Free Boundary Problems
for Heat Equations
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Hideo KAWARADA*

§1. Introduction

The present paper is concerned with the Stefan problem for the heat

equations, which arises, for instance, in the study of melting of ice adjacent

to the heated water.

Free boundary problems for the heat equations have been considered

for a century. Although in some special cases explicit solutions had hap-

pened to be known very early, existence theorems of general nature were

proved first only twenty years ago in connection with the 1-dimensional

Stefan problem by Rubinstein [1] and Dacev [2].

Since then, various papers on the Stefan problem have been published

by many authors including Friedman [3], [10], Evans [4], J. Douglas &

Gallic [5], Sestini [6], Miranker [7], J. Douglas [8], Kyner [9], I.T.

Kolodner [11], Ladyzenskaya [12], Oleinic [13], Brezis p4], Nogi [15]

and others.

Among their contributions we refer to the existence theorems due to

Kyner, Friedman and Oleinic which state the existence of solutions of the

problem subject to the Dirichlet or Neumann boundary conditions imposed

on the boundary of the heated water, under the assumption that even at

the initial moment there does exist some water. As a matter of fact, the

absence of water at the initial moment invoke a certain singularity or

difficulty of the problem from the mathematical view point, which is rather

mild for the case of the Neumann boundary condition but is quite hard to

handle for the case of the Dirichlet boundary condition.

Indeed, Kyner [9] and Friedman [10] have succeeded in dealing with
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the former case where the Neumann boundary condition is imposed and

there is no water at the initial moment by means of contraction mapping
and by means of a limiting procedure (also, see Problems 1 ~ 7 of chap. 8

of Friedman [163), respectively.
The objective of the present paper is to settle the remaining open case,

that is, to prove an existence theorem for the Stefan problem in the case

where the Dirichlet boundary condition is imposed and there is no water

at the initial moment. The actual proof will be carried out by means of
a limiting procedure apparently similar to that of Friedman Q(T] and by
means of some crucial estimates of approximate solutions.

§2. Notations and Results

2.1. Before describing our results we have to introduce some concepts
and notations. It seems to be convenient to begin with a brief reproduc-
tion of Friedman's formulation. His problem is to seek two functions

u = u(x, 0 and s = s(t) which satisfy the following equations:

(2.1)

(2.2)

(2.3) M(*,0)=V(*)SO f 0<*<6, V(6)=0, 6>0,

(2.4)

(2.5a)

Here u stands for the temperature of water and the equation x=s(t)

represents the free boundary. The conditions (2.2) (2.3) and (2.4) are the
usually given data for the temperature whereas the additional condition
(2.5a) (the equation of heat balance) is a condition on the free boundary

x=s(t). The assumptions /^O and ^^0 correspond to the fact that the

temperature of water is non-negative. Hereafter this problem will be
denoted by FBP. I.
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Definition 2.1. We say that u, s form a solution of FBP. I for

Q<t<ff (0<(T< + oo) if the following conditions are satisfied:

(i) uxx and ut are continuous for Q<x<s(t), 0<£«7,

(ii) u and ux are continuous for 0<ix^s(t)9 0<£<0",

(iii) u is continuous, also for £ = 0 , 0 < # 5 j & and

0 ̂ lim inf u(x, £) ̂ lim sup u(x, t) < + oo as t— »0, x— »0,

(iv) s(t) is continuously differentiate for 0^£<0",

(v ) u and s satisfy FBP. I.

By Friedman the following theorem for FBP. I was given:

Theorem 2.2. In FBP. I, suppose that

r£ continuously differentiable functions. Then there exists one

and only one solution u and s of FBP. I for 0 < t < + oo . Furthermore,

the free boundary s(t) is monotone nondecreasing in t.

