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Ergodic Properties of the Equilibrium Process
Associated with Infinitely Many
Markovian Particles

By

Tokuzo Suica* and Yoichiro TaxAHASHI™*

§0¢. Tnireduction

Consider a system of independent identically distributed Markov
processes which have an invariant measure 4. It is known that if each
process starts from each point of a A-Poisson point process at time zero,
these particles are A-Poisson distributed at every later time >0 [17].

In the present paper we are concerned with the ergodic properties of
the stationary processes obtained from such a system of particles, which is
called the equilibvium process. Sinai’s ideal gas model is a special example
of the equilibrium processes [4] In §1 we will give some preliminaries
and the definition of the equilibrium process, and §2 is devoted to the
study of the ergodic properties (metrical tranmsitivity, mixing properties and
pure nondeterminism) of the equilibrium processes. In §3 we will discuss
the Bernoulli property in the strong semse of the shift flow {0,} _ccicem
defined in §1. The shift flow induced by the eqilibrium process is a factor
flow of {®,}. Tn §4 we prove a central limit theorem. Finally the authors
would like to express their hearty gratitude to Professor H. Tanaka for his
valuable advice.

§1. Preliminaries

Let (X, #x, A) be a o-finite measure space, and denote by #(X) a
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family of all the counting measures on X, i.e. each element of #(X)
is an integer-valued measure with a countable set as its support. #(X)
is equipped with a ¢-field ¢ which is generated by {peX (X): o(4)=n},
nz0, AE%yx. An element p of #(X) is represent by p=2.0,; where
8,(A)=1 if xeA and 0,(4)=0 if x&A. ’

Definition 1.1. Let I, be a probability measure on (A (X), %). II,

is A-Poisson point process if it satisfies the following conditions,;

(1.1) for any disjoint system A,..., A, of Bx such that A(A;)< +o0;-;,
o(4,),..., 0(4,) are independent random variables on (¥ (X), ¥, 1II,) and
II,{o; o(A,-)=n}=—[i(*:—;'>]—exp [—4(4)],i=1,..., n.

Here we summarize some elementary facts on A-Poisson point process.

Lemma 1.2.

(@) For any o-finite measure space (X, Bx, ) there exists a A-Poisson
point process.
(b) A probability measure I, on (X (X), %) is a A-Poisson point process
if and only if

(1.2) ge‘<""”>ﬂx(dp)=e—<1—'f"-’~> D for every non-negative measurable

Sfunction ¢ on (X, Bx),

and moreover (1.2) is equivalent to the following condition;

(1.3) Se"<""”>II 2(dp) =e <1=¢"> for every A-integrable function ¢.

For each A of #y, denote by ¥(A) the c-field generated by {peA(X);
o(B)=n}, n=20, BE#yx, BC A.
Lemma 1.3.

(@) If A4.,..., A, are wmutually disjoint, 9(A,),..., 9(4,) are mutually
independent 0-fields w.r.t. II,.

1) For a function ¢ and a measure i<g, 2>=Sgp(x)1(dx).
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() If {4,}C By is non-increasing and NA,=¢, {9(A4,)} is also non-
increasing and N%(A,)={¢, #(X)} (mod. II,).

Next, we define the equilibrium processes associated with Markovian
particles.

Let X be a locally compact separable Hausdorff space and %y be the
topological Borel field of X. Denote by #° the path space of X, that is,
each element of #° is a X-valued right continuous function with left limit
defined on (— o0, c0), and define the shift operators {0,} .cic.. Of #° as
usual; (0,f);=f;+s for each f of #".

Put S=x#(X) and 2=4(#"). Denote by {60,}_.<;<. the shift
operators on £ induced by the shift operators {0;}_.c;c. On #, i.e.

(1.4) @,w:?@em if w=204.

Define S-valued process {&;(0)}-wcic. On £ as follows;
(1.5) {-‘,(w)=;6f;' if w=);6fi.

