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On Some Further Properties of Solutions to a
Certain Semi-linear System of Partial

Differential Equations

By

Atsushi YOSHIKAWA* and Masaya YAMAGUTI**

1. Introduction

We discuss the behavior of solutions to the following system of partial

differential equations for u(t, x) and v(t, x}:

a)
dv/dx= — uv,

with the initial data:

f u(0, *)=u°GO,
(2)

[ »(0, *) = »°(*).

Here, u°(x) and v°(x) are supposed to be bounded, measurable, and non-

negative :

(3) 0^u°O)gM, 0^t;0O)^.M, 0<M< + oo.

Global existence and uniqueness of solutions to the Cauchy problem

(1) (2) (3) are evident. Furthermore, v(t, x) is easily seen to be bounded

as £-» + oo.

The system (1) can be considered as describing a development in time

of two element system of prey v(t, x) and predator u(t, x} running on a
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straight line with the same speed but in the opposite directions. As to

the behavior of solutions, we may state very roughly that if, at the initial

stage, u° is spread "uniformly", then u does not grow up as the time

passes. On the other hand, if u° is "scarce", then u may become arbi-

trarily large, though possibly spicular, as £— > + oo, "wandering" to the

spots where v is "abundant". For the time being, we observe only partial

facts which suggest the above statement.

We give some of these observations in this article. In §2, §3 we

discuss the "uniformly" spread case. In §3, we consider the case of

periodic initial data. We can then observe asymptotic periodicity in t of

u(t, x} as t— > + oo. We treat in §4 asymptotic behavior of u for the case

of too "abundant" u° with respect to VQ. In §5 we discuss the "scarcely"

spread u°. We give several classes of UQ and VQ, for which u(t9 x) does

not remain bounded along a certain curve as £-» + oo,

If the system (1) contained no space derivatives, then its solutions u

and v would remain bounded under (3), for u + v would then be indepen-

dent of t. Thus our results of §5 suggest that an interplay of the non-

linear terms and the space derivatives lets u(t, x} grow exponentially under

appropriate conditions. This fact is first proved by the second author

(see Yamaguti QT)). As an inspection of proofs in §5 shows, such a

phenomenon essentially arises for the following system:

I du/dt— pdu/dx = uv,

dv/dt-qdv/dx=-uv

with p=£q. Note that if p = q, then the system (!') would reduce to a

system of ordinary differential equations. In short, we emphasize that,

though with the same non-linear terms, solutions of partial differential

equations and ordinary differential equations may behave quite differently.

In passing, we note that unbounded solutions with bounded initial data

also exist for general Volterra type equations:

(1") duk/dt-pkduk/dx = (% CkjUj)uk, * = !,..., N.

Here pi,..., pN are distinct, and
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In fact, we may take u3 = ••• = uN = Q, and then the system (l';) is reduced

to (I')-
For such considerations and background materials, we also refer to

discussions on the system with confinement (Mimura Ql], Mimura-Kametaka-

Yamaguti Q2], Yamaguti Q3]). If, for a system of semi-linear equations,

there is a convex bounded set C such that all the solutions starting from

C always lie in C, then the system is said to be with confinement. If

non-linear terms are of quadratic forms, a system with confinement is

characterized by means of its coefficients (QlJ, DO)- Thus the system (1")

is with confinement only when all the pk's are identical. If the pk
fs are

distinct we cannot even find two bounded sets B and Er such that any

solution starting from B remains in B'.

2. The Uniformly Spread Ca§e

In order to avoid the trivial case, we assume throughout the paper

that UQ and VQ do not vanish identically.
1 ffl

We will often denote —\ uQ(r}drby $(a9 6):
6 Jb

Definition 2.1. We say that u°(x) is uniformly spread if the set

{exp { — 0(a, a — s)}: — oo<a< + oo} is uniformly bounded in L1(Q9 +00).

Proposition 2.2. If u°(x) is uniformly spread, then for every XQ,

uQ(x)&Ll(xQ, +00).

Proof. If u°(x)<=Ll(-oo9 *°), then

1 ffl
0(a, a-5) = — -\ u°

& Ja-s

Thus, as functions in 5,

9 +
00)-
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1 f°°If uQ(x)&Ll(x°, +00), then by setting ^(a) = -=-\ u°(x)dx, we should

have 0(a, 6) = ̂ (6) — ̂ (a). Since w°(#) is uniformly spread, this would
imply that

for all a with some constant C>0. This is, however, impossible. In fact,
then for any a>0

since VW^CO) if s^O. Q.E.D.

Remark 2.39 If there is a non-negative function 0x(s) with

and exp( — 01(5))eL1(0, +00), then M°(A;) is uniformly spread.