We shall give an outline of the proof of Theorem 2.2. At first

Friedman prepares the following auxiliary lemma. Define

K(x9 t; €, r) =-===. exp\

Lemma 2.3. Suppose that (i) p(t) ( Q ^ t ^ f f ) be a continuous function',

(ii) s(t) (Q<;t<*o~) satisfy a Lipshitz condition. Then for every

lim
*-**(f)-0

(2.6)

(x, t ; 5(r), r) rfr .

We introduce Green's function for the half line x>0 which satisfies

the boundary condition u(Q, t)=Q

G(x, t;e, t)=K(x, t; f, r)-K(- x, t; $, r).

Integrating Green's identity:



520 HIDEO KAWARADA

over the domain 0<f <s(t), 0<e<r<£ — s and letting £->0, we get, on

using (2.2), (2.3), (2.4),

(2.7) «(*, 0 = (' ut (i(r), r)G(*. « ; s(r), r) dr
Jo

(r)Cf(*, *; 0,

Denoting #(r) = i^(s(r), r), we differentiate both side of (2.7) with respect

to # and let x-+s(t) — 0. Using Lemma 2.3, we obtain, on introducing

the Neumann function N(x, t; f, r)=JST(^, £; f, r) + K(— x, t; $, r) for the

half line x>Q,

(2.8) H0=2[^(0)-/(0)]^(05 t; 0,

-2^ /(OJVWO, *; 0,
Jo

where, by (2.5)

(2.9) s(t}=b

Hencefore this integral system (2.7)-(2.9) will be denoted by FBP. I'.

Furthermore it is proved that for every solution u9 s of FBP. I, v(t)

must satisfy the integral equation (2.8), where s(t) is defined by (2.9).

Suppose conversely that for some <7>0, v(t) (0^£«r) is a continuous

solution of the integral equation (2.8) where s(t) is defined by (2.9) and

s(£)>0. Then it is also proved that u(x, t), s(t) (where u(x, t) is defined

by (2.7) with af(s(r),r) replaced by v(r)) form a solution of FBP. I.

Regarding the integral system (2.8)-(2.9) as a nonlinear integral equa-

tion of Volterra type v= Tbv (Tb: nonlinear) and introducing an appropriate

function space, the existence and uniqueness of a global solution can be

proved in a standard manner as follows:

(i) A solution local in time is constructed by using that Tb is a contrac-

tion locally with respect to the time t;

(ii) The local solution is continued over to a larger interval with the aid

of some appropriate a priori estimates.

2.2. Here we state our main results. We denote the free boundary problem
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with 6=0 in FBP. I by FBP. II, in which the initial condition (2.3) is

removed and (2.5b) is replaced by

(2.10) 5(0) =0.

We assume that f(t) satisfies the following:

Condition (f.l): f(t) is continuously differentiate in 0^£<4-oo.

Condition (f.2): f(t) is non-negative for 0^£< + °o, and if /(0)=0 f(t)

satisfies the additional inequality /(0)>0.

Definition 2.4. We say that u, s form a solution of FBP. II for

0 < £ < < 7 (0«T< + 00) if u, s satisfy conditions (i) and (ii) in Definition 2.1

and the following (iii)', (iv)' and (v)' in place of (iii), (iv) and (v):

(iii)' O^liminf u(x, t^limsup u(x, £)< + oo as t— >0, x— >0.

(iv)' s(t) is continuous for Q^t<0~ and furthermore is continuously differ-

entiable for 0< t<o~, i.e., v(t) is continuous for Q<t<ff. More-

over, v satisfies \ ( — i;(r))dr< + oo.
Jo+

(v)' u and s satisfy FBP. II.

The condition (iv)' allows some singularity of v(t) at £=0 which

actually happens if /(0)>0. We state our results in the following.

Theorem 2.5. In FBP. II, suppose that f(t) satisfies conditions

(/. 1,2). Then (i) there exists a solution u, s of FBP. II for 0<£< + oo.