Then &,(w) is right continuous in ¢ in a natural topology.

In our situation a motion of one particle is given as a Markov process on
X and denote by {P,(x, dy)} its transition probabilities.

Assumption.

{P,(x, dy)} is a conservative Feller Markov process and have a Radon
invariant measure A, that is, {P,(x, dy)} induces a semi-group of contrac-
tion operators {T,} on C.(X), and ST,f(x)/I(dx):Sf(x)l(dx) for every
fof Co(X).®

Under this assumption {7,} is, also, a semi-group of contraction
operators on L%(X, #, A).

Lemma 1.4. There is only one 0-finite measure Q on (W', By)?
such that

2) C.(X) is the family of all the continuous functions vanishing at infinity, and Cy(X)
is the family of all the continuous functions with compact supports.
3) & is the g-algebra generated by all the cylindrical subsets of %/
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(16) for —00 <1<ty << F o0 and {Ai}i=1,2...,n
OLf; fr€dy, fr,€45,..., f1,€A,]

={ 2w Poon(on dzp| Prpcss (v diy).
Ay Ay A

n

In particular Q is {0,}-invariant.

Denote by B the g-field generated by {wef; w(4d)=n}, n=20, AcBx
and put P=1IT, (Q-Poisson point process). We consider (£,B,P) as our
basic probability space.

Proposition 1.5. {2,B,P; {£,}_wci<e} is a right-continwous Markov
stationary process with II, as its absolute law.

Proof. 1t is sufficient to prove the following formula;

1.7 for —o0<<t,<--<t,<oo and {¢;}=0 measurable functions
on X

E[e=<tutu>...e=<on ¢ = E[e~<P1:6t1>...g7<Pn-1 btn-1>g<I08T ptyoge 7 g y>T 4)

Put 0()=F 0.0/,
The left-hand side of (1.7) =E[e <> |=exp—<1—e™?, Q>

=eXp—S;‘(dx1)SPtz—n(x1’ de)'“San—tnﬂ(xn—l’ dxn)[l—e-il‘pi(xi)]
=exp— {25 [ Piys, (3, dino)-

"'SPtn-l—tn-z<xn—2! d%,-)[1— e_néé’i(“) Tty " (%,-1)]
=E[e<Pufu>...e=<Pn-1-108T1n_ty 1 g=0m Etns>]
=the right-hand side of (1.7).
In particular E[ e=<* ¢~ ]=exp—<1l—e?, 1>.

Definition 1.6. The Markov stationary process (2, B, P; {&,;} —wcice)

4) E denotes the expectation by P.
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is called the equilibrium process associated with [{T,}, 27].
The following calculations are immediate from (1.7).

Propesition 1.7.
(i) E[e<r&>|g ]=e<loeTi-se > for Y9=0 and s<zt.
(i) E[<@,&>[6]=<Tp, &>  for YoeL¥(X, #Bx, 4).
(i) El<e, &><¢,6>8,]=<T,-0,6,><T;_ 0, &>

+< Tt—s(¢¢)7 55 >—=< Tr—-s(D' T,_5¢, Es >
for Yo, e L3(X, By, DN LYX, Bx, 4).

§2. Ergodic Properties

In this section we discuss the ergodic properties of the equilibrium
processes.
Proposition 2.1. The following (i)~ (iii) are equivalent.

(i) (2,B, P; {8} _ccico) 1s mietrically transitive.