By this remark, we can prove

Proposition 2.4. If UQ(X) is periodic and u°(x)&0, then UQ(X) is
uniformly spread. More precisely, as $i(s) in Remark 2.3, we can take

( 05 5<tzr,

#i(*H ,I m5/2tjy — TTi/2, s^vr.

/•w

is the period of u°(x) and m = \ uQ(r)dr.
Jo

Proof. By the periodicity of M°, we have for any s>0 and real b

- -

if A; is the integral part ofs/w. Since k>s/vr—l, we have
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Q.E.D.

Remark 2.5. If w°(#)^a>0, then u°(x) is uniformly spread with

0!(5)=a59 5^0.

Proposition 2.6. If u°(x} is uniformly spread, then the solutions

to the Cauchy problem (1) (2) (3) remain bounded as £-»+oo.

Proof. The system (1) (2) is immediately seen to be equivalent to

the following system:

u(t, x} =

--(Tu(o', x +1 - 2r + ff) d f f l d t l ,

(4) {

( rt rra- "1 )
v°(x-t)exp<-\ n0(*-* + 2<T)exp \ v(r, x-t + 2ff--c) dr \d(J\ .

( Jo LJo J J\

Under the condition (3), we immediately have

It remains to show the boundedness of u(t, x). From (4),

(5) u(t, x)^u°(x + t).

Substituting (5) into (4), we have

(6) u(t, x) ^ u°(O exp 7(£, y)9

(7)

Since vQ(d)^M by the assumptions and since UQ is uniformly spread,

-0(£5 fffidd



582 ATSUSHI YOSHIKAWA AND MASAYA YAMAGUTI

Hence,

u(t, x)^

for all £>0, -oo<#< + oo. Q.E.D.

Remark 2.7. The systems (l)-(2) or (4) are also equivalent to the
following :

f \ v(s9 x + t

( — \ u(s, x —

Remark 2.8. In the proof of proposition 2.6, we have essentially
shown that {v(x, a — s); — oo<a< + oo} is a bounded set in Ll(Q, +00)

if u° is uniformly spread. In fact, by (4) we have

v(t9 *)^00

3. The Case of Periodic Initial Data

In this section we assume that UQ and v° are both non-trivial non-

negative periodic functions of the same period w.

Since the initial value problem (1) (2) (3) is uniquely solved and since

the system (1) is invariant by translation, we have

Proposition 3.1. If UQ(X) and v°(x) are periodic of period txr, then

the solutions u(t, x} and v(t, x} of the initial value problem (1) (2) (3)

are periodic in x of period tzr :

u(t, x + vf) = u(t, x), v(t, x-\-vj} = v(t9 x}.

Moreover, u(t, x) is asymptotically periodic in t as seen from

Proposition 3.2. Under the assumptions of Proposition 3.15
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u(t, x)^u(t + vr, x)^e0(t}u(t9 x) for t^

Here

$(*) = ra exp (7/1/2 -77i£/t£r)->0 as t

and

m =(*u°(r)dr9 n = ( vQ(r)dr.
Jo Jo

Proof. From (4) we have, using Proposition 3.1,

(x, t),

\ -(TU((?, x + t-2-c + ff)d(f \dr.

From (5),

If 2£^trr, then by Proposition 2.4,

^ n exp (m/2 — mt/vr) = 0(t).

Since @(x, ^)^0, we have proved the proposition. Q.E.D.

On the contrary, v(t, x) enjoys the following decay property. Namely,

we have

Proposition 3.3* Under the assumptions of Proposition 3.1, we have

Here K=m exp {n(2 — e~M/2)/2(l — e~w/2)}, m, n being as in Proposition

3.2.
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Proof. From (4) we have, using Proposition 3.1,

v(t9 x) = v(t + &r9x

W(t, x) = Y + u°(x-

It suffices to show the following inequality:

(8)

Since v(t, #)^0, we have

W(t9 x ^ u 0 ( x -

Now we are going to show the right-hand side of (8). From (4)

v(t, *)^°

Since

we have

( v*(y) exp ( - mt/w + m/2), t ̂  tar/2.

Thus, for tf

(r, TI + 26 - r) dr ̂  ^ + /2,
o

where

and

/2
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By the periodicity of v°, I^—n/2. On the other hand,

- S e-
£ k = 0 o

Thus

o

Hence,

and the inequality (8) is proved. Q.E. D.

4. A Starvation Phenomenon

By inspecting the first equation of (4), we immediately have

Proposition 4.1. If v°(x)^Ll(— oo, +00), then the solutions u(t, x)

and v(t, x) of the initial value problem (1) (2) (3) remain bounded as
t — >• + oo.