Furthermore, s(t) defining the free boundary is monotone nondecr easing in
s(t]t. (ii) x=s(t) satisfies CQ< — ==~==^^c1 in a neighbourhood of t = Q,

where c,-(a" = l, 2) is a positive constant dependent on f(t) only.

Theorem 2.5 will be proved in §4 after necessary preparations given

in §3. However, we here give a brief outline of the proof of Theorem

2.5 as follows: (i) We reduce FBP. II to a nonlinear integral equation of

Volterra type, (ii) For 6>0, let ub(x9 £), s*00 and vb(t) be a unique solu-

tion of FBP. I7 with Vr=Vr6(^)=-^y^-(6-^)(0<A;<6). Next we make

b=bn— >0 through an appropriate sequence b=bn(n = I, 2,...) and prove that

ub-+u, sb-+s and vb—*v where u, s and v is a solution of FBP. IF.

It should be noted that sb defined in (ii) satisfies the monotonicity with

respect to 6, which plays an important part in the proof of Theorem 2.5.
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§3. Some Preliminaries

As a preparation for the proof of Theorem 2.5 we state the following

lemmas.

3.1.
Lemma 3.1. In Lemma 2.3, instead of (i) and (ii) suppose that (i)'

p(t) is continuous for Q<t^0" and satisfies \ |p(r)| dr< + oo; (ii)' s(t)
Jo+

is continuous for 0<*t^o~ and, moreover, continuously differentiate for

gtf. Then (2.6) holds as it is.

Proof: We see easily that even if we use (i)', (ii)', in place of (i),

(ii) in the proof £3] of Lemma 2.3, the proof goes on without modification.

Letting b— »0 in FBP. I' formally, we obtain the following integral

system :

(3.1) u(x, 0 = r<r)G(*, t; s(r), r)c?r + (' /(r)G*(#, t; 0, r)c?r

(3.2) v(t) = -2f(0)N(s(t), t; 0,

(3.3) 5(0 =

Hereafter this integral system will be denoted by FBP. II'.

Lemma 3.2. Suppose that FBP. II has a solution in a sense of

Definition 2.4 and that FBP. II' has a continuous solution u, v, s in each

domain where they are defined. Then FBP. II is equivalent to FBP. II' .

Proof: By using the Green's identity and Lemma 3.1, it is easily

shown that FBP. II is reduced to FBP. II'. Conversely it is proved by

the same way as in Friedman's paper Q3] tnat a solution of FBP. II7
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satisfies FBP. II in the sense of Definition 2.4.

3.2. In order to deduce a comparison theorem for FBP. I, let us consider

FBP. I with &,/ and ^ replaced by 6 f-(>0), /,- and ^(*) = ̂ ^(&f--#)

(0<#<6 f-) for i = l, 2, respectively. The corresponding solution will be

denoted by uf(x, t) and s{(t). The functions ff and ^,- are subject to the

same assumptions as f and ^% respectively, and hence, these solutions do

exist. We have

Lemma 3.3. In addition to the assumptions as above, suppose that

and bb^Q. Then we have

Proof: The proof will be given in two steps. The first step deals

with the case of b1>b2. That is,

1st step: We claim that if /i(OS/2(0 (O^^tf) and 6!>62, then we

have s1(0>$2(0 (0^£^0"). We use reduction to absurdity. Suppose that
$i(0 and s2(0 cross each other for the first time at £ = £0>0, i.e., 51(^0)

= s2(to)i 5i(0>52(0 (0^*^«0)- Then we have

(3.4) ^(*o)^^i(*o).

On the other hand, we shall compare Ui(x, t) with UZ(A;, t) in the domain

0< x<s2(f), Q<t<t0. With w = ul—u29 we obtain from FBP. I for &!

and u2l

, f) =f1(t) -/2(i) ̂  0, 0 < t < t0,
(3.5)

v w(s2(£), 0 = r^l(52(0» 0^0, 0 < £ < £ 0 .