(ii) lim-i——gtg P (x, K)A(dx)ds=0  for every compact subset K of X.
t 0JK

Gii) lim —I{St(Ts Fr @nioyds=0 for all f and g of L*(X, 2)
PR 0

Proof. It is easy to show the equivalence of (ii) and (iii). Moreover
(i) is equivalent to

t n . T N
(2.1) lim %-S E[ ¢ T 0nési>e 5 b, 0| dy
0

{00 -

- Etevé@i.sspjg[e—)’f;@p £,
for any —oo <5<, <---<5,< 00, —ooLlr <ry<---<r,, and any
{o}i=1,m {¢j}j=1,...,m of C5(X).%

However it suffices to prove (2.1) for m=1 because of the Markov property
of {&}. For s,<r+u,

5) C#(X) is the family of non-negative elements of Cy(X).
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n
E[e5<tuts>g b bru>]
=exp—gz(dx)(1—e—% T, _.e*-e*T,,, . eb)

=exp—-S/I(dx)((l—e“"’lTsz_sle‘“’Z---Tsn_s"_le—"’")

+enT,, e T e T, s, (1—e %)

§2781 SnTSn-1

= E[e 5<outs, B[ e~<h > x
exp| AR L= e T,y T, I (1= 7).

Therefore,

3 n n
(2.2) lim _H E[e~ 5,00 fn>g-<tireu>T| dy = E[ e~ 5<06 t1> B[ e=<b 6>
0

{00

is equivalent to

(2.3) iirf%gzexp[gi(dx)[l—e“”lTsz_ue“”h-~T5n_sﬂ_le“”"]><
Tu(l—e“P)]du:l

or

(2.4) }irg%S;Bl(dx)[l—e“”lTsz_sle“"z---Tsn_sn_le““’ﬂ]
Tu(l—e“‘l’)]du=0.

Note 1—e=®T,,_, e T, _, e *neL*X, 1) and (1—e¥)eL2(X, ).

§2—s1

Hence (iii) implies (i). On the other hand it is obvious (2.4) implies (ii)
by putting n=1, ¢, =¢ = C(X).

Corollary 2.2. If {&,}_ccic. is metrically transitive, then 2(X)= oo,

Proposition 2.3. The following three statements are equivalent.

(1) (2,B, P; {£,}—cicw) has the mixing property.
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(ii) limg A(dx)P,(x,K)=0  for every compact subset K of X.
teo JK

Gii) Um(T,f, @rzx,n =0 for all f and g of L*(X, 2).
100

Since the proof of Proposition 2.3 can be carried out by the similar method
as Proposition 2.1, it is omitted.

Next, we consider the pure non-determinism of the equilibrium
processes. In general, let (2, #, P; {z;}_w<i<w) be a Markov stationary
process on X associated with {P,(x, dy), #(dx)}, where P,(x, dy) is a
transition probability measure and # is an invariant probability measure.

Then the following criterion for the pure non-determinism is applicable.

Lemma 2.4. (2, %, P; {2,} wcic.) s purely non-deterministic i.e.
NF (z2)={¢, £} (mod. P) where F,z) is the 0-field generated by
t
{z5; s<t}, if and only if

2
@5) tim [ (Pi(x, dyf(n={uansn [ wam=o for Ye1:x, .
This lemma can be found in [6].

Proposition 2.5. The following three statements are equivalent.

(i) (2,B, P; {&,}_..cic.) is purely non-deterministic.

(ii) limSX/l(dx)[P,(x, K)YP=0  for every compact subset K of X.

1—00
(i) Hml| T, fll2cx, 0y =0 for every f of L:(X, 2).
t—ooo
Proof. By Lemma 2.4 (i) is equivalent to
(2.6) lim E[(E[e~<*¢>|& ]—E[e <t*>2]=0  for Yo C{H(X).
t—o0
Using Proposition 1.7 and Poisson properties, we have
E[(E[e <> |&, ]~ E[e~<¢»?>])2]= B[ (e<lo8Tie " fo> _ g=<1-e72>)27]
= E[<108(Tte ™), £0> _ g=3<1-0700>7| = g=<1-(Tee™)2A> _ g=2<1-e70,0>

— (e<(T,(1—e-¢))2, > 1)6—2<1—e-¢,x>_

In the last equality we used < T;(1—e®), A>=<1—e %, 1>. Therefore
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the equivalence of (2.6) and the statement (ii) is obvious. Moreover the

equivalence of (ii) and (iii) is trivial.