Proof. It suffices to show the boundedness of u(t, x). From (4),

(9) u(t, *)<Jn'(

Hence

u(t, x)£Mexp v\0)do< + oo. Q.E.D.
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The following propositions suggest a "starvation" of u in case when

u° is abundant while v° is running short.

Proposition 492. Let v°(x)^Ll(— oos + oo) such that vQ(x} = Q, oc >a,

for some a (t;°(^)^0). If u°(x)^L1(a9 +00), then for every c, —

x°9 — OO<A; O < + OO, we have

(10)

for large t. Here g(t) = (I + c)t + x°, a(t) = a(t; c, x°9 u°, t;°)^05

. Since

for (:>a^6, we have by (7) and our assumptions on v° that

if f -2«^a. Hence, by (6)

f -2f

for f=^ + *^o and f-2t£a. If A; = cf + ^0
5 - l<c<l , then £(0 =

(l + c)i + ^°-> + oo, and £(«) — 2f-> — oo as £-> + oo. On the other hand,

since u ° ( f f ) £ L l ( a , + oo), ̂ (f(0, a)-> + oo, ̂ -> + oo. Hence,

and

u(t,

Combining this with (5), we have (10). If c = l, then V(£(t\ $(t)-2t) =

for x°^a, and F(f(0, £(0-20^4"^ A^)^exp(-0(f(0, a)) for
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Hence, (10) holds also good for this case. Q.E.D.

Proposition 4.3. Take a non-negative differ entiable function &(#) in

x^a such that lim xe~k(x) = Q. Let v°(x)<=Ll(- oo, +00) with v°(x)^
#-» + 00

Me~k(x} for x^a. If /ra(#) = max(0, 2k'(x)- u°(x^<=Ll(a, + oo), then

the same conclusion as in Proposition 4.2. holds with c, — Kc<l.

Proof. First, we note uQ(x}&Ll(a, +00). For if x>a,

(\2k'(r)-u\f)') dr^
J a

whence, as x-+ + <x>9

By the proof of Proposition 4.2, it suffices to show

20->0 as ^-^ +

In fact, for large t, we have

I f f ( O \
-i u°(ff)dff)

6 Ja /

1 ff( ') f 1 f f ( * >
-^MJ exp|-A(fl)— i-J^ M

Since

= - *(f (0) +

we have



588 ATSUSHI YOSHIKAWA AND MASAYA YAMAGUTI

S (/)exp | - k (0) — 1J*0' Bo

Consequently,

» f (0 - 20-»0 as *--> + oo .
Q.E.D.

5. The Case of Not Uniformly Spread UQ

If &°(#) = 0 for x<x°, then u°(x) cannot be uniformly spread by
Proposition 2.2. Noting this and Proposition 4.1, we see the following

proposition is of interest.

Proposition 5.1. Assume that uQ(x) = Q, X < X Q , and that (x — #°)~r

u°(x) tends to c°>0 as x I XQ for some r, 0^r< +°°- V v°(x)&Ll(—oo,

#°), then u(t, x} does not remain bounded as £—» + oo. More precisely,

there is a function ^(f) such that "^(f)—»-f oo as £ I XQ,

(11)
-t(i)

that

u(t, *)

Proof. We may assume #° = 0. Let f = ^ + ^9^ = ^ — t as before.
Substituting (9) into (4), we have

(12) u(t, x)> M°

where

(13)
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By the assumptions on the support of u°, it suffices to discuss the behavior

of u(t, x) for £^0. For f ^0, 0<0, we have

where

Therefore, by setting

and

, 0<0,

we have

Thus if ??<0,

(14)

Here we have used the transformation r = $(0) and dr/r= —

Since v°<£Ll(— oo, 0), there exists a function ^(f) satisfying (11) (with

jc° = 0). In reality, it is enough for our purpose that (11) holds for a

sequence £„ i 0. Now by the definition of a(f ), f-7-1^^)-*-^-^^0 as f i °^
since ^~vu0(^)->c0 as a; 1 0. Thus, from (11), we have

(15)

Now choose e, 0<e^l, so that
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Since a(£) | 0 as £ | 0, we have by (14) and (15)

- -
2 J-

e~rdr/r

rfr/r.

Thus,

Hence, for * = (f + V(£))/2, ^ = (f~Vr(f))/2, we have by (12)

exp -

o(£) exp {e-£Qog a(f)-1 -log

However, for some c1>0,

as

with d= ~^ + e~e(7'4-l) = e~£{l — (e£ — 1)^} >0 by the choice of e. Conse-
quently, as £ I 0,

Q.E.D.