By using the strong maximum principle Q16] for (3.5), we get

Using (2.5a) and (3.6), we get 51(^0)>52(i0) which contradicts (3.4).
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2nd steps We consider the general case. In fact, s(t) depends continu-

ously on b in FBP. I (cf. §4). Thus, if we take e>0 and denote by

#=sf(0 the free boundary x=s(f) of FBP. I with b replaced by 6f = b1 + e,

we get

(3.7)

by virtue of 1st step. If we make £— »0 in (3.7), we get $i(0 = 52

Lemma 3.4« hi FBP. I, suppose that f(t) satisfies condition (f.l)

and, moreover, that either

(3.8) /(O^ 0(0^*£<7) if /(0)>0, or /(0)>0 if /(0)=0.

Furthermore, if we assume in particular

(3.9) TK*) = - ( b ~ *) (0 < * < 6)

*/&e» w;0 ̂ fl^ /or the solution u(x, t) and s(t),

(3.10) ~ux(Q, f)^-^-^-ux(s(t), t)

: Putting F(^;5 t) =--(s(t)~- x) (Q<x<s(t)9 Q<t<ff), we
5w

shall compare u(oc, t) with W(x,t} in the domain 0<#<s(£),

For w = IF— w we obtain

3, 0=0
(3.11)

(*,o)=o

(5(0, 0=0

where r, =

Using (3.8) and the monotonicity of 5(0, we see that JF^O. Therefore

the positivity of a solution of the heat equations leads to w = W— u^Q
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(Q<x<s(t),Q<t<ff) which implies that there hold WX(Q, t)^

and wx(s(t)9 t)^ (0^£^tf). Thus we get (3.12).

Lemma 3.5. In FBP. I. let /, V be as in Lemma 3.4. Then we have

for the solution u(x, t) and s(t),

(3.12)

(3.13)

0 Vi+/(<0 '

Proof: Integrating the equation UT = U^ in the domain 0<<?<s(z)5

0 < r < £ and using the initial and boundary conditions which u satisfies,

we obtain

(3.14)

By the maximum principle and (3.8), we get

(3.15)

Using the first inequality of (3.10) and the monotonicity of s(t), we get

(3.16) -j;Bf(0, Orfr^J^tS-^-.J

Substituting (3.15) and (3.16) into (3.14), we get

which implies the first inequality of (3.12);

(3.17)
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Using (3.17) and the second inequality of (3.10) we have (3.13). Integra-

tion of both sides of (3.13) with respect to t from 0 to t leads to the

second inequality of (3.12).

Lemma 3.6. In FBP. I5 suppose that /(0)>0 and ^(x} satisfies

(3.9). In paticular, if we take (7(>0) sufficiently small so that there holds

for Q^t^o",

(3.18)

then we have for the solution u(x, t) and

(3.19) ^ r r^- /^^L , 2

(3.20)

where K1=min /(O? ̂ 2 = V—=-i— and K% =

Proof: Let f(t) and ^(x) in FBP. I be (i) f(t) which satisfies (3.18)

and -^r~-(b - #) (0 < x < b} ; (ii) K^ which is the minimum of f(t) (0 ̂  t£ (T)

/^and —T^(b — x) (Q<x<b). Then we denote the free boundary s(t) corre-
ct

sponding to (i) and (ii) by s(t) and sm(t), respectively. By Lemmas 3.3

and 3.5,

(3.21)

Instead of Lemma 3.4, we now claim that

(3.22)

Indeed, putting W(x, t)= f\ (s(t)-x) (Q<x<s(f)> 0<£«T) and repeat-
5(^c;

ing the same arguments as in the proof of Lemma 3.4, we get (3.22).

Using (3.21) and (3.22), we get (3.20). From (3.20) the second inequality

of (3.19) follows.
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§4. The Proof of Theorem

4.1. Construction of solution

It is enough to prove the existence of a solution for O^^d", for some

<T>0, since we can then apply Theorem 2.2 and thus conclude the existence

of a solution for 0 ̂  t < + 00. Furthermore, the proof of the monotonicity

of s(t) is similar to that given in Q3] and will therefore be omitted here.