Proposition 2.6. (2, B, P; {£,}—wci<) is purely non-deterministic if
and only if

E[&,|&,] converges to 2 vaguely in probability, i.e. for every ¢ of
Co(X) E[<g,&,>|&,] converges to <¢, 2> in probability.

Proof. By Proposition 1.7 and Poisson properties we have
E[(E[<@, &> ]—<@, A>)"]=<(T0)? 4> =] Tt(””%z(x,x)-
Therefore Proposition 2.6 follows from Proposition 2.5.

Remark 2.7. If {T,} has no finite invariant measure, the corresponding

equilibrium process is metrically transitive.

Remark 2.8. If the equilibrium process associated with [{T,}, 1] is
metrically transitive and {T,} are symmetric on L*(X, 1), then it is puvely

non-deterministic.

Remark 2.9. The equilibrium process associated with uniform motions
on R* are mixing, but not purely non-deterministic. However the equilibrium
processes associated with all the addilive processes on R" except uniform

motions are purely non-deterministic.

Remark 2.10. Let (2, F, P,, {%,}:20) be a Hunt Markov process
corresponding to {T,}. If the equilibrium process associated with [ {T,}, ]
is metrically transitive, for almost all x (w.v.t. 1) and any compact subsel
K, Plw;tge<+oo|=1, where tg- denote the first hitting time for K¢.

§3. The Bernoulli Property of the Shifs Flow

It is easy to see that {@,}_..c;c., which is defined by (1.4) in §1, is
a flow on the probability space (=4 (#"), B, P=1I,). So, we discuss the
Bernoulli property in the strong sense of the flow {0,}_.cicw.

Definition 3.1. (2,B, P; {0,}_.c;c.) is called Bernoulli flow if it
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satisfies the following conditions;

(8.1)  There exists a system of o-subfields {5}, r<s, of B which satisfies
i) 6,.8=¢:1 or every r<s and i,
1 7 rit
(ii) &=gvel Sor r<s<t,
iil) &8 and & are mutually independent for r<s<t,
r
(iv) v =B (mod. )
r<s

The following lemma is essentially due to H. Tanaka, and is a genera-
lization of the Sinai-Volkoviskii’s result on the K-property of the ideal gas
model [4].

Lemma 3.2. Suppose that there exists a real measurable function v(f)
on the 0-finite measure space (W, By, Q) such that for almost all f(Q)

(@) —oo<Lr(f)<+oo

) w(f)=e+7(0,f)  for all ¢ of RL.®

Then, (2, B, P; {0,} _.cice) is a Bernoulli flow.

Proof. May assume every [ of # satisfles the conditions (a), (b).
Put #s={f; —r=c(f)>—s}. Then 0,#i={f; —r—t=c(f)>—-s—t}
by the condition (b). Obviously we have

(3.2) OWs=Witt,  UWi=W
7<s

So, we denote by S the g-subfield ¥(#7$) which is generated by {w; w(4)
=n}, n=0, A€ HB,, ACws. Noting 0,{0; o(4d)=n}={w; w(0,4)=n},
we can see {$11=0,-{7=%(0,#"5). Therefore {§ satisfies the conditions
(i) ~(v) in Definiton 3.1 by Lemma 1.3.

Proposition 3.3. Suppose that {T,} is transient in following sense;
SN(T,qo, P rxx, v dt< +oo for every ¢ of Ci(X). Then, (2,8, P;{0,})
0

is a Bernoulli flow.

Proof. First, we will show

6) Such a random time r(w) is called L-time which was introduced by M. Nagasawa

{71.
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(3.3) Sw o(fs)ds< + oo for almost all f (Q) for every ¢ of Cj(X).