Remark 5e2e Proposition 5.1 was inspired by the case when UQ(X)

= 0, #<0, M°(A;) = I, *^0; i;0(^) = l, A;<O,I;O(A;) = O, A;^0, given originally
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by Kametaka. Generally speaking, u°(x) as satisfying the assumptions of

Proposition 5.1 cannot be infinitely differentiate at XQ. We do not know

whether the proposition holds good when u°(x) is infinitely differentiate

(in particular, when x° is a zero of the infinite order of u°(x)).

In order to treat another class of not uniformly spread u°, we intro-

duce the following function $i(r), — oo<r<+oo, by

(16) 01(r) =

for some fixed positive constant V. If i?°(je) ig2F, then we have by (13)

(17) /(£,0)£e-"to = ft£,0)

for 0<£, where the last equality for the definition.

Remark 5.3. The function 0(f , 8) gives a good information for the

estimate of u(t, x} from below. In fact, if Q<^vQ(x)^2F, we have by

(12) and (13)

where

7j=x

If Q^u°(x)^M, we have

since

In particular, we have
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(18) u(t, *)^»°(

Now since

we see that if

then UQ cannot be uniformly spread. In fact, then

e~rdr/r,

and the last integral tends to + oo as f— > + oo. Consequently, if in

particular u°(x)eVx&Ll(— oo, +00), then ii° is not uniformly spread (cf.

also Proposition 2.2). Then we have the following

Proposition 5.4. Suppose that there be a function £(z) such that

lim sup M°(f(0)ef(0V$i(?(0)= + °
#^ + 00

, X > X Q , we have

lim sup u(t,

Proof. Since 0^t;0O)^2r5 we can apply (18). Putting

we have

(19) F(€, 7i} = (2VYv\p) exp {-
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where

By (19), if g-2t<x, and f^O,

e-'dr/r,
Mi?)

= e~v*$i(j£ ), /S = e~y^°^1(0). Hence, by our assumptions,

, f (0 - 20 £ Cx

for large *, C^ae~^/2V9 C2=C1log0.

Consequently, by (18) we have

Q.E.D.

Specializing the assumptions of the previous proposition, we have the

following more precise version of Yamaguti's result

Proposition 5.5. Suppose u°(x)eVx<=Ll(- oo, +00)

F>0. Assume that there be a sequence ?w-» + o

>• -f- oo

/ (•«> \
for some real ^° and positive C1^(2F)~1 expf — e~Vri \ u°(x}eVxdx).

\ J-oo /

Then u(tn9 ^^-^H-oo, n—> + oo, tn = (Jzn — 7])/29 xn = ($n-}-7J)/2 for every fixed

y^y°. In particular9 if there is a sequence $n—> + oo

xn = tn + 7]9 with a fixed ^^^°.

Proo/. Since M^^e^eL^- oo, oo), 0^v°(x)^2F9 and ^g^°, we

have by (19)

(20)
•>/>(£)
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Here Cl = e~cl2V
9 c^p(^°) sup^Cr). Substituting (20) into (18), we have

u(t, *)^u°(

, 7}=x — t^f]Q. This inequality immediately implies the proposition.
Q.E.D.

Finally we give examples, as illustrations to Propositions 5.4 and 5.5.

Example 5.6. Take a function a(#) supported in £ — 1, 1] such that
a(0) = l and 0^o(^)gl. Put

[ 05 *<1,
if '(*) = |

( a((x-2n)/dn), 2n-l^x

with dw^l. Thus uQ(2n) = l. If rfw = e"Sw, ra = l, 2,..., with any positive
5, then uQ(x)&Ll(— oo, +00) and ?(£) = £ + #° satisfies the assumptions
of Proposition 5.4. If dn = 2'n exp(- V-1nV\ n = l, 2,..., then e^w°(A;)

1(— oo, +00) and then Proposition 5.5 is applicable.

Example 5.7. Take the same function a(#) as in Example 5.6. Put

( 0, x<l,
uQfx^—}

\ bna((x-2n)/dn)9 2n-l ^x ̂

with dn = 2~nexp(-F-2nV), n = l, 2,... . Here bn^l are to be determined
according to the choice of v°(x). For example, if vQ(x) = 2V/(x + I) for
x>Q, then bn can be chosen as bn = (2n + l)~a

9 Q^a<l. Then u(n, n)-+
+ oo as n

Remark 5.8. Note that under the assumptions of Proposition 5.5, we
have

<2i>
for every y while u(tn, £w + ??)—» + oo as n—» + oo, tn = (gn — y)/2, 7] ̂ y°.
In fact, (21) follows from (9) and eVxu°(x)^L1(-oo9 +00). On the other

hand, under the same assumptions we can estimate v(t, t + y) from below8

In fact, by (4) we have
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exp

. Since

we have

v(t,

Here the right hand side is independent of t.
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