Let the notation ub(x, t), s b ( t ) and vb(t) be the same as at the end of
§§2.2.

1st step: Let {bn} be a sequence which satisfies bn>bn+l>0 (n = I9 2,...)

and 6W-»0 as n-*oo. Then Lemma 3.3 leads to that sb»(t)>sbn+1(t)

(O^Z^tf ) . As b=bn-*Q9 we see that s600 converges to s(t) at every

point in 0 <;£<;#. The limit function s(z) satisfies 5(0) =0.

2nd step: Consider now the family vb for b = bn. Then there holds that

(i) if we use Lebesgue's theorem, we get that for any ^

(r)V(r) dr = - (r)V(r) dr = - sb(G} + b + (r)V"(r) dr -» - s(<T)
o Jo Jo

5(r)^(r)dr (6 = 6II-*0); (ii) if we take <?(0<5«T) sufficiently small
o

and use (3.13) and (3.20), then we see that vb is uniformly bounded in

L°°(d, (T) and, hence, is weakly* compact in L°°(d, (7), while any limit

function must be the derivative of s (in distribution sense). Consequently,

vb converges weakly* in L°°(S, 0") to a function v°°(t)&L°°(d9 (T) for every

0<<J(<(T). Obviously, v°°(t) is well defined almost everywhere in (0, (7].

Also v°° is non-positive.

Then we have

(4.1) lim
6 = 6n-»

for bounded function ^ whose support is in (0, <7].

3rd step: The limit function s(t) defined in 1st step is continuous in

Q ^ t ^ f f . In fact, in view of Ascoli-Arzela's theorem and Lemmas 3.5 and

3.6, we see that sb(t) converges to s(t) locally uniformly in 0<£5g<7 and

s(£) is continuous in Q<t^ff. Furthermore if we prove that s(z)~~ *0

(£— » + 0), we see that s(t) is continuous in 0^£^<7 since s(t} satisfies

5(0) =0. If we apply (3.14) to sb(t) and make b = bn-+Q, then we get
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From this s( + 0)=0 is obvious. If f(f) satisfies the assumptions of Lemma
3.6, we may repeat the same arguments mentioned above.

Using Dini's theorem, we conclude that sb(t) converges uniformly to

s(f) in O ^ t ^ f f . On the other hand, it follows from Lemmas 3.5 and 3.6
and the monotonicity of sb(t) that s(t} is a positive and nondecreasing
function in 0<£^<T. Finally, s(t) satisfies a Lipshitz condition in

4th steps In 2nd step, we proved that vb converges weakly* to t;°°

0"). Here we shall show that vb converges at every point in 0 < £ ^ < T to
a function which we denote by vQ(t). If we replace ir(x) in FBP. I' by

b-x) (6>0), we get

(4.2) vb(t} = - N ( s b ( t \ t;

o

Making 6 = 6;2->0 in (4.2), we can show

(4.3) ^->i;°(0 = -2/

Some detailed proof of (4.3) will be given in Appendix.
Sthsetp; Here we shall prove that s(£)eC[0, <T] and t;00^) e ifoc(0, (T)

is a solution of FBP. IF. In 4th step, we proved that vb(f) converges in

any interval 0<#^£^(7 to vQ(t). From the pointwise convergence of

vb(t) to vQ(t) and the manner of convergence of vb to t;00, it is clear that

voa(t)=v®(t) almost everywhere. In other words, we have that, for almost

all

(4.4) tT(0 = -2/(0)JV(*(0. t; 0, Q ) - 2 f ( r ) N ( s ( t ) , t; 0,
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We now redefine v°°(t) on a null set so that (4.4) holds for every t, i.e.,

v°°(t) = vQ(t). Then v°°(f) is a solution of (4.4), which is continuous in

Q<t^ff and satisfies \ ( —i7°°(r))cfc< + oo.
Jo+

Finally, letting b=bn-*Q in (2.9) and noting the uniform integrability

of vb (see (3.13)) we find that s(t) in consideration satisfies

and is absolutely continuous in Q-^t^ff. If we substitute v = v°°(t)9 s(£)

constructed above into the right side of (3.1), we see that u(x, t) of (3.1)

is a solution of FBP. IF.