For any ¢ and ¢ of C{(X),

[, 15" eraasecr loan={ [[etroas oo ot

+ Sr[gimgo(f‘) ds ¢’(fo)}Q(df)

={ (L0, Dt ds+ @ Ty ds< +o0

Therefore (3.3) holds.
Next, choose a countable sequence {g,} of C{(X) such that U{xe€ X;
n

¢,(x)>0}=X. Putting #",={f; 0<Sw_¢1(fs)ds< + oo}, 0,9 ,=%",. And

define #°,,; by {f;0<gw Gui1(fs)ds< +oo}\#°,. Thus we have a

sequence of disjoint subsets of %" which are {0,}-invariant. So define

t(f)=sup {t;st_mqon(fu)du é%glqﬂn(‘f“)du} if fe#,. Then we have

{f; —e<t(f)<+o}=U#",=# (mod.Q), and if few, 0,fe¥,
n

and ¢0, f)=supit; | ou(fueddus— (" gu(f)dut=7(f)=s. There

fore tv(f) satisfies the conditions of Lemma 3.2.

Remark 3.4. The equilibrium process {€,} induces a factor flow of
{6,}. Since a Bernoulli flow {0,} in the sense of (3.1) is a Bernoulli
flow in the weak sense (i.e. the automorphism 6, is Bernoulli for each
t=x0), the shift flow induced by {&,} is also a Bernoulli flow in the weak
sense by the theorem of Ornstein. [27]. But, perhaps, it may be a Bernoulli
JSlow in the sense of (3.1).

Remark 3.5. In the ideal gas model of Sinai-Volkoviskii [47], the
path space W is identified to R*X R* and & in (3.1) is the o-algebra
generated by the functions w~~—w(E), EC Vs, where Vi={f=(q1,..., qp> V1,
ooy V) ER" X R”| —rzZ:]q,-v;g —s}. In this case the function t(f) in

Lemma 3.2 is given by the last exit time of the set Vi for each f& R"X R".
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§4. A Central Limit Theorem

Finally we will prove a central limit theorem related to the equilibrium

process. Denote by qu(x)=SmT wo(x)dt if the integral is well-defined.
0

Proposition 4.1. Consider any function p& L?(X, ) which satisfies

Glel, leDx, <+, and (G(@|Gle|), |@])rixr< + .
Then

t
S L@, &, >ds—t<gp, 1>

0
oGt <4

limP[o); a<

}—o0

1 (8 _&t Vo ¥
='\/=7TS e Zdx for Ya<Vp.
a

Proof. It suffices to show

4.1) limE[exp iz —£——<St<¢, §,>ds—t<g, /1>>]
PR, W 0

=exp(—2%(¢, GY)12x,n) -
t
o(f) :S ¢(fs)dsisafunction on #" and satisfies <@, w > = St <@, &,(w)>ds.
0 0

t
E[expiz30<¢, $s>ds:]=E[e"z<’”'“’>:|=expg (et —1)Q(df) by Lemma
v
1.2, Thus we have

(4.2) E[exp iz \/17 (S;<¢, E>ds—t<gp, /l>>]

iz

—exp{ (0 1-izfi <, 1>)00d).

)2
Noting e"”—l—ix—(l—;c)—=0(| x3),

(1.3) Sy<e%—" D _1-izfT <, A>)Q(df)



516

Tokuzo Suica AND YorcHIRO TAKAHASHI

_ (%SW OCFIOAf)—isyi <g, L >)+— ; —Sy(—%—@(f')y@(df)

+o(|], (55 o) ecan])

The first term vanishes because of g//@([)Q(tlj):S;[quo(js)(_)(df)]d.s
=1<@, A>.

t

[, 0n20ean={ auf as_oroero0ar

0

t

2

Il

dsS:duSW o(fDe(f0(df)

0

2

|
g' dsS;du((p, T,0).

0

Therefore the second term of the right-hand side of (4.3) converges to

—z%(G@, ¢)12x,»)- By the similar calculation,

"t
0

Igdxf)s(?(df)i =6l3 S:SZ_”(TM T.0, ®)r:ondudvods

=6:G(lelGleD), le]) o

Therefore the third term converges to zero. Thus, we can complete the

proof of Proposition 4.1.
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