4.2. It remains to consider the behaviour of s(z) as t tends to zero. If

we apply Lemmas 3.5 and 3.6 to s = sb(t) and make b = bn-*Q, the state-
ment of (ii) of Theorem 2.5 follows immediately.

Appendix

Here we shall prove (4.3) as follows.

(i) It follows that for /jL<,t^G

(A.I) Urn (_) jV(AO, t;$, 0)# = -2/(0)JV(*(0, *; 0, 0) .

In fact, making b=bn-*Q, the second term of the right side of the

following inequality;

(A.2) , t; £, 0)#-JV(*(0, *; 0,

converges to zero. Using the mean value theorem and the inequality

<j2xe~*2^e~2x* and making b = bn sufficiently small, we get that for any

e(>0), \N(sb(t), t ' , f , 0)-JV(5(0, *;?, 0) |<e in the domain
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O^f^f i i , which implies that also the first term of the right side of

(A. 2) converges to zero.

(ii) It follows that for

(A.3) lim

For every fixed t and e, where Q<e<t<0, we divide the third term on

the right side of (4.2) into two parts, namely

O JO Jt-6

If we can prove that

(A.4) lim Nl = f~ V(r)G, (5(0, t ; s(r), r) d-c
b = bn-*Q JO

and that uniformly with respect to b=bn and t

(A.5) lim #2 = 0.
£-*0

and

(A.6) lim'
€-+Q Jt-e

then it completes the proof of (A.3). Replacing V in (4.1) by Gx{s(t),

t; s(r), r) e C[0, t - e], we get

(A.7) lim
6 = 6«-*0 JO

Using that Gx(s
b(t), t; s6(r), r) converges uniformly in O g r ^ Z — e to

Gx(s(t), t; s(r), r) as b=bn-+Q and that \ ( — t?&(r))dr is uniformly
Jo

bounded by virtue of (3.13), (3.20), we get
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(A.8) lim
r a-»o Jo

From (A.7) and (A.8) follows (A.4). Next, using the Lipschitz continuity

of s6(0 (O^t^tf ) and the following inequality:

5
where r=—, ' . we get4e

(A.9)

where M=-^- max -
§ST*,

and A0 is an absolute constant.
Using (3.12), (3.19), we conclude that the right side of (A.9) tends

to zero as e— »0, uniformly with respect to t and b=bn. Thus we see
(A.5). On the other hand, replacing V in (4.1) by £sgn v°°G JG^(s(i), £;

s(r), r)eC[>-e, f - f f ] for any 0<5<e, we get

V"(OC,(5(0, t; a(r), r) | rfr

lim
Jt-6

sfrt2
where 0=-^-. The last inequality follows as (A.9) with sb replaced by

5. In fact, vb is uniformly bounded in £°°(-y-, ^) (o<5<e<-|-^ by (3.13)

and (3.20), i.e.,

(A. 11) 0<-vb^M JL^t^
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which implies

From (A.12), we get

since sb(t) converges uniformly to s(£) in Q<^t^(T. Since the right side

of (A. 10) does not depend on d and tends to zero as e— »0, the integral on

the left side of (A. 10) is convergent for 5 = 0 and is bounded by the right

side of (A. 10). We now use the results of 3rd step and conclude that if

Q<ju<t«f then the right side of (A. 10) tends to zero as s-»0, uniformly

with respect to t and b=bn. Hence follows (A. 6).

(iii) The second integral on the right side of (4.2) can be dealt with

quite similarly.